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Abstract

We solve for a firm’s optimal cash holding policy within a continuous time, con-
tingent claims framework using dividends, short-term borrowing and equity issues as
controls under the assumption of mean reversion of earnings. Optimal cash holdings
are a non-monotonic function of business conditions and an increasing function of the
level of long-term debt. The model matches closely a wide range of empirical bench-
marks and predicts cash and leverage dynamics in line with the empirical literature.
Firm value is quite insensitive to changes in the level of long-term debt. The model
has interesting implications for the asset substitution hypothesis, corporate hedging,
and the pecking order hypothesis. We find that growth opportunities do not greatly
affect the cash holding policy.
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Liquidity and Capital Structure

“Kerkorian’s numbers just don’t add up,” said Nicholas Lobaccaro, an auto an-

alyst with S G Warburg. “Ford says it needs double-digit billions of cash to

survive the next downturn in the market. General Motors says it wants to put

aside $13-15 billion. How can anyone believe Kerkorian when he says $2 billion

is enough?”[for Chrysler] 1

Introduction

The quotation above illustrates the range of opinions that can be found among practitioners

about the levels of liquid assets that are appropriate for firms. This observation is not

an isolated case - it is often remarked that many large corporations carry surprisingly large

amounts of cash on their balance sheets. However, finance theory has given very little precise

guidance as to how much cash is enough.

In this paper we attempt to fill this gap by directly asking what is the optimal policy

toward holding liquid assets in the firm. Specifically we determine the dynamically optimal

cash holding and leverage policy in a firm with given assets in place and long-term debt

outstanding. The controls are the firm’s dividend, short-term borrowing, and share issuance

choices. This analysis is important because in standard finance teaching cash holding is

treated as a short-term, operational problem separate from the firm’s capital structure choice.

In fact, for a firm choosing cash holding with foresight, this choice is inherently related to

the long-term capital structure. Under the optimal policy the level of cash is adjusted

dynamically as the firm is exposed to changing business conditions. In addition, because our

model employs a rich continuous time formulation of the firm’s cash flow process, we can

calibrate the model to several empirical benchmarks and thereby gain some insight into the

quantitative magnitudes of optimal cash holding in a variety of circumstances.

The core qualitative finding is that the optimal cash holding of the firm is a function of

the firm’s expected cash flow (earnings) which displays a hump peaking in the neighborhood
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of the firm’s long-term average rate of cash flow. As business conditions improve beyond the

long-term average, the firm targets a lower level of cash and pays dividends that maintain

cash at the target level. Depending on the firm’s level of long-term debt, it may be optimal

for the firm to borrow short-term in order to increase leverage. When business conditions

fall below the long-term rate, the firm will target a higher level of cash holdings and will

suspend dividends in an attempt to achieve this. However, with the decline in revenues, the

firm will see average cash holdings fall well below the target level. When there is a sustained

or deep decline in revenues, cash will drop to a minimum level at which point the firm will

issue equity. However, at a still lower threshold of expected cash flow, the firm’s equity value

drops to zero at which point the firm is bankrupt and the remaining assets are transferred

to creditors.

A rich variety of consequences follow from this optimal policy. First, since the firm is able

to control its net leverage through its dynamic cash policy, firm value is quite insensitive

to its long-term debt level structure. If the long-term debt level is lower, then the firm

can compensate in terms of tax shield benefits, by holding less liquidity or by short-term

borrowing. A second implication is that there is a hierarchy or “pecking order” among sources

of funds but this hierarchy is a function of business conditions. If business conditions are

very good the hierarchy is internal funds first, short-term debt second, and equity third.

However, in poorer business conditions the firm will avoid short-term debt and will turn to

equity issuance if internal funds are not available. A third implication is that for our firm,

and in many situations that we explain, the interests of debt holders and shareholders are not

in conflict with respect to the choice of asset volatility. Thus, the the basic corporate finance

teaching about the “asset substitution” problem must be refined for our firm. Fourth, our

model yields insights into corporate hedging, and its limitations.

We explore the empirical implications of the model in more detail by simulating it in the

baseline case calibrated to match simultaneously benchmarks for cash holdings, leverage,

equity volatility, yield spreads, default probabilities and recovery rates. Using sample paths

generated from this baseline model, we are able obtain results quite similar to the cross-

sectional and time series results reported in recent empirical studies of cash holding.

We finally extend the model to allow for an increase in the scale of the firm’s risky

technology. We find that the growth opportunity does not greatly impact cash holding
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policy, unless the firm expects to grow at an unusually large rate and in that case only

shortly before the investment is undertaken.

Papers closely related to ours include Mello and Parsons (2000), Rochet and Villeneuve

(2004), Hennessy and Whited (2005), Riddick and Whited (2009), and Bolton, Chen and

Wang (2011). All of these papers present theoretical treatments of the firm’s liquidity policies

that share some but not all of the features of the present paper. Mello and Parsons (2000)

and Rochet and Villeneuve (2004) are concerned with the benefits of hedging and show that

that hedging reduces the necessity of inefficient cash holdings. Hennessy and Whited (2005)

consider a discrete time model with cash and short-term debt but no long-term debt. They

explore the close dynamic linkage among debt, cash, and investment.

Riddick and Whited (2009) address the question of “Why do corporations save?”, with

‘saving’ defined as increasing the firm’s cash reserves. The firm “dis-saves” when its prof-

itability increases, because this is when it is optimal to expand real capital. There is a

negative“cash flow sensitivity of cash”, in the sense of Almeida, Campello and Weisbach

(2004). Our model addresses the more basic question of the determinants and levels of cash

reserves themselves, rather than just their time increments. In our model, firms have a neg-

ative marginal propensity to save when the profitability is high, independent of their real

investment plans. At lower profitability, this propensity is highly path dependent.

Bolton, Chen and Wang (2011) present a model which is similar to ours in many ways

and which derives the firm’s optimal cash management policy in the face of costly external

finance. The main difference is that they assume the firm is subject to i.i.d. productivity

shocks which allows them to solve the associated PDE analytically. In contrast, we assume

a mean reversion of profitability which allows us to explore cyclical aspects of the firm’s

optimal cash management. One of their key findings is that investment of a financially

constrained firm is determined by the ratio of marginal q to the marginal cost of financing.

Increases in cash decrease the marginal cost of financing and thus induce greater investment.

This differs from our model extended for growth because in our model investment tends to

occur only when earnings are high and in such states cash reserves need not be high. This

comparison is discussed in detail in Section 3 below.

The remainder of the paper is organized as follows. In Section 1 we introduce the model

and the dynamic programming technique we use to solve it. We explore in some detail a
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benchmark solution of the model and discuss its relation to previous empirical findings. In

Section 2 we draw out the implications of our model for the firm’s choice of capital structure,

emphasizing the role of mean reversion. In section 3 we extend our model first to allow for

investment opportunities. Finally, in Section 4 we summarize our results and conclusions.

In an online Appendix we present technical details of our numerical procedures and give

derivations and further details of results reported in the text.

1 The Model

1.1 Overview

Before presenting our model formally, it is useful to set out the main ideas in informal

terms. We consider a firm with a fixed asset in place which has been financed by equity,

variable short-term debt and fixed long-term debt. The asset generates a random cash flow

according to a stochastic process whose drift is itself random and follows a mean-reverting

process. Any cash flow in excess of contractual debt service and fixed operating costs is

subject to proportional corporate income tax, and the after-tax residual may either be paid

out as dividends, used to reduce short term debt, or retained as liquid assets within the firm.

Debt is assumed to be a hard claim, and any failure to meet contractual debt service results

in bankruptcy. We assume that strict priority is observed in bankruptcy, with the firm’s

assets in excess of bankruptcy costs being awarded to the firm’s creditors. Shareholders lose

all. When cash flows fall short of debt service, the firm may draw-down its liquid assets or

issue short term debt. It may also issue new equity; however, this external finance is costly

so that the firm receives less than the full value of the shares it issues. The asset in place is

indivisible so that partial sales of the risky asset are not allowed.

In this setting, firm faces two decisions. How much of the firm’s earnings should be paid

out as dividends? And how many new shares should be issued? Jointly, the two decisions

will determine the firm’s policy toward holding liquid assets and short term debt issuance.

In our framework there is no reason to hold cash and borrow short term simultaneously.

We assume that these decisions are under the control of shareholders, who maximize the

value of equity, calculated as the present discounted value of the future stream of dividends.
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The firm’s decision will depend upon two state variables: the current rate of revenue cash

flow and the current level of liquid assets (which is interpreted as borrowing when negative).

Since all the other features of the environment are constant, this is a stationary problem.

The solution of the model involves solving for the optimal policy as a function of the two

state variables.

Shareholders face various costs for capital market operations. Firm insiders will to some

degree extract rents from liquid assets inside the firm, so that inside cash will grow at

something less than the money market rate. On the other hand, the firm borrows short-

term at a rate greater than the money market rate reflecting informational rents conceded

as part of its banking relationship. Finally, issuing equity will incur floatation costs. In this

context, the optimal dividend and share issuance strategy will be of the ‘bang-bang’ type,

under which the state space is divided into 3 regions: in the ‘save’ region zero dividend

is paid and earnings are accumulated in the reserve of liquid assets or used to pay down

short term debt; in the ‘dividend’ region, the liquid reserve is immediately paid out, until

it is brought back to the ‘save’ region, or to abandonment or bankruptcy; and in the ‘issue’

region, the firm immediately issues equity until liquid reserve is brought back into the ‘save’

region. The solution to the problem is studied by characterizing the boundaries between

these regions as free boundaries, in a dynamic program.

1.2 Model Assumptions and Detailed Specification

The firm has fixed assets in place2, which incur operating costs at a constant rate f , and

which generate operating revenues at a rate dSt according to the Ito equation

dSt = ρtdt + σdW σ
t . (1)

Here expected revenue ρt at time t itself obeys the Ito equation

dρt = κ(ρ̄ − ρt)dt +
√

ρtηdW ρ
t . (2)

In these equations, dW σ
t and dW ρ

t are infinitesimal increments of independent, standard

Brownian motions, and κ, ρ̄, σ and η are positive constants. Equation (2) reflects our as-

sumption that the expected rate of revenue is positive and mean reverting, representing
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variation of business conditions over the business cycle3. Mean reversion of ρt is discussed

further in Section 2.3 below. Equation (1) adds an unpredictable random element to the

operating income. Note that after deducting the operating costs the profitability of the fixed

assets is given by dSt − fdt.

The firm is financed by equity, variable short-term debt, and fixed long-term debt.4 We

assume that the firm’s short-term debt is instantaneously maturing, and long-term debt takes

the form of a perpetual bond promising a continuous payment at rate q. In practice, a typical

financial structure will involve short-term secured bank loans and long-term debentures which

may be protected against dilution through restrictions on the amount of debt issuance (see,

Petersen & Rajan, 1994, and Bolton & Freixas, 2000). We capture this by assuming that

given a fixed q the firm can instantaneously borrow up to its debt capacity, determined

in our model by the value of the firm in bankruptcy. This will have the effect of making

short-term debt default risk-free. We assume that the firm pays an interest rate on short-

term borrowing, rbank, which is in excess of the risk-free money market rate, r. The amount

rbank−r reflects the informational rents ceded by the firm as part of its banking relationship.

The firm also may issue new equity to cover interest payments and operating losses. Such

equity issues will be costly, in that the firm will be able to sell new shares at a fraction θ < 1

of their fair value. The parameter θ will reflect fees and pricing concessions associated with

primary equity market operations and may vary systematically with the efficiency of the

capital markets where the firm operates. In a highly efficient market θ will be close to unity;

whereas in a very underdeveloped capital market θ may be close to zero.

In addition to its fixed asset, the firm may hold a variable amount of liquid reserves. At

any time t, the value of these will be denoted by Ct. Liquid reserves held within the firm

will earn an ‘internal’ return at rate rin, which will be less than the riskless rate r earned

on outside funds. This wedge r − rinbetween rin and r reflects the moral hazard faced by

the shareholders, as discussed by Myers and Rajan (1998). As already mentioned, in our

framework there will be no incentive to hold cash and issue short-term debt simultaneously.

Thus Ct < 0 will correspond to a situation where the firm is borrowing short-term.

Under these assumptions, and for the time-being ignoring the possibility of equity issues,

the liquid reserve is the accumulation of total earnings net of dividends, fixed costs, and
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interest payments on debt, and we can write

dCt = (1 − τ)(dSt − ((f + q) − rCt
Ct)dt) − dDt, (3)

where τ is the corporate tax rate, and Dt is the accumulated payments of dividends, rC

is equal to rin when C > 0, and equal to rbank when C ≤ 0. This equation recognizes

that tax is paid on the operating income and interest on the cash reserve, net of interest

payments and fixed costs, i.e. dSt − ((f + q) − rCt
Ct)dt. Applying this to negative earnings

is an analytically tractable way to model the loss carry-back and carry-forward provisions of

many tax regimes.5

The firm becomes bankrupt if it does not meet its debt obligations and fixed costs, either

from its operating revenue, its cash reserve, or by issuing new shares. On bankruptcy, the

creditors are awarded the firm’s fixed assets. We assume their value equals the value of the

unlevered firm less bankruptcy costs, which we take to be a fraction α of this value. We

denote the equity value with long-term debt coupon, q, by Jq(ρ, C). Then the debt holders

get value (1−α)J0(ρ, C) upon bankruptcy. We assume that the firm can borrow short-term

up to the value of this collateral less the face value of long-term debt, q/r. Thus for given

ρ, the short-term borrowing limit will be a negative cash holding denoted C(ρ), given by

C(ρ) = min {0, (1 − α)J0(ρ, C) − q/r}
Finally, we assume the firm chooses the dividend and capital market policy so as to

maximize equity value, which is taken to be the present value of expected dividends dis-

counted at the risk-free rate r. The debt is also valued by discounting at the risk free rate

the coupon payments until bankruptcy, and then the bankruptcy value. This is consistent

with Equations (1), (2) referring to the risk neutral probability measure.6

1.3 PDEs for the Solution

Under the above assumptions, and ignoring for the moment the possibility of new equity

issues, the value of the firm’s equity is determined at any time t by the current values of

profitability ρ and cash reserve C, which represents short term borrowing, if it is negative.

Denoting this value by Jq
t (ρ, C), then we can write the HJB equation

Jq
t (ρ, C) = max

dDt

{

dDt + e−rdtE
(ρ,C)
t

[

Jq
t+dt(ρt+dt, Ct+dt)

]}

, (4)
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in which dt is an infinitesimally short time step and dDt is the optimal dividend payment

over this time step, which must be non-negative. Also, E
(ρ,C)
t means the expectation at time

t, given that (ρt, Ct) = (ρ, C). If the liquid reserve becomes low, then the firm can increase

it by issuing more equity, if this is feasible in terms of the share price.

Expanding Jq
t+dt(ρt+dt, Ct+dt) in Equation (4), using the Ito Formula, E[dW σ

t ] = 0, and

following standard manipulations we obtain the Ito Equation

Jq
t (ρ, C)(1 − e−rdt) = max

dDt≥0

{

dDt +

(

∂

∂t
Jq

t + κ(ρ̄ − ρ)
∂

∂ρ
Jq

t +
1

2
ρη2 ∂2

∂ρ2
Jq

t

)

dt

+ [(1 − τ)(ρ − (f + q) + rCC)dt − dDt]
∂

∂C
Jq

t +
1

2
σ2(1 − τ)2 ∂2

∂C2
Jq

t dt

}

(5)

We emphasize that this equation holds only for the optimal choice of dDt, which depends

on (ρ, C).

The optimal choice of dDt here is singular: if ∂
∂C

Jq
t < 1, then it is optimal to pay

dividends as quickly as possible, reducing the cash holding until either ∂
∂C

Jq
t ≥ 1, or until

the firm becomes bankrupt. If ∂
∂C

Jq
t ≥ 1, then the firm will not pay dividends.

The optimal decision can thus be characterized in terms a “save” region S and a “div-

idend” region D in the state space {(ρ, C) : C ≥ C(ρ)}. In S we have ∂
∂C

Jq
t > 1, and also

Equation (5) holds, with dDt/dt = 0, i.e.

∂

∂t
Jq

t − rJq
t + κ(ρ̄ − ρ)

∂

∂ρ
Jq

t +
1

2
ρη2 ∂2

∂ρ2
Jq

t

+(1 − τ) [ρ − (f + q) + rCC]
∂

∂C
Jq

t +
1

2
σ2(1 − τ)2 ∂2

∂C2
Jq

t = 0. (6)

In D we have
∂

∂C
Jq

t = 1, (7)

and Equation (6) does not apply, since the value of an extra dollar in the liquidity reserve

is just its value if immediately paid as a dividend. If the liquid reserve Ct becomes so high

that (ρt, Ct)εD, then a dividend should immediately be paid, to take (ρt, Ct) back into the

region S , or to bankruptcy.

If the liquid reserve becomes low, then it may be optimal for the firm to issue new equity.

We have not included this possibility in the above formulation. In fact it is optimal to issue
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more equity if 7 ∂
∂C

Jq
t > 1

θ
. This possibility leads to there being a third, ‘issue’ region, which

we will denote by I, lying below S, and in which

∂

∂C
Jq

t =
1

θ
. (8)

If the liquid reserve Ct becomes low, so that (ρt, Ct)εI, then new equity should immediately

be issued, to take (ρt, Ct) back into the region S . Note that until bankruptcy occurs, the

process (ρt, Ct) will always remain in the save region S, since it is immediately pushed away,

whenever it enters the region D or I.

These regions must be chosen to maximize Jq
t (ρ, C) and the boundaries between S, D,

and I. are ‘free’, in that they are determined as part of the solution to Equations (6), (7),

(8) 8 The boundary condition at the lower boundary {C(ρ)}ρ is just Jq(ρ, C(ρ)) ≥ 0. Our

solution technique will be described in detail in our online Appendix A. The approach is

to develop the solution to Equation (6) numerically from a distant horizon t = T to t = 0,

and to test at every point whether the value is increased by applying Equation (7) or (8),

instead of Equation (6). The horizon T is taken to be sufficiently far away, that the solution

is independent of T for t near zero.

The debt value P q
t (ρ, C) can be calculated by solving a PDE, in a similar way to the

equity value Jq
t (ρ, C) above. In fact, the calculation is simpler because the boundaries of

the region in which the debt is defined, i.e. S, have already been determined in the equity

valuation. The PDE for the debt, in the region S, is

q +
∂

∂t
P q

t − rP q
t + κ(ρ̄ − ρ)

∂

∂ρ
P q

t +
1

2
ρη2 ∂

∂ρ2
P q

t +

[(1 − τ)(ρ − (f + q) + rCC)]
∂

∂C
P q

t +
1

2
σ2 ∂

∂C2
P q

t = 0. (9)

Again, we evolve the solution backwards from a distant horizon t = T . The boundary

conditions for the debt valuation are as follows: First ∂
∂C

P q
t = 0, where S meets I or where

S meets D and D is above S. This corresponds to the reflection of the process Ct at these

boundaries9; Second P q
t = (1 − α)J0

0 (ρ, 0) where S meets D and D is below S, or when

C = C(ρ) and ρ is not high enough to induce the equity holders to maintain payments to

debt and fixed costs. This corresponds to bankruptcy, under which the debt holders receive

the unlevered value of the firm, net of bankruptcy costs. (Note that the restrictions on short
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term debt mean that the firm will not go bankrupt if it has any short term debt, and so we

must have C = C(ρ) = 0 at bankruptcy.)

1.4 Benchmark Solutions to the PDEs

Our benchmark parameters are set as rin = 5%, r = 6%, rbank = 7%, f = 1.0, ρ̄ = 1.09, η =

0.16, κ = 0.4, σ = 0.0, τ = 30%, θ = 0.8, α = 0.3, and q = 0.04. Perhaps the most important

parameter in our model is κ which determines the degree of mean reversion of profitabil-

ity, a feature that has been recognized as important in capturing business cycle effects in

capital structure dynamics (see, Gomes (2001), Hennessy and Whited (2005), and Pastor

and Veronesi (2003)) The value of κ = 0.4 is taken from Pastor and Veronesi and reflects a

moderate rate of mean reversion.10

Other important parameters are ρ̄, η, f , and q which are all expressed in annual rates

of monetary flows. The long run objectively realized average ˜̄ρ of ρt will be higher than ρ̄,

reflecting the possibility of bankruptcy, and the risk premium, whose role we will explain

further below. In simulations described below ˜̄ρ is close to 1.23, and the long run average

profitability is ˜̄ρ− f ≈ 0.23. The firm value at this level of profitability is about 1.24. Thus

the average return on assets is close to 0.23/1.24 = 18.5%. Also, setting f = 1.0 implies an

operating leverage of 1.0/1.24 = 81% which is consistent with recent estimates by Garca-

Feijo and Jorgensen (2007). The value η = 0.16 makes the annualized standard deviation

of earnings to be close to ˜̄ρ
1
2 η/0.23 = 77% of the average earnings. This is in line with

an analysis of COMPUSTAT data that we will describe more fully below. Finally, setting

a long-term debt service at q = 0.04 implies an interest coverage ratio of approximately

(˜̄ρ − f)/q = 5.75. This number is broadly in line with an empirical summary, that we

present in Table 2, and discuss further later.

The other parameters have direct economic interpretations. Notice that by setting r = 6%

and rin = 5% we are assuming that 1/6 of the market return on cash is dissipated by

keeping the cash inside the firm and under the control of management. We view this as

representing a significant problem of managerial moral hazard and a disincentive to holding

cash. Similarly, setting rbank = 7%, we are assuming a significant relationship premium on

short-term borrowing11. By setting θ = 0.8 we assume 20% of the market value of newly
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issued equity is lost through transactions costs of one form or another. Given the direct costs

plus underpricing of equity issues, we view these costs as substantial but not unreasonable in

many settings12. Our assumption of bankruptcy costs of 30% is at the high end of estimates

that can be found in the literature13. We explore the sensitivity of our solutions to these

assumptions by examining alternative parameter values below.

Figure 1 gives the regions S, D and I, defined above, for the model solved with our

benchmark parameter values. In this figure,the x-axis represents expected revenues ρ, and

the y-axis represents the cash holding, which corresponds to short term debt, at negative

values. The ‘save’ region S is denoted by dots. As explained, within this region the firm does

not pay dividends, and the solution will not stray beyond its upper and lower boundaries.

The upper barrier to the save region is the dividend region D indicated by the downward

triangles in Figure 1. This can be regarded as the liquidity target. When (ρt, Ct) is below

this target earnings are retained so as to increase Ct, and when (ρt, Ct) is above this target

dividends are paid immediately, so as to reach this target.

The lower barrier to the save region is restricted to the lower boundary of cash {C(ρ)}.
For sufficiently high levels of expected revenue this coincides with the ‘issue’ region indicated

by upward triangles in Figure 1. Here the firm chooses to issue equity to meet its cash flow

needs. For lower values of ρt this coincides with the ‘abandon’ region indicated by small

circles. Here it does not pay to issue equity, and the firm is allowed to go bankrupt. For the

case depicted in Figure 1 we see that the firm is able to borrow short term when ρ greater

than about 1.1. Also the lowest value of ρ at which the firm will issue shares if the cash

reserve hits the lower boundary, is about 0.7.

Notice that for still lower values of ρt, the abandon region is met for strictly positive

levels of cash. If revenues fall to these low levels while the stock of cash is sufficiently high,

the firm will use the liquidity to pay operating losses, in the hope of surviving until business

conditions improve. But at some critical level (indicated by the ‘abandon’ boundary) the

prospects of surviving on the available cash are not sufficiently attractive, and the remaining

cash reserve will be paid out, and the firm will be abandoned.

The solid line in Figure 1 shows the average cash holding displays a hump in the neigh-

borhood of average earnings, ρ̄. It is increasing in ρ for lower levels of profitability and

decreasing for higher profitability. This line is calculated from the objectively realized aver-
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age cash holding for each level of ρ, and taking 2000 simulations, as described in the next

section. The average cash level is far below its target when ρ is below the long-term average,

ρ̄. In this range of ρ, the firm is attempting to increase its cash holdings through retentions,

but the dynamics of cash are such that the firm settles down to an equilibrium cash holding

short of its target level. The maximum average cash level of about 0.095 is attained slightly

above the risk neutral average revenue rate of ρ̄ = 1.1. For revenue rates much above that

level the firm is able to maintain cash at or just below target levels.14

Other properties of the model can be seen in Figure 2 where we present a portion of one

history of the model when simulated under the optimal policy for the benchmark param-

eter values. This depicts the last ten years of the firm ending with its bankruptcy in its

120’th year. The period begins with good business conditions and the firm has built up a

substantial cash cushion. Cash flows fall sharply in year 113 and the cash position of the

firm deteriorates. Even though profitability returns to normal the firm is unable to fully

restore its cash holdings, leaving it vulnerable to a renewed economic downturn in year 119

and leading to bankruptcy in the next year.

1.5 Benchmark Simulation of the Model

To explore our model further, we simulate it as in Figure 2 and summarize its implications for

the liquid reserves, leverage ratios, credit spreads, default probabilities, and other relevant

measures. Specifically, for the parameters above, we solve the model for the equity and debt

values as functions of (ρ, C), and obtain the optimal regions D, I and S. Then we perform

2000 simulations of the ρt variable, the realized cash holding Ct, equity value Jt and debt

value Pt. Each simulation starts from ρ = 1.2, C = 0.0 and then, after a burn-in period of 20

years, runs to the firm’s bankruptcy, or to 1000 years, if no bankruptcy occurs before then.

Based on the realizations of the simulations we also calculate the average liquidity for

each grid value of ρ, denoted C(ρ). Taking this average liquidity value as a function of ρ,

we study the model conditional on five levels of profitability: ρ = 0.90, ρ = 1.0, ρ = 1.1,

ρ = 1.2, and ρ = 1.3. At each level of ρ and average liquidity C(ρ), we present the equity

value, net of the liquid reserve, Jq(ρ, C(ρ)) − C(ρ), debt value P q(ρ, C(ρ)), net firm value

Jq(ρ, C(ρ))+P q(ρ, C(ρ))−C(ρ) , and leverage (debt value divided by the value of the firm).
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Taking net equity and firm values facilitates comparisons across different scenarios, since

changing between scenarios would involve making up the difference in the liquidity reserve

by cash. In addition we give the equity volatility calculated as

√

(√
ρη ∂

∂ρ
J
)2

+
(

σ ∂
∂C

J
)2

/J

and the mean annual payout to shareholders (‘dividend’).

The simulations are done with respect to the objectively realized (“statistical”) proba-

bilities, and so we need to specify a risk premium. Referring to the risk associated with

ρ, we can represent the risk premium by a parameter λ (assumed constant, for simplic-

ity)15, such that to transform from the risk neutral to the statistical measure, we should

replace dW ρ
t of Equation (2) by dW ρ

t + λdt. This λ can be thought of as a Sharpe Ra-

tio: it is the extra return required, per unit of extra exposure to the risk represented by

dW ρ
t . To see how the risk premium affects the return of the firm’s equity, note first that

under the risk neutral measure, the expected return will be just the riskless return r. The

equity value Jt(ρ, C) is a smooth function of ρ, and using the Ito formula, we can write

dJt = (drift)dt + ∂
∂ρ

Jtdρ ≡ rdt +
√

ρtη
∂
∂ρ

JtdW ρ
t . The factor

√
ρtη

∂
∂ρ

Jt here is the equity

volatility, and we will calculate this in the tables below. Substituting dW ρ
t by dW ρ

t + λdt,

we can see that the risk premium increases the expected return by λ times this volatility.

A reasonable value for the risk premium (Sharpe Ratio) of the market itself is λ = 0.5,

corresponding to a market excess return of say 8%, and market volatility of say 16%. On

the other hand a completely diversifiable risk would imply λ = 0. We take λ = 0.3, which

is reasonable, if we assume that the risk of the firm has a systematic component, i.e. it is

somewhat correlated with the market.

In addition we calculate the yield spread on zero-coupon bonds of 5 and 20 years until

maturity. For this calculation, and following Duffie and Lando (2001), we assume that the

perpetual debt is made up of a continuum of zero coupon bonds, and if the firm defaults,

the these bonds are paid off in proportion to their value weight in the total debt. This

calculation is done by adapting the perpetual debt valuation to accommodate this default

rule, a payment of one dollar if there is no default before maturity, and the coupon being

zero. We also calculate the probability of bankruptcy at 1, 5 and 20 year horizons. This

calculation is again done by adapting the perpetual bond valuation, and we include the risk

premium λ, since this probability is not risk neutral, but objectively realized.
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Our results for liquidity, debt value, equity and leverage values are given in Table 1 Panel

A, the credit relevant values are given in Table 1 Panel B. The calculations are done for a

range of debt parameters, q. We take as the main reference for our calibration the case

q = 0.04. In Table 2 we have summarized the results for this case in a way that can be

compared to financial ratios of US non-financial firms as reported by Standard and Poors

for the period 1997-1999. When evaluated at ρ = 1.1 these comparisons suggest that our

benchmark firm has characteristics similar to a firm rated just below investment grade, at

about BB+. When evaluated at ρ = 1.2, (i.e., close to the grand average realized value of

ρ), the model corresponds to an investment grade firm rated about A- or BBB+.16

From Table 1A, for q = 0.04 we see that the average liquidity expressed as a function

of net firm value is 0.095/1.02 = 9.3% when calculated at ρ = 1.1. This is comparable to

median level of liquidity holding for small to medium sized firms reported by during the

1980’s and 1990’s as depicted in Opler et.al (1999) Figure 2. Our model implies an equity

volatility of about 35% under normal conditions (ρ = 1.2) which is in line with market

experience.

Turning to the credit risk related indicators in Table 1B, we see that this firm in the

reference case has a credit spread of 210 basis points on the 5-year pure discount bond when

evaluated at ρ = 1.1 and 151 basis points at ρ = 1.2. By way of comparison, the annual

average spread of the Moody’s Baa non-financial corporate bonds over 10-year Treasuries

ranged between 156 basis points and 229 basis points in the 1990’s. Since 2000 this spread

attained a high of about 321 basis points following the Dotcom Bust and 367 basis points in

2008 in the midst of the financial crisis.

In Table 1B we also report the probability of default, calculated under our assumption

about the equity premium. Conditional on ρ = 1.2 this probability is 7.9% at the 5-year

horizon. This is somewhat high for a firm that otherwise appears comparable to a firm in

the investment grade range. For example, over the period 1983-2008, Moody’s reports a

5-year cumulative default rate of 2.92% on bonds rated Baa3. However, in this same data

set default rates rise sharply for non-investment grade bonds. Moody’s reports a default rate

of 6.28% for bonds rated Ba1 and 7.23% for those rated Ba2.

Finally, our model has implications of the value of defaulted bonds which can be compared

to empirical recovery rates. Under the benchmark parameters the firm goes bankrupt when
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ρ = 0.7 approximately. This is seen in Figure 1 as the boundary between the “abandon”

region and the “issue” region. The collateral value paid to debt is 1 − α times the value of

the unlevered firm. Extrapolating to ρ = 0.7 in Table 1A and with q = 0, this unlevered firm

value is about 0.3522, and so the debt value in bankruptcy is (1−30%)×0.3522 = 0.2465. If

we make the assumption that the firm’s long-term debt was issued at par in average business

conditions (ρ = 1.2) the face value of debt is about 0.500. Thus the implied recovery rate is

0.2465/0.500 = 49%. This number is consistent with empirical studies of BBB rated firms.

Over the period 1988-2002 Standard and Poors found that the recovery rates on defaulted

bonds were 30 per cent for Senior Subordinated Notes, 38 per cent for Senior Unsecured

Notes, and 50 per cent for Senior Secured Notes. (See de Servigny and Renault (2004)

Chapter 4.)

To summarize, by simulating our model under the optimal policy and for our chosen

parameters we see that it produces plausible predictions in comparison to a very wide range of

empirical benchmarks. These include cash holdings, leverage, equity volatility, yield spreads,

default probabilities and recovery rates.

1.6 A comparison of some of our model features with empirical

data

Another way to judge the plausibility of our model is to ask whether the empirical cross

sectional evidence on cash holding and dividends corresponds to the policy reflected in Table 1

where we have depicted firms varying with respect to both degree of leverage and profitability.

In Table 3 we report average liquidity holdings and equity payout rates for US non-

financial firms cross-tabulated by earnings quintile and degree of long-term leverage. This

table is compiled from annual COMPUSTAT data from 1978 to 2008. For each firm we take

the long term leverage for a given year, corresponding to maturity of more than 1 year, and

the firm is allocated to the ‘leverage categories’ in the table according to the average long

term leverage over all available years for the firm. We discard data for which the firm has

been operating for less than 5 years. The numbers reported are averages weighted by total

assets, with the maximum total assets capped at $ 1000 million and firm years are discarded

if total assets is less than $ 10 million. In discussing our model we have called payouts to
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equity ‘dividends,’ but in fact, since we do not allow for negative share issues, these payouts

are equivalent to a combination of dividends and share buy-backs in the data. Similarly,

what we have referred to as cash really refers to a broad notion of liquid asset holding as

represented by a firm’s net working capital.

By reading across rows of the upper panel of Table 3 we see that with the exception

of firms in the two lowest leverage categories, liquidity tends to rise and then fall with

profitability. We find a similar hump-shaped pattern in Table 1 comparing liquidity within

columns, i.e., for a given value of q. Our model generates this pattern because under the

optimal policy the target level of cash holdings is a decreasing function of profitability and

because at low levels of profitability the firm faces a drain on cash which means their cash

holdings will fall well short of the target (see Figure 1). The results in Table 3 suggest

that this trade-off is a common feature in many firms. However, in the data this pattern

does not hold for the firms with very low leverage. These firms tend to hold high levels of

liquidity, independently of the level of current profitability. One possible explanation for this

is that many low-debt firms maintain a high degree of liquidity in order to pursue growth

opportunities as they arise. In Section 3 we will discuss how the predictions of our model

would change if it were modified to explicitly incorporate fixed investment.

In the lower panel of Table 3 we present average payout to equity, again cross-tabulated

by degree of leverage and by profitability. Reading across rows we see for firms of similar

leverage, total payouts tend to be larger for more profitable firms. A similar pattern holds

for our model as seen by comparing average dividend rates across different levels of ρ for

firms with a given long-term debt, q. Again this pattern is a reflection of the optimal payout

policy. Total payouts tend to be high for more profitable firms because for them cash targets

are relatively low and are more easily attained.

While this evidence supports the empirical plausibility of the optimal payout policy we

have derived, we would not suggest that our model is realistic in all respects. In particular,

the received wisdom is that most firms smooth their dividends, and we have made no attempt

to impose this in our model. Dividend smoothing would presumably lead to higher liquidity

reserves, on average. On the other hand, since the increased popularity of share buy-backs

starting in the 1980s, the degree to which firms actually smooth compensation to shareholders

appears to have decreased. A recent survey by Brav, Graham, Harvey and Michaely (2005),
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concludes that “... maintaining the dividend level is on par with investment decisions while

repurchases are made out of the residual cash flow after investment spending”. Also, Allen

and Michaely (2003) conclude that “Corporations smooth dividends relative to earnings.

Repurchases are more volatile than dividends.”

We have estimated the volatility of dividends and dividends plus share repurchases, using

a panel regression on the of firms covered in Table 3. Specifically, we regress annual dividend

(plus share repurchase) normalized by total assets, on its lagged value, and calculate volatility

as the root mean squared residuals. We find this volatility is 3.3% for the dividends alone

and 5.8% for the dividends plus share repurchases. When we carry out the same calculation

for our model simulated under the optimal policy, we have a volatility of 8.3%.

2 Some Applications of the Model

2.1 The Dynamics of Leverage

Our model may be viewed as a further development in research on dynamic trade-off theory in

which a firm’s optimal dynamic policy balances off a variety of financial frictions. Important

contributions to this literature include Fischer et.al. (1989), Hennessy and Whited (2005)

and Strebulaev (2007). This literature was stimulated in part by the observed inability of

traditional static trade-off theory to account for a variety of empirical regularities including

mean reversion of firm leverage ratios and the negative correlation of the leverage ratio and

lagged profitability. Our model has these regularities. In particular, using the data simulated

as in Figure 2, and observing variables at yearly intervals, the correlation between leverage

and lagged revenues (ρ) is -0.49.

In our model this behavior is the by-product of the firm’s dividend and short-term bor-

rowing policy. As seen in Figure 1, over a range of revenues close to their long-term mean

an improvement in earnings will usually be saved, because the level of cash holdings is well

below its target. Thus, in such moderate business conditions, higher earnings will result in

higher levels of cash-holdings which reduces the book value of total debt, while firm value

is increasing. In good business conditions, the cash holding is at its target, and so higher

earnings will all be paid out, and in fact there will be a reduction in the cash holding. That
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is, there is a negative “cash flow sensitivity of cash”, in the sense of Almeida, Campello and

Weisbach (2004). Generally, the change in cash holding bears no simple relation to current

cash flow, a point that has been emphasized by Riddick and Whited (2009). These results

provide a way of understanding the ambiguous empirical findings concerning the effect on

cash holdings, of the rate of cash flow.17 Also, note that this behavior is independent of

any consideration of investment incentives. Thus the dynamics induced by investment as in

Riddick and Whited (2009) give an additional complicating factor in understanding changes

in cash holdings. We will return to this issue below in Section 3 where we extend the model

to allow for growth opportunities.

2.2 “Optimal” Capital Structure

Our model is distinguished from previous contributions (e.g., Hennessy and Whited (2005))

by the fact that we allow for both short-term and long-term debt. As such it is a natural

framework to explore the relationship between capital structure, dividends and cash man-

agement policy. The key insights can be understood from Figure 3 which depicts the optimal

policies for two levels of long-term debt. The “high debt” case depicted in the top panel

corresponds to our benchmark where q = 0.04. In the lower panel we present the “low debt”

case where we set q = 0.0 with all other parameters as in the benchmark case.

We see that the effect of a higher level of long-term debt is to raise the liquidity target

for any given value of expected earnings. Similarly, at a given value of ρ, the equity issuance

boundary is increased (i.e., short-term debt capacity decreased) and the average level of

liquidity is increased. The economic intuition for this is that with higher long-term debt

the firm requires a greater liquidity buffer to sustain itself through a period of low earnings.

Note that in the low debt case the average level of cash holdings is negative for all ρ. That

is, on average the firm engages in varying degrees of short-term borrowing as a function of

business conditions. It is clear from this analysis that long-term and short-term debt are

highly substitutable. With a reduction in long-term debt, a given firm will compensate by

reducing its cash holdings and, possibly, borrowing short-term. In this way it will achieve a

similar balance of debt tax shields and bankruptcy costs.18

What are the implications of this for the optimal “time zero” level of long-term debt?
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For a firm with our benchmark parameters the answer is given in Table 1 Panel A where we

present firm value for varying levels of q. It is notable that firm value is quite insensitive to

q for a wide range of leverage values up to our benchmark q = 0.04. For example, at ρ = 1.2

by varying q from 0.01 to 0.04 the firm’s leverage rises from 11% to 39% but firm value stays

within a 1.2% range.

In our view this near-irrelevance of long-term capital structure is one of the important

economic insights that emerges from our model and one of the benefits of incorporating

long-term debt, short-term debt, cash management and equity issuance all into a single

unified framework. For many firms the choice of its long-term debt structure is of second

order importance because in choosing its dynamic cash/ short-term debt policy optimally

it can achieve approximately the same value for many different values of long-term debt

outstanding. However, the degree to which this near-irrelevance property applies across

various firms may vary with their other characteristics. In particular, the degree of mean

reversion matters. In Figure 4, we have plotted the firm value as a function of q for mean

reversion parameter κ = 0.2, κ = 0.4 (our benchmark), and κ = 0.6. For κ = 0.4 the

firm value is quite insensitive to q up to our benchmark value, as already mentioned. This

property holds as well for lower speeds of mean reversion, as indicated by the case of κ = 0.2.

For κ = 0.6, we see that the drop of firm value at high levels of leverage is more marked. A

firm with fast mean reversion will find earnings highly concentrated around their long-term

average. It will have a lesser need for active cash management and a bigger payoff to carefully

choosing a long-term debt policy.

In Figure 4 we also see that for κ = 0.2, the firm value rises with q, up to the very high

value q = 0.06. Thus for a slow mean reverting firm, firm value may be fairly insensitive to

changes of long-term debt. Still the highest firm values are achieved at very high debt levels.

This is similar to the result of of Leland (1994), in which the firm value follows geometric

Brownian motion. More recently Strebulaev (2007) argues that the unreasonably high levels

of leverage predicted by Leland disappear when the firm is allowed to rebalance its capital

structure periodically. Our results show that mean-reverting firms, even with a moderate

speed of mean reversion as for our benchmark case, do not need high leverage and do not

need to engage in such rebalancing. These observations shed light on recent inconclusive

work on whether firms empirically adjust their leverage to an optimum level, for example
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Chang and Dasgupta (2009).

2.3 The Pecking Order Hypothesis

One of the first challenges to the static trade-off theory of capital structure came from

Myers and Majluf (1983) who explicitly allowed for an informational asymmetry between

incumbent shareholders and outside investors. This gave rise to a predicted hierarchy or

“pecking order” among alternative modes of finance. While dynamic trade-off models such

as ours make no explicit allowance for information asymmetries, the financial frictions such

as bankruptcy costs and the cost wedge between inside and outside finance may be viewed

as reduced form ways of representing such asymmetries.

Accordingly it is interesting to compare our model’s implications to the recent study of

pecking order theory by Leary and Roberts (2010). They attempt to overcome the problem

of low power which characterizes earlier tests of the pecking order19 by introducing an em-

pirical model of the pecking order that allows a state dependent nature of financing policy.

Depending upon the state, the firm will select financing according to three alternative hierar-

chies: (a. pecking order) internal first, then debt, then equity; (b. debt capacity constrained)

cash first, then equity; and (c. cash constrained) debt first, then equity.

These three cases also emerge in our model where the relevant state variables are ρ and C

as can be seen in Figure 1. A classic pecking order (case a) prevails in our model for relatively

high values of expected revenue (ρ) where the equity issuance boundary corresponds to

negative C. That is, as financing needs would increase (e.g., as a result of a larger negative

cash flow shock) they would be met first by drawing down internal funds, then by borrowing

short-term and then by issuing equity. Case b corresponds to lower values of ρ where the

equity issuance boundary coincides with C = 0. And the cash constrained case (c) would

correspond to high values of ρ where current cash is negative. Thus our dynamic trade-off

model provides a rationale for their empirical model. It is worth noting that while in our

model we have not introduced investment opportunities, the same state-dependent pecking

order will emerge when the model is extended to allow for such opportunities. We will discuss

this in section 3 below.
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2.4 The Asset Substitution Effect

Since the analysis of Jensen and Meckling focussed attention on the incentive for shareholders

of the levered firm to engage in ex post increases in asset volatility, the “asset substitution

problem” has become one of the pillars of received wisdom in corporate finance. Based on

this, there is a large literature on how this problem can be remedied either by security design

(eg, Green (1984)) or by choice of capital structure (eg, Leland (1998)). In this section we

re-examine the issue in our model and find that in a dynamic setting the asset substitution

effect is reversed in many circumstances.20

In our model, there are two sources of earnings volatility: σ refers to a white noise type

of volatility which represents a transient shock to profitability; η refers to the dynamic of

the profitability ρ. Given the mean reverting nature of the profitability relation, η shocks

are persistent.

In our model, increases in transient volatility decrease both the value of debt and the

value of equity, net of cash in the firm. This can be seen from the first 2 diagrams in the

top row of Figure 5. In this figure we calculate the value of equity and debt as a function

of σ for different levels of profitability. From bottom to top these correspond to ρ = 0.9

(blue dots), ρ = 1.0 (green dot/dash), ρ = 1.1 (red line), ρ = 1.2 (turquoise dash), and

ρ = 1.3 (black dot/dash), respectively. The reason for this is that an increase σ will not

increase the firm’s expected earnings under any future scenario, but will just increase their

uncertainty. In response to this, the firm will increase its liquidity reserve, and equity values

will be reduced as a result.

The matter is more complicated when it comes to increases in persistent volatility. There

are two opposing forces at work here. First, increasing η increases the level of cash holdings,

and this is harmful to both debt and equity. Second, increasing η increases the probability

that the firm value will wander to relatively high or low earnings levels. Most of the benefit

of the former accrues to equity, and most of the harm of the latter accrues to debt. This

is the force reflected in the substitution effect of static theory. In this dynamic model the

balance of the two forces depends on the strength of mean reversion. At our benchmark

parameters, the equity values increase only slightly as η increases, but the debt and firm

values decrease significantly. This can be seen from the third and fourth panels in the top
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row of Figure 5. For higher rates of mean reversion (κ = 0.6 first two figures in the bottom

row of Figure 5) both equity and debt are hurt by increases in η. However, for much lower

speeds of mean reversion, (κ = 0.2 in the third and fourth graphics of the second row of

Figure 5) equity values increase significantly with η and debt values are reduced.

To summarize, the interests of debt and equity are aligned with respect to increases in

transient earnings volatility. The interests of debt and equity are also aligned with respect

to increases in persistent volatility if the speed of mean reversion is sufficiently high. Only

when mean reversion is low do we find that increases in persistent volatility benefit equity at

the expense of debt. These results help to understand the fact that empirical studies have

been notably unsuccessful in finding any evidence in support of the asset substitution effect

(see, Andrade and Kaplan 1998 and Rauh 2006).

2.5 Hedging

Our model also sheds light on corporate incentives to hedge. This has been addressed by

Mello and Parsons (2000) and Rochet and Villeneuve (2004) in a continuous time framework.

They characterize the benefits of hedging shocks to cash flow. Our results are similar to

theirs, if we assume that σdW σ
t represents a shock to earnings, that can be hedged costlessly,

resulting in σ = 0. For example, if the source of transient shocks to earnings come from

fluctuations in commodity prices it may be possible to eliminate these risks with positions

in futures contracts. As in our discussion of the asset substitution effect, it is clear that such

hedging is of benefit to shareholders, and the benefit comes from the fact that it allows the

firm to reduce its use of costly cash balances.

What about hedging the noise represented by dW ρ
t ? The results of the previous section

show that whether or not this would be of benefit to equity holders would depend on the firm’s

technological parameters, in particular the speed of mean reversion. A financial contract

representing this risk, if such exists, will have its price, net of financing costs and under the

risk neutral probability, given by a martingale. In fact hedging using such a contract can

be represented in the model as including an extra term ∆ηdW ρ
t into equation (1), with ∆

representing the hedge ratio. Including this term into the analysis results in replacing the

term σ2 in equations (6) and (9) by σ2 + ∆2η2. Thus, ∆η is playing the same role as σ in
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our analysis, and from the above, we can conclude that ∆ = 0 will give the best hedge.

Thus, the firm cannot benefit21 from using a financial derivative to hedge the risk repre-

sented by the state variable ρt. The only way to hedge against this risk would be to alter

the firms production technology. These results are suggestive of reasons why active use of

derivatives to hedge long-term risks is not more widely observed.

2.6 Some Other Comparative Statics

We have also experimented with alternative values of our model parameters relating to other

financial frictions faced by the firm. We briefly summarize the main effects here. The details

are given in Appendix B.

In our benchmark parameters we have set bankruptcy costs at 30% of the value of assets

in place at the time of bankruptcy. This may seem high compared to some studies in

the literature, e.g., Warner (1977). However, those estimates pertain to direct bankruptcy

costs typically for firms with large amounts of tangible assets and costs are expressed as a

proportion of the book value of assets reflecting historical costs. Furthermore, more recent

studies covering indirect costs and a wide range of industries (including those with substantial

intangible assets) suggests that total bankruptcy costs may be very substantial. (See Franks

and Torous (1989) and Weiss (1990)). By way of comparison, Leland (1994) assumes 50%

proportional bankruptcy costs and Leland (1998) assumes 25%.

When we consider lower (α = 0.05) and higher (α = 0.5) values of this parameter, we find

that the effect of higher bankruptcy costs is to depress the value of long-term debt. We find

that higher bankruptcy costs also hurt equity values somewhat. This may seem surprising

in our model where absolute priority is enforced in bankruptcy. The reason for this effect

is that variations in bankruptcy costs affect the firm’s capacity to borrow short-term and

therefore has an impact on the optimal cash holding policy of the firm. In general, higher

bankruptcy costs induce higher levels of cash holding which tend to depress equity values.

In our model the efficiency of external capital markets is captured by the parameter

θ which in our benchmark case is set at θ = 0.8. We also consider the extreme cases of

θ = 0.01, which may be taken as the case when capital markets very inefficient, and θ = 0.95

which would seem to correspond to a highly efficient capital market and small agency costs.
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While θ cannot be directly interpreted as the degree of underpricing, the estimates of the

underpricing of IPO’s, range from 5 per cent to often greater than 20 per cent. In the

U.S. seasoned issues typically involve somewhat lower costs. From the estimates of Lee

et.al. (1996) using the U.S. data, reasonable estimates might be 11% for IPO’s and 7%

for seasoned issues. This suggests that θ = 0.95 would be appropriate only for very highly

developed capital markets, and where there is no information asymmetry22. When capital

market efficiency increases, the average level of liquid asset holding decreases. This result is

consistent with Opler et al (1999) who document empirically that firms with greater access

to capital markets carry smaller amounts of liquidity reserve.

In our framework the cost of holding liquidity inside the firm is represented by r − rin.

This is a proxy for the amount of rent extraction that is obtained through various forms of

managerial moral hazard. Our benchmark value of rin is 5%. In Appendix B we replace this

by 4% and 6%.23 As we would expect, the average level of liquid asset holding is increasing

in rin. The values of both equity and debt are increasing in rin. The benefit to shareholders

is direct since as residual claims on the firm’s cash flows any increase in the return on a

given level of liquid securities accrues to them. The benefit to creditors is indirect through

the fact that the higher level of cash holding by the firm reduces the chances of bankruptcy.

Finally, we note that when the cash reserve is higher, either under the effect of increasing

rin or of decreasing θ, the equity volatility becomes lower. We thus have the counter-intuitive

result that increasing market efficiency, represented by higher θ, is associated with higher

volatility.

3 Extending Our Model to Include Growth Opportu-

nities

Our basic framework is rich in modeling a wide range of capital market operations available

to the firm. However, it is restrictive in that we have not allowed for growth opportunities,

which potentially give an additional motive for holding cash. In the online Appendix C

we discuss how to extend the model to account growth opportunities, and we will briefly

summarize that work here.
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The starting point of our extension is the observation that typically firms grow most

when their profitability is highest. This statement is based on an analysis of the Compustat

universe of non-financial firms that studies average annual capital expenditures as a function

of profitability and leverage. Highest growth occurs in the highest profitability quintile.

Furthermore, the amount of growth in this quintile is moderate, about 4% in excess of

depreciation for all leverage categories combined. (See Appendix C for more details.)

With this observation in view, we first extend our model to allow for a one-time growth

opportunity which takes the form of an increase of the scale of the firm’s current asset. The

size of the opportunity, and its cost, are fixed exogenously. In our extended model, it is

optimal for the firm to pursue the growth opportunity only if current expected revenue (ρ)

is above a given threshold. We calibrate the growth cost so that this threshold corresponds

to the top quintile of ρ, agreeing with the empirical data.

The firm can finance the growth by drawing upon cash, engaging in short-term borrowing,

if this will be riskless, or by share issues. Since internal finance is cheaper than external

finance, there is an incentive to keep cash inside the firm as the investment opportunity

approaches. This is the same behavior as depicted in Figure 1; though, the exact location of

the “save”, “issue” and “dividend” boundaries are modified taking into account the growth

opportunity. However, since the investment opportunity is pursued only when profitability

is high, the firm can accumulate the required funds in a short period before the investment

opportunity arrives. If the firm faces a moderate size growth opportunity, for example of 4%

in line of the average observed in the top earnings quintile of firms, and if its profitability

is currently high, then it should target a 4% cash reserve at the time growth will occur.

But since the firm can build up this reserve quickly, the growth opportunity has virtually

no effect on the cash target, say 3 months before the opportunity is predicted to arrive.

If the growth opportunity is exceptionally large, for example 24%, then the targeted cash

holdings increase significantly, especially as the time of growth approaches. (See Appendix

C for details.)

We also explore alternative forms of growth. For example, we consider a one-time,

stochastic growth opportunity whose arrival probability is a constant, independently of the

current profitability or size of cash holdings. Alternatively, we consider a non-stochastic

growth opportunity that is implemented with a constant growth per month over a succes-
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sion of months. For growth at 4% per year, either smooth ( 1
12

× 4% per month) or lumpy

(4% with probability 1
12

per month), the extra liquidity holding are insignificant. Again,

more details are given in Appendix C.

Our conclusion is that the incentive to retain cash in order to pursue growth opportunities

is quite insignificant at the growth rates that we see empirically, since when it is optimal

to grow, the firm generally has enough current earnings (cash flow) to finance the growth.

In fact the motivation to accumulate cash to facilitate growth is more a function of the

lumpiness of the growth opportunity.

These extensions of our model to incorporate growth allow us to revisit the question of

the firm’s marginal propensity to out of cash flow discussed in section 2.1 above. When

the firm faces a discrete investment opportunity, the firm accumulates cash (‘saves’) in

anticipation of this, but at the investment date itself, high cash flow is associated with sharp

cash decumulation. Thus, as emphasized by Riddick and Whited (2009), there is no simple

relationship between saving and large, lumpy investment opportunities.

Having extended our model to incorporate growth we can better compare our model with

that of Bolton, Chen and Wang (2011). Theirs is similar to ours in the they incorporate mar-

ket frictions in terms of deadweight costs for retained cash, equity issuance, and bankruptcy.

Their firm faces constant returns to scale, as in our Appendix C. They assume that the

growth opportunity is available at all times but is subject to a quadratic adjustment cost.

This contrasts with our basic case of a one-time, growth opportunity of given size which the

firm can undertake at a fixed cost. However, as discussed in Appendix C, we can extend this

framework to approximate a liquidity target of a firm that can grow permanently at a given

rate every month in the future.

In our model growth is lumpy and will be undertaken when expected future profitability

is sufficient attractive. In contrast in Bolton, Chen and Wang (2011)growth is smooth and

is determined by the amount of available cash, W which is the only state variable in their

model. Specifically the firm allocates its operating income to investment in its own growth,

or to increasing the cash reserve W . Its growth rate increases with W , up to a point where

operating income is paid as a dividend, rather than to further increasing W . When W is

low, the firm chooses negative growth, and will liquidate its assets, if W becomes too low.

A crucial difference between their assumptions and ours, is that we have the profitability
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as a mean reverting state variable, whereas they assume that the expected revenue is simply

proportional to the capital invested. This leads to a difference in the growth outcomes. Our

benchmark firm is growing when the profitability is high, and at such times, the liquidity

holding is low. In their model the firm must grow when the cash holding is high, because

this is the only state variable governing the growth. More generally, in our model liquidity

dynamics in a firm whose current earnings are below long-run mean are very different from

those for a firm whose current earnings are above that mean. Bolton Chen and Wang (2011)

cannot capture this at all due to their scale-invariance assumptions.

4 Conclusion

Using a structural dynamic model of the firm, we have studied the optimal policy for liquid

asset holding, dividends and the issuance of both equity and short-term debt. Our model

allows the firm profitability to be a mean reverting process, and this can capture the optimal

liquidity policy over the business cycle. In this model it is in shareholders’ interests to hold

large amounts of cash inside the firm even if they have access to reasonably efficient capital

markets and even if some of the return to cash is dissipated by insiders. The reason that

forcing the firm to pay out “idle” cash in good times may be a bad idea is that it is myopic

– it does not properly weight the future dilution costs to shareholders of raising funds, if the

firm later were to approach financial distress.

The firm will set a target for the cash reserve, which is decreasing as the current prof-

itability is increasing. Earnings will be paid into the cash reserve, until it has reached the

target, after which earnings will be paid out as dividends. We show that on average the

cash reserve reaches the target only for relatively high profitability, and the average profile

of the cash holdings is a humped function in terms of the firm profitability. This humped

shaped relation of cash and profitability is what is observed in data for firms with moderate

leverage. Using one choice of parameters the model simultaneously agrees with a number of

empirical bench marks including cash holdings, leverage, interest coverage, credit spreads,

equity volatility, yield spreads, default probabilities and recovery rates of a typical levered

firm.
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Our model demonstrates the close link between capital structure and the firm’s policy

towards liquid asset holding. In particular, higher levels of long-term debt will result in

higher levels of liquid asset holding and a reduction in the optimal use of short-term debt.

The value of the firm is rather insensitive to the long-term debt level outstanding. The

reason is that by adapting its liquidity policy appropriately, the firm is able to balance off

its various contracting frictions in such a way as to achieve approximately the same value of

the firm for a wide range of long-term debt levels. This result contributes to understanding

the fact that empirical studies have not detected clear evidence of firms adapting long-term

debt to a target level.

Our model has a state-dependent hierarchy among financial contracting alternatives,

which is in line with results of recent tests of the pecking order hypothesis. In contrast,

our model casts doubt on the generality of the intuition on the ‘asset substitution problem’

derived from static corporate finance models. We find that in many circumstances both debt

and equity are harmed by increases in cash-flow volatility. A divergence of interests emerges

only regarding persistent volatility and only in the case of low rates of mean reversion of

earnings. Our model shows that in many circumstances firms have an incentive to hedge

short-term shocks to earnings, but that they will not attempt to hedge long-term shocks

both because this is difficult and because they have weak incentives to do so.

We extend the model to allow for increasing the scale of the fixed asset. In that extension,

the effect of growth on cash holdings is usually fairly minor. The firm will increase its cash

holding to prepare for a discrete growth opportunity but this effect is significant only when

the growth opportunity large and is imminent. This is consistent with empirical evidence

suggesting that firms tend to grow mostly when current profitability is high. Finally, in

agreement with recent work we find the rate of corporate savings is highly variable and path

dependent. Cash may be accumulated in anticipation of the arrival of a growth opportunity

and then decumulated when the investment is realized. This implies that there is no stable

relationship between cash flow and rate of cash accumulation.
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Notes

1Sunday Times of London, April 23, 1995. This quote refers to the attempt by Kirk Kekorian to take over

Chrysler Motors arguing that in doing so he could increase shareholder value by returning most of Chrysler’s

$7.5 billion cash reserve to shareholders.
2In section 3 we relax this assumption by allowing for growth opportunities.
3This equation also has the property that varying the volatility η does not alter the expectation of ρs for

given ρt with t < s. See Duffie (2001). This will be useful when we discuss the asset substitution effect in

our model.
4As in standard trade-off models, the tax deductibility of interest payments provides an incentive to issue

debt. Recently, DeMarzo and Sannikov (2006) have studied the problem of security design in a continuous

time model without taxes and find that the optimal capital structure involves a fixed amount of long-time

debt and varying short-term debt as in our model.
5This is similar to the treatment of corporate taxes in Hennessey and Whited (2005). They model tax

write-back and carry-forward provisions by allowing the tax rate to be progressive in terms of earnings.

However, their estimated parameters imply that the marginal tax rate is essentially constant over the eco-

nomically relevant range.
6Note that in our formulation bankruptcy occurs when our state variable evolving along a continuous

sample path attains an absorbing barrier. Thus unlike reduced-form credit risk models there is no “jump-

to-default risk”, e.g., as in Duffie and Singleton (1999). They discount cash flows at the rate r + ξt, where

ξt is the instantaneous hazard rate of default. In this terminology, our model assumes ξt = 0.
7Proof: The firm will issue shares if this increases the total equity value, after subtracting the liability

represented by the newly issued shares, i.e. if J(C + δC) − ns > J(C). Differentiating this, and using

δC = ns/θ, gives Equation (8) of the text.
8The solution must satisfy the value matching and smooth pasting condition across these boundaries.

Note that we do not impose this condition directly in our numerical procedure described in Appendix A,

but it is satisfied as a consequence of the maximum criterion, which we impose directly.
9To see that this boundary condition corresponds to reflection, i.e. to the fact that if Ct hits the boundary,

then it is pushed back at infinite speed, note that if we had say ∂
∂C

P q
t > 0, and it hit the barrier from below,

then a long position in P would be sure to gain in value, which is an arbitrage opportunity.
10These estimates refer to mean reversion of the risk neutral cash flow process. We take this to apply to

the physical default process in our model. In fact the two speeds of mean reversion will differ in general but

in our model by an amount that is small for our purposes.
11A relatively high relationship premium may be appropriate for a smaller or younger firm. See Petersen

and Rajan (1998).
12Smith(1977) estimates direct underwriting costs for seasoned equity issues to exceed 6% on average rising

to over 13% on smaller issues. He also documents a significant price impact and other indirect costs.
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13Like us Leland (1998) works with a model where absolute priority is respected in bankruptcy and assumes

proportional bankruptcy costs of 25%. Anderson and Sundaresan (1996) show that observed yield spreads

can be replicated assuming lower bankruptcy costs in a model allowing for strategic debt service.
14In Figure 1 the average cash holdings turns up slightly for very low levels of ρ. This reflects a survivorship

bias in our sample in that firms that suffer a drain of cash at low profitability disappear from the sample

through bankruptcy leaving only those firms that had amassed sufficient cash before a decline of profitability

so that they were able to survive even as ρ declined to exceptionally low levels.
15Such λ has to exist, in the absence of arbitrage: see Duffie (2001).
16As seen in Table 2 different levels of ρ in our model yields ratios which would correspond to average ratios

within different ratings classes. This is not to suggest that actual ratings fluctuate in step with business

conditions in a similar manner, for it is well-known that ratings firms tend to rate “through the cycle”.
17Kim et al (1998) find a negative influence of cash flow. Opler et al (1999) find a positive effect in most

specifications. Dittmar et al (2003) and Anderson (2003)find the sign of the cash flow variable is sensitive

to the data set used and the model specification.
18In the lower panel of Figure 3 average cash holdings coincide with the equity issue barrier for low levels

of profitability. In this range of low profitability the firm has exhausted its ability to borrow (i.e., reduce

cash holdings) and therefore survives by issuing equity. Therefore for this low long-term debt firm the

average realized cash holdings displays more of an S-shape than a pronounced hump-shape seen in a firm

with significant long-term debt issues.
19Most earlier tests of pecking order followed the approach introduced by Shyam-Sunder and Myers (1999).
20In their continuous time model with cash accumulation and short-term and long-term debt DeMarzo

and Sannikov (2006) also find a convergence of interests of debt and equity. They characterize the result as

“surprising” but do not pursue the issue further.
21As noted by Mello and Parsons (2000), a hedge that increases equity value, is different from one that

reduces equity volatility. The latter could be achieved by shorting the equity index future, assuming that

the firm has positive equity β, but this would not alter the equity value, unless it introduced some change

in the firm’s contracting frictions.
22Based on a sample of US, non-financial firms between 1993 and 2001 a period of very high stock market

activity Hennessy and Whited (2005) estimate floatation costs of about 5.9%
23Note that the latter implies no moral hazard, but with this value, the liquidity holding is still bounded

by its being tax-inefficient.

32



References

Allen, F. and R. Michaely, 2003, Payout Policy, Handbook of the Economics of Finance Volume 1,

North Holland, pp 337-429.

Almeida,H. M. Campello, and M.S. Weisbach, 2004, The Cash Flow Sensitivity of Cash The Journal

of Finance Vol 59, Issue 4, pp 17771804.

Anderson, R. W., 2003, Capital Structure, Firm Liquidity and Growth, in P.Butzen and C.Fuss (eds.),

Firms’ Investment and Finance Decisions, Edward Elgar.

Anderson, R.W. and S. Sundaresan, 1996, Design and Valuation of Debt Contracts, Review of

Financial Studies, Vol 9, pp 37-68.

Andrade, G. and S.N. Kaplan, 1998, How Costly Is Financial (Non-Economic) Distress? Evidence

from Highly Leveraged Transactions that Became Distressed, Journal of Finance, Vol 53, pp 1443-

1493.

Bolton, P. H. Chen and N. Wang, 2011 A Unified Theory of Tobin’s q, Corporate Investment,

Financing, and Risk Management, Working paper, forthcoming Journal of Finance.

Bolton, P. and X. Freixas, 2000 Equity, Bonds and Bank Debt: Capital Structure and Financial Market

Equilibrium under Asymmetric Information, Journal of Political Economy, Vol 108, pp 324-351.

Brav, A, Graham, J. R., Harvey, C. R. and Michaely, R, 2005 Payout Policy in the 21st Century,

Journal of Financial Economics, Vol 77, pp 483 - 527.

Chang X. and Dasgupta, S, 2009, Target Behavior and Financing: How Conclusive is the Evidence?,

Journal of Finance, Vol 64, pp 1767-1796.

De Marzo, P. and Y.Sannikov, 2006, Optimal Security Design and Dynamic Capital Structure in a

Continuous-Time Agency Model, Journal of Finance, Vol 61, pp 2681-2724.

de Servigny, A. and O. Renault, 2004, Measuring and Managing Credit Risk. McGraw-Hill.

Dittmar, A., J. Mahrt-Smith, and H. Servaes, 2003, International Corporate Governance and

Corporate Cash Holdings, Journal of Financial and Quantitative Analysis, Vol. 38, 111-133.

Duffie, D., 2001, Dynamic Asset Pricing Theory, 3rd.ed. Princeton, Princeton University Press.

Duffie, D. and D. Lando, 2001, Term Structure of Credit Spreads with Incomplete Accounting Infor-

mation, Econometrica, Vol 69, pp 633 - 664.

33



Duffie, D. and K.J. Singleton, 1999, Modeling Term Structures of Defaultable Bonds, Review of

Financial Studies, Vol 12, pp 687-720.

Fama, E.F., and K. R. French, 2000, Forecasting Profitability and Earnings, Journal of Business 73,

161-175.

Franks, J. and W. Torous, 1989, An Empirical Investigation of U.S. Firms in Reorganization, Journal

of Finance, Vol 44, 747-769.

Fischer, E.O., R. Heinkel, and J. Zechner, 1989, Dynamic Capital Structure Choice: Theory and

Tests, Journal of Finance, Vol 44, pp 19-40.

Garca-Feijo, L, and R.D. Jorgensen, 2007, Can Operating Leverage be the Cause of the Value

Premium?, Working Paper, CFA Institute.

Gomes, J., 2001 Financing Investment, American Economic Review, 91, 1263-1285.

Green, R, 1984, Investment Incentives, Debt and Warrants, Journal of Finance, Vol. 39, 115-136.

Hennessy, C. A. and T. M. Whited 2005 Debt Dynamics, Journal of Finance, 60, 1129-1164.

Kim C.-S., D. C. Mauer, and A. E. Sherman, 1998, The determinants of corporate liquidity: Theory

and Evidence, Journal of Financial and Quantitative Analysis , Vol 33, pp 305-334.

Leary, M.T. and M.R Roberts, 2010, The Pecking Order, Debt Capacity and Information Asymmetry.

Journal of Financial Economics. Vol 95, Issue 3, pp 332-355.

Lee, I., S. Lockhead, J. Ritter, and Q. Zhao, 1996, The Costs of Raising Capital, Journal of Financial

Research, Vol 1.

Leland, H., 1994, Risky Debt, Bond Covenants and Optimal Capital Structure, Journal of Finance, Vol

49, pp 1213-1252.

Leland, H., 1998 Agency Costs, Risk Management and Capital Structure, Journal of Finance. 53,

1213-1243.

Mello, A. and J. Parsons, 2000, Hedging and Liquidity, Review of Financial Studies, Vol 13, pp 127-153.

Myers, S. C. and N.S. Majluf , 1984 Corporate Financing and Investment Decisions When Firms

Have Information That Investors Do Not Have, Journal of Financial Economics Vol. 13, pp 187-221.

Myers, S. and R.G. Rajan, 1998, The Paradox of Liquidity, Quarterly Journal of Economics, Vol 5,

pp 733-771.

34



Opler, T., L. Pinkowitz, R. Stulz, and R. Williamson, 1999, The determinants and implications of

corporate cash holdings, Journal of Financial Economics, Vol 52, pp 3-46.

Pastor, L. and P. Veronesi, 2003 Stock Valuation and Learning about Profitability Journal of Finance,

58, 1749-1789.

Petersen, M.A. and R. Rajan 1994 The Benefits of Lending Relationships: Evidence from Small

Business Data, Journal of Finance. Vol 49, 3-37.

Rauh, J. 2009 Risk Shifting versus Risk Management: Investment Policy in Corporate Pensions Plans,

Review of Financial Studies Vol. 22, 2487-2534.

Riddick, L.A. and T.M Whited 2009 The Corporate Propensity to Save, Journal of Finance Vol. 64,

1729-1766.

Rochet, J.-C. and S. Villeneuve, 2004, Liquidity Risk and Corporate Demand for Hedging and Insur-

ance, working paper, GREMAQ, Toulouse University.

Shyam-Sunder, L and S. Myers, 1999, Testing Static Trade-off Against Pecking Order Models of

Capital Structure. Journal of Financial Economics. Vol 51, 219-244.

Smith, C. W., 1977, Alternative Ways of Raising Capital: Rights Versus Underwritten Offerings, Journal

of Financial Economics. Vol 5, 273-307.

Strebulaev, I. 2007 Do Tests of Capital Structure Theory Mean What They Say? Journal of Finance,

Vol 62, 1747-1787.

Warner, J., 1977, Bankruptcy Costs: Some Evidence, Journal of Financial Economics, Vol 5, pp 337-347.

Weiss, L., 1990, Bankruptcy Resolution: Direct Costs and the Violation of Priority of Claims, Journal

of Financial Economics, Vol 27, pp 419-444.

35



TABLE 1

Panel A - Values of Equity, Debt and Liquidity
Payment to debt, q 0.00 0.01 0.02 0.03 0.04 0.05 0.06

Measures at ρ = 0.90

Liquidity -0.2015 -0.0864 -0.0002 0.0373 0.0399 0.0400 0.0388

Dividend 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Equity val 0.6979 0.5466 0.4063 0.2982 0.2153 0.1496 0.0987

Debt val 0.0000 0.1626 0.2976 0.3782 0.4294 0.4077 0.4054

Net firm val 0.6979 0.7092 0.7039 0.6765 0.6447 0.5573 0.5041

Leverage 0.0000 0.2611 0.4229 0.5299 0.6272 0.6826 0.7467

Equity volatility 0.5214 0.5704 0.6457 0.7521 0.9334 1.1478 1.3915

Measures at ρ = 1.00

Liquidity -0.1566 -0.0476 0.0279 0.0679 0.0718 0.0718 0.0679

Dividend 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Equity val 0.8670 0.7180 0.5779 0.4668 0.3784 0.3040 0.2415

Debt val 0.0000 0.1633 0.3035 0.3984 0.4676 0.4773 0.5003

Net firm val 0.8670 0.8813 0.8814 0.8652 0.8460 0.7813 0.7419

Leverage 0.0000 0.1959 0.3338 0.4270 0.5095 0.5595 0.6179

Equity volatility 0.3639 0.3893 0.4326 0.4834 0.5610 0.6480 0.7499

Measures at ρ = 1.10

Liquidity -0.1304 -0.0234 0.0486 0.0896 0.0958 0.0977 0.0939

Dividend 0.0042 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Equity val 1.0268 0.8790 0.7394 0.6268 0.5358 0.4574 0.3898

Debt val 0.0000 0.1637 0.3066 0.4089 0.4875 0.5138 0.5490

Net firm val 1.0268 1.0427 1.0460 1.0357 1.0233 0.9712 0.9388

Leverage 0.0000 0.1606 0.2801 0.3634 0.4356 0.4807 0.5317

Equity volatility 0.2941 0.3096 0.3372 0.3680 0.4116 0.4587 0.5126

Measures at ρ = 1.20

Liquidity -0.1498 -0.0383 0.0282 0.0724 0.0843 0.0913 0.0907

Dividend 0.0322 0.0359 0.0561 0.0628 0.0423 0.0206 0.0335

Equity val 1.1830 1.0358 0.8967 0.7831 0.6903 0.6093 0.5384

Debt val 0.0000 0.1639 0.3085 0.4153 0.5000 0.5357 0.5801

Net firm val 1.1830 1.1997 1.2052 1.1984 1.1903 1.1450 1.1185

Leverage 0.0000 0.1411 0.2501 0.3268 0.3923 0.4333 0.4797

Equity volatility 0.2641 0.2743 0.2970 0.3195 0.3494 0.3808 0.4165

Measures at ρ = 1.30

Liquidity -0.2255 -0.0946 -0.0191 0.0178 0.0350 0.0449 0.0494

Dividend 0.1882 0.1352 0.0698 0.2192 0.2213 0.2094 0.2236

Equity val 1.3383 1.1915 1.0529 0.9388 0.8448 0.7619 0.6887

Debt val 0.0000 0.1640 0.3098 0.4196 0.5086 0.5506 0.6017

Net firm val 1.3383 1.3555 1.3628 1.3584 1.3533 1.3125 1.2903

Leverage 0.0000 0.1301 0.2306 0.3049 0.3663 0.4057 0.4491

Equity volatility 0.2547 0.2587 0.2751 0.2967 0.3203 0.3457 0.3729
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TABLE 1 (continued)

Panel B - Credit Spreads and Bankruptcy Probabilities
Payment to debt, q 0.00 0.01 0.02 0.03 0.04 0.05 0.06

Measures at ρ = 0.9

Credit spreads:

5 year PDB 0.0001 0.0020 0.0105 0.0289 0.0516 0.0886 0.1212

20 year PDB 0.0001 0.0016 0.0075 0.0186 0.0271 0.0474 0.0463

Prob. bankrupt after:

1 year 0.0000 0.0005 0.0066 0.0305 0.0807 0.1563 0.2733

5 years 0.0006 0.0098 0.0525 0.1396 0.2547 0.3768 0.5195

20 years 0.0020 0.0307 0.1450 0.3320 0.5231 0.6765 0.8080

Measures at ρ = 1.0

Credit spreads:

5 year PDB 0.0001 0.0011 0.0061 0.0172 0.0312 0.0531 0.0739

20 year PDB 0.0001 0.0013 0.0064 0.0158 0.0240 0.0409 0.0441

Prob. bankrupt after:

1 year 0.0000 0.0001 0.0010 0.0059 0.0181 0.0400 0.0790

5 years 0.0003 0.0055 0.0309 0.0850 0.1600 0.2435 0.3463

20 years 0.0017 0.0259 0.1236 0.2872 0.4602 0.6056 0.7377

Measures at ρ = 1.1

Credit spreads:

5 year PDB 0.0000 0.0007 0.0040 0.0113 0.0211 0.0358 0.0514

20 year PDB 0.0001 0.0012 0.0057 0.0143 0.0223 0.0375 0.0432

Prob. bankrupt after:

1 year 0.0000 0.0000 0.0001 0.0009 0.0033 0.0082 0.0182

5 years 0.0002 0.0034 0.0200 0.0564 0.1086 0.1693 0.2466

20 years 0.0015 0.0233 0.1118 0.2621 0.4243 0.5644 0.6960

Measures at ρ = 1.2

Credit spreads:

5 year PDB 0.0000 0.0005 0.0027 0.0079 0.0151 0.0260 0.0379

20 year PDB 0.0001 0.0011 0.0053 0.0134 0.0210 0.0352 0.0412

Prob. bankrupt after:

1 year 0.0000 0.0000 0.0000 0.0001 0.0006 0.0016 0.0039

5 years 0.0001 0.0022 0.0136 0.0398 0.0788 0.1253 0.1866

20 years 0.0014 0.0216 0.1042 0.2462 0.4017 0.5384 0.6694

Measures at ρ = 1.3

Credit spreads:

5 year PDB 0.0000 0.0003 0.0019 0.0058 0.0113 0.0197 0.0290

20 year PDB 0.0001 0.0010 0.0051 0.0127 0.0201 0.0335 0.0394

Prob. bankrupt after:

1 year 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0009

5 years 0.0001 0.0015 0.0096 0.0292 0.0593 0.0964 0.1464

20 years 0.0013 0.0204 0.0988 0.2348 0.3856 0.5198 0.6503
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TABLE 2: Comparison of Model Solution to Empirical Benchmarks

The empirical benchmarks are 1997-1999 median values for US industrial firms as reported by Standard and Poors for firms

rated A, BBB and BB (Source, Standard and Poors, “Adjusted Key Ratios,” Credit Week September 20, 2000). The Model

values are based on the simulation of the model under the benchmark parameters. The model equivalent of EBIT interest

coverage is computed as (ρ − f)/q. Return on capital is (ρ − f)/(P + J). The Long Term Debt to Capital ratio is P/(P + J).

The Total Debt to Capital ratio is (P −C)/(P + J). Debt/Equity is (P −C)/J . Column 4 pertains to simulated model values

evaluated at ρ = 1.1 and column 5 is evaluated at ρ = 1.2.

A BBB BB Model Model

ρ=1.1 ρ=1.2

EBIT interest coverage 6.8 3.9 2.3 2.500 5.000

Return on capital 0.199 0.140 0.117 0.098 0.168

LT Debt/Capital 0.325 0.41 0.558 0.476 0.420

Total Debt/Capital 0.401 0.474 0.613 0.406 0.340

Debt/Equity 0.197 0.437 0.905 0.910 0.724
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TABLE 3: Cross-sectional Evidence on Liquidity and Payout to Equity

This table reports firm liquidity as measured by new working capital and annual payout rates to equity holders measured as

dividends plus share repurchases, cross tablulated by earnings quintile and long-term debt level. L is long-term debt divided

by total assets. The firms included are the Compustat universe of non-financial firms with total assets of at least 100 million

2000 dollars. All variables are normalized by total assets at year end. The numbers reported are averages weighted by total

assets (with total assets winsorized at 1000 million 2000 dollars). The time period is 1978-2008.

Net Working Capital

Profitability Quintile

Leverage category Lowest 2 3 4 Highest Average

0.0 < L ≤ 0.1 28.56% 25.15% 27.35% 29.10% 31.07% 28.25%

0.1 < L ≤ 0.2 19.29% 18.35% 19.43% 19.59% 19.78% 19.29%

0.2 < L ≤ 0.3 13.19% 14.97% 14.70% 12.92% 9.95% 13.14%

0.3 < L ≤ 0.4 6.71% 9.58% 11.19% 10.75% 6.26% 8.90%

0.4 < L ≤ 0.5 5.93% 6.47% 8.26% 4.86% 2.78% 5.66%

0.5 < L 9.22% 2.84% 2.28% 7.64% 4.13% 5.22%

Average 13.82% 12.89% 13.87% 14.14% 12.33% 13.41%

Dividend plus Share Repurchases

Profitability Quintile

Leverage category Lowest 2 3 4 Highest Average

0.0 < L ≤ 0.1 1.20% 2.06% 2.91% 5.26% 8.84% 4.05%

0.1 < L ≤ 0.2 1.17% 1.70% 2.37% 4.00% 8.00% 3.45%

0.2 < L ≤ 0.3 1.06% 1.71% 2.24% 3.69% 5.61% 2.86%

0.3 < L ≤ 0.4 1.08% 1.14% 1.83% 2.77% 5.01% 2.37%

0.4 < L ≤ 0.5 1.00% 1.23% 1.51% 2.03% 3.30% 1.81%

0.5 < L 2.29% 1.00% 2.09% 3.20% 3.40% 2.39%

Average 1.30% 1.47% 2.16% 3.49% 5.69% 2.82%
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Figure 1

This figure depicts the regions of ‘save’ (i.e. do retain earnings, and do not pay dividends),
‘pay dividends’ and ’issue equity’, arising from the solution to the PDEs of Section 1.3.
The ‘save’ region S is depicted by diamonds. The target liquid asset holding is the upper
boundary of the S region and is depicted by downward triangles. In this region the firm
pays dividends. The region in which the firm will issue new equity is indicated by upward
triangles. These also indicate the lower limit of liquidity, or equivalently minus the limit of
the short term borrowing facility. The points where shareholders would pay a liquidating
dividend and abandon the firm to creditors are indicated with circles. The realized liquid
asset holding, averaged over 2000 simulations of the firm history, as a function of ρ, is
depicted by the solid line.
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Figure 2

Simulated time series of the expected revenues ρt, (top graph), and the liquidity reserve Ct,
equity value Jt, and total firm value Jt + Pt (all on the bottom graph, in increasing order).

110 111 112 113 114 115 116 117 118 119 120
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

year

re
ve

nu
e

110 111 112 113 114 115 116 117 118 119 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

year

re
ve

nu
e

 

 
cash
equity
firm

41



Figure 3

This figure depicts optimal policy as in Figure 1 for two different levels of long-term debt.
The top panel is for the “high debt” case, q = 0.04. The bottom panel is for the “low debt”
case, q = 0.0.
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Figure 4:

This figure depicts total firm value as a function of long-term debt, q, with separate graphs
for three values of mean reversion κ. The evaluations are all done for ρ = 1.3.
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Liquidity and Capital Structure: Appendices

Ronald W. Anderson

Andrew Carverhill

A Appendix: Numerical Techniques for Solving the

PDEs for Valuing Debt and Equity

Our strategy for valuing the equity is to solve Equation (6) numerically, by finite difference
procedures, evolving backwards from a distant horizon time t = T , at which we assume the
firm is liquidated. We have also changed the variable ρ to ξ := 1

2
ρ

1
2 . This change helps the

numerical stability of the scheme because after we have expressed Equation (2) in terms of
η, the noise coefficient becomes constant. Also, under this transformation, the solution is
more detailed for low values of ρ, which are more important.

We use the explicit finite difference scheme (see Ames (1992)), representing the ρ space
by a grid with 401 points, ranging from 0.0 to ρmax = 5.0, and we represent C by a grid with
401 points ranging from Cmin = −2.0 to Cmax = 2.0. With these parameters, and for all the
parameters in the text, the finite difference scheme is numerically stable, if we take a time
step of length 0.001. Also, we take T = 50 years. By experimentation, we have determined
that the solutions are insensitive to first order variations of these parameters. To determine
the regions S, D and I, we test, at every time step and every grid point point representing
(ρ, C), whether it is optimal to pay dividends, issue shares, or abandon the firm.

Our numerical scheme for valuing the debt is the same as for the equity. The debt
boundary condition for bankruptcy is (1−α)J0(ρ, C), and this condition is calculated using
an implementation of the equity valuation for zero long term debt. Our calculations for the
credit spread, the probability of default at horizon 20 years, etc, are not based on evolution
to a steady state. These are obtained by taking T = 20 years, etc, in the above. Although
it might be more usual to use the technique of Successive Over-Relaxation (SOR) to obtain
our steady state solution (see Ames (1992)), our finite difference scheme is more useful for
studying how quickly the steady state is achieved, and for dealing with these non-steady
state calculations.

Our horizon boundary conditions for debt and equity at t = T are as follows: To value
unlevered equity for the valuations on bankruptcy, we take Junlevered

T (ρ, C) = max{C, 0}, re-
flecting abandonment at time T . For the debt horizon value we take P q

T (ρ, C) = min{q/r, (1−
α)Junlevered

0 (ρ, 0) + C}, and for the equity horizon value we take Jq
T (ρ, C) = max{(1 −

α)Junlevered
0 (ρ, 0) + C − q/r, 0}. These reflect the assumption that if bankruptcy has not

occurred by time T , the productive asset is sold, incurring the bankruptcy costs. The face
value of the debt, i.e.q/r, is paid out of the proceeds plus cash reserve to the extent possible,

1



and the rest goes to the equity holders. Note that the choice of terminal time T condition
does not matter, if T is sufficiently far away, but good choices of the horizon equity values,
etc. allow T to be taken smaller, which is more efficient. Our choices prevent arbitrage at
time T .

We must also choose boundary conditions at high and low values of ξ ≡ 1
2
ρ

1
2 and C. The

lowest value of ρ is zero, and since dρ/dξ = 0, then any smooth boundary condition here for
∂
∂ρ

J will translate to ∂
∂ξ

J = 0. We thus impose this condition. At the upper limit of ξ, we

impose the boundary condition ∂2

∂ξ2 J = 0.

2



B Appendix: Sensitivity of the Model to Parameter Changes

Each column of the following table gives the firm characteristics as in Table 1, at the benchmark parameter values,
except for the parameter value given in the first row.

Values of Equity, Debt and Liquidity
Parameter being varied None η σ κ α θ rin

Parameter value (Repeat 0.14 0.18 0.1 0.2 0.3 0.5 0.05 0.5 0.01 0.95 0.04 0.06
Benchmark value Benchmark) 0.16 0.16 0.0 0.0 0.4 0.4 0.3 0.3 0.80 0.80 0.05 0.05

Measures at ρ = 0.9
Liquidity 0.0399 0.0299 0.0485 0.1002 0.1932 0.0398 0.0394 0.0359 0.0408 0.2056 0.0023 0.0259 0.0663
Dividend 0.0000 0.0000 0.0000 0.0001 0.0103 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Net equity val 0.2153 0.1997 0.2335 0.2047 0.1753 0.2185 0.2314 0.2170 0.2148 0.1711 0.2735 0.2098 0.2238
Debt val 0.4294 0.4703 0.3874 0.3891 0.3602 0.3200 0.5224 0.4250 0.4184 0.2277 0.5154 0.3978 0.4204
Net firm val 0.6447 0.6700 0.6209 0.5938 0.5355 0.5385 0.7538 0.6420 0.6332 0.3989 0.7890 0.6076 0.6442
Leverage 0.6272 0.6719 0.5788 0.5607 0.4943 0.5534 0.6586 0.6269 0.6207 0.3768 0.6515 0.6279 0.5916
Equity volatility 0.9334 0.9344 0.9295 0.8432 0.8392 1.0626 0.7774 0.9451 0.9308 0.6115 0.8296 1.0115 0.8175

Measures at ρ = 1.0
Liquidity 0.0722 0.0616 0.0806 0.1223 0.2049 0.0725 0.0728 0.0655 0.0736 0.2443 0.0124 0.0536 0.1047
Dividend 0.0000 0.0000 0.0000 0.0030 0.0234 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Net equity val 0.3784 0.3673 0.3930 0.3618 0.3250 0.4111 0.3727 0.3802 0.3777 0.3336 0.4263 0.3734 0.3858
Debt val 0.4676 0.5105 0.4247 0.4357 0.4112 0.3764 0.5469 0.4644 0.4586 0.3148 0.5402 0.4419 0.4613
Net firm val 0.8460 0.8778 0.8177 0.7975 0.7361 0.7874 0.9195 0.8446 0.8363 0.6484 0.9665 0.8153 0.8470
Leverage 0.5093 0.5435 0.4728 0.4737 0.4369 0.4377 0.5511 0.5103 0.5040 0.3527 0.5518 0.5085 0.4847
Equity volatility 0.5603 0.5250 0.5902 0.5606 0.6111 0.6322 0.4801 0.5680 0.5587 0.4306 0.5584 0.5943 0.5109

Measures at ρ = 1.1
Liquidity 0.0956 0.0853 0.1039 0.1355 0.2106 0.0949 0.0965 0.0890 0.0974 0.2679 0.0227 0.0749 0.1310
Dividend 0.0000 0.0000 0.0000 0.0169 0.0608 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000
Net equity val 0.5358 0.5267 0.5486 0.5177 0.4785 0.6039 0.5049 0.5380 0.5350 0.4894 0.5795 0.5315 0.5422
Debt val 0.4875 0.5291 0.4460 0.4599 0.4376 0.4087 0.5586 0.4850 0.4795 0.3582 0.5531 0.4649 0.4828
Net firm val 1.0233 1.0558 0.9946 0.9776 0.9161 1.0126 1.0635 1.0230 1.0145 0.8476 1.1325 0.9964 1.0250
Leverage 0.4357 0.4637 0.4060 0.4132 0.3884 0.3690 0.4815 0.4362 0.4313 0.3212 0.4788 0.4340 0.4177
Equity volatility 0.4118 0.3749 0.4445 0.4271 0.4800 0.4609 0.3606 0.4154 0.4107 0.3401 0.4259 0.4302 0.3845

Measures at ρ = 1.2
Liquidity 0.0846 0.0673 0.0990 0.1196 0.1920 0.0837 0.0859 0.0784 0.0866 0.2539 0.0110 0.0629 0.1212
Dividend 0.0421 0.0698 0.0240 0.0551 0.1208 0.0341 0.0483 0.0382 0.0435 0.0469 0.0558 0.0466 0.0389
Net equity val 0.6903 0.6823 0.7020 0.6719 0.6321 0.7964 0.6334 0.6927 0.6893 0.6427 0.7324 0.6865 0.6961
Debt val 0.5000 0.5398 0.4598 0.4742 0.4535 0.4290 0.5653 0.4977 0.4924 0.3771 0.5610 0.4788 0.4955
Net firm val 1.1903 1.2221 1.1618 1.1461 1.0856 1.2254 1.1987 1.1903 1.1817 1.0197 1.2933 1.1653 1.1916
Leverage 0.3922 0.4186 0.3647 0.3747 0.3550 0.3277 0.4401 0.3923 0.3882 0.2961 0.4301 0.3899 0.3775
Equity volatility 0.3493 0.3179 0.3777 0.3646 0.4105 0.3849 0.3121 0.3513 0.3485 0.3002 0.3606 0.3622 0.3299

Measures at ρ = 1.3
Liquidity 0.0351 0.0148 0.0547 0.0807 0.1536 0.0314 0.0360 0.0265 0.0384 0.1986 0.0194 0.0189 0.0671
Dividend 0.2201 0.2752 0.1865 0.2080 0.1864 0.2083 0.2361 0.1963 0.2314 0.1880 0.1730 0.3500 0.1705
Net equity val 0.8448 0.8376 0.8556 0.8261 0.7860 0.9903 0.7613 0.8472 0.8436 0.7964 0.8854 0.8413 0.8499
Debt val 0.5086 0.5468 0.4696 0.4839 0.4643 0.4431 0.5697 0.5063 0.5012 0.3876 0.5664 0.4883 0.5041
Net firm val 1.3533 1.3844 1.3252 1.3100 1.2503 1.4333 1.3310 1.3536 1.3448 1.1841 1.4518 1.3296 1.3540
Leverage 0.3663 0.3908 0.3403 0.3479 0.3307 0.3025 0.4168 0.3669 0.3624 0.2803 0.3954 0.3621 0.3547
Equity volatility 0.3203 0.2904 0.3467 0.3297 0.3690 0.3472 0.2924 0.3229 0.3191 0.2827 0.3225 0.3282 0.3064
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C Appendix: Growth Opportunities

In this appendix we first extend the model of the paper to the case when the firm has a
one-time growth opportunity. We derive the optimal cash holding associated with this, and
then we extend to the case of time homogeneous growth opportunities. We confirm the
robustness of the qualitative conclusions derived in the main paper.

C.1 Background and empirical context

It is useful first to examine some of the main empirical facts about growth and related issues
of long-term financial contracts. Table C1 is an extension of Table 3 in the text, giving for
the same firms, averages cross-tabulated by profitability quintile and leverage level. In the
table we give the average annual capital expenditures, share issuance (net of repurchases),
and long-term debt issuance, all as a fraction of preceding year’s total assets. Also, we give
cross-tabs of the profitability itself, represented as operating income before depreciation.

The first panel shows that capital expenditures tend to be highest for the firms with
highest current profitability. This holds overall and for each leverage category. Overall the
amount of growth of capital stock is moderate. Assuming a depreciation rate of 6% per year
(see e.g., Nadiri and Prucha, 1996), firms in the highest quintile expand their fixed capital by
about 4% on average. This is consistent with the notion that organic growth, increasing the
scale of the firm’s existing line of business, is the dominant mode of firm growth. Growth
is not a monotone function of profitability. The lowest quintile by profitability tend to
have greater capital expenditures relative to existing assets than firms in the second quintile
of profitability. This might reflect the influence of younger firms just building up their
productive capacity.

From the second panel we see that share issuance tends to be highest for the least prof-
itable firms. This is consistent with the prediction of our baseline model whereby seasoned
share issues occur optimally in times of relatively low profitability (see Figure 1). Interest-
ingly, share issuance is negative among the highest quintile by profitability both overall and
in all but one of the leverage categories. That is, share buy backs are widely used to payout
earnings when economic conditions are exceptionally good. From the third panel we see it
is also the case that long-term debt issuance is lowest for the highest earning firms. Taken
together these results suggest that a dominant form of firm growth occurs among relatively
profitable firms and that to a significant extent this growth is financed through internal
resources rather than new issues of equity or long-term debt.

From the fourth panel, we see that on average, the operating income is sufficiently higher
in the top quintile, to finance the higher capital expenditure.
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C.2 Modelling growth

We analyze a firm with a one time opportunity at time T to increase productive capacity,
up to a certain limit. The investment results in the rescaling of the firm’s existing asset in
place at the proportion (V + I)/V where I is the expenditure on investment and V is scale
prior to undertaking growth at time T . We assume I ≥ 0. Note that since investment is
measured in monetary terms, then so is V , and in fact V can be thought of as the cost of
setting up the original firm, or the cost of doubling its scale. Also, we will assume constant
returns to scale, and in contrast most models of growth, we do not assume that there are
dead-weight scale adjustment costs.

The new investment can be financed through some combination of equity issue, long-term
debt issue, and drawing down cash (or short-term borrowing). For tractability, we assume
that long-term debt issue takes the form of a rescaling of contractual coupon payments q
in proportion to investment. The firm chooses the scale of investment, the amount of cash
financing and the amount of equity financing to maximize the value of equity. As in section
1.2 we denote the value of equity without growth option as Jq(ρ, C). As mentioned above,
this firm has scale V̄ . Extending this notation, we will write the equity value after growth
of physical assets and coupon to scale V when cash holding is C as Jq(ρ, C, V ).

Since we have assumed constant returns to scale, proportionate taxes, equity issuance
costs, fixed costs and bankruptcy costs, the value of equity will be homogenous of degree 1
in the cash flow parameters, coupon and cash. That is, Jq(ρ, kC, kV̄ ) = kJq(ρ, C, V̄ ). By
the properties of linear homogenous functions we can show,

Jq(ρ, C, V ) = V
V̄

Jq(ρ, C V̄
V

, V̄ ), (A1)
∂

∂C
Jq(ρ, C, V ) = ∂

∂C
Jq(ρ, C V̄

V
, V̄ ), (A2)

∂
∂V

Jq(ρ, C, V ) = (1/V )Jq(ρ, C, V ) − (C/V ) ∂
∂C

J(ρ, C, V ) (A3)

These equations (and similar equations for P in place of J) enable us to calculate the values
and derivatives of Jq at an arbitrary scale V , from their values at scale V̄ , where the latter
can be calculated numerically, using the procedures of Section 1. This will prove useful in
the analysis below. Note that growth by increasing the scale of fixed assets and coupon while
keeping cash constant will exhibit decreasing returns to scale. The problem of irreversible
investment with decreasing returns to scale was analysed in a certainty setting by Arrow
(1968) using variational methods. Our formulation adapts this analysis to a stochastic
growth setting using our computational framework.

We proceed recursively by first analyzing the growth decision at the instant T of the
growth option. Then we will study optimal cash holding and dividend policy prior to growth
when this opportunity is merely a prospect which might be stochastic. Specifically, at each
grid point (ρ, C) we calculate the optimal action of the firm, in terms of how much to grow,
how much cash to draw down, and how much equity to issue. This gives us the equity value
Jq,GRW (ρ, C) at the instant before growth. Second, we analyze the cash reserve policy that
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the firm will pursue before time T , trading off the inefficiency of holding cash against the
inefficiency having to issue equity in order to exploit the growth opportunity. This second
step simply involves developing the solution back from Jq,GRW (ρ, C) at time T , using the
same procedure as in Section 1.

We now deal with the first step above, and describe our procedure for finding the optimal
growth decision at time T , from scale V̄ , and at any point (ρ, C), and the corresponding
equity value Jq,GRW (ρ, C). First, suppose the firm’s current scale is V ≥ V̄ , and it is
considering to increase its scale by a small amount dV . For the time being, assume that the
firm will not issue equity, but will finance the growth by drawing down cash in the amount
dC, and raising the rest, denoted dP , from issuing long term debt. After growth to scale
V + dV , the debt value will be P q(ρ, C − dC, V + dV ), and the firm will have raised an
amount P q(ρ, C − dC, V + dV ) dV

V +dV
from the issue. Thus

dV = dC + dP ≡ dC + P q(ρ, C − dC, V + dV )
dV

V + dV
, (A4)

and letting dV → 0 gives
dC

dV
= 1 − 1

V
P q(ρ, C, V ). (A5)

This equation tells us how much cash must be drawn down, if the firm grows from scale V
to scale V + dV , with no equity issue, but a proportionate increase in long term debt.

If the firm decides to grow by dV by drawing down dC from the cash reserve, then the
gain to equity will be

Jq(ρ, C − dC, V + dV ) − Jq(ρ, C, V ) =

[

∂

∂V
Jq(ρ, C, V ) − dC

dV

∂

∂C
Jq(ρ, C, V )

]

dV + o(dV )

(A6)
The firm will thus find it profitable to grow by issuing long-term debt in step with the growth
of fixed assets and by drawing down cash as required to cover the costs of investment if

∂

∂V
Jq(ρ, C, V ) − dC

dV

∂

∂C
Jq(ρ, C, V ) > 0 (A7)

where dC
dV

is as in Equation (A5).
Now instead suppose the firm decides to grow dV by issuing debt as above and equity by

an amount dQ sufficient to cover the costs of investment while keeping cash constant. Then
the amount raised by debt will be P q(ρ, C, V + dV ) dV

V +dV
, and corresponding to Equation

(A4), we have

dV = dQ + dP ≡ dQ + P q(ρ, C, V + dV )
dV

V + dV
, (A8)

and letting dV → 0, this gives

dQ

dV
= 1 − 1

V
P q(ρ, C, V ), (A9)
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whose RHS is the same as that of Eqn (A5). The firm will thus find it profitable to grow
by issuing long-term debt in step with the growth of fixed assets and by issuing shares as
required to cover the costs of investment if

∂

∂V
Jq(ρ, C, V ) − dQ

dV

1

θ
> 0. (A10)

In fact, the firm can choose to grow by issuing equity or by drawing down cash. It will
choose the former if (A7) holds, and LHS(A7) > LHS(A10); and it will choose the latter if
(A10) holds, and LHS(A10) > LHS(A7). Actually, our valuation of Jq(ρ, C) in Section 1
includes the assumption that the firm will increase the cash reserve from C by issuing equity,
if this is profitable, which corresponds to the criterion ∂

∂C
Jq(ρ, C) > 1

θ
. This, and Equation

(A2) give
∂

∂C
Jq(ρ, C, V ) ≤ 1

θ
, (A11)

and if we have equality in Equation (A11), then the firm should issue equity to increase the
cash reserve.

Our procedure for determining the growth decision at time T at each grid point (ρ, C)
is as follows. Let Vmax be the maximum possible scale. We take Jq(ρ, C, V̄ ) as calculated
in Section 1. Starting from the initial scale V̄ , we increase the scale in small steps of size
dV , i.e. to Vi := V̄ + idV , for i = 0, 2, 3, ..., and decreasing C by steps dCi

dV
dV , i.e so that

Ci = Ci−1 − dCi−1

dV
dV for i = 1, 2, 3, .... We continue until the highest i , say i = n, such that

(16) holds or until Vi = Vmax. The value Jq,GRW (ρ, C, V̄ ) immediately before growth, is then
the value Jq(ρ, Cn, Vn)

At this point it may be that cash has been depleted to the point that would make equity
issuance preferable. Therefore, if at (Cn, Vn) calculated above, we have ∂

∂C
Jq(ρ, Ci, Vi) = 1

θ
,

then we take the firm to issue equity to replenish cash. This is done in successive increments
dQ to Qi = i×dQ, i = 1, 2, 3, ... resulting in Cn,i = Cn+i×dQ, until we have ∂

∂C
Jq(ρ, Ci, Vi) <

1
θ
.

We finally discuss the case when the growth opportunity is stochastic, in particular, when
the firm is uncertain whether the opportunity with actually occur, but if it does, then the
timing and size are known. In this case, the value the equity at each (ρ, C) and at the growth
time T , is the probability weighted average of the value assuming that the growth does occur
(calculated as above), and the value assuming that the growth does not occur (which is just
the value in Section 1). This calculation assumes that the growth probability is taken as risk
neutral. Also, we assume that the firm knows whether the growth opportunity has occurred,
when it implements its cash draw down, equity and debt issuance, at time T .

This completes the analysis of the optimal growth and financing decision for each node
(ρ, C) at time T . Given the resulting value of equity,Jq,GRW (ρ, C, V̄ ), we then proceed to
solve for the optimal dividend and share issuance policy in the pre-growth period, t < T .
This is a non-stationary problem. However, given that the solution technique developed
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in section 1 is applicable to non-stationary problems as well as stationary, this is straight
forward. We implement the dynamic program of Section 1, but working backwards in time
from the final condition Jq,GRW (ρ, C, V̄ ), at time T .

C.3 The Optimal Policy with Growth Opportunities

To implement the model with growth opportunities we assume that prior to growth the
firm has the technology, capital structure, and cost parameters as in the benchmark solution
described in Section 1. We have implemented the procedure above for a variety of choices
of the pre-growth scale, V̄ and the maximum post-growth scale, Vmax. The scale and equity
increments are set at dV = 0.001 and dQ = 0.001.

The solution to the growth problem is characterized by an investment threshold (ρg(C), C)
such that for a given level of cash holding C, there is a minimum rate of profitability given
by ρg(C), below which the firm will not invest. The amount of investment chosen, given
C, is a weakly increasing function of ρ up to some point where Vmax is attained. Virtually
everywhere in our implementations, the firm grows by the maximum allowed.

The threshold of ρ above which the firm will invest depends crucially on the cost of
investment, as reflected in the scale parameter V̄ . We present results for V̄ = 1.3. According
to Table 1, this is close to the (no-growth) firm value for ρ = 1.3 (quite high), and so it will
be profitable for the firm to grow for ρ > 1.3, approximately. This growth pattern is in line
with that of the empirical Table C1.

Figure C1 gives the result of implementing the growth model for V̄ = 1.3. In panel A we
have taken Vmax = 1.04× V̄ , i.e. growth of 4%. We give the liquidity target 1, 3, 6, 9 and 12
months before the growth occurs, and also the no-growth liquidity target, as in Figure 1 of
the text. This panel corresponds growth by a known 4%, and at a time known in advance,
and we see that the firm builds up liquidity a few months before the event. However, it can
do this quickly, and it does not have to start holding significant extra cash say 6 months
before the event. The panel also includes the ‘long-term’ liquidity target, which represents
the sum of the liquidity targets, in excess of the no-growth target, over all months before the
growth event. This is close to the liquidity target that the firm will maintain permanently,
if it can grow for certain by 4% every month. We consider that the firm is saving separately
for growth at each future month. We take the sum over 12 months to calculate the aggregate
liquidity target. This is sufficient to represent the sum over all time, because of the quickly
decaying nature of the excess liquidity targets, as the time remaining to the growth event
increases. Our aggregate target is only an approximation to the long term liquidity target,
because we have ignored the (uncertain) scaling which should apply at each future month, if
the growth occurs. Also, we have smoothed the aggregate liquidity target with respect to ρ.
This is necessary, because the discretization error in the liquidity boundaries, coming from
the discretization of the (ρ, C)-space, is amplified in the aggregate liquidity boundary. Such
a growth option is a good approximation to the option to grow smoothly at any instant, at
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the very high rate of 48% per year.
If the firm is able to grow at 4%/12 per month for certain, or at 4% per month with

probability 1
12

, then its cash holding is the same as the no-growth firm, and we do not
present a figures for these results. These scenarios both agree with expected growth of 4%,
as in Table A1. At such a modest rate, the firm can generate enough cash from its current
earnings to finance the growth.

In Figure C1, Panel B we give the scenario for growth of 2% for certain each month,
and in Panel C we give the scenario for growth of 24% with probability 1/12 each month.
Both panels also include the corresponding ‘long term’ target. Both panels correspond to
growth of 24% per annum, but in Panel C the growth is much more lumpy, and we see that
in aggregate, the firm has a much higher cash target.

It is also notable that in all panels, the cash target is not much increased for very high
ρ. At such ρ it is not necessary to save so much, since the current earnings can cover the
growth cost. Looking more closely at the figure, at very high levels of ρ it is sometimes
optimal to target a higher level of cash accumulation when the investment horizon is more
distant than when it is close. This is because when current profitability is high, it is likely
to decline by mean reversion as the investment horizon approaches. This also leads to the
long term liquidity target being higher for very high ρ values.

We conclude that at the modest growth rates of Table C1, the firm will not significantly
increase its cash holding to finance the growth, because it has a high current income, at times
when it is profitable to grow. Investment for growth comes from reducing the dividend. The
firm will increase the cash target if it anticipates high growth of say 24%, and then the cash
target is strongly related to the lumpiness of the investment opportunity. The high cash
holdings for the unlevered firms of Table 3 might the explained by such lumpiness of the
investment opportunity.

It is clear from these results that in the presence of large lumpy investment opportunities,
the change in cash holding bears no simple relation to current cash flow. This point has been
emphasized by Riddick and Whited (2009). In the run-up to the investment date high cash
flow will be associated with high cash accumulation. At the investment date high cash flow
is associated with sharp cash decumulation.
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TABLE C1: Capital Expenditures, Share Issuance, LT Debt Issuance, and
Profitability

Average Capital Expenditures
Profitability Quintile

Leverage category Lowest 2 3 4 Highest Average
0.0 < L ≤ 0.1 4.20% 3.68% 4.76% 5.88% 7.82% 5.27%
0.1 < L ≤ 0.2 4.41% 4.36% 5.47% 6.38% 8.15% 5.75%
0.2 < L ≤ 0.3 4.92% 4.68% 5.85% 7.63% 10.31% 6.68%
0.3 < L ≤ 0.4 6.44% 4.77% 6.50% 7.23% 11.21% 7.23%
0.4 < L ≤ 0.5 5.45% 5.10% 5.93% 7.37% 10.97% 6.96%
0.5 < L 3.78% 5.94% 7.76% 6.62% 12.31% 7.28%
Average 4.87% 4.76% 6.04% 6.85% 10.13% 6.53%

Average Share Issuance
Profitability Quintile

Leverage category Lowest 2 3 4 Highest Average
0.0 < L ≤ 0.1 6.13% 0.41% -0.17% -1.26% -3.58% 0.30%
0.1 < L ≤ 0.2 2.55% 0.40% 0.03% -1.06% -3.39% -0.29%
0.2 < L ≤ 0.3 1.24% 0.42% 0.17% -0.75% -1.40% -0.06%
0.3 < L ≤ 0.4 1.83% 0.83% 0.33% -0.31% -1.91% 0.15%
0.4 < L ≤ 0.5 0.43% 1.39% 0.84% 1.35% -0.21% 0.76%
0.5 < L 2.66% 1.38% 0.69% 0.04% 0.09% 0.97%
Average 2.47% 0.80% 0.31% -0.33% -1.73% 0.31%

Average LT Debt Issuance
Profitability Quintile

Leverage category Lowest 2 3 4 Highest Average
0.0 < L ≤ 0.1 0.13% 0.78% 1.02% 0.66% 0.08% 0.53%
0.1 < L ≤ 0.2 0.49% 1.30% 1.46% 0.86% 0.55% 0.93%
0.2 < L ≤ 0.3 2.04% 1.93% 0.81% 1.00% -0.30% 1.09%
0.3 < L ≤ 0.4 0.70% 2.31% 1.89% 1.27% 0.49% 1.33%
0.4 < L ≤ 0.5 2.91% 2.11% 1.47% -0.16% -1.91% 0.88%
0.5 < L 3.29% 4.64% 3.07% 0.22% 2.30% 2.70%
Average 1.59% 2.18% 1.62% 0.64% 0.20% 1.25%

Profitability
Profitability Quintile

Leverage category Lowest 2 3 4 Highest Average
0.0 < L ≤ 0.1 -13.79% 3.75% 11.06% 17.48% 26.41% 8.98%
0.1 < L ≤ 0.2 -5.51% 7.00% 12.33% 16.95% 24.74% 11.10%
0.2 < L ≤ 0.3 -0.93% 8.25% 12.46% 16.58% 24.29% 12.13%
0.3 < L ≤ 0.4 -1.59% 7.92% 11.99% 15.71% 23.17% 11.44%
0.4 < L ≤ 0.5 -1.12% 7.65% 11.56% 15.12% 23.04% 11.25%
0.5 < L -3.87% 7.46% 11.41% 15.16% 22.57% 10.55%
Average -4.47% 7.01% 11.80% 16.17% 24.03% 10.91%
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Figure C1:

These figures each depict optimal cash targets at 1, 3, 6, 9 and 12 months prior to an
uncertain growth opportunity for the firm, with size and probability stated in each panel.
The ‘no-growth’ target is as in Figure 1 of the paper. The ‘long term’ target corresponds to
the growth opportunity being present in every month in the future.
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