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Abstract
We study the market for credit default swaps (CDS) between 2003 and 2008 in order

to understand origins of the well documented tendency for credit spreads on diverse
issues to periodically undergo large, common adjustments in the same direction and
of similar magnitudes. Our methodology allows us to distinguish co-movements that
reflect common revisions in the statistical default distribution from common factors
driving time variation in the market price of default risk. We estimate the risk neutral
default distribution using a latent variable model which assumes that defaults on a
name follow a jump process where the log intensity of arrivals of defaults itself follows
an Ornstein-Uhlenbeck process. Estimates of this model are used to find the implied
times series of the risk neutral default intensity for each firm. A principal components
analysis suggests that a very high fraction of time variations in the implied default
intensities of diverse firms is explained by a single common factor. We then combine
these estimates with estimates of the statistical default process based on a hazard
model in order compute the implied market price of default risk. We show that a
relatively high fraction of the observed variation of this market price of default risk can
be accounted for by a linear model of the market price of default risk using as observed
covariates macro indicators, firm indicators and indicators of equity market and credit
market conditions. Our estimates show a strong association between that credit market
conditions and the market price of risk. The estimated coefficients have the correct
signs. Overall, our results provide some evidence of the partial segmentation of credit
markets.
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What Accounts for Time Variation in the Price of

Default Risk?

1 Introduction

In this paper we study the pricing of credit risk as reflected in the market for credit de-
fault swaps (CDS) between 2003 and 2008. Our focus is on the well documented common
co-movement of yield spreads for a wide range of names in various sectors and of different
credit quality. This common factor in credit spreads could be the reflection of changes in the
expected credit losses. For example, Yu (2002) presents evidence that suggests that major
changes in yield spreads anticipate major changes in realized default rates by approximately
one year. However, in his sample some significant increases in default rates were not antici-
pated by an earlier increase in yield spreads (e.g., in early 1996). In other cases, major yield
spread changes are not followed by any large change in default rates. These may be cases
of forecasting mistakes. Or they may be the consequence of yield spreads being driven by
other factors than expected credit losses alone.

An important possible explanation is that generalized credit spread changes reflect changes
in the compensation that the market requires for bearing credit risk. Indeed the view that
credit spread changes are driven by changes in risk appetites is widespread among practi-
tioners and policy makers. For example, the sharp increase in credit spreads in the summer
of 2007 was described by some central bankers as a consequence of the market correcting
a widespread mispricing of credit risk in 2004-2006.1 However, yield spreads also reflect
a compensation for the relatively high degree of illiquidity faced by holders of defaultable
securities. Changes in market liquidity over time might account for some of the changes in
observed changes in yield spreads.

In an important earlier study of yield spreads on corporate bonds Collin-Dufresne, Gold-
stein and Martin (CGR) show that in disagreement with the predictions of structural credit
risk models, changes in a firm’s value (as reflected in equity prices) account for only a small
fraction of changes in observed yield spreads on the firm’s liabilities. In contrast, a large

1For example Ben Bernanke assessed the origins of the market turmoil of 2007 in the following terms.
”Although subprime mortgages were the most obvious example, the loosening of credit standards and terms
occurred more broadly, reflecting a general boom in credit markets that peaked and then reversed last
summer. This boom was characterized by a general erosion of market discipline, underpricing of risk, and
insufficient attention by investors to the quality or riskiness of the instruments they purchased.” (Bernanke
2008). A similar assessment was expressed by the Financial Stability Forum (2008) and the Bank of England
(2007).
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fraction of yield changes on a wide spectrum of issues appears to follow movements in some
common factor. Regressions using observations of a variety of macro and financial proxies
leave a large fraction of these common movements unexplained.

These results motivate the use of latent variable models in much of the empirical liter-
ature on credit spreads. For example, using Kalman filter techniques applied to individual
corporate bonds Duffee (1999) estimates a reduced form model in which the intensity of
default follows a mean-reverting square root process and shows that the model produces rea-
sonable parameter estimates and relatively good fits.2 Generally, these applications employ
observations of prices on traded instruments for which no default has occurred. Also, these
applications attempt to estimate parameters which determine the dynamics of the market
price of default risk.

Given the comments above about the distinguishing changes in yields driven by changes
in expected credit losses from those driven by changes in the price of bearing a given risk,
it may be surprising that estimates based on prices or yields alone can identify a market
price of default risk. To understand this issue, it is important to distinguish two aspects of
credit risk borne by an investor holding a security over a period of time. First, there is the
risk that a default will occur over this holding period. Second, there is the risk of a change
in the probability of a future default which will lead to a change of value of the security
in the secondary market. The former type of risk has come to be known has the “jump to
default” risk; whereas, the latter is denoted “mark to market” risk. In general, with risk
averse investors, the expected return on a defaultable security reflect some compensation
required by investors for bearing each type of risk. In estimating reduced form models from
market prices alone, a market price of default risk is typically identified by assuming that
the market price of risk associated with the change of measure from the statistical default
distribution to the risk neutral default distribution is an affine function of the intensity (or
log intensity) under the risk neutral measure (see, e.g., Pan and Singleton (2007)). Now as
has been emphasized by Jarrow, Lando and Yu (2005) and Yu (2001), the market price of
default risk estimated in this way captures only the “mark to market” component of default
risk. To estimate a jump risk premium as well as a mark to market risk premium, it is
necessary to draw upon information on actual defaults. Estimates based only on prices of
securities that have not defaulted suffer from a bias akin to survivorship bias encountered in
the analysis of equity returns.

Driessen (2005) attempts to overcome this difficulty in his estimates of a reduced form
model using observations on corporate bonds between 1991 and 2000. He finds that liquidity
measures and taxes important in explaining cross sectional patterns of credit spreads. To
identify the market price of credit event (jump) risk, he employs Standard and Poors and

2Other examples of estimates of reduced form models include applications to interest rate swaps (Duffie
and Singleton (1999)), sovereign bond issues (Pan and Singleton (1997)). See Duffie and Singleton (2003)
for a general introduction to reduced form credit risk modeling.
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Moody’s historical default frequencies to infer the intensity of default under the statistical
measure. He then estimates the market price of jump risk as the ratio of the risk neutral
default intensity to the statistical default intensity, which he assumes to be a constant
parameter, µ. In his benchmark model he find µ = 2.3, implying a large market price
of default risk. This large risk premium associated with what might be expected to be a
diversifiable risk is a surprising finding. While the standard errors of Driessen’s estimates
are rather large, using a variety of alternative samples the estimated values of this jump risk
premium are systematically greater than 1 and are frequently quite large. The apparently
large risk premium paid for bearing jump risk has been the subject of a series of further
analyses using different data and different methodologies (Berndt et al. (2005), Berndt and
Obreja (2007) and Saita (2006)). Generally, the estimates confirm that the jump risk premia
are very large, in stark contrast with what might be expected intuitively or what had been
assumed in earlier applications of reduced form models (as discussed by Jarrow et al (2005)).
This has led Berndt et al to suggest that large jump risk premia may be the consequence of
financial market segmentation. We will comment on this literature when discussing our own
findings below.

Driessen’s methodology has clear limitations in relation to our primary interest on the
time variation in the price of credit risk bearing. Since Driessen assumes a constant market
price of default event risk, by design he cannot consider how this price may evolve over
time. Furthermore, the use of bond ratings and historical default frequencies to proxy for
the statistical default distribution has an important weakness if we are interested in changes
in the market price of default risk over time. Specifically, it is well-documented that ratings
exhibit a high degree of inertia and are not necessarily good estimates of the probability of
default at a given point of time. As a consequence, an increase in credit spread might be
due to increased probability of default (under physical measure) but not captured in the
current rating. This change might be mistakenly ascribed to a change in risk tolerance. For
this reason, to capture time changes in the pricing of default risk it would be good to have
more direct estimates of the physical default distribution as discussed by Yu (2001). This is
precisely the approach that we have taken.

Another possible weakness of Driessen, Duffee and other studies that have based esti-
mates on yields spreads on corporate bonds is that these spreads will reflect a composite of
compensation for market illiquidity and tax effects as well as a credit risk premium. For ex-
ample, it might be that part of the large estimated jump risk premium obtained by Driessen
could derive from weaknesses in the proxies that he uses to control for liquidity and taxes.
For this reason, the growth of the CDS market is an important development for the study
of credit risk because these homogenous derivatives contracts are typically much more liq-
uid than the underlying bond contracts and because tax effects should be absent in their
pricing.3

3See, Blanco et al (2005) for a discussion of relation of the CDS and corporate bond markets and for
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Berndt et al (2005), Berndt and Obreja (2007) and Saita (2006) all use data from the
CDS market to estimate reduced form models and use estimates of the statistical default
distribution to identify the premium associated with jump to default risk. As estimates of
the statistical default distribution, Berndt et al. and Berndt and Obreja employ the Moodys-
KMV EDF (expected default frequency) for specific names. One possible criticism of this
approach is that EDF’s are based on a proprietary methodology which therefore cannot
be subjected to independent validation. A more important weakness for our purposes is
that movements over time of EDF will be driven in large part by changes in the firm’s
equity prices. As a result they may not be good representations of the changes in the firm’s
statistical default distribution. In particular, general descriptions of the Moodys-KMV make
clear that the EDF is calculated as a non-parametric (and proprietary) function of the
distance to default which was introduced in Merton (1974) (see, Crouhy, Galai and Mark
(2001) for a discussion). Distance to default in turn is the difference between an estimate of
firm value and the value of firm liabilities expressed in units of the volatility of firm value.
Given the inertia in estimating the value of debt and of volatility, changes of this measure
are dominated by changes in equity. Since the value of equity is also a forward-looking
measure which will reflect the market’s current price of risk bearing, changes in EDF may
not simply reflect changes in the physical default distribution. Thus EDF based estimates of
jump risk premium may suffer from an opposite bias from that of ratings based estimates.
For example, an increase in CDS spreads that was driven by an increase in the price of jump
risk that was positively correlated with an increase in the risk premium on equity may be
improperly attributed to an increase in the statistical default probability because the fall in
equity price will drive EDF’s higher.

To overcome these possible problems, we derive statistical default intensities from esti-
mates of hazard functions based on a large panel of firms including a significant number
default observations.4 A further difference with previous studies is we use data from a later
time period which included the significant reversal in credit markets which took place in
2007. However, beyond these differences in methodology and data coverage, the main dif-
ference in our study as compared to Driessen, Berndt et al., Berndt and Obreja and Saita is
that we study the time series properties of our estimates of the market price of default event
risk and identify observable proxies which have significant explanatory power in accounting
for changes in this market price.

Our estimates show that the determinants of the market price of default event risk exhibit
important differences across different sectors. However, there is a strong, general association
between credit market conditions (as measured by indices of quality of banks’ loan books)
and the market price of default risk. This supports the argument of Adrian and Shin (2008)

evidence that CDS prices tend to lead bond prices. Descriptions of the development of the default swap
market can be found in Duffie (BIS 2007) and Anderson and McKay (2008)

4For recent examples of estimates of the default distribution derived from credit histories see Shumway
(2001), Campbell and Hilscher (2005), and Duffie, Saita, and Wang (2005).
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that changes in aggregate balance sheets of intermediaries forecast changes in risk appetite.
Our findings are robust across a variety of alternative proxies for credit market conditions and
across sectors. In contrast equity market risk factors and general business conditions do not
always have coefficient estimates of the right sign and are not always significant. However,
there is some evidence that changes in the value firm premium are partially correlated with
changes in the pricing of default risk. Overall, our results provide evidence of the partial
segmentation of credit markets in line with the conjecture of Berndt et al.

The remainder of the paper is organized as follows. In section 2 we introduce our panel
data set of CDS prices and provide some statistical characterizations of yield spread changes.
In section 3 we present the latent variable model for CDS pricing, discuss estimation method-
ology and report parameter estimates. We study the time series behavior of risk neutral
default intensities implied by our estimates derived from CDS spreads. In section 4 we com-
bine risk neutral intensities with estimates of the statistical default intensities derived from
a hazard model to obtain the implied market prices of default event risk. We use panel data
methods to explore observable proxies that may account for changes in the market price
of default event risk and consider the robustness of our findings by exploring some alterna-
tive estimations techniques including ratings based measures of statistical default intensities.
Section 5 summarizes our conclusions.

2 Statistical Analysis of CDS Pricing

2.1 Data

Our CDS price data cover firms with 1, 3 and 5-year CDS contracts reported on a daily
basis on Datastream between September 2003 and through January 2008. To facilitate
comparison we have drawn our sample from two sectors, energy and media, from North
America and Europe. Overall we have 41 firms across four subsamples allowing us to make
two-way comparisons (across sectors and regions). For North American firms we have taken
CDS contracts denominated in US dollars. For European firms the contracts are quoted in
euros or pounds sterling. We summarize some results by rating category. Following market
convention we assign rating to a name based on the rating of its senior, unsecured bonds
or notes with two or more years to maturity. The source of most of our ratings data is
the Mergent Fixed Income Data set. In a few cases we supplemented this with firm rating
information obtained from the Standard and Poors website.
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TABLE I Summary Statistics (prices in basis points)
Firm Mean CDS Spread Std Dev of Spread Rating
North American Energy Sector
ANADARKO PETROLEUM 34.01 7.84 BBB
APACHE 23.94 4.43 A
CHEVRON 11.44 3.73 AA
CONOCOPHILLIPS 22.45 5.48 A
DEVON ENERGY 36.17 12.52 BBB
EXXON MOBIL 7.23 3.19 AAA
MARATHON 31.84 8.69 BBB
MASSEY ENERGY 255.99 101.69 B
NEWFIELD EXPLORATION 128.14 49.66 BB
OCCIDENTAL PETROLEUM 26.01 7.20 A
PEABODY ENERGY 131.69 38.24 BB
PIONEER NATURAL RESOURCES 110.81 46.40 BB
SUNOCO 40.87 8.44 BBB
WILLIAMS COMPANIES 161.00 63.26 BB
XTO ENERGY 50.37 23.52 BBB
North American Media Sector
BELO CORP 88.22 36.35 BBB
CHARTER COM 897.04 653.47 CCC
COMCAST 46.76 18.05 BBB
GANNETT 39.32 15.55 A
INTERPUBLIC 222.68 85.30 B
OMNICOM 31.39 11.92 A
TIME WARNER 51.11 16.78 BBB
VIACOM 49.96 15.28 BBB
WALT DISNEY 31.57 15.75 A
European Energy Sector
BP 10.43 11.70 AA
ENI 13.31 12.09 AA
REPSOL 42.99 25.34 BB
SHELL 12.73 11.27 AA
STATOIL 15.15 10.83 AA
TECHNIP 34.98 24.92 BBB
TOTAL 13.22 11.29 AA
European Media Sector
BSKYB 43.27 16.60 BBB
PEARSON 45.21 15.36 BBB
PROSIEBENSAT 176.96 122.48 BBB
PUBLICIS 52.04 27.00 BBB
REUTERS 26.55 8.64 A
SES 45.80 21.30 BBB
THOMSON 89.17 88.72 A
VIVENDI 54.84 21.43 A
WOLTERS 48.50 17.06 BBB
WPP 41.86 25.32 BBB
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The firms included in our study as well as the rating (in July 2006), the mean and the
standard deviation of the 5-year CDS spread are listed in Table I. It will be observed that
our data set spans quite a wide range of firms with mean spreads going from a minimum
of 7.23 basis points for AAA-rated Exxon-Mobil to 897 basis points for C-rated Charter
Communications. Broadly speaking spreads are higher for media firms than energy firms.
And spreads are higher for North American firms than European firms.

Within the sample there is a preponderance of BBB-rated names with A-rated and BB-
rated names also being quite common. By and large, spreads are lower for more highly rated
names as would be expected. However, there are a few exceptions to this. The differences
of spreads across industrial sectors are apparent even after we control for rating. Table II
reports the mean spread between September 2005 and August 2007 on the 5-year CDS’s by
ratings categories and for our four sub-samples. For the A and BBB category that represents
a large fraction of our sample, we see that both in North America and in Europe media firms
carry a higher spread than do energy firms within the same rating category.

TABLE II Mean CDS Spreads
(basis points)

Rating NA Energy NA Media EU Energy EU Media
AAA 5.12 * * *
AA 9.36 * 8.18 *
A 21.25 29.41 8.45 46.93
BBB 35.37 55.45 29.60 54.76
BB 114.80 * 30.58 *
B 313.30 179.92 * *
C * 895.23 * *

As a control for possible common effects in time variation of CDS spreads we also use
indices of spreads on large industrial firms. For North America we have constructed an
index of Blue Chip CDS spreads from individual quotes for firms included in the Standard
and Poors 500 equity index which had 5-year CDS’s quotes available on Datastream for the
period September 2003 through end of August 2007. In all 62 firms were included. The
CDS index was calculated as the arithmetic average of the quoted spreads. Among the 15
energy companies the only ExxonMobil was also included in the calculation of the CDS
index. Three of the North American media firms (Time Warner, Walt Disney and Viacom)
appeared in the index as well. For European Firms we use a chained series from constructed
from iTraxx 5-year, on-the-run spreads.

2.2 Linear Regressions

As noted in the introduction, previous analysis of corporate bond pricing has established
that changes in yields on a firm’s bond are only weakly related to the changes in firm value
(as measured by equity changes) but strongly affected by a common factor that appears
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to drive a wide range of bonds. As an initial attempt to see if a similar pattern holds in
CDS pricing we apply a regression model to balanced panels for our four subsamples. In
particular, we consider the model,

∆lnCDS5
it = αi + β∆lnSi,t + γ∆lnIndxCDS5

t (1)

where for firm i, ∆lnCDS5
i,t is the weekly change of the logarithm of the spread on firm’s 5-

year CDS, ∆lnSi,t is the corresponding log change of the firm’s equity price and ∆lnIndxCDS5
t

is the log change of the index of CDS quotes. This specification allows us to control for a
variety of sources of cross-sectional variation through the uses of firm effects (either fixed or
random).

The results are reported in Table III. The results for the pooled least squares regression
(αi = α for all i) for North American energy firms are given in the first column of Table III
top panel. These result are very much in line with the results of previous work on corporate
bond yields (CGR). That is, the movements of the firm’s CDS spreads are negatively related
to changes in the firm’s equity price as theory predicts; however, the relation is weak and only
marginally statistically significant. In contrast, the energy firm’s CDS spreads are strongly
related to an index of CDS spreads for very large liquid firms drawn from all industries. And
this common factor is highly statistically significant.

Also for North American energy firms columns 2 and 3 of Table III report results for the
same linear model using panel data methods for firm groups. The results using either fixed
effects or random effects are virtually the same as those obtained in the pooled regressions.
Columns 4 and 5 give results of panel methods allowing for first order serial correlation
of errors. The coefficient estimates of the regressors are very similar to those obtained
previously. It is noted however that the autocorrelation coefficient of the errors is −0.27
which is suggestive of some mean reversion of unobserved factors.
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TABLE III Linear Model Estimates:
Dependent Variable, Weekly Change of log of CDS spread

(p-values in parentheses)
North American Energy Sector
Variable Pooled Fixed Effect Random Effect FE AR(1) RE AR(1)
∆lnSi,t -.1135 -.1129 -.1135 -.1163 -.1186

(0.084) (0.087 ) (0.084) (0.093) ( 0.085)
∆lnIndxCDS5t .6930 .6931 .6930 .6945 .6943

(0.000) (0.000) (0.000) (0.000) (0.000)
constant -.0002 -.0002 -.0002 -.0001 -.0001

(0.875) (0.875) (0.875) (0.944) (0.935)
ρ -.2738 -.2738
R-squared 0.0416 0.0416 0.0416 0.0416 0.0416
Number of obs 3120 3120 3120 3120 3120
North American Media Sector
Variable Pooled Fixed Effect Random Effect FE AR(1) RE AR(1)
∆lnSi,t .0168 0.0200 0.0168 0.0318 0.0278

(0.832) (0.802 ) (0.832) (0.692) ( 0.727)
∆lnIndxCDS5t 0.846 0.8470 .8465 0.8503 0.8468

(0.000) (0.000) (0.000 ) (0.000) (0.000)
constant .00012 0.0001 .0001 0.0001 0.0001

(0.925) (0.925) (0.925) (0.965) (0.926)
ρ -.098 -.0938
R-squared 0.1124 0.1124 0.1124 0.1124 0.1124
Number of obs 2052 2052 2052 2052 2052
European Energy Sector
Variable Pooled Fixed Effect Random Effect FE AR(1) RE AR(1)
∆lnSi,t -0.0425 -0.0416 -0.0425 -0.0598 -0.0613

(0.654) (0.662 ) (0.654) (0.541) ( 0.530 )
∆lnIndxCDS5t 0.5463 0.5463 0.5463 0.4977 0.4994

(0.000) (0.000) (0.000 ) (0.000) (0.000)
constant 0.0028 0.0028 0.0028 0.0022 0.0029

(0.049) (0.049 ) (0.049) (0.135) (0.114)
ρ -0.187 -0.187
R-squared 0.2428 0.2428 0.2428 0.2428 0.2428
Number of obs 931 931 931 931 931
European Media Sector
Variable Pooled Fixed Effect Random Effect FE AR(1) RE AR(1)
∆lnSi,t -0.2961 -0.2896 -0.2961 -0.3058 -0.3090

(.0014) (0.000 ) (0.000) (0.000) ( 0.530 )
∆lnIndxCDS5t 0.5659 0.5667 0.5659 0.5528 0.5521

(0.000) (0.000) (0.000 ) (0.000) (0.000)
constant 0.0014 0.0014 0.0014 0.0012 0.0014

(0.087) (0.088 ) (0.087) (0.131) (0.114)
ρ -0.0965 -0.0966
R-squared 0.3786 0.3786 0.3786 0.3786 0.3786
Number of obs 1680 1680 1680 1680 1680
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The results for North American Media firms are given in Panel 2 of Table III. Again,
there is a strong, highly significant positive relation with movements of the general index of
CDS spreads, and this is consistent across alternative estimation methods. In this case, the
estimated relation to equity changes is positive rather than negative as predicted by theory,
but it is statistically insignificant. Again, when we allow for autocorrelation of the residuals
of a given firm, the estimated coefficient is negative suggesting possible mean reversion of
unobserved factors.

In panels 3 and 4 of the Table the results for European firms by and large exhibit a
similar pattern. There is a strong, significant and robust positive relation to changes in the
broad CDS index. There is evidence of negative autocorrelation of residuals. The only slight
surprise is that for European media firms the coefficient on changes in the firm’s own equity
is significant and negative. This suggests some hope that traditional structural models of
credit risk might find some scope for application in that sector.

These results give strong evidence of the importance of some common factor driving
changes of CDS spreads over time. The use of a broad CDS index to control for this is
imperfect for two reasons. First there is some overlap of coverage between our subsamples
and the universe of firms used to construct the index. Second, we have seen some evidence of
omitted factors. In order, to examine these matters further in the next section we introduce
explicitly a latent variable model of CDS pricing which will allow us to characterize the
common factor across firms without imposing that this coincide with any particular reported
index.

3 The Market Implied Default Intensity

3.1 A Latent Variable Model of CDS Pricing

As discussed in section 2, it is likely that not all the systematic determinants of CDS prices
can be readily represented with empirically observed proxy variables. For this reason we
wish to explore models that capture unobserved risk factors as latent variables. In credit
risk modelling the most widely used class of models of this sort are reduced form models
which treat the default event as a continuous time stochastic process.5 In particular, following
Saita and Berndt et.al. we assume that the default for a given name i arrives with a default
intensity that is independent of the instantaneous risk-free rate. We indicate this intensity
at time t under the risk-neutral process as λQ

i (t). Then at time t the probability pT
it that

firm i will not default prior to some date T in the future is given by,

pT
it = EQ[e−

∫ T

t
λQ

i (s)ds] (2)

5See Duffie and Singleton chapter 5 for an introduction to reduced from models and chapter 8 for their
application to CDS pricing.
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Thus for example, the value dT
it at time t of a promise by firm i to pay $1 at time T assuming

loss given default of 100% is, dT
it = e−r(T−t)pT

it where r is assumed to be the constant risk-free
rate.

There is no firmly established empirical evidence on the behavior of latent default risk
factor λQ

i (t). The regression results of the previous section gave some evidence of mean
reversion. This is consistent with the stochastic process adopted by Saita, namely that the
log of the default intensity follows an Ornstein-Uhlenbeck process.6 Setting X i

t = lnλQ
i (s),

we assume,

dX i
t = ki

q(θ
i
q −X i

t)dt + σidZiq
t , (3)

where dZiq
t is a Brownian motion under the risk-neutral process.

3.2 Estimation

We will estimate the parameters of the risk-neutral process ki
q, θ

i
q and σi from observations

of the spreads of CDS’s written on firm i. The estimating equation can be developed from
CDS pricing relations as follows. Under the CDS the protection seller will receive a periodic
payment of C at regular intervals until date T in the future or until default if this occurs prior
to T . From date t suppose there are n payment dates t(j) until T = t(n). Then the value

of the cash flows to the protection seller are, CΣn
j d

t(j)
it . The protection buyer will receive

compensation for the loss of value on a bond issued by firm i incurred at default at some
stochastic time τ in the future. Let the loss given default (LGD) be given as L, a possibly
random amount that will be paid at the time of default. Thus the value of cash flows to
the protection buyer is EQ

t e−r(τ−t)L. The fair value of the CDS spread at any given time is
the C which just equates the value of cash flows of the protection seller and the protection
buyer. That is, it satisfies,

CΣn
j d

t(j)
it = EQ

t e−r(τ−t)L (4)

Let the spread that solves this pricing equation be written as f(t, T, ki
q, θ

i
q, σ

i, λi
q(t)). Note

that in this expression we explicitly take into account that at time t all expectations are
conditional upon the current value of the default intensity λi

q(t). In the results reported
below we have treated LGD as constant parameter and have set L = 0.5, approximately the
result reported by Altman and Kishore (1996) for senior, unsecured debt.7

The parameters ki
q, θ

i
q, and σi are estimated assuming that observed quotes on CDS

spreads deviate from theoretical spreads by an additive normal error. Specifically for firm i

6Berndt et al p.24 also adopt the O-U process as part of a somewhat more complicated specification for
the log default intensity.

7The results of Houwelling and Vorst (2003) suggest that valuation of CDS are relatively insensitive to
changes of LGD within the range (0.4, 0.6) which encompasses most empirical estimates.
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we obtain a panel of observations on 1, 3 and 5-year CDS at discrete times t = 1,M . Let
these quoted spreads be indicated as CDST

it for T ∈ 1, 3, 5. Then our statistical model is,

CDST
it = f(t, T, ki

q, θ
i
q, σ

i, λi
q(t)) + uT

it (5)

T ∈ 1, 3, 5

t = 1,M

We estimate this model using an iterative simulated quasi-maximum likelihood procedure
very similar to that employed by Saita. Specifically, each iteration proceeds as follows:

1. Given values of the parameters ki
q, θ

i
q, and σi we obtain a time series of implied default

intensities λi
q(t) by solving equation (5) for T = 5 assuming assuming u5

it = 0 for
t = 1,M .

2. Given the time series λi
q(t) for t = 1,M choose ki

q, θ
i
q, to minimize the sum of squared

residuals ΣT∈1,3Σ
M
t=1[CDST

it − f(t, T, ki
q, θ

i
q, σ

i, λi
q(t))]

2.

The procedure is continued until convergence is obtained. The assumption that the theoret-
ical model prices the 5-year CDS exactly is admittedly a bit arbitrary, but it is in line with
market practice where the 5-year issue is often the most liquid, benchmark issue. Notice
that a by-product of the procedure is an estimate of the time series of instantaneous default
intensities, λi

q(t) for t = 1,M . Implementation of this procedure is carried out by numerical
integration to calculate the expectations in equation(4) and by simulating a discretized ver-
sion of equation (3). More details on the appropriate numerical procedures are provided in
Saita and in Berndt et al.

This procedure was applied to the 41 firms listed in Table I. Samples consisted of weekly
observations between September 2003 and January 2008.8 Note that the method was applied
for each firm separately with no restrictions imposed across equations. In principle, it might
be interesting to explore cross-equation restrictions on the parameters; however, in practice
this would be difficult. Indeed, given the large number of Monte Carlo simulations involved in
each separate function evaluation, the computations of estimates for the 41 firms separately
was already very computer intensive. Systems estimation which would impose some cross
equations restrictions while allowing for some firm specific effects would have increased the
dimensionality of the optimization considerably.

The parameter estimates obtained for the four subsamples of firms are listed in Table IV.

8Not all 41 firms are quoted for this entire period. For reasons of data availability and in order to construct
balanced panels for use in subsequent analysis, the periods covered are as follows: N.A. Energy, 11/9/03-
29/8/07; N.A. Media, 27/08/03-26/12/07; EU Energy, 14/9/05-26/03/08; and EU Media, 12/1/05-26/3/08.
Note that the European CDS’s generally became available somewhat later than the North American CDS’s.
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TABLE IV Latent Variable Parameter Estimates
Firm σi ki

q θi
q

North American Energy Sector
ANADARKO PETROLEUM 1.109 0.0097 -5.9739
APACHE 1.6821 0.3255 -6.461
CHEVRON 1.3694 0.1686 -7.9679
CONOCOPHILLIPS 0.6277 0.3089 -4.8142
DEVON ENERGY 0.8925 0.3297 -4.9476
EXXON MOBIL 0.8226 0.0159 -6.6214
MARATHON 0.6479 0.3625 -4.5898
MASSEY ENERGY 0.813 -0.1178 -4.7534
NEWFIELD EXPLORATION 0.2433 -0.041 -7.0053
OCCIDENTAL PETROLEUM 1.3633 0.0522 -8.01
PEABODY ENERGY 0.8944 0.0141 -7.1023
PIONEER NATURAL RESOURCES 0.8253 -0.0343 -7.9969
SUNOCO 0.1411 0.3336 -4.0925
WILLIAMS COMPANIES 1.2005 0.1675 -5.1114
XTO ENERGY 0.5289 0.4461 -4.3722
North American Media Sector
BELO CORP 0.7838 -0.0229 -5.9746
CHARTER CO 0.8740 -0.1012 -4.8567
COMCAST 0.3011 0.0949 -2.1992
GANNETT 0.6544 0.2185 -3.9947
INTERPUBLIC 0.7010 -0.0752 -4.1653
OMNICOM 0.1517 0.2431 -3.9796
TIME WARNER 0.4063 0.1112 -2.5059
VIACOM 0.0299 -1.8518 -5.4096
WALT DISNEY 0.3552 0.2753 -4.1559
European Energy Sector
BP 1.0367 0.0022 -6.0163
ENI 0.7736 0.0572 -6.0545
REPSOL 0.5993 0.2042 -3.7571
SHELL 0.9754 -0.0055 -6.0310
STATOIL 0.7885 0.1261 -6.0473
TECHNIP 0.9321 -0.0437 -5.9977
TOTAL 0.9379 0.0953 -6.0554
European Media Sector
BSKYB 0.9422 0.0258 -9.6959
PEARSON 1.1919 0.1363 -5.4009
PROSIEBENSAT 0.8501 -0.2388 -4.3114
PUBLICIS 0.5584 0.2406 -3.5949
REUTERS 0.4710 0.2509 -4.4194
SES 1.2564 -0.2433 -4.1582
VIVENDI 0.7387 0.2619 -4.3320
WOLTERS 1.0647 0.0474 -6.0107
WPP 0.3678 0.1276 -2.4437

From these results we see that for most firms the estimated value of the parameter ki
q is
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positive and for about half the firms it exceeds 0.1 suggesting CDS contracts are priced on
the assumption of strong mean reversion in the default intensity process. However, for quite
a few of the firms the estimated mean reversion parameter is close to zero or is negative. For
these firms the O-U specification may not be appropriate. To explore this matter further, we
graphed the likelihood surface in ki

q X θi
q and confirmed for several of the firms the likelihood

function was extremely flat in the neighborhood of ki
q = 0. Thus for these firms, we cannot

reject the hypothesis of that the log default intensity follows a random walk. Note these
comments pertain to the risk neutral process and do not speak to the issue of mean reversion
in statistical default intensities. Overall, our estimates of the mean reversion parameter
were rather higher than those reported by Saita Table 2 and Appendix A. In contrast, the
volatility of the intensity process, σi was rather precisely estimated and the ranged between
0.029 and 1.86 which was in line with the estimated reported by Saita.9

3.3 Time Series Behavior of Market Implied Default Intensity

Perhaps of even greater interest than the parameter estimates are the estimates of the time-
series of the default intensities, lnλQ

it , implied by the estimated model. We are particularly
interested in whether these estimates for the 41 firms estimated independently may exhibit
any common patterns. To do so we carried out a principal components analysis for the four
subsamples of firms. The results of these analyses can be seen in Table V where we report
the proportion of the variation explained by the first five principal components.

TABLE V Principal Component Analysis of Implied Default Intensities
Component 1 2 3 4 5
North American Energy Sector
Variance explained, marginal 0.6852 0.1156 0.0580 0.0402 0.0264
Variance explained, cumulative 0.6852 0.8008 0.8588 0.8990 0.9254
North American Media Sector
Variance explained, marginal 0.7428 0.1828 0.0266 0.0215 0.0127
Variance explained, cumulative 0.7428 0.9255 0.9521 0.9736 0.9863
European Energy Sector
Variance explained, marginal 0.9352 0.0209 0.0176 0.0109 0.0082
Variance explained, cumulative 0.9352 0.9561 0.9737 0.9846 0.9928
European Media Sector
Variance explained, marginal 0.7039 0.1526 0.0657 0.0301 0.0168
Variance explained, cumulative 0.7039 0.8565 0.9222 0.9523 0.9691

From this we see that a large fraction, ranging from 68% to 93%, of the time series
variation of the instantaneous default intensities implied by the the first principal component

9Our sample covers different names than those used by Saita. Furthermore, he included observations
taken between June 1998 and June 2004 which overlapped with our sample for less than one year.
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of calculated for weekly observations between September 2003 through January 2008. This
is strong evidence of a common determinant of price of credit risk within each of the four
subsamples. Now this factor could reflect determinants that are specific to that sector, or it
may reflect more general determinants of the market price of credit risk. To investigate this
further we compare the implied time series of the latent factor implied by the first principal
component of default intensities in the energy sector with the default intensity implied by the
index of CDS spreads. The results for the North American Energy Sector are summarized
in Figure 1.

Figure 1: Energy Common Factor and Blue Chip CDS Factor

This figure plots the log intensities implied by the CDS Index for US firms included in the S&P
100 index and the common factor implied by the first principal component of the log intensities
of the fifteen energy companies over the 208 weeks from 10/9/03 through 29/8/07. For visual
comparability, both series have been normalized by subtracting the sample mean and dividing by
the sample standard deviation. The correlation of the two series is 0.47.
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The correlation between the common energy default factor and the default factor for the
Blue-chip factor is quite high (47%). In the figure it is striking the many of the extreme moves
in one series are very precisely mirrored in the other series. At other times, the two series
appear to be poorly correlated. This pattern suggests that there may be both a broad-based
credit risk factor that influencing credit markets generally as well as a sectoral factor that
may be specific to the energy industry. What seems remarkable here is that the dominant
common factor that emerges from the components identified in the default intensities for
fifteen energy firms estimated independently should emerge so clearly as closely linked to the
central tendency of default risk captured in the default swaps of 62 firms of which 61 do not
overlap with our energy sample.

A similar pattern holds for the other subsamples. The first principle component in the
estimated log intensities of our independently estimated model accounts for a very high
proportion of the total variation of these intensities. Furthermore, the underlying factor
reflected in this component is highly correlated with the general index of CDS spreads. For
the four subsamples the correlations between the first factor as above and the index of CDS
spread (SPIdxCDS for North America and iTraxx5 for Europe) are:

Sample N.Am. Energy N.Am Media Eu.Energy Eu.Media
Correlation -0.444 -0.5582 -0.9137 -0.9036

To summarize, we have estimated a latent variable model for CDS pricing for 41 firms
in four distinct sectors and covering a wide range of credit quality. We have estimated
the models independently and have explored the extent to which the estimated implied
risk-neutral default intensities follow some common tendency. We find that in each sector
studied a common factor accounts for a large proportion of the variation of the implied
default intensity. Furthermore, this common factor is highly correlated with movements of
a general index of CDS prices. Now this common factor could reflect co-movements in the
statistical probability of default. Or it could reflect time variation in a common market price
of default risk. We attempt to explore this issue in the next section.

4 The Market Price of Default Risk

4.1 The Relation of Market Implied and Historical Default Inten-
sities

The market price of default risk reflects the discount on a defaultable security in addition to
that which is justified by the statistical default process. An advantage of the reduced form
model that we have adopted here is that this price of default risk has a natural interpretation
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as the ratio of the intensity of default under the risk neutral process and the intensity from
the statistical distribution. Thus to identify the market price of default risk we will combine
our estimates of the intensity of default derived from CDS prices with estimates that have
been derived from historically observed instances of default or bankruptcy.

There have been several recent attempts to estimate statistical default process from
historical episodes of financial distress.10. In comparing those studies with estimates of the
risk neutral process such as those given above it is important to emphasize differences in
the two estimation problems. First, the most important point is that financial distress
is a rare event. That is, most firms whose securities are traded in the market have never
defaulted and have never experienced financial distress. Thus, inevitably to obtain estimates
of the probability of financial distress we will need to work with large cross sections of firms
including both those that have experienced distress and those that have not. Second, in
dealing with large cross-sections of firms it will be necessary to control firm characteristics
which are reflected in their financial reports which are available on a quarterly or annual
basis. Thus in capturing time variations of the physical intensity of default we will work at a
much higher level of temporal aggregation than we do when estimating risk neutral default
processes from market quotes. Third, in working with panel data with financial ratios as
covariates there may be significant problem of missing observations. This is particularly true
for firm experiencing financial distress where early stages of distress may involve difficulty
in producing audited financial statements. For this reason, estimates of the physical default
process potentially may be prone to sample selection bias.

Our estimates of the physical distress process for our sample of firms are derived from
Zhou (2007) who employs a methodology similar to Shumway (2001) and Campbell et al
(2005) but corrects for possible sample selection bias induced by the earlier studies’ treat-
ment of missing observations. In particular, working with quarterly observations for North
American firms between 1995 and 2005 she documents the fact that important accounting
variables frequently missing from the data set. Given that missing accounting variables
may be associated with the on-set of financial distress, a method based on simply deleting
firm/quarters with some missing explanatory variables, as in Campbell et al is potentially
exposed to self-selection bias. Zhou shows that the estimates of the model are sensitive to
the method adopted in treating missing observations and argues that the method of multiple
imputations is best equipped to correct for this problem.

Following this methodology our estimate of the physical default intensity can be written
as:

λP = e4(X′β̂) (6)

where X is a vector of regressors entering into the hazard function estimation and β̂ is
the associated vector of parameter estimates. Note that in this expression we multiply the

10See Shumway (2001), Campbell et al (2005) and Duffie et al (2005)
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coefficient estimates by 4 to express Zhou’s quarterly estimates as an intensity per year.
Using the results in her Table 14, this can be expressed as:

ln(λP ) = 4 ∗ (−9.3022− 10.3148NITA + 4.8065TLTA (7)

−1.3812PRICE − 0.2514EXRET + 1.8190SIGMA)

The definition of variables in this equation are given in Table VI which describes our quarterly
data set including those variables used in the regression analyses reported below.

TABLE VI Quarterly Data Descriptions
Variable Description Source
ln(λQ) log intensity of default Own calculations

in risk neutral distribution
ln(λP ) log intensity of default Zhou (2007), own calculations

in physical distribution
NITA net income over total assets Compustat
TLTA total liabilities over total assets Compustat
PRICE log of min(share price, $15) Datastream
EXRET log excess monthly return Datastream

on share over S&P500
SIGMA standard deviation of daily stock Datastream

returns in past three months
GDPGTH growth rate of GDP US Dept of Commerce
OILPRICE West Texas intermediate FRED, St.Louis Fed
RETSP Return on S&P 500 composite index CRSP
NPCMCM2 Nonperforming Com. Loans FRED, St.Louis Fed

Banks w/ Assets from $300M to $1B
NPCMCM5 Nonperforming Com. Loans FRED, St.Louis Fed

Banks with Total Assets over $20B
NPTLTL Nonperforming Total Loans FRED, St.Louis Fed
USROE Return on Average Equity FRED, St.Louis Fed

for all U.S. Banks
FRBSURVEY Percent Tightening Fed Senior Loan

Standards for Commercial Loans Officer Opinion Survey
MKTRF Market return in excess of risk free Ken French Data Library
SMB Small-minus-big (small firm premium) Ken French Data Library
HML High-minus-low (value firm premium) Ken French Data Library
RF Three month Treasure rate Ken French Data Library

The variables included in calculation of the statistical default intensity are those also used
by Campbell et al. As discussed in the introduction, an alternative approach to estimating
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the statistical default process is to infer it from observations of the Moodys-KMV EDF’s
which are monotonic functions of the distance-to-default (Berndt et al). Zhou finds that
adding DTD to the specification above does significantly increase the explanatory power of
the model. This result is in agreement with the finding of Campbell et al and Shumway.

It should be noted that the measure of financial distress employed by Zhou and Campbell
et al is either bankruptcy or the assignment of a ‘D’ rating. This may a stricter definition than
that which applies in the documentation for a given firm’s default swap. As a consequence,
the estimate of the physical default intensity may be systematically below that would have
obtained had a broader default definition been adopted. For example, if conditional on
triggering a CDS credit event, the probability of bankruptcy is a constant 0.5, then the
physical credit event intensity will be approximately twice the the corresponding physical
bankruptcy intensity. For this reason, in our discussion below of our calculated ratios of risk
neutral to physical default intensities, λQ/λP , we emphasize our findings on the factors that
may account for the variations of this ratio. This is in contrast with the recent literature
that is primarily concerned with the level of the intensity ratio (e.g., Driessen, Saita, and
Berndt et al).

An advantage of the hazard approach to estimating the statistical default intensity is that
the model appears to account for a significant fraction of the observed increase in default
frequencies during the 1980’s and their subsequent decline much of the 1990’s (see Campbell
et al for a discussion). In contrast, the average default frequencies which underly the ratings
based approach are sensitive to the time-period over which the frequencies are measured. As
acknowledged by Driessen, this can have important implications for the level of the estimated
jump risk premia. We will return to this issue below when we consider the robustness of
our findings on the determinants of default event risk premia by employing a ratings based
approach as an alternative to our hazard estimates of the statistical default process.

Given the important differences in accounting conventions in Europe and North America
and given that the estimates of Zhou have been based on a sample of North American firms,
we also confine our analysis to our North American firms. Our sample of 15 North American
energy firms spans sixteen quarters from Q1 2003 through Q4 2006; our sample of 9 North
American media firms covers fifteen quarters from Q2 2003 through Q4 2006. Our quarterly
estimates of the risk neutral intensities of default were derived from our estimates reported
in Table IV. Specifically, we have calculated the quarterly averages of the weekly default
intensities implied by those estimates.

Some important characteristics of the resulting estimates of the physical and risk neutral
default intensities can be seen from a two-way analysis of variance allowing for quarter and
firm effects. These are reported in Table VII. Our results show that in both the energy and
media subsamples risk-neutral intensities are much more variable than statistical intensities.
This is particularly noticeable for the energy subsample where the total sum of squared
deviations of the risk neutral intensities exceed that of the physical intensities by a factor
of 3. This is perhaps not surprising since the energy subsample consists of relatively highly
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rated firms where the pure credit component of spreads may be relatively low.
A high proportion of observed variation in both kinds of intensities is accounted for by

firm level differences. There is a high positive correlation between risk neutral and statisti-
cal default intensities. We would expect this, but it is still an important result. Given that
the two types of intensities were derived independently and using very different methodolo-
gies, the positive correlation encourages us in believing that the quarterly, backward-looking
physical default model is capturing influences perceived as important by the market on a
forward-looking basis.

Given this result, we then calculate the estimated implied market price of default risk
as the natural log of the ratio of risk neutral and physical default intensities.11 A two-way
ANOVA of these estimates is also reported in Table VII. Again firm effects account for a
high proportion of total variation. However, we see the time effect is also quite important,
accounting for 16% and 17% of total variation in the energy and media subsamples respec-
tively. In the next section we will try to explore factors that may account for this time
variation in the market price of credit risk.

TABLE VII Two-way ANOVA of Physical and Risk Neutral Intensities
Sample N.American N.American N.American N.American N.American N.American

Energy Energy Energy Media Media Media
Dependent variable ln(λP ) ln(λQ) ln(λQ/λP ) ln(λP ) ln(λQ) ln(λQ/λP )
Number of obs 233 233 233 118 118 118
R-squared 0.8726 0.9095 0.7920 0.8864 0.7953 0.7167
Model SS 124.27 441.99 215.47 73.32 123.37 77.46
per cent 87.26 90.95 79.20 88.64 79.53 71.67
Firm SS 121.91 396.96 176.22 71.01 106.25 63.50
per cent 85.60 81.69 64.77 85.86 68.49 58.75
Time SS 4.31 62.92 43.59 2.16 19.89 18.60
per cent 0.22 12.95 16.02 2.61 12.82 17.21
Residual SS 18.14 43.977 56.59 9.39 31.75 30.63
per cent 12.74 9.05 20.80 11.36 20.47 28.33
Total SS 142.42 485.96 272.06 82.71 155.13 108.09
per cent 100.00 100.00 100.00 100.00 100.00 100.00
Correlation 0.6791 0.5727

11It should be noted that our risk neutral intensities were obtained from an estimate of the marginal
distribution of defaults which assumed mean reversion of the latent variable. In contrast, our statistical
default intensities are based on estimates conditional upon observed covariates. The unconditional statistical
default distribution will exhibit mean reversion if the conditioning variables exhibit mean reversion.

21



4.2 Determinants of the Market Price of Default Risk

In this section we explore whether the variation in the market price of default risk that
we have identified may be accounted for by observable factors either specific to the firm
or general factors reflecting business conditions. In particular, we wish to explore whether
specific indicators of credit market conditions appear to account some of observed variation
and whether any such influence is robust to including general financial market conditions.
Such a finding would be evidence in support of a possible segmentation of credit markets
from other financial markets as has been conjectured by Berndt et al.

The variables used for external factors in are summarized in Table VI. In addition to stan-
dard macroeconomic and firm accounting variables we include information on the condition
in the chief suppliers of credit as represented by the banking sector. These are derived from
two principles sources. The first set of variables come from the Federal Reserve System’s
“Reports of Condition and Income for All Insured U.S. Commercial Banks” and available
on the website of the the St. Louis Fed. The second source of credit condition information
is the Fed’s “Senior Loan Officer Opinion Survey on Lending Practices”. We use these data
in estimating linear models applied to the default risk premium of our North American En-
ergy and Media firms as estimated above. As suggested by the analysis of variance results
reported in Table VI, we include firm fixed effects in all of our estimates reported here.
We have also estimated the models excluding fixed effects but including more firm financial
ratios as controls. The results are qualitatively the same as those we report here.

Our results for North American Energy Firms are reported in Table VIII, Panel A. The
first column reports our benchmark model. Earnings (NITA) is included as an indicator
of firm specific business conditions. It enters with a positive sign which may be surprising.
However, it is insignificant, which suggests that firm specific influences are largely captured in
the constant fixed-effect. GDP growth is included as a general business conditions indicator.
It is marginally significant. It is not immediately clear what the direction this influence
should be on the market price of default risk. The negative sign obtained here might be
suggestive of a “credit cycle” as commonly discussed among practitioners. The oil price is
included and may serve both as a control for general business conditions and as a sector-
specific indicator relevant to the energy sector as a whole. It enters with a positive sign and
is marginally significant.
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TABLE VIII Panel A:
Linear model estimates of the market price of credit risk

N.American Energy(p-values below coefficient estimates)
Dependent variable
ln(λQ/λP )
Number of obs 233 233 233 233 233 233
R-SQ(within) 0.3335 0.3354 0.3112 0.2938 0.2818 0.2497
Firm F.E. yes yes yes yes yes yes
NITA 3.794 3.774 3.863 4.050 3.297 4.081

0.122 0.125 0.122 0.109 0.197 0.117
GDPGTH -17.298 -20.549 -12.216 -.421 -19.462 -2.902

0.057 0.039 0.183 0.965 0.042 0.777
OILPRICE .012 .013 .0109 .004 -.027 -.020

0.058 0.053 0.127 0.506 0.000 0.000
RETSP -4.505

0.419
NPCMCM2 2.462 2.551

0.000 0.000
NPCMCM5 .553

0.000
NPTLTL 1.877

0.000
USROE .674

0.000
FRBSURVEY .008

0.012
CONSTANT -3.061 -3.111 -1.270 -2.049 -6.586 1.044

0.000 0.000 0.016 0.007 0.001 0.000

In this benchmark regression a measure of non-performing commercial loans is included
as an indicator of credit market tightness. Its role in the credit channel is clear– increases in
non-performing loans will lead to increases in loan loss provisions and typically a reduction
of regulatory capital ratios. This argument has been elaborated by Adrian and Shin (2008).
The credit variable NPCMC2 enters the regression with a positive sign, as we would expect if
there is a credit supply effect on the market price of default risk, and it is highly significant.

Column 2 in Table VIII Panel A reports the result of including an index of stock market
returns as a control for changes the market price of equity. This variable enters with a
negative sign as we would expect, but it not significant. The inclusion of this control variable
has no effect on the qualitative effects of the other variables in the regression. In particular,
the credit supply variable remains very highly significant and has the correct sign. In the
remaining regressions we omit the stock return variable, but the results are robust to its
inclusion.
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In the remaining columns of Table VIII Panel A we experiment with alternative proxies
of credit market tightness. In column 3 we include NPCMCM5 which is a measure of non-
performing commercial loans in very large banks (in contrast with NPCMCM2 which is
a measure of non-performing loans in relatively small banks). This variable enters with
the expected positive sign. It is highly significant, albeit at a somewhat lower level than
NPCMCM2 as can be seen from the R-squared. This might suggest that performance of
loan portfolios of small, less diversified, banks may more informative than the loan portfolios
of large banks. In column 4, non-performing loans for the banking system as whole is our
proxy for credit market tightness. Again it enters with the expected sign and is significant.
Column 5 uses average return on equity in the banking sector as the credit supply proxy, and
this has the correct sign and is significant. Finally, in Column 6, we use the Fed’s lending
officers’ survey variable as a credit sector indicator. It enters with the expected positive sign
and is significant.

The general point that emerges from these regressions is that credit market tightness
appears to be a significant determinant of the market price of credit risk after controlling
for firm specific effects, general business conditions, and equity market conditions. This
conclusion does not depend greatly on the precise way in which credit market tightness is
measured. However, we have found that the best single proxy appears to be an indicator
of non-performing loans at smaller commercial banks. The effects of non-credit variables in
the regression are largely robust to the choice of the credit tightness proxy used. The sole
exception is the oil price variable which sometimes enters with a positive sign and sometimes
with a negative sign.

The results for this framework applied to the North American media sector are reported
in Table VIII Panel B. Again, firm fixed effects are included. The contrast with North
American energy firms is interesting because of exposure of the sectors to different economic
conditions (i.e., greater exposure to commodities and business cycle in the energy sector)
and because media firm are typically less highly rated with higher CDS spreads on average.
The results in the table show that indeed these differences do appear to be manifested in
the way the market price of credit risk is determined in the media sector. The GDP growth
variable is generally insignificant as we might expect for a sector less exposed to business cycle
influences. However, the oil price variable enters significantly in most specifications although
not always with the same sign. Also, the return on the equity index now is marginally
significant.

However, the main result for the North American media firms is the same as for energy
firms. The most important explanatory variable for the market price of default risk is
the proxy for credit market tightness. Again the best proxy appears to be the index of
non-performing loans in smaller commercial banks. But similar results are obtained using
non-performing loans in large banks. Overall, the evidence for the two sectors suggest that
credit market conditions are important determinants of the market price of default risk even
after taking into account firm specific effects, general business conditions and equity market
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conditions.

TABLE VIII Panel B:
Linear model estimates of the market price of credit risk

N.American Media(p-values below coefficient estimates)
Dependent variable
ln(λQ/λP )
Number of obs 118 118 118 118 118 118
R-SQ(within) 0.2523 0.2756 0.2111 0.1830 0.1423 0.1367
Firm F.E. yes yes yes yes yes yes
NITA 6.537 6.655 5.485 5.238 5.311 5.356

0.216 0.203 0.311 0.342 0.347 0.345
GDPGTH 1.730 -8.656 11.058 24.050 17.320 20.959

0.902 0.564 0.432 0.093 0.236 0.167
OILPRICE .027 .029 .020 .011 -.005 -.014

0.013 0.009 0.079 0.298 0.587 0.001
RETSP -15.565

0.060
NPCMCM2 3.214 3.506

0.000 0.000
NPCMCM5 .622

0.001
NPTLTL 1.998

0.012
USROE .187

0.343
FRBSURVEY .002

0.673
CONSTANT -4.799 -4.976 -2.109 -2.797 -2.648 .430

0.000 0.000 0.014 0.035 0.421 0.219

Of course, in this analysis of the market price of default risk there is a wide variety of
alternative variables that could be tried. We have explored some of these possibilities in-
cluding such firm measures as leverage or equity volatility and general business conditions
measures such as industrial production, other commodity prices and the University of Michi-
gan index of consumer sentiment. Two conclusions emerge from all these explorations. First,
none of these additional control variables turns up as significant across both subsamples and
across the various alternative specifications. Second, credit market tightness proxies remain
consistently significant and of the right sign across these alternative specifications.

The results in Table VIII suggest that after controlling for firm level and sectoral differ-
ences a significant part of the time variation in the market price of default risk is accounted
for by time variation in credit market tightness. This is consistent with the idea that the
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market for default risk may be segmented from other financial markets as has been conjec-
tured by Berndt et al. We pursue this idea by augmenting our benchmark model to include
the Fama-French risk factors that have been widely used in the analysis of equity markets.
Specifically, we use the quarterly average of the monthly data reported on Ken French’s Data
Library (as described in Table VI).

The results for the North American energy sector are presented in Table IX, Panel A.
The first three columns show the result of introducing individually each of the three Fama-
French factors into our benchmark model. The excess return on the market and the small firm
premium are both insignificant; however, the HML variable enters with a negative sign which
is highly significant. This suggests that controlling for other factors, periods of relatively
high returns on value stocks are associated with low market prices of default risk. Column
4 reports results with the short-term Treasury rate included. It enters with a negative
sign but is insignificant. When the three Fama-French factors are included jointly (column
5), HML again enters with a significant negative sign and the two others are insignificant.
Interestingly, when both HML and the risk free rate are included (column 6) both are negative
and significant.

Thus we find evidence that the factors that appear as significant risk factors in equity
markets do account for some of the common time variation of the market price of default
risk. However, a striking finding in Table IX, Panel A is that the estimated coefficients of the
credit market tightness variable (NPCMCM2) are almost identical across all specifications
and are very highly significant. This suggests that while equity market conditions do seem
to some impact credit markets, specific credit supply factors remain highly important in
accounting for the time variation in default risk pricing.
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TABLE IX Panel A:
Equity market risk factors

N.American Energy(p-values below coefficient estimates)
Dependent variable
ln(λQ/λP )
Number of obs 233 233 233 233 233 233
R-SQ(within) 0.3410 0.3336 0.3534 0.3401 0.3624 0.3680
Firm F.E. yes yes yes yes yes yes
NITA 3.705 3.801 3.049 3.807 2.910 2.901

0.130 0.123 0.211 0.120 0.232 0.230
GDPGTH -20.229 -16.794 -15.042 -23.919 -15.535 -24.757

0.029 0.092 0.095 0.018 0.249 .013
OILPRICE .008 .0123 .011 .0243 .006 .029

0.251 0.053 0.087 0.018 0.360 0.005
NPCMCM2 2.284 2.462 2.241 2.578 2.054 2.370

0.000 0.000 0.000 0.000 0.000 0.000
MKTRF -.038 -.0338

0.110 0.360
SMB -.004 -.0149

0.900 0.791
HML -.0961 -.106 -.117

0.009 0.020 0.002
RF -1.205 -1.860

0.135 0.023
CONSTANT -2.567 -3.055 -2.710 -3.418 -2.215 -3.184

0.002 0.000 0.000 0.000 0.009 0.000

Table IX, Panel B reports the results for North American Media Firms. The results for
the equity risk factors are very similar to those for the energy firms. Movements in the value
premium do seem to be partially correlated with movements in the market price of default
risk while equity market premium and the small firm premium are not. Again, when the risk
free rate is include along with the HML variable, both are negative and significant. As with
the energy firms, the effect of the credit market tightness variable is rather insensitive to the
inclusion of the equity market risk factors– its coefficient is negative and highly significant
in all cases.
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TABLE IX Panel B:
Equity market risk factors

N.American Media(p-values below coefficient estimates)
Dependent variable
ln(λQ/λP )
Number of obs 118 118 118 118 118 118
R-SQ(within) 0.2526 0.2527 0.2842 0.3020 0.2909 0.3646
Firm F.E. yes yes yes yes yes yes
NITA 6.688 6.417 5.498 8.006 5.912 6.967

0.211 0.229 0.291 0.121 0.262 0.160
GDPGTH .423 .181 -.776 -18.977 .328 -29.304

0.978 0.991 0.955 0.223 0.989 0.056
OILPRICE .0274 .028 .030 .060 .029 .075

0.016 0.013 0.005 0.000 0.010 0.000
NPCMCM2 3.230 3.220 3.362 3.658 3.409 4.017

0.000 0.000 0.000 0.000 0.000 0.000
MKTRF -.009 -.018

0.816 0.781
SMB .011 -.032

0.804 0.711
HML -.127 -.156 -.186

0.027 0.022 0.001
RF -3.185 -4.212

0.006 0.000
CONSTANT -4.764 -4.819 -4.964 -5.930 -4.875 -6.535

0.000 0.000 0.000 0.000 0.000 0.000

To summarize, a large fraction of the variation in the market price of default risk is
accounted for by constant firm effects; however, there is significant common time variation.
After controlling for macroeconomic and sectoral factors, we find changes in credit market
tightness, measured with a variety of empirical proxies, is a significant explanatory variable
that is robust to the inclusion of a wide variety of other variables. Beyond this we find that
changes in the value premium in equity markets appear to account for some of the variation
of the price of default risk.

The results so far are consistent with the conjecture that there may be some friction
that impedes capital flows between equity and credit markets. Within credit markets it is
often argued that since some institutional investors are specifically prohibited from holding
non-investment grade instruments (rated BB or below) a similar friction may be present
within the credit markets themselves. As previously discussed, ratings do not enter into
our calculation of the default event risk premium. Furthermore, they do not enter into
the regression analysis (Tables VIII and IX) where we have controlled for cross sectional
heterogeneity with firm fixed effects as well as accounting variables. So to explore this
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conjectured ratings based segmentation within credit markets themselves, we now introduce
ratings into the analysis.

Table X summarizes the default event risk premium (ln(λQ/λP )) by ratings class for the
two North American sectors between September 2003 and August 2007. For the Energy
sector the premia on non-investment grade names is significantly above that for investment
grade names. However, this is not the case for the Media sector. Overall, there does seem to
be a rough tendency for the default event risk premium to vary inversely with credit quality.

TABLE X: Default Event Risk Premia by Ratings Class
Rating NA Energy NA Energy NA Media NA Media

Mean St.Dev. Mean St.Dev.
AAA 1.27 .112 * *
AA 1.25 .132 * *
A 1.87 .059 1.91 .144
BBB 1.86 .109 3.10 .113
BB 3.0 .133 * *
B 2.84 .214 3.08 .081
C * * 3.35 .260

We now ask whether the fact a name carries an investment grade rating is a significant
determinant of the default risk premium once we control for other factors. We define a
dummy variable IGRADE which takes on the value of 1 if for a name if it carries a rating
of BBB or above in a given quarter and zero otherwise. The results from introducing this
variable into benchmark specifications (with and without the HML factor included) are
reported in Table XI.
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TABLE XI Results with Investment Grade Dummy
(p-values below coefficient estimates)

Dependent variable NA NA NA NA
ln(λQ/λP ) Energy Energy Media Media
Number of obs 233 233 118 118
R-SQ(within) 0.3451 0.3636 0.2599 0.2901
Firm F.E. yes yes yes yes
NITA 6.973 6.057 9.717 8.314

0.017 0.037 0.110 0.166
GDPGTH -18.67 -16.41 2.528 -.0116

0.039 0.068 0.858 0.999
OILPRICE .0119 .0107 .027 .0307

0.069 0.101 0.013 0.006
NPCMCM2 2.508 2.291 3.229 3.371

0.000 0.000 0.000 0.000
HML -.0927 -.12

0.011 0.032
IGRADE -.181 -.1706 -.1428 -.125

0.046 0.058 0.286 0.342
CONSTANT -3.006 -2.672 -4.750 -4.916

0.000 0.000 0.000 0.000

The investment grade dummy enters with a negative sign in these regressions. This
is consistent with the idea that, all else equal, non-investment grade issues will carry an
additional premium perhaps reflecting reduced liquidity due to limited participation in this
segment of the credit market. However, the coefficients are only marginally significant for
the energy sector and are insignificant in the media sector. Overall, we see that once we
account for other determinants of the default risk premium the effect of the investment grade
classification is minor at best. Stated otherwise our evidence suggests that an increase in
yield spreads associated with a downgrade from investment grade to non-investment grade
will largely correspond to the fair compensation for higher expected credit losses in the latter
segment of the bond market. Otherwise, comparing Table XI with the corresponding results
in Tables VIII and IX shows that our previously qualitative conclusions are unchanged.

4.3 Ratings-based statistical default intensities

We have argued that the hazard approach to estimating the statistical default process has
desirable features for the purposes of understanding the market price of default risk, espe-
cially if we are interested studying the time variation of that risk premium. We now consider
how our results would differ if we were to take the alternative approach of representing the
statistical default distribution using the historical default frequencies reported by ratings
agencies for bonds of a given ratings category. This is potentially interesting for two reasons.
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First, it is a check on the robustness of our qualitative conclusions on the determinants of the
default risk premium. Second, if we find that the results do not change, this would suggest
that we might be able to employ a simple ratings based approach to modeling the statistical
default process rather than the more data intensive econometric approach used above.

To represent the statistical default distribution in this approach, we calculate the intensity
of default, λP∗

i,t , for firm i at time t by assuming that the corresponding five-year probability
of default equals that reported by Moodys for firms in i’s rating class. Moodys (2000) reports
cumulative default frequencies observed for all firms between 1920 and 1999 (Exhibit 30) and
1983 and 1999 (Exhibit 31). Typically the reported default rates are higher for the longer
time-period, and this was particularly the case for BBB rating category which are most
prevalent in our data set. We use both in our analysis.

The main difference in the results between ratings based estimates for the two time
periods is in the level of default risk premium. For example, for North American energy
firms the average market price of risk ln(λQ/λP∗) based on the 1920-1999 sample is −1.312
as compared to −0.678 when based on the 1983-1999 sample. The difference between the
two measures is a direct consequence of the fact that higher cumulative default frequencies
reported by Moodys in the earlier sample imply a higher statistical default intensity. Notice
that in both cases, the estimated price of default risk is negative. One possible explanation
of this result is that during the 2003-2007 period covered in our North American CDS data,
investors judged that default intensities were more in line with those implied by the 1990’s
default rates. Indeed in using the hazard model to take account of possible time variations
in the statistical default distribution, the average our own estimates of the market price of
default was 2.17 for the North American energy sample. A very similar pattern holds for
the North American media sample as well.

A second difference is that the time variability of the default risk premia is higher when
calculated using the ratings based statistical default distribution rather than the hazard
based calculation. For example, in the North American energy sample the standard deviation
of the monthly average default risk premia is 0.54 and 0.59 for the estimates based on Moodys
1920-1999 and 1983-1999 samples respectively. This compares to 0.43 for the hazard based
estimates. For the North American media data the comparable standard deviations are 0.41
and 0.41 for the ratings based estimates and 0.35 for the hazard based estimate. This result
is due to the lower time variability of the ratings based default intensities as a consequence
of ratings inertia, as discussed in the introduction.

This increased time variability of ratings based default risk premia has some consequences
for the regressions used to identify factors that may account for that variability. Table XII
reports the result of the regression analyses for our benchmark models from Tables VIII and
IX rerun taking as dependent variable ln(λQ/λP∗) based on the 1920-1999 Moodys default
frequencies.
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TABLE XII Regression with ratings based statitical default probabilities
(p-values below coefficient estimates)

Dependent variable NA NA NA NA
ln(λQ/λP∗1) Energy Energy Media Media
Number of obs 233 233 118 118
R-SQ(within) 0.5205 0.5270 0.2493 0.2737
Firm F.E. yes yes yes yes
NITA -.462 -.9021 1.8096 .874

0.830 0.677 0.739 0.871
GDPGTH -22.407 -21.075 -8.551 -10.807

0.005 0.009 0.557 0.454
OILPRICE .0167 .0159 .0377 .040543

0.004 0.007 0.001 0.000
NPCMCM2 3.165 3.034 3.821 3.954

0.000 0.000 0.000 0.000
HML -.0567 -.115

0.081 0.055
CONSTANT -3.840 -3.633 -5.732 -5.881

0.000 0.000 0.000 0.000

For North American energy firms, in column 1 of Table XII the coefficients GDP growth
and the price of oil are of the same sign as those obtained in column 1 of Table VIII Panel
A but are now highly significant. This suggests that these controls for economic activity are
picking up some of the greater time variability in the ratings based premia. When the value
firm factor HML is included (column 2) it is now insignificant. In both regressions however
the credit market tightness proxy (NPCMCM2) is positive and very highly significant as was
the case in Tables VIII and IX. Columns 3 and 4 present comparable regressions for North
American media firms. As in Tables VIII and IX, the oil price is positive and significant, and
both NITA and GDP growth are insignificant. The HML variable is now only marginally
significant. However, in both cases the estimated coefficients of NPCMCM2 are very similar
to those obtained in Tables VIII and XI and are very highly significant.

When other regressions are run with other explanatory variables as in Tables VIII, IX
and XI with ratings-statistical default intensities based on Moodys 1920-1999 and 1983-1999
default frequencies there are some changes in results on some of the explanatory variables.
However, the striking result is that the coefficient on the credit market tightness proxies
remain significant and of the same signs of those reported here. Overall, the important
conclusion is that credit tightness appears to exert an important influence on the market
price of default event risk and that this result appears to be robust to inclusion of a variety of
other explanatory variables, including equity market risk factors, and to alternative measures
of the statistical default distribution.
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5 Conclusion

In this paper we study the pricing of credit risk as reflected in the market for credit default
swaps (CDS) between 2003 and 2008. This market has newly emerged as the reference for
credit risk pricing because of its use of standardized contract specifications and has achieved
a higher level of liquidity than typically prevails in the markets for the underlying notes and
bonds of the named corporate issuers.

We have explored factors that might account for the well documented common co-
movements of yield spreads for a wide range of names in various sectors and of different
credit quality. We have argued that these co-movements might reflect common revisions in
the statistical default distribution or common factors driving time variation in the market
price of default risk. Our methodology allows us to disentangle these influences.

We employ a panel dataset of 1, 3 and 5 year CDS prices on 41 firms that were traded
between between September 2003 and through January 2008 and covering four distinct sub-
samples: North American energy, North American media, European energy, and European
Media. We start our analysis by estimating of a linear regression model and find a strong
positive association between spread changes on individual names and a broad-based index
of CDS price changes. In contrast, the association with equity prices is very weak, generally
statistically insignificant, and often of the wrong sign. These results are robust to inclusion
of firm fixed or random effects. We find a negative autocorrelation of residuals in these
panel estimates which we interpret as evidence of mean reversion in unobserved risk factors.
All these results are consistent across our four subsets, i.e., they hold for North American
Energy and Media and European Energy and Media.

We pursue our study by exploring a latent variable model recently introduced in the
literature which assumes that defaults on a name follow a jump process where the log inten-
sity of arrivals of defaults itself follows an Ornstein-Uhlenbeck process. After developing a
continuous time model of CDS pricing with this underlying stochastic process, we estimate
our model for our 41 firms individually, applying no restrictions across firms. In line with
previous work we find that some firms do seem have mean reverting default intensities and
others do not. Overall the evidence of mean reversion is stronger in our study than that
found previously.

The estimated models are then used to produce an implied time-series of instantaneous
default intensities for our 41 firms observed at weekly intervals. We carry out a principal
components analysis of the panels of default intensities for our four sector-region combina-
tions. In all cases a very high fraction of weekly variations in the implied default intensity
is explained by a single common factor. We find that the implied common factor for each
subsample is highly correlated with the default intensity implied by the index of CDS spreads
on Blue-chip names. This is strong evidence confirming the presence of a general credit risk
factor whose existence has been proposed in a number of recent contributions.

We then ask what our estimates of default intensities derived from CDS prices imply for

33



the market price of default risk. In order to answer this question we need to compare our
estimates of the risk neutral intensity process with estimates of the statistical default process.
We argue that recent studies which have used the Moodys-KMV EDF (estimated default
frequencies) are essentially confounding information about the risk-neutral and statistical
default distributions. Other estimates based on ratings suffer from the well-know problem
of inertia in ratings changes. We therefore calculate statistical default intensities using a
dynamic econometric model derived from a large panel data set of North American firms.
Specifically, we use the estimates recently derived by Zhou (2007) who employs a methodol-
ogy similar to Shumway (2001) and Campbell et al (2005) but corrects for possible sample
selection bias induced by the earlier studies’ treatment of missing observations. These esti-
mates are implemented for our North American firms only. Our results show that in both the
energy and media subsamples risk-neutral intensities are much more variable than statistical
intensities. A high proportion of observed variation in both kinds of intensities is accounted
for by firm level differences. There is a high positive correlation between risk neutral and
statistical default intensities.

We then combine estimates to find the implied market price of risk measured as the
natural logarithm of the ratio of risk-neutral intensity and statistical intensity of default. We
show that a relatively high fraction of the observed variation of this market price of default
risk can be accounted for by a common time variation. In order to identify this factor, we
explore a linear model of the market price of default risk using as observed covariates macro
indicators, firm indicators and indicators of equity market and credit market conditions.
Our estimates show a strong association between that credit market conditions and the
market price of risk. The estimated coefficients have the correct signs. These are robust
findings across a variety of alternative proxies for credit market conditions and across our
two subsamples. In contrast equity market conditions and general business conditions do not
always have coefficient estimates of the right sign and are not always significant. However,
there is some evidence that changes in the value firm premium are partially correlated with
changes in the pricing of default risk.

We compare our analysis of the market price of default risk obtained using the dynamic
econometric model of the statistical default process with those obtained using a ratings
based distribution derived from historical default frequencies by ratings class. The results
differ in several ways. First estimated default risk premia are much lower when statistical
default processes are calibrated off the Moodys 1920-1999 or 1983-1999 default frequencies.
Second, the time variability of the market price of default risk is considerably greater with the
ratings based approach reflecting the largely static nature of the assumed statistical default
distribution. Third, in the regression analyses of default premia the business cycle controls
appear more highly significant and the equity market risk factors less significant than in our
benchmark regressions. However, credit market tightness proxy variables continue to be very
significant both statistically and economically.

Overall, our results suggest that a large fraction of the changes in credit spread over time
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reflect changes in the market price of default risk. The factors driving this price appear to
differ across different industry sectors. However, our evidence suggests that financial health
of major suppliers of credit exerts a common influence across across diverse sectors. This is
a stronger and more robust influence than those exerted by the generally recognized equity
market risk factors. Thus our results provide some evidence of the partial segmentation of
credit markets.
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