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Abstract

We investigate the general problem of comparing pairs of distribution which
includes approaches to inequality measurement, the evaluation of �unfair�
income inequality, evaluation of inequality relative to norm incomes, and
goodness of �t. We show how information theory can be used to provide
insights on the problem and characterise a class of divergence measures us-
ing a parsimonious set of axioms. The problems of appropriate statistical
implementation are discussed and empirical illustrations of the technique are
provided using a variety of reference distributions.
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1 Introduction

There is a broad class of problems in distributional analysis that involve
comparing two distributions. This may involve judging whether a functional
form is a good �t to an empirical distribution; it may involve computation
of the divergence of an empirical distribution from a theoretical economic
model; it may involve the ethical evaluation of an empirical distribution with
reference to some norm or ideal distribution. This paper shows how the class
of problems can be characterised in a way that has a natural interpretation
in terms of familiar analytical tools.

This is not some recondite or abstruse topic. Several authors have ex-
plicitly characterised inequality using this two-distribution paradigm: an in-
equality measure is de�ned in terms of the divergence of an empirical income
distribution from an equitable reference distribution.1 Furthermore several
recent papers have revived interest in the idea of inequality evaluations with
reference to �norm incomes� or a reference distribution;2 in particular some
authors have focused on replacing a perfectly egalitarian reference distribu-
tion with one that takes explicit account of fairness.3 In recent contributions
Magdalou and Nock (2011) have also examined the concept of divergence
between any two income distributions and its economic interpretation and
Cowell et al. (2011) show how similar concepts can be used to formulate an
approach to the measurement of goodness of �t.4

Our approach to the problem is based on standard results in information
theory that allow one to construct a distance concept that is appropriate
for characterising the divergence between the empirical distribution function
and a proposed reference distribution. The connection between informa-
tion theory and the economic interpretation of distributions is established by
exploiting the close relationship between entropy measures (based on prob-
ability distributions) and measures of inequality and distributional change
(based on distributions of income shares). The approach is adaptable to
other �elds in economics that make use of models of distributions. The
paper is structured as follows. In Section 2 we explain the connection be-

1See, for example, Bartels (1977) and Nygård and Sandström (1981). See also Ebert
(1984)'s characterisation of absolute inequality indices in ternms of distance between in-
come distributions.

2Almås et al. (2011) compare �actual and equalizing earnings;� their work is related to
Paglin's Gini (Paglin 1975) and Wertz's Gini (Wertz 1979). Also see Jenkins and O'Higgins
(1989) and Garvy (1952).

3On the fairness reference distribution see, for example Almås et al. (2011) and De-
vooght (2008).

4The Cowell et al. (2011) approach di�ers from that developed here in that it deals
with the problem of continuous reference distributions on unbounded support.
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tween information theory and the analysis of income distributions. Section
3 introduces di�erent concepts of reference distribution that are relevant for
di�erent versions of the generic problem under consideration. Section 4 sets
out a set of principles for distributional comparisons in terms of aggregate
divergence and show how these characterise a class of measures. Section 5
performs a set of experiments and applications using the proposed measures
and UK income data. Section 6 concludes.

2 Information and income distribution

Comparisons of distributions using information-theoretic approaches has in-
volved comparing entropy-based measures which quantify the discrepancies
between the probability distributions. This concept was �rst introduced by
Shannon (1948) and then further developed into a relative measure of entropy
by Kullback and Leibler (1951). In this section, we show that generalised
entropy inequality measures are obtained by little more than a change of
variables from these entropy measures. We will then use this approach to dis-
crepancies between distributions in order to formulate appropriate inequality
measures.

2.1 Entropy: basic concept

Take a variable y distributed on support Y . Although it is not necessary for
much of the discussion, it is often convenient to suppose that the distribution
has a well-de�ned density function f(·) so that, by de�nition,

´
Y
f(y)dy = 1.

Now consider the information conveyed by the observation that an event y ∈
Y has occurred when it is known that the density function was f . Shannon
(1948) suggested a simple formulation for the information function g: the
information content from an observation y when the density is f is g (f(y)) =
− log f(y). The entropy is the expected information

H(f) := −E log f(y) = −
ˆ
Y

log f(y) f(y)dy. (1)

In the case of a discrete distribution, where Y is �nite with index set K and
the probability of event k ∈ K occurring is pk, the entropy will be

−
∑
k∈K

pk log pk.

Clearly g(pk) decreases with pk capturing the idea that larger is the prob-
ability of event k the smaller is the information value of an observation
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that k has actually occurred; if event k is known to be certain (pk = 1)
the observation that it has occurred conveys no information and we have
g(pk) = − log(pk) = 0. It is also clear that this de�nition implies that if k
and k′ are two independent events then g (pkpk′) = g (pk) + g (pk′)

It is not self-evident that the additivity property of independent events is
essential and so it may be appropriate to take a generalisation of the Shannon
(1948) approach5 where g is any convex function with g (1) = 0 (Khinchin
1957). An important special case is given by g (f) = 1

α−1 [1− fα−1] where
α > 0 is a parameter. From this we get a generalisation of (1), the α-class
entropy

Hα(f) := Eg (f(y)) =
1

α− 1

[
1− E(f(y)α−1)

]
, α > 0. (2)

2.2 Entropy and inequality

To transfer these ideas to the analysis of income distributions it is useful to
perform a transformation similar to that outlined in Theil (1967). Suppose
we specialise the model of Section 2.1 to the case of univariate probability
distributions: instead of y ∈ Y , with Y as general, take x ∈ R+ where x
can be thought of as �income.� Let the distribution function be F so that a
proportion

q = F (x)

of the population has an income less than or equal to x. Given that the
population size is normalised to 1, we may de�ne the income share function
s : [0, 1]→ [0, 1] as

s (q) :=
F−1 (q)´ 1

0
F−1 (t) dt

=
x

µ
(3)

where F−1 (·) is the inverse of the function F and µ is the mean of the
income distribution. One way of reading (3) is that those located in a small
neighbourhood around the q-th quantile have a share s (q) dq in total income.
It is clear that the function s (·) has the same properties as the regular density
function f (·):

s (q) ≥ 0, for all q and

ˆ 1

0

s (q) dq = 1. (4)

5Using l'Hôpital's rule we can see that when α = 0Hα takes the form (1). For discussion
of Hα see Havrda and Charvat (1967), Ullah (1996).

3



We may thus use s (·) rather than f (·) to characterise the income distribu-
tion. Replacing f by s in (1), we obtain

H(s) = −
ˆ 1

0

s (q) log[s (q)]dq = −
ˆ ∞
0

x

µ
log

(
x

µ

)
dF (x) (5)

The Theil inequality index is de�ned by

I1 :=

ˆ ∞
0

x

µ
log

(
x

µ

)
dF (x) (6)

and thus we have I1 = −H(s). The analogy between the Shannon entropy
measure (1) and the Theil inequality measure (6) is evident and requires no
more than a change of variables. The transformed version due to Theil is
more useful in the context of income distribution because it enables a link to
be established with several classes of inequality measures. The generalised
entropy inequality measure is de�ned by

Iα =

ˆ ∞
0

1

α(α− 1)

[[
x

µ

]α
− 1

]
dF (x) (7)

and thus, replacing f by s in (2), it is clear that Iα = −α−1Hα(s), α > 0.
One of the attractions of the form (7) is that the parameter α has a natural
interpretation in terms of economic welfare: for α > 0 the measure Iα is
�top-sensitive� in that it gives higher importance to changes in the top of
the income distribution; α < 0 it is particularly sensitive to changes at the
bottom of the distribution; Atkinson (1970)'s index of relative inequality
aversion is identical to 1− α for α < 1.

2.3 Divergence entropy

It is clear that there is a close analogy between the α-class of entropy mea-
sures (2) and the generalised entropy inequality measure (7). E�ectively
it requires little more than a change of variables. We will now develop an
approach to the problem of characterising changes in distributions using a
similar type of argument.

Let the divergence between two densities f2 and f1 be λ := f1/f2; clearly
the di�erence in the distributions is large when λ is far from 1. Using an
entropy formulation of a divergence measure, one can measure the amount
of information in λ using some convex function, g (λ), such that g(1) = 0.
The expected information content in f2 with respect to f1, or the divergence
of f2 with respect to f1, is given by

H(f1, f2) =

ˆ
Y

g

(
f1
f2

)
f1dy (8)
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which is nonnegative (by Jensen's inequality) and is zero if and only if f2 = f1.
Corresponding to (2), we have the class of divergence measures

Hα(f1, f2) =
1

α− 1

ˆ
Y

[
1− f1

[
f1
f2

]α−1]
dy, α > 0 (9)

In the case α = 1 we obtain the Kullback and Leibler (1951) generalisation
of the Shannon entropy (1)

H1(f1, f2) =

ˆ
Y

f1 log

(
f2
f1

)
dy = −Ef1

(
log

f1
f2

)
, (10)

known as the relative entropy or divergence measure of f2 from f1. When f2
is the uniform density, (10) becomes (1).

2.4 Discrepancy and distributional change

The transformation used to derive the Theil inequality measure from the
entropy measure may also be applied to the case of divergence entropy mea-
sures. Consider a pair (x, y) jointly distributed on R2

+: for example x and y
could represent two di�erent de�nitions of income. Given that the popula-
tion size is normalised to 1, we may de�ne the income share functions s1 and
s2 : [0, 1]→ [0, 1] as

s1 (q) =
F−11 (q)´ 1

0
F−11 (t) dt

=
x

µ1

and s2 (q) =
F−12 (q)´ 1

0
F−12 (t) dt

=
y

µ2

(11)

where F−11 is the inverse of the marginal distribution of x, F−12 is the inverse
of the marginal distribution of y and µ1, µ2 are the means of the marginal
distributions of x and y.

We may now use the concept of relative entropy to characterise the trans-
formed distribution. Instead of considering a pair of density functions f1, f2,
we consider a pair of income-share functions s1, s2. Replacing f1 and f2 by
s1 and s2 in (10) we obtain

H1(s1, s2) = −
ˆ 1

0

s1 (q) log

(
s2 (q)

s1 (q)

)
dq (12)

A normalised version of the measure of distributional change, proposed by
Cowell (1980), for two n-vectors of income x and y can be written:

J1 (x,y) :=
1

n

n∑
i=1

xi
µ1

log

(
xi
µ1

/
yi
µ2

)
. (13)
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In the case of a discrete distribution with n point masses it is clear that we
have J1 (x,y) = −H1(s1, s2).

Replacing f1 and f2 by s1 and s2 in equation (9), and rearranging, we
obtain

Hα(s1, s2) =
1

α− 1

ˆ 1

0

[
1− s1 (q)α s2 (q)1−α

]
dq (14)

The J class of distributional-change measure, proposed by Cowell (1980) for
two n-vectors of income x and y is

Jα (x,y) :=
1

nα(α− 1)

n∑
i=1

[[
xi
µ1

]α [
yi
µ2

]1−α
− 1

]
, (15)

where α takes any real value; the limiting form for α = 0 is given by

J0 (x,y) = − 1

n

n∑
i=1

yi
µ2

log

(
xi
µ1

/
yi
µ2

)
(16)

and for α = 1 is given by (13); note that Jα (x,y) ≥ 0 for arbitrary x and
y.6 The family (15) represents an aggregate measure of discrepancy between
two distributions. Again, for a discrete distribution with n point masses, it
is clear that Jα (x,y) = −α−1Hα(s1, s2). The analogy between the α-class
of divergence measures and the measure of discrepancy (15) is evident and
requires no more than a change of variables. Once again the parameter α
has the natural welfare interpretation pointed out in section 2.2.

3 Reference distributions

The analysis in section 2 provides a natural lead into a discussion of the
divergence between an Empirical Distribution Function (EDF) and a theo-
retical reference distribution F∗. In order to do it, for �xed q values, we need
to compare the corresponding q-quantiles given by the EDF and F∗.

For instance, Figure 1 presents an EDF (red dots) and a theoretical ref-
erence distribution (blue line) on a reverse graph, with the q values in the
x-axis and the income quantiles in the y-axis.

6To see this write (15) as

n∑
i=1

yi
nµ2

[ψ (qi)− ψ (1)] , where qi :=
xiµ2

yiµ1
, ψ (q) :=

qα

α [α− 1]

Because ψ us a convex function we have, for any (q1, ..., qn) and any set of non negative
weights (w1, ..., wn) that sum to 1,

∑n
i=1 wiψ (qi) ≥ ψ (

∑n
i=1 wiqi). Letting wi = yi/ [nµ2]

and using the de�nition of qi we can see that wiqi = xi/ [nµ1] so we have
∑n
i=1 wiψ (qi) ≥

ψ (1) and the result follows.
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Figure 1: Quantile approach

A divergence measure between the EDF and the theoretical distribution
would aggregrate discrepancies between the quantiles from the two distribu-
tions, for each values of q. In other words, we would replace xi and yi in (15),
respectively, by EDF−1(qi) and F

−1
? (qi).

The standard approach in the statistics literature is based upon the em-
pirical distribution function (EDF)

F̂ (x) =
1

n+ 1

n∑
i=1

ι (xi ≤ x) ,

where ι is an indicator function such that ι (S) = 1 if statement S is true
and ι (S) = 0 otherwise.7 Let us denote {x(1), x(2), ..., x(n)} the members of
the sample in increasing order. The corresponding values given by the EDF
are the adjusted sample proportion q = { 1

n+1
, 2
n+1

, . . . , n
n+1
} and, for each q,

the corresponding value for the reference distribution is equal to

yi = F−1∗

(
i

n+ 1

)
(17)

7Note that we use 1
n+1 rather than 1

n to avoid an obvious problem where i = n. Had

we used i
n in (17) then yn would automatically be set to sup (X) where X is the support

of F∗.
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A divergence measure between the EDF and a theoretical reference dis-
tribution F∗ would be given by replacing xi and yi in (15), respectively, by
EDF−1∗

(
i

n+1

)
= x(i) and F

−1
∗
(

i
n+1

)
. Thus, we would have

Jα =
1

nα(α− 1)

n∑
i=1

[x(i)
µ̂

]α [F−1∗ (
i

n+1

)
µ (F∗)

]1−α
− 1

 , α 6= 0, 1 (18)

The limiting forms for α = 0, 1, de�ned in (16) and (13) become

J1 =
1

n

n∑
i=1

x(i)
µ̂

log

(
x(i)
µ̂
/
F−1∗

(
i

n+1

)
µ (F∗)

)
, (19)

J0 = − 1

n

n∑
i=1

F−1∗
(

i
n+1

)
µ (F∗)

log

(
x(i)
µ̂
/
F−1∗

(
i

n+1

)
µ (F∗)

)
. (20)

This index can be used to measure the divergence between an empiri-
cal income distribution, given by a sample of individual incomes, and any
theoretical reference distribution.

This index would require the choice of a speci�c value or values for the
parameter α according to the judgment that one wants to make about the
relative importance of di�erent types of discrepancy: choosing a large positive
value for α would put a lot of weight on parts of the distribution where
the observed incomes xi greatly exceed the corresponding values yi in the
reference distribution ; choosing a substantial negative value would put a lot
of weight on cases where the opposite type of discrepancy arises.

3.1 The most equal reference distribution

Let us assume that the most equal income distribution is when the same
amount is given to each individuals:

F−1∗

(
i

n+ 1

)
= µ̂ for i = 1, . . . , n (21)

If we use this (egalitarian) distribution as the reference distribution in (18),
then we have

Jα =
1

nα(α− 1)

n∑
i=1

[(
xi
µ̂

)α
− 1

]
, α 6= 0, 1 (22)
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Figure 2: Quantile approach with the most equal reference distribution

and the limiting forms, for α = 0, 1, are equal to

J0 = − 1

n

n∑
i=1

log

(
xi
µ̂

)
and J1 =

1

n

n∑
i=1

xi
µ̂

log

(
xi
µ̂

)
(23)

These measures are nothing but the standard Generalised Entropy inequal-
ity measure. In other words, the standard GE inequality measures are di-
vergence measures between the EDF and the most equal distribution, where
everybody gets the same income. They tell us how far a distribution is from
the most equal distribution. A sample with a smaller index has a more equal
distribution.

Figure 2 presents the quantile approach for this case. We can see that
the EDF is always above (below) the reference distribution for large (small)
values of incomes. It makes clear that large (small) values of α would be
more sensitive to changes in high (small) incomes.

3.2 The most unequal reference distribution

Rather than selecting the most equal distribution as a reference distribution,
we can reverse the standard approach by using the most unequal distribution
as a reference distribution. It requires one to measure how far a sample is
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from the most unequal distribution, rather than how far it is from the most
equal distribution.

The most unequal income distribution is when one person gets all the
income and the others zero:

F−1∗

(
i

n+ 1

)
=

{
0 for i = 1, . . . , n− 1

nµ̂ for i = n
(24)

If we use this distribution as the reference distribution in (18), then we have:

Jα =
1

α(α− 1)

[(
maxxi
nµ̂

)α
− 1

]
, α < 1, α 6= 0 (25)

In the limiting case α = 0, we have

J0 = − log

(
maxxi
nµ̂

)
(26)

This follows immediately from l'Hopital's rule. In the limiting case α = 1,
the index is unde�ned. This index tells us how far a distribution is from the
most unequal distribution. However, two major drawbacks make this index
useless in practice:

1. To be comparable for two di�erent samples, the index should use the
same reference distribution in both samples. Here maxxi = x(n) is an
estimate of the n/(n+1)-quantile in F∗. It follows that, if n = 100, the
reference distribution is when the top 1% gets all the income, whereas
if n = 1000 it is when the top 0.1% gets all the income. The reference
distribution di�ers with the sample size.

2. The presence of zero incomes in the reference distribution produce un-
desirable properties: the index is independent on how the �rst n − 1
ordered incomes are distributed. The �rst n−1 ordered incomes do not
appear explicitly in the formula, the index depends on them through
the mean only. It follows that, the mean being constant, the distribu-
tion of the n − 1 �rst ordered incomes does not matter. For instance,
the two samples {8, 8, 8, 8, 8, 8, 8, 8, 20} and {1, 1, 1, 1, 15, 15, 15, 15, 20}
produce the same value of the index.

These two drawbacks lead us to consider the following reference distribution,
where the top 100k% richest gets 100p% of the total income:

F−1∗

(
i

n+ 1

)
=

{
(1− p)µ̂/(1− k) for i = 1, . . . , dn(1− k)e
pµ̂/k for i = dn(1− k)e+ 1, . . . , n

(27)
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with 0 ≤ k ≤ 1, 0 ≤ p ≤ 1 and dze denotes the smallest integer not less than
z. Small values of k and large values of p produce very unequal distributions,
where a few people get nearly all the income, and the rest get nearly zero.
For instance, in setting k = 0.01 and p = 0.99 we take the case where the
top 1% richest gets 99% of the total income. If we use this distribution as
the reference distribution in (18), we obtain:

Jα,k,p =
1

nα(α− 1)

n∑
i=1

[(
x(i)
µ̂

)α
c1−αi − 1

]
, α 6= 0, 1, (28)

where

ci =

{
(1− p)/(1− k) if i ≤ dn(1− k)e
p/k if i > dn(1− k)e

(29)

The limiting forms for α = 0, 1, de�ned in (19) and (20) become

J1,k,p =
1

n

n∑
i=1

x(i)
µ̂

log

(
x(i)
ciµ̂

)
and J0,k,p = − 1

n

n∑
i=1

ci log

(
x(i)
ciµ̂

)
. (30)

There is two interesting special cases. If p = k, everybody gets the same
income value, µ̂, and the reference distribution is the most equal distribution.
If k = 1/n and p = 1, only one individual gets all the income, nµ̂, and the
reference distribution is the most unequal distribution.

In practice, k and p have to be �xed: (1) to avoid the �rst drawback, k and
p should be independent of the sample size, with k > 1/n and p > 1/n ; (2)
to avoid the second drawback, zero incomes are not allowed in the reference
distribution, that is, if p = 1 we have k = 1. Finally, to make our index Jα,k,p
useful in practice, we need to use constant values, such that

1/n < k < 1 and 1/n < p < 1, or p = k = 1. (31)

In empirical studies, we could use several values of k and p. For instance,
k = 1 − p = 0.05, 0.01, 0.005, correspond to the reference distributions with
the top 5%, 1% and 0.5% getting, respectively, 95%, 99% and 99.5% of the
total income.

3.3 Other reference distributions

Clearly, other reference distributions could be used. For instance, if we as-
sume that productive talents are distributed in the population according to
a continuous distribution of talents F∗ and that wages should be related to
talent, a situation in which everyone received the same income to everybody
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might be considered as unfair. In this case one might use F∗ as the reference
distribution and make use of the index (18): any deviation from F∗ would
come from something else than talent. If total income is �nite, it makes sense
to use a distribution de�ned on a �nite support. For instance, we could use a
Uniform distribution or a Beta distribution with two parameters, which can
provide a variety of appropriate shapes.

4 Axiomatic foundation

We may put the informal discussion of the use of distributional-change mea-
sures on to a rigorous footing using the representation of the problem in
section 4.1 and the principles described in section 4.2.

4.1 Representation of the problem

The distributional change problem can be characterised as the relationship
between two n-vectors of incomes x and y. An alternative equivalent ap-
proach is to work with z : = (z1, z2, ..., zn), where each zi is the ordered
pair (xi, yi), i = 1, ..., n and belongs to a set Z, which we will take to be
a connected subset of R+ × R+. The divergence issue clearly focuses on
the discrepancies between the x-values and the y-values. To capture this
we introduce a discrepancy function d : Z → R such that d (zi) is strictly
increasing in |xi − yi|. Write the vector of discrepancies as

d (z) := (d (z1) , ..., d (zn)) .

The problem can then be approached in two steps.

1. We represent the problem as one of characterising a weak ordering8 �
on

Zn := Z × Z × ...× Z︸ ︷︷ ︸
n

.

where, for any z, z′ ∈ Zn the statement �z � z′� should be read as
�the income pairs in z constitute at least as close according to � as the
income pairs in z′.� From � we may derive the antisymmetric part �
and symmetric part ∼ of the ordering.9

8This implies that it has the minimal properties of completeness, re�exivity and tran-
sitivity.

9For any z, z′ ∈ Zn �z � z′� means � [z � z′] & [z′ � z]�; �z ∼ z′� means
�[z � z′] & [z′ � z]�.
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2. We use the function representing � to generate the index J .

In the �rst stage of step 1 we introduce some properties for �, many of which
are standard in choice theory and welfare economics.10

4.2 Basic structure

Axiom 1 [Continuity] � is continuous on Zn.

Axiom 2 [Monotonicity] If z, z′ ∈ Zn di�er only in their ith component
then d (xi, yi) < d (x′i, y

′
i)⇐⇒ z � z′.

Axiom 3 [Symmetry] For any z, z′ ∈ Zn such that z′ is obtained by permut-
ing the components of z: z ∼ z′.

In view of Axiom 3 we may without loss of generality impose a simultane-
ous ordering on the x and y components of z, for example x1 ≤ x2 ≤ ... ≤ xn
and y1 ≤ y2 ≤ ... ≤ yn.

11 For any z ∈ Zn denote by z (ζ, i) the member of
Zn formed by replacing the ith component of z by ζ ∈ Z.

Axiom 4 [Independence] For z, z′ ∈ Zn such that: z ∼ z′ and zi = z′i for
some i then z (ζ, i) ∼ z′ (ζ, i) for all ζ ∈ [zi−1, zi+1]∩

[
z′i−1, z

′
i+1

]
.

If z and z′ are equivalent in terms of overall discrepancy and the discrep-
ancy at position i is the same in the two cases then a local variation at i
simultaneously in z and z′ has no overall e�ect.

Axiom 5 [Zero local discrepancy] Let z, z′ ∈ Zn be such that, for some i and
j, xi = yi, xj = yj, x

′
i = xi + δ, y′i = yi + δ, x′j = xj − δ, y′j = yj − δ and, for

all k 6= i, j, x′k = xk, y
′
k = yk. Then z ∼ z′.

The principle states that if there is zero local discrepancy at two positions
in the distribution then moving x-income and y-income simultaneously from
one position to the other has no e�ect on the overall discrepancy.

10Note that the derivation which follows di�ers from that provided in Cowell (1985)
used to establish the class of measures of distributional change using explicit assumptions
of di�erentiability and additive separability. Here we adopt a minimalist approach that
uses neither of these strong assumptions and that focuses directly on the divergence issue.

11In the general distributional change problem x and y could be arbitrary vectors but
in the present case, of course, the components of x and y will be in the same order.
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Theorem 1 Given Axioms 1 to 5 (a) � is representable by the continuous
function given by

n∑
i=1

φi (zi) ,∀z ∈ Zn (32)

where, for each i, φi : Z → R is a continuous function that is strictly de-
creasing in |xi − yi| and (b)

φi (x, x) = ai + bix (33)

Proof. Axioms 1 to 5 imply that � can be represented by a continuous
function Φ : Zn → R that is increasing in |xi − yi|, i = 1, ..., n. Using Axiom
4 part (a) of the result follows from Theorem 5.3 of Fishburn (1970). Now
take z′ and z in as speci�ed in Axiom 5. Using (32) and it is clear that z ∼ z′

if and only if

φi (xi + δ, xi + δ)− φi (xi, xi)− φj (xj + δ, xj + δ) + φj (xj + δ, xj + δ) = 0

which can only be true if

φi (xi + δ, xi + δ)− φi (xi, xi) = f (δ)

for arbitrary xi and δ. This is a standard Pexider equation and its solution
implies (33).

Corollary 1 Since � is an ordering it is also representable by

φ

(
n∑
i=1

φi (zi)

)
(34)

where, φi is de�ned as in (32), (33). and φ : R→ R continuous and strictly
monotonic increasing.

This additive structure means that we can proceed to evaluate overall dis-
crepancy one income-position at a time. The following axiom imposes a very
weak structural requirement, namely that the ordering remains unchanged
by some uniform scale change to both x-values and y-values simultaneously.
As Theorem 2 shows it is enough to induce a rather speci�c structure on the
function representing �.

Axiom 6 [Income scale irrelevance] For any z, z′ ∈ Zn such that z ∼ z′,
tz ∼ tz′for all t > 0.

14



Theorem 2 Given Axioms 1 to 6 � is representable by

φ

(
n∑
i=1

xihi

(
xi
yi

))
(35)

where hi is a real-valued function.

Proof. Using the function Φ introduced in the proof of Theorem 1 Axiom
6 implies

Φ (z) = Φ (z′)

Φ (tz) = Φ (tz′)

and so, since this has to be true for arbitrary z, z′ we have

Φ (tz)

Φ (z)
=

Φ (tz′)

Φ (z′)
= ψ (t)

where ψ is a continuous function R→ R. Hence, using the φi given in (32),
we have for all :

φi (tzi) = ψ (t)φi (zi) i = 1, ..., n.

or, equivalently

φi (txi, tyi) = ψ (t)φi (xi, yi) , i = 1, ..., n. (36)

So, in view of Aczél and Dhombres (1989), page 346 there must exist c ∈ R
and a function hi : R+ → R such that

φi (xi, yi) = xcihi

(
xi
yi

)
. (37)

From (33) and (37) it is clear that

φi (xi, xi) = xcihi (1) = ai + bixi, (38)

which, ifφi (x, x) is non-constant in x, implies c = 1. Putting (37) with c = 1
into (34) gives the result.

This result is important but limited since the function hi is essentially
arbitrary: we need to impose more structure.
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4.3 Income discrepancy

We now focus on the way in which one compares the (x, y) discrepancies in
di�erent parts of the income distribution. The form of (35) suggests that
discrepancy should be characterised terms of proportional di�erences:

d (zi) = max

(
xi
yi
,
yi
xi

)
.

This is the form for d that we will assume from this point onwards. We also
introduce:

Axiom 7 [Discrepancy scale irrelevance] Suppose there are z0, z
′
0 ∈ Zn such

that z0∼ z′0. Then for all t > 0 and z, z′ such that d (z) = td (z0) and
d (z′) = td (z′0): z ∼ z′.

The principle states this. Suppose we have two discrepancy pro�les z0
and z′0 that are regarded as equivalent under �. Then scale up (or down)
all the income discrepancies in z0 and z′0 by the same factor t. The resulting
pair of discrepancy pro�les z and z′ will also be equivalent.12

Theorem 3 Given Axioms 1 to 7 � is representable by

φ

(
n∑
i=1

xαi y
1−α
i

)
(39)

where α 6= 1 is a constant.13

Proof. Take the special case where, in distribution z′0 the income discrep-
ancy takes the same value r at all n income positions. If (xi, yi) represents a
typical component in z0 then z0∼ z′0 implies

r = ψ

(
n∑
i=1

xihi

(
xi
yi

))
(40)

where ψ is the solution in r to

n∑
i=1

xihi

(
xi
yi

)
=

n∑
i=1

xihi (r) (41)

12Also note that Axiom 7 can be stated equivalently by requiring that, for a given z0, z
′
0 ∈

Zn such that z0∼ z′0, either (a) any z and z′ found by rescaling the x-components will be
equivalent or (b) any z and z′ found by rescaling the y-components will be equivalent.

13The following proof draws on Ebert (1988).

16



In (41) can take the xi as �xed weights. Using Axiom 7 in (40) requires

tr = ψ

(
n∑
i=1

xihi

(
t
xi
yi

))
, for all t > 0. (42)

Using (41) we have

n∑
i=1

xihi

(
tψ

(
n∑
i=1

xihi

(
xi
yi

)))
=

n∑
i=1

xihi

(
t
xi
yi

)
(43)

Introduce the following change of variables

ui := xihi

(
xi
yi

)
, i = 1, ..., n (44)

and write the inverse of this relationship as

xi
yi

= ψi (ui) , i = 1, ..., n (45)

Substituting (44) and (45) into (43) we get

n∑
i=1

xihi

(
tψ

(
n∑
i=1

ui

))
=

n∑
i=1

xihi (tψi (ui)) . (46)

Also de�ne the following functions

θ0 (u, t) :=
n∑
i=1

xihi (tψ (u)) (47)

θi (u, t) := xihi (tψi (u)) , i = 1, ..., n. (48)

Substituting (47),(48) into (46) we get the Pexider functional equation

θ0

(
n∑
i=1

ui, t

)
=

n∑
i=1

θi (ui, t)

which has as a solution

θi (u, t) = bi (t) +B (t)u, i = 0, 1, ..., n

where

b0 (t) =
n∑
i=1

bi (t)
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� see Aczél (1966), page 142. Therefore we have

hi

(
t
xi
yi

)
=
bi (t)

xi
+B (t)hi

(
xi
yi

)
, i = 1, ..., n (49)

From Eichhorn (1978), Theorem 2.7.3 the solution to (49) is of the form

hi (v) =
βiv

α−1 + γi, α 6= 1
βi log v + γi α = 1

(50)

where βi > 0 is an arbitrary positive number. Substituting for hi (·) from
(50) into (2) for the case where βi is the same for all i gives the result.

4.4 The J index

For the required index use the �natural� cardinalisation of the function (39),∑n
i=1 x

α
i y

1−α
i , and normalise with reference to the case where both the ob-

served and the modelled distribution exhibit complete equality, so xi = µ1

and yi = µ2 for all i. This gives the following class of measures of divergence
(aggregated discrepancy):

Jα (x,y) :=
1

nα(α− 1)

n∑
i=1

[[
xi
µ1

]α [
yi
µ2

]1−α
− 1

]
. (51)

This normalised index can be implemented straightforwardly for a proposed
model of an empirical distribution.14 Of course this would require the choice
of a speci�c value or values for the parameter α in (51).15

5 Implementation

We now look at the practicalities of the class of measures Jα de�ned in (18)
and Jα,k,p de�ned in (28).

5.1 Statistical properties

It is necessary to establish the existence of an asymptotic distribution for Jα
and Jα,k,p in order to justify its use in practice. If the most equal distribution
is taken as the reference distribution (k = p = 1), the index Jα,1,1 is nothing

14The form (51) implies that it is valid for mean-normalised distributions.
15Compare this with the discussion of the interpretation of α in terms of upper- and

lower-tail sensitivity in the context of inequality (page 4).
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but the standard GE inequality measure, which is asymptotically Normal and
has well-known statistical properties.16 If a continuous distribution is taken
as the reference distribution, it can be shown that the limiting distribution
of nJα is that of

1

2µF∗

[ˆ 1

0

B2(t)dt

F−1∗ (t)f 2
∗ (F

−1
∗ (t))

− 1

µF∗

(ˆ 1

0

B(t)dt

f∗(F
−1
∗ (t))

)2
]

(52)

where f∗ is the density of distribution F∗ and B(t) is a Brownian bridge.
This random variable can have an in�nite expectation. It is only if F∗ has
a bounded support that the limiting distribution has reasonable properties
� see Cowell et al. (2011) and Davidson (2011) for more details. If we use
a continuous parametric reference distribution, since total income is �nite,
it makes sense to use a distribution F∗ de�ned on a bounded support only.
For instance, one could use a Uniform distribution or a Beta distribution
with two parameters, which can provide many di�erent shapes. The same
approach can be used for nJα,k,p, noting that the last statistic is equivalent
to the statistic de�ned in (9) in Cowell et al. (2011), where 2i/(n + 1) is
replaced by ci de�ned in (29).

In the two cases, the limiting distribution of Jα and Jα,k,p exists, but
is not tractable. It is enough to justify the use of bootstrap methods for
making inference. To compute a bootstrap con�dence interval, we generate
B bootstrap samples by resampling from the original data, and then, for each
resample, we compute the index J . We obtain B bootstrap statistics, J bα,
b = 1, . . . , B. The percentile bootstrap con�dence interval is equal to

CIperc = [cb0.025 ; cb0.975] (53)

where cb0.025 and cb0.975 are the 2.5 and 97.5 percentiles of the EDF of the
bootstrap statistics - for a comprehensive discussion on bootstrap methods,
see Davison and Hinkley (1997), Davidson and MacKinnon (2006). For well-
known reasons � see Davison and Hinkley (1997) or Davidson and MacKinnon
(2000) � the number B should be chosen so that (B + 1)/100 is an integer:
here we set B = 999 unless otherwise stated.

To be used in practice, we need to determine the �nite sample properties
of Jα and Jα,k,p. The coverage error rate of a con�dence interval is the
probability that the random interval does not include, or cover, the true
value of the parameter. A method of constructing con�dence intervals with
good �nite sample properties should generate a coverage error rate close to

16Among others, see Cowell and Flachaire (2007), Davidson and Flachaire (2007),
Schluter and van Garderen (2009), Schluter (2011), Davidson (2011)
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the nominal rate. For a con�dence interval at 95%, the nominal coverage
error rate is equal to 5%. We use Monte-Carlo simulation to approximate
the coverage error rate bootstrap con�dence intervals in several experimental
designs.

In our experiments, samples are drawn from a lognormal distribution. For
�xed values of α, k, p and n, we draw 10 000 samples. For each sample we
compute Jα or Jα,k,p and its con�dence interval at 95%. The coverage error
rate is computed as the proportion of times the true value of the inequality
measure is not included in the con�dence intervals.17 Con�dence intervals
perform well in �nite samples if the coverage error rate is close to the nominal
value, that is, close to 0.05.

Table 1 presents the coverage error rate of bootstrap con�dence intervals
at 95% of Jα and Jα,k,p for several reference distributions. The standard GE
measures use the most equal reference distribution, it corresponds to Jα,1,1.
When �the top 1% richest gets 99% of the income� is the reference distri-
bution we use the index Jα,0.01,0.99; when �the top 5% richest gets 99% of
the income� is the reference distribution we use Jα,0.05,0.99. In addition, we
examine Jα with two continuous (bounded) parametric reference distribu-
tions, the Beta(1,1) distribution which is equal to the Uniform(0,1), and the
Beta(2,2) which is a symmetric inverted-U-shape distribution. Table 1 shows
that the �nite sample properties of the indices with alternative reference dis-
tributions are not very di�erent from those of the standard GE measures,
except for Jα,0.01,0.99 when n ≤ 500. The coverage error rate is close to 0.05
for very large samples. For small and moderate samples, further investiga-
tions are required to improve the �nite sample properties, with, for instance,
a fast double or triple bootstrap, see Davidson and MacKinnon (2007) and
Davidson and Trokic (2011).18

5.2 Application

Let us compare the performance of the statistic Jα,k,p with that of conven-
tional GE inequality measures using as a case study UK income data from
the Family Expenditure Survey, for years 1979 and 1988.19 In Table 5.2

17The true values are computed replacing x(i) in (18) by F−1( i
n+1 ), where F is the

distribution of x, that is, the lognormal distribution in our experiments.
18Such developments are beyond the scope of this paper and are the subject of future

research.
19The application uses the �before housing costs� income variable of the Family Expen-

diture Survey for years 1979 and 1988 (Department of Work and Pensions 2006), de�ated
and equivalised using the McClement's adult-equivalence scale, excluding households with
self-employed individuals. We exclude households with self-employed individuals as re-
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we present the results of indices Jα and Jα,k,p estimated with three di�erent
types of reference distribution, along with bootstrap con�dence intervals at
95%.

Equality

The top panel of Table 5.2 presents estimates of Jα,k,p using an �equality�
reference distribution. Clearly, when we select the most equal distribution as
the reference distribution, i.e. k = p = 1, the index Jα,k,p is reduced to the
standard GE inequality measure. Estimates for standard GE measures, Jα,1,1
are tabulated in the �rst row, for values of α ranging from −1 to 2.20 When
α = 1, Jα,1,1 is the Theil index. For values of α = 0.5, 1, 1.5, 2, Jα,1,1 repre-
sents the several (transformed) Atkinson indices.21 All estimates of standard
GE measures increase considerably between 1979 and 1988, suggesting a sig-
ni�cant rise in inequality in the 80s.

Extreme inequality

The key point highlighted in earlier sections was that changing the reference
distribution from which we measure the distance of the empirical distribution
opens up the possibility for researchers to choose the exact distribution from
which they wish to measure distance of the empirical distribution. While
standard GE indices tell us about the distance of the empirical distribution
from an equal reference distribution, one can change the focus to that of
its distance from an unequal reference distribution. In the second panel of
Table 5.2 we present estimates of Jα,k,p using several �extreme inequality�
reference distributions. The interpretation of the size of the Jα,k,p index now
is the reverse of the interpretation of standard GE measures. For a standard
GE inequality measure, a small value of Jα,1,1 corresponds to the empirical
distribution being close to the equal reference distribution compared to that
of a large value of Jα,1,1. However, for an unequal reference distribution a
small value of Jα,k,p corresponds to the empirical distribution being close
to the particular �extreme inequality� reference distribution that has been
speci�ed.

To illustrate we focus on two di�erent unequal reference distributions:
one, where the top 1% of the income distribution receive 99% of the income,

ported incomes are known to be misrepresented. The years 1979 and 1988 have been
chosen to represent the maximum recorded di�erence in inequality across the available
years, post-1975.

20A large value of α implies greater weight on parts of the distribution where the observed
incomes are vastly di�erent from the corresponding values in the reference distribution.

21See Cowell (2011) for details.
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and second, where the top 5% of the income distribution receive 99% of the
income. From Table 5.2 we can see that, with one exception, the values of
Jα,k,p have dropped between years 1979 and 1988: in other words, it is almost
always true that the distance from the �extreme inequality� reference distri-
bution has decreased. The exception is the case (k = 0.05, p = 0.99, α = 2)
where the movement relative to the reference distribution is not signi�cant.
The implication is that UK inequality grew during the 1980s whether one in-
terprets this in terms of distance from equality, or as distance from a reference
unequal distribution, except for one case. This case concerns top-sensitive in-
equality where, in terms of �distance from maximum inequality,� the change
in the distribution is inconclusive.

Theoretical distribution

Finally let us consider how inequality changed using a continuous reference
distribution F∗. The last panel of Table 5.2, tabulates the results for three
such F∗ (introduced in Section 5.1) taken from the Beta distribution fam-
ily. Did UK income inequality, interpreted as a distance from a Beta-family
reference distribution increase? We can see that the values of Jα are not sta-
tistically di�erent between 1979 and 1988 when the Beta(1,1) (uniform) or
Beta(2,5) (unimodal, right skewed) is used as the reference distribution dis-
tribution, while they are statistically di�erent when the Beta(2, 2) (unimodal
symmetric) is used as the reference distribution.

The estimates of the standard GE inequality measures Jα,1,1 and of those
of Jα,k,p and Jα in Table 5.2 provide us with di�erent information about
divergence of the empirical distribution from the chosen reference distribu-
tion. By varying the values of k and p, one can specify the exact skewness
of the reference distribution one would like to measure distance of the em-
pirical distribution from. Likewise, by varying the values of α one can focus
on di�erent parts of the income distribution. A large value of α implies a
greater weight on parts of the distribution where the observed incomes are
vastly di�erent from the corresponding values in the reference distribution.
Finally, one can choose speci�c parametric distributions which correspond to
the relevant reference distribution that the researcher is interested in.

6 Conclusion

The problem of comparing pairs of distributions is a widespread one in dis-
tributional analysis. It is often treated on an ad-hoc basis by invoking the
concept of norm incomes and an arbitrary inequality index.
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Our approach to the issue is a natural generalisation of the concept of in-
equality indices where the implicit reference distribution is the trivial perfect-
equality distribution. It is also a natural application of information theory
to assessment of income distributions. The approach uses the same ingre-
dients as loss functions applied in other economic contexts. Its intuitive
appeal is supported by the type of axiomatisation that is common in mod-
ern approaches to inequality measurement and other welfare criteria. The
axiomatisation yields indices that can be interpreted as measures of discrep-
ancy. They are related to the concept of divergence entropy in the context
of information theory. Furthermore, they o�er a degree of control to the re-
searcher in that the Jα indices form a class of measures that can be calibrated
to suit the nature of the economic problem under consideration. Members of
the class have a distributional interpretation that is close to members of the
well-known generalised-entropy class of inequality indices.

In e�ect the user of the Jα-index is presented with two key questions:

1. the income discrepancies underlying inequality are with reference to
what?

2. to what kind of discrepancies do you want the measure to be particu-
larly sensitive?

As our empirical illustration has shown, di�erent responses to these two key
questions provide di�erent interpretations from the same set of facts.
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α -1 0 0.5 1 2

Equal Reference Distribution

Standard GE measures (k=p=1)
n = 100 0.0753 0.0734 0.0832 0.0912 0.1166
n = 200 0.0747 0.0667 0.0713 0.0785 0.1024
n = 500 0.0669 0.0673 0.0716 0.0781 0.0983
n = 1000 0.0658 0.0606 0.0642 0.0709 0.0878
n = 2000 0.0567 0.0565 0.0620 0.0658 0.0831
n = 5000 0.0557 0.0562 0.0606 0.0672 0.0809

Unequal Reference Distributions

Top 5% gets 99% of the income (k=0.05, p=0.99)
n = 100 0.0722 0.0887 0.0983 0.1005 0.0395
n = 200 0.0597 0.0662 0.0733 0.0813 0.0482
n = 500 0.0594 0.0577 0.0638 0.0681 0.0584
n = 1000 0.0553 0.0543 0.0572 0.0619 0.0575
n = 2000 0.0581 0.0557 0.0552 0.0590 0.0564
n = 5000 0.0526 0.0531 0.0562 0.0588 0.0569
Top 1% gets 99% of the income (k=0.01, p=0.99)
n = 100 0.2220 0.2221 0.2172 0.1347 0.0325
n = 200 0.1601 0.1689 0.1705 0.1265 0.0275
n = 500 0.0998 0.1117 0.1188 0.1064 0.0346
n = 1000 0.0703 0.0788 0.0867 0.0878 0.0422
n = 2000 0.0581 0.0642 0.0682 0.0717 0.0486
n = 5000 0.0558 0.0598 0.0616 0.0627 0.0504

Continuous Reference Distributions

Beta(1,1)
n = 100 0.0830 0.0877 0.0923 0.0981 0.1162
n = 200 0.0703 0.0756 0.0805 0.0865 0.1029
n = 500 0.0689 0.0740 0.0778 0.0847 0.1011
n = 1000 0.0650 0.0674 0.0710 0.0766 0.0905
n = 2000 0.0605 0.0632 0.0645 0.0700 0.0838
n = 5000 0.0623 0.0638 0.0660 0.0715 0.0824
Beta(2,2)
n = 100 0.0778 0.0841 0.0896 0.0945 0.1122
n = 200 0.0680 0.0730 0.0764 0.0832 0.1002
n = 500 0.0694 0.0722 0.0762 0.0829 0.0988
n = 1000 0.0611 0.0656 0.0682 0.0742 0.0885
n = 2000 0.0574 0.0626 0.0636 0.0679 0.0834
n = 5000 0.0584 0.0632 0.0651 0.0694 0.0816

Table 1: Coverage error rate of bootstrap con�dence intervals at 95% of Jα
and Jα,k,p, 10,000 replications, 499 bootstraps, and x ∼ Lognormal(0, 1).
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α -1 0 0.5 1 2

Equal Reference Distribution

Standard GE measures (k = p = 1)

1979 0.1218 0.1056 0.1046 0.1066 0.1201

[0.1119;0.1355] [0.1016;0.1097] [0.1005;0.1086] [0.1023;0.1111] [0.1132;0.1271]

1988 0.1836 0.1541 0.1543 0.1618 0.2096

[0.1685;0.2018] [0.1468;0.1613] [0.1460;0.1634] [0.1508;0.1728] [0.1843;0.2381]

Unequal Reference Distributions

Top 1% gets 99% of the income (k = 0.01, p = 0.99)

1979 15.29 3.370 2.906 4.403 55.39

[14.46;16.21] [3.315;3.427] [2.887;2.926] [4.390;4.419] [55.05;55.75]

1988 11.70 3.086 2.795 4.341 57.97

[10.59;12.792] [2.982;3.182] [2.749;2.836] [4.300;4.378] [57.32;58.66]

Top 5% gets 99% of the income (k = 0.05, p = 0.99)

1979 3.803 2.080 2.271 3.768 44.43

[3.708;3.907] [2.057;2.106] [2.254;2.288] [3.747;3.789] [44.08;44.74]

1988 3.194 1.915 2.151 3.631 44.14

[3.088;3.293] [1.882;1.945] [2.123;2.175] [3.591;3.665] [43.47;44.73]

Continuous Reference Distributions

Beta(1,1) or Uniform(0,1)

1979 0.0320 0.0406 0.0483 0.0613 0.1457

[0.0308;0.0333] [0.0391;0.0421] [0.0465;0.0501] [0.0589;0.0638] [0.1311;0.1648]

1988 0.0339 0.0418 0.0486 0.0591 0.1125

[0.0313;0.0373] [0.0383;0.0461] [ 0.0444;0.0536] [0.0538;0.0655] [0.1014;0.1276]

Beta(2,2)

1979 0.0115 0.0132 0.0143 0.0158 0.0199

[0.0105;0.0127] [0.0121;0.0146] [0.0131;0.0158] [0.0144;0.0175] [0.0181;0.0222]

1988 0.0210 0.0243 0.0267 0.0299 0.0405

[0.0180;0.0242] [0.0204;0.0283] [0.0221;0.0316] [0.0242;0.0362] [0.0300;0.0524]

Beta(2,5)

1979 0.0116 0.0138 0.0153 0.0173 0.0237

[0.0109;0.0124] [0.0129;0.0147] [0.0143;0.0163] [0.0162;0.0185] [0.0219;0.0256]

1988 0.0121 0.0142 0.0157 0.0175 0.0231

[0.0100;0.0145] [0.0116;0.0172] [0.0127;0.0192] [0.0141;0.0217] [0.0177;0.0294]

Table 2: Inequality indices Jα,k,p and Jα computed with di�erent reference dis-

tributions. Data are from the Family Expenditures Surveys in UK. Bootstrap

con�dence intervals at 95% are given in brackets.
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