
Unpublished Appendices for “Technological Revolutions”

Appendix D discusses what happens if learning costs are time - as opposed to consumption -

costs. Appendices E, F, and G prove the results of Section 3. Appendix H presents a version

of the model that incorporates a learning externality. Appendix I presents an extension of

the model where there are two industries.

Appendix D: Proportional Learning Costs

The learning cost σ has been modeled as additive throughout the paper. Hence, it is best

interpreted as capturing the payment of a fee, e.g. tuition. It is reasonable to suppose,

however, that learning costs will also include a time component. In this case part of the

learning cost is proportional to the wage, so as to capture the opportunity cost of learning.

To see how the inclusion of time costs would change the results, consider the extreme case

in which the learning cost is purely proportional (i.e. no fee component). The impact effect

of the revolution would be identical to the impact in the additive-cost case. However, the

post-revolutionary dynamics would be different. The fraction of the labor force working in

technology 1 would depend on the wage ratio and not, as in the additive case, on the wage

differential. But, as we have seen, the no-arbitrage condition dictates that the wage ratio is

constant during the transition. Hence, there would be no change in L1 after the revolutionary

period, and the economy would always converge to a steady state with a two-tiered labor

market. In terms of Figures 1 and 2, L1
t+1 becomes a ßat function of Kt+1. Hence, the model

would still explain why a technological revolution leads to an increase in inequality and a fall

in the unskilled wage, but would not explain slow diffusion of the new technology. In fact,

there would be no diffusion at all. Observe, however, that the �true� model is probably a
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combination of the purely additive and purely proportional, i.e. learning costs have both a fee

and a time component. Based on the results in the paper, it is reasonable to conjecture that

the additive component in this �true� model will still work to generate both revolutionary

and post- revolutionary dynamics as in the purely additive case.

Appendix E: Proof of No-Hole Condition, and Derivation of (12)

Arriving at these results is conceptually straightforward but quite tedious. It helps to break

down the reasoning in smaller pieces.

Step 1: If a, b, c ∈ It, and a > b > c, then:

W a
t −W b

t

σa − σb <
W a
t −W c

t

σa − σc <
W b
t −W c

t

σb − σc (A.3)

For, assume that, on the contrary, the Þrst inequality was reversed. This implies that the

second inequality is also reversed. To see this use equation (11) to show that reversal of the

Þrst of the inequalities in (A.3) implies

A
a−c
1−α (σb − σc)− σb > A

b−c
1−α (σa − σc)− σa

Now add σc to both sides and note that the resulting expression implies that also the second

of the inequalities above is reversed. With the resulting conÞguration of cost-adjusted wage

differentials all workers x such that x < (Wa
t −W c

t )/(σa−σc) will strictly prefer to work in a

than either in b or c, while workers x such that x > (W a
t −W c

t )/(σa−σc) will strictly prefer c to

either a and b. No workers, therefore, are willing to operate b machines. This contradicts the

assumption that b ∈ It. Hence, the Þrst inequality in (A.3) must hold. Repeating the identical

thought process, it can readily be seen that (i) the Þrst inequality implies the second, and that,

as a corollary, all workers x such that x < (Wa
t −W b

t )/(σa−σb) will strictly prefer to work in
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a than either in b or c, all workers x such that x > (W b
t −W c

t )/(σb−σc) will strictly prefer c to

either a and b, and all workers x such that (W a
t −W b

t )/(σa−σb) < x < (W b
t −W c

t )/(σb−σc)

will strictly prefer b to either a and c.

Step 2: The monotonicity of �cost-adjusted wage differentials,� alluded to in the text,

emerges as a further corollary. To see this, call i the least advanced technology being used.

Relabel all other technologies in It so that their alphabetical order mirrors technological

order: It = {i, a, b, c, ...}, and a > b > c > d > ... > i. Note that I have not proved the

�no-hole� result yet, so I cannot presume that, say, b = a − 1. This is why I am forced

to this cumbersome notational expedient. Notice, however, that we do know that a = g(t).

Now apply Step 1 to all triples formed by three successive elements, i.e. {a, b, c}, {b, c, d},

{c, d, e},.... It readily emerges that

W a
t −W b

t

σa − σb <
W b
t −W c

t

σb − σc <
W c
t −W d

t

σc − σd < ...

Step 3: Finally, the desire of individuals to maximize their net incomes implies that:

all workers x such that x < (W a
t −W b

t )/(σa−σb) will strictly prefer to work in a than in any

other technology; all worker x such that (W a
t −W b

t )/(σa − σb) < x < (W b
t −W c

t )/(σb − σc)

will strictly prefer b to any other technology; all worker x such that (W b
t −W c

t )/(σa − σb) <

x < (W c
t −W d

t )/(σb − σc) will strictly prefer c to any other technology; ... . Hence the

pattern of employment is as follows:

Lat =
W a
t −W b

t

σa − σb

Lbt =
W b
t −W c

t

σb − σc − W
a
t −W b

t

σa − σb

...
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L
i
t = 1−

X
i∈It,i6=i

Lit

Step 4: We can now prove the �no-hole� condition, and we do that by contradiction.

Assume, then, that i 6∈ It, while ∃h0, z0 ∈ It such that h0 > i > z0. By Step 3 we then have that

∃h, z ∈ It, such that h0 ≥ h > i > z ≥ z0, and that individual x ≡ Wh
t −Wz

t
σh−σz (i) is indifferent

between using technology h or z and (ii) prefers either h or z to any other technology in

It. Consider a Þrm approaching this worker with a proposal to learn and use technology i,

instead of z or h, for a wage of W z
t + x(σi − σz). Since this worker�s best alternative is to

make net income W z
t − xσz, this plan is feasible, and delivers proÞts

Aikα − kRzt −W z
t − x(σi − σz)

where Rzt is the (common) interest rate at time t, and k is the amount of capital of type i

with which the worker is endowed. Taking the Þrst order condition with respect to k, and

using (4), gives an optimal amount of capital of A
i−z
1−αKz

t /L
z
t . Using this, the deÞnition of x,

and equations (4) and (11) in the proÞt function gives maximum proÞts of:

·
Ai+α

i−z
1−α − αAz+ i−z

1−α − (1− α)Az − σi − σz
σh − σz (A

h−z
1−α − 1)Az(1− α)

¸µ
Kz
t

Lzt

¶α

Imposing the condition that this expression be non-positive leads, after a few simpliÞcations

and rearrangements, to the condition:

(σh − σz)(A
i−z
1−α − 1)− (σi − σz)(A

h−z
1−α − 1) ≤ 0

Using (11) this no-proÞt condition can be rewritten as:

Wh
t −W z

t

σh − σz ≥ W i
t −W z

t

σi − σz

Since h > i > z, this contradicts (A.3).
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Step 5: Armed with the just-obtained no-hole condition, we can go back to Step 4

and proceed to identify b = a− 1 = c+ 1 = d+ 2 = .... This gives equations (12).

Appendix F: Proof that i ∈ ITj , i 6∈ ITj+1 ⇒ ITj+1 = {j}

Using the no-hole condition it follows from the assumption that i 6∈ ITj+1, where i is deÞned

as i ∈ ITj , i ≤ h, ∀h ∈ ITj . Now deÞne i0 as i0 ∈ ITj+1, i
0 ≤ h, ∀h ∈ ITj+1. Notice that, by the

no-hole condition, i0 ∈ ITj and i0 > i. The statement of the claim now can be reformulated

as i0 = j. The proof is by contradiction, and follows two steps.

Step 1: Suppose, by contradiction, that i0 < j. Then W i0
Tj+1 < W

i0
Tj
.

To see this, suppose, again to the contrary, that W
i0
Tj+1 ≥ W i0

Tj
. From equation (11)

this implies that X
i∈ITj+1

A
i

1−αLiTj+1 ≤
X
i∈ITj

A
i

1−αLiTj . (A.4)

In turn this implies, again from equation (11), that W i
Tj+1 ≥W i

Tj
, ∀i ∈ ITj , ITj+1, i.e. for all

i such that j > i ≥ i0. Using this fact, always in combination with equation (11), in equations

(12), we Þnd that LjTj+1 + L
j−1
Tj+1 ≥ Lj−1

Tj
, and LiTj+1 ≥ LiTj for j − 1 > i > i0. Now notice

that the left side of (A.4) is (strictly) more than

A
j−1
1−α (LjTj+1 + L

j−1
Tj+1) +A

j−2
1−αLj−2

Tj+1 + ...+A
i0

1−αL
i0
Tj+1

while the right side is (strictly) less than

A
j−1
1−αLj−1

Tj
+A

j−2
1−αLj−2

Tj
+ ...+A

i0
1−α (L

i0
Tj
+ L

i0−1
Tj

+ ...+L
i
Tj
).

Since employments must sum to one, L
i0
Tj+1 = 1−

P
i0<i≤j LiTj+1, and (L

i0
Tj
+L

i0−1
Tj

+...+L
i
Tj
) =

1−Pi0<i<j L
i
Tj
. Hence, we get that condition (A.4) is satisÞed only if

(A
j−1
1−α−A

i0
1−α )(LjTj+1+L

j−1
Tj+1−Lj−1

Tj
)+(A

j−2
1−α−A

i0
1−α )(Lj−2

Tj+1−Lj−2
Tj
)+...+(A

i0+1

1−α−A
i0

1−α )(L
i0+1
Tj+1−Li

0+1
Tj

) < 0,
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which is a contradiction in view of the above-established fact that LjTj+1 + L
j−1
Tj+1 ≥ Lj−1

Tj
,

and LiTj+1 ≥ LiTj for j − 1 > i > i0.

Step 2:W
i0
Tj+1 < W

i0
Tj
implies that there are unexploited proÞt opportunities in period

Tj + 1.

To see this, consider a Þrm that, in period Tj + 1, hires individual x = 1 to work

with technology i. By the results in Appendix E this individual�s best alternative is to

work with technology i0. Hence, this policy is feasible if the wage offered to the worker is

W
i0
Tj+1 − (σi0 − σi). Maximizing proÞts with respect to endowment of type i capital, taking

interest rates as given, substituting the result back into the proÞt function, using equation

(4) with i = i0 to substitute for the interest rate and for the wage rate, we get that maximum

proÞts from this strategy are:

·
Ai+α

i0−i
α−1 − αAi0+

i0−i
α−1 − (1− α)Ai0

¸Ki0
Tj+1

L
i0
Tj+1

α + (σi0 − σi)
Now impose that this expression be non-positive, simplify, rearrange, and use again equation

(4) to Þnd that the non-proÞt condition is

1−A
i0−i
α−1

σi0 − σi
W
i0
Tj+1 ≥ 1. (A.5)

Now note that by the results of Appendix E the corresponding individual x = 1 of the

generation born in Tj worked with technology i. We then must have

W
i0
Tj
−W i

Tj

σi0 − σi
< 1,

otherwise x = 1 would have preferred i0 to i. Using equation (11) the last condition can be

rewritten as

1−A
i0−i
α−1

σi0 − σi
W
i0
Tj
< 1
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But Step 1 of this appendix establishes that W
i0
Tj+1 < W

i0
Tj
. Together with the last equation,

this means that the no-proÞt condition (A.5) must necessarily be violated, and we have a

contradiction.

Appendix G: Proof that ITj ⊂ ITj+1 ⇒ W i
Tj+1 < W i

Tj
, ∀i ∈ ITj

By contradiction, suppose that ∃h ∈ ITj , such that W
h
Tj+1 ≥ Wh

Tj
. Repeating a line of

argument already used in Appendix F this is readily seen to imply

X
i∈ITj+1

A
i

1−αLiTj+1 ≤
X
i∈ITj

A
i

1−αLiTj

and LiTj+1 > L
i
Tj
for all i ∈ ITj . Combined with ITj ⊂ ITj+1, these two facts are in contra-

diction.

Appendix H: Learning Externalities

In the text the distribution of learning costs was exogenous and time-invariant, and the post

revolutionary dynamics were uniquely driven by capital accumulation. It seems likely, how-

ever, that an individual�s cost of learning changes as the new technique diffuses throughout

the economy. It is easier to pick up computer skills when there are many computer-literate

individuals who can answer questions, and many machines to practice on. Also, it appears

that, as a technology has been around for some time, younger generations have an easier

time acquiring the necessary skills. This may reßect the fact that, once a technology be-

comes widespread, the mandatory schooling system incorporates the corresponding skills in

the core curriculum. In addition, growing up in a household where the parents have already

acquired certain skills will allow for a less costly transmission of the same skills to the chil-

dren. When these endogenous changes in learning costs occur, the dynamics of the model
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are no longer uniquely driven by capital accumulation.

To model this learning �externality by osmosis,� in this section I suppose that, at any

date t, the learning cost σ is uniformly distributed in the interval [0,σ/K1
t ]. In words, the

distribution is uniform in every period, but the upper bound moves down as the stock of new

capital increases. As the economy as a whole upgrades, everyone�s cost of learning is pushed

down. Hence, the distribution of learning costs is now endogenous and time-varying. Under

this assumption the labor supply functions become:

L1
t = max

(
0, min

"
1, (W 1

t −W 0
t )
K1
t

σ

#)
(A.6)

and L0
t = 1 − L1

t , which have the same interpretation as (7), with K
1
t /σ the density of the

new distribution.

The impact effects of a technological revolution in period T are identical to those with

time-invariant cost distribution. Provided that the maximum learning cost, indexed by σ,

is large enough relative to the productivity gain A, some workers migrate to the new sector

and enjoy wage gains, while some workers keep using the original technology and suffer wage

losses. Appendix A can be easily adapted to prove this formally. There is only one slight

complication. There is now a minimum level for the initial capital stock, K, below which

neither partial nor total adoption can occur.

The learning-externality variant delivers new insights, however, when post-revolutionary

dynamics are considered. As in Appendices A and B, for a given level of total savings from

the young in period t − 1, Kt, the labor-1 supply equation, the no-arbitrage condition, the

adding up constraint for labor and capital in the two sectors, and the four factor pricing

equations, form a system of equations that determines factor employments and prices as

functions of the state variable Kt. In this case, however, it turns out that this system can be
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solved explicitly. The solution includes

L1
t =

"
(1− α)A

σ(1−A 1
α−1 )α

# 1
1+α

Kt − 1

A
1

1−α − 1
. (A.7)

and

K1
t =

A
1

1−α

A
1

1−α − 1
Kt − σ

1
1+αh

(1− α)(A−A α
α−1 )

i 1
1+α (A

1
1−α − 1)

(A.8)

using which showing that K1
t /L

1
t , W

1
t and W

0
t are constant is trivial.

The dynamics are described by period t�s savings function:

Kt+1 =
β

1 + β

"Z W 1
t −W 0

t

0
(W 1

t − σ)
K1
t

σ
dσ +

Z σ/K1
t

W1
t −W0

t

W 0
t

K1
t

σ
dσ

#

=
β

1 + β

"
K1
t

2σ
(W 1

t −W 0
t )

2 +W 0

#

Substituting from (4), (A.7) and (A.8) this yields:

Kt+1 =
β

1 + β

1

2A
α

1−α

"
(1− α)σα
(A−A α

α−1 )α

# 1
1+α

1 +A 1
1−α

"
(1− α)(A−A α

α−1 )

σ

# 1
1+α

Kt

 (A.9)

The notable feature of these relations is, of course, their linearity. Since the capital-

labor ratio K1
t /L

1
t is independent of Kt, hence so are the wages W

1
t and W

0
t . In (A.9)

slope and intercept are positive. Using (A.7) and (A.9) one can easily draw the analogous

of Figures 1 and 2. What will happen depends in part on the slope of (A.9). If the slope is

less than 1, whether or not full absorption obtains depends on whether the point K∗ is on

the right or on the left of point �K. In other words, if the slope of (A.9) is less than one we

are in the same situation encountered in the case of the time-invariant distribution. Instead,

if the slope of (A.9) is greater than 1, the point of full absorption of the labor force into

the skilled technology is necessarily reached in Þnite time. After this, the economy returns

to a standard-looking path of capital accumulation with decreasing returns and a unique

technology.
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So what do we learn from this variant to the model? As already noted, the special

algebraic representation I have chosen for the learning externality implies that capital-labor

ratios, and hence wages, are constant throughout the post-revolutionary dynamics. Now

recall that increasing capital-labor ratios and wage differentials were the key driving forces

for such dynamics in Section 2. Hence, all dynamic developments we observe in the present

setting are entirely due to the mere presence of the learning externality. SpeciÞcally, as the

revolution increases output and the capital stock, the reason why more and more workers

move from sector 0 to sector 1 is not, as before, that wage differentials widen, but that the

learning cost of an increasing number of workers fall below the (constant) wage differential.

In turn, the increase in the relative amount of resources employed in the more productive

sector increases output, and so on. The possibility of �steep� dynamics, such as when the

slope of (A.9) is more than 1, implies that the learning externality by itself can have dramatic

effects on the dynamics of the post-revolutionary economy.

More generally, this example points to the importance of the shape of the learning-

cost distribution in determining wage inequality in the long-run. Even in the (general) case

in which wage differentials increase over time, the rate at which workers move from sector

0 to sector 1 depends on the frequency distribution of the learning costs at the current

wage differential. The same increase in W 1 −W 0 can generate widely different amounts of

labor �migration� at different points of the cost distribution. In turn, such varying rates of

migration can profoundly affect the rate of capital accumulation. If, for example, the rate

at which workers move from sector 0 to sector 1 increases very sharply over time, the curves

in the right sides of The analogous of Figures 1 and 2 may even become convex: rapidly

increasing rates of reallocation of resources from the less to the more productive sector can
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more than compensate for the declining marginal products of capital generated by increasing

capital-labor ratios.

Appendix I: Two-Industry Extension of the Model(Sketch)

The model is a straightforward extension of the one in Section 2. For current purposes it

is sufficient to focus on a static version, but adding dynamics is trivial. Consumers derive

utility from the consumption of two goods, x and z. Tastes are identical among consumers

and they are represented by the Cobb-Douglas function XζZ1−ζ (0 < ζ < 1). Maximization

of this objective under a budget constraint leads to the condition:

X

Z
= p

ζ

1− ζ (A.10)

Where p is the relative price of good z. In the pre-revolutionary economy the two goods can

only be produced by means of one technology:

X = (K0
x)
α(L0

x)
1−α

Z = (K0
z )
β(L0

z)
1−β

(A.11)

where Kj
i (L

j
i ) is employment of capital (labor) of type j in production of good i. To Þx ideas

assume that β ≥ α so that z is the capital-intensive sector. Tools of type j require similar

skills independently of the industry in which they are used. Hence labor of type 0 can be

used in either industry, and the same full mobility applies to capital. Hence, assuming that

all markets are perfectly competitive leads to the implication that there is a unique wage and

a unique interest rate across the two sectors before the revolution. The model is closed by

the adding-up constraints L0
x + L

0
z = 1 and K0

x +K
0
z = 1. Tedious but elementary algebra
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leads to the following solution for the pre-revolutionary economy.

L0
z = Lz = (1−β)(1−ζ)

(1−β)(1−ζ)+(1−α)ζ

K0
z = Kz = β(1−ζ)

β(1−ζ)+αζ

p = p = αα(1−α)1−α
ββ(1−β)1−β

h
(1−β)(1−ζ)+(1−α)ζ

β(1−ζ)+αζ

iα−β
(A.12)

Where as in the paper an overline denotes a pre-revolutionary equilibrium value. In the

special case in which α = β we have: X = Kx = Lx = ζ, Z = Kz = Lz = 1 − ζ, and

p = kx = kz=1

The technological revolution introduces capital of type 1, which, if operated by work-

ers with the appropriate skills, is more productive than the original capital. I assume that a

fraction L1 of the population costlessly obtains the corresponding skills (endogenizing L1 is

simple but adds nothing for my present goals). The new production functions are:

X = (K0
x)
α(L0

x)
1−α +A(K1

x)
α(L1

x)
1−α

Z = (K0
z )
β(L0

z)
1−β +B(K1

z )
β(L1

z)
1−β

(A.13)

where I assume A,B > 1. The solution of the model changes slightly according to whether

A
1

1−α >
<B

1
1−β , but the qualitative implications are independent of this. So let�s focus on the

special case in which A
1

1−α = B
1

1−β . This generates an interior solution, i.e. a solution with

Lij > 0, i = 0, 1, j = x, z. (Other parameter conÞgurations lead to Lij = 0 for at least

one of the four i, j combinations). DeÞne µ as the fraction of L1 who work in sector x, i.e.

L1
x = µL

1. µ is endogenous. The model is closed by the adding up constraints:

L1
z = (1− µ)L1

L0
x + L

0
z = (1−L1)

K0
x +K

1
x +K

0
z +K

1
z = 1

(A.14)
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As in Section 2 of the paper, the solution features W 0 < W < W 1, where W is the

pre-revolution wage. Since both sectors have workers of both type 0 and type 1, this means

that there is an increase in within-industry wage inequality. Some other properties of the

post-revolutionary equilibrium are:

L0
x =

(1− α)ζ[1−L1 +B
1

1−β (1− µ)L1]− (1− β)(1− ζ)B 1
1−βµL1

(1− α)ζ + (1− β)(1− ζ) (A.15)

L0
z =

(1− β)(1− ζ)[1− L1 +B
1

1−βµL1]− (1− α)ζ[B 1
1−β (1− µ)L1]

(1− α)ζ + (1− β)(1− ζ) (A.16)

DeÞning Lx = L
0
x + L

1
x = L

0
x + µL

1 we get:

Lx =
(1− α)ζ[1− (1−B 1

1−β )(1− µ)L1]− (1− β)(1− ζ)(B 1
1−β − 1)µL1

(1− α)ζ + (1− β)(1− ζ) (A.17)

and Lz = 1− Lx. Also, we get:

K0
x +K

1
x = Kx =

αζ

αζ + β(1− ζ) (A.18)

and Kz = 1 −Kx. It turns out that the parameter µ itself is indeterminate. I.e. there is

an inÞnity of equilibria, one for each value of 0 < µ < 1. Suppose then that we have an

equilibrium where:

µ <
(1− α)ζ

(1− α)ζ + (1− β)(1− ζ)

In other words, the capital intensive sector (z) has a relatively large proportion of type-1

workers. Then:

Kz/Lz
Kx/Lx

>
Kz/Lz

Kx/Lx

I.e. the interindustry inequality of capital per worker increases, relative to its pre-revolution

level. Furthermore,

(L0
zW

0 + L1
zW

1)/Lz
(L0
xW

0 + L1
xW

1)/Lx
> 1
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implying that interindustry average-wage inequality increases, with the capital intensive in-

dustry experiencing the largest gains. Finally,

Lx
Lz

>
Lx

Lz

This means that total employment falls in the capital-intensive industry and increases in

the labor-intensive industry. This last result is important to explain why the employment-

weighted log-variance of the capital-labor ratio does not increase. DeÞne ki = log(Ki/Li) The

employment-weighted log-mean is k = kxLx + kzLz. The employment-weighted log-variance

is V = (kx−k)2Lx+(kz−k)2Lz. For the pre-revolutionary economy, deÞne ki = log(Ki/Li).

The employment-weighted log-mean is k = kxLx + kzLz and the employment-weighted log-

variance is: V = (kx − k)2Lx + (kz − k)2Lz. Now: while the unweighted variance always

increases, the weighted variance may well decrease. This happens, for example, for the

following set of values:

α = 0.1; ζ = 0.5;β = 0.6;µ = 0.1;B
1

1−β = 2;L1 = 0.5; (A.19)

With these values, we have that the unweighted variance increases from 0.32 to 1.84, while

the weighted variance falls from 0.27 to 0.08. The intuition for this is given above (last

paragraph of Point 2) and in the paper.
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