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Modeling and Forecasting Daily Electricity Load
Curves: A Hybrid Approach

Haeran CHO, Yannig GOUDE, Xavier BROSSAT, and Qiwei YAO

We propose a hybrid approach for the modeling and the short-term forecasting of electricity loads. Two building blocks of our approach are
(1) modeling the overall trend and seasonality by fitting a generalized additive model to the weekly averages of the load and (2) modeling
the dependence structure across consecutive daily loads via curve linear regression. For the latter, a new methodology is proposed for linear
regression with both curve response and curve regressors. The key idea behind the proposed methodology is dimension reduction based
on a singular value decomposition in a Hilbert space, which reduces the curve regression problem to several ordinary (i.e., scalar) linear
regression problems. We illustrate the hybrid method using French electricity loads between 1996 and 2009, on which we also compare
our method with other available models including the Électricité de France operational model. Supplementary materials for this article are
available online.

KEY WORDS: Correlation dimension; Dimension reduction; Electricity loads; Generalized additive models; Singular value
decomposition.

1. INTRODUCTION

As electricity can be stored or discharged only at extra costs,
it is an important task for electricity providers to model and fore-
cast electricity loads accurately over short-term (from one-day
to one-month ahead) or middle-term (from one-month to five-
year ahead) horizons. The electricity load forecast is an essential
component of the optimization tools adopted by energy compa-
nies for power system scheduling. A small improvement in load
forecasting can bring substantial benefits by reducing produc-
tion costs as well as increasing trading advantages, especially
during peak periods.

The French energy company Électricité de France (EDF)
manages a large panel of production units in France and in Eu-
rope, which include water dams, nuclear plants, wind turbines,
and coal and gas plants. Over the years, EDF has developed a
very accurate load forecasting model that consists of complex re-
gression methods coupled with classical time series techniques
such as the seasonal autoregressive integrated moving average
(SARIMA) model. The model integrates a great deal of physical
knowledge of French electricity consumption patterns that has
been accumulated over 20 years, such as the fact that the tem-
perature felt indoors is more relevant than the real temperature
in modeling the electricity load. Furthermore, it includes exoge-
nous information ranging from economic growth forecasts to
different tariff options provided by EDF. The forecasting model
in operation performs very well at present, attaining about 1%
mean absolute percentage error (MAPE) in forecasting over the
one-day horizon. However, it has a drawback in terms of its
poor capacity in adapting to changes in electricity consump-
tion habits, which may occur due to the opening of new elec-
tricity markets, technological innovations, social and economic
changes, to name a few. Hence, it is strategically important to
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develop some new forecasting models that are more adaptive to
an ever-changing electricity consumption environment, and the
hybrid method proposed in this article, designed for short-term
forecasting for daily loads, represents a determined effort in this
direction.

Electricity load exhibits interesting features at different lev-
els. Figure 1 displays the electricity load in France measured
every half an hour from 1996 to 2009. First of all, there is an
overall increasing trend due to meteorological and economic
factors. In addition, a seasonal pattern repeats itself every year
that can be explained by seasonal changes in temperature, day
light duration, and cloud cover. Engle et al. (1986) and Taylor
and Buizza (2002) discussed the impact of meteorological fac-
tors on the electricity load, and singled out the temperature as
being the most important due to the large demand of electrical
heating in cold weather. Further studies on the meteorologi-
cal effect include Taylor and McSharry (2008), where seasonal
patterns of electricity loads over 10 European countries were
reported. Also, there exist daily patterns that, unfortunately, do
not show up due to the large scale of Figure 1, attributed to
varying demands for electricity within a day. Figure 6 provides
an example of such daily patterns.

Based on the above observations, we propose to model elec-
tricity loads at two different levels using different methods,
hence the name hybrid approach. First, assuming that the long-
term trends do not vary greatly within a week, we extract those
trends from weekly average loads using a generalized additive
model (GAM), where temperature and other meteorological fac-
tors are included as additional explanatory variables. After re-
moving the long-term trend component from the data, we view
the daily loads as curves and model the dynamic dependence
among the electricity loads of successive days via curve lin-
ear regression. For this, a new dimension-reduction technique
based on a singular value decomposition (SVD) in Hilbert space
is proposed, which reduces the regression with a curve response
and a curve regressor to several ordinary (i.e., scalar) linear
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Figure 1. Electricity load from 1996 to 2009 in France.

regression models. Regarding the daily loads as curves, our
approach takes advantage of the continuity of the consump-
tion curves in statistical modeling, as well as embedding some
nonstationary features (such as daily patterns) into a stationary
framework in a functional space.

When applied to electricity load forecasting, the proposed
method is shown to provide more accurate predictions than con-
ventional methods such as those based on SARIMA models
or exponential smoothing. Although the operational model at
EDF provides more accurate predictions than our method, the
latter is considerably simpler and does not make use of the full
subject knowledge that has been accumulated over more than
20 years at the EDF, which is not available in the public do-
main. Hence, our approach is more adaptive to the changing
electricity consumption environment while retaining a compet-
itive prediction capacity, and can be adopted as a generic tool
applicable to a wide range of problems including electricity
load forecasting in countries other than France. Furthermore, it
has the potential to serve as a building block for constructing
a more effective operational model when incorporating the full
EDF subject knowledge.

There is a growing body of literature devoted to electric-
ity load forecasting models. Focusing on the main interest of
this article, we list below the recent articles on short-term load
forecasting; see Bunn and Farmer (1985) for a more compre-
hensive overview. In the category of parametric approaches,
Ramanathan et al. (1997) proposed linear regression models
with autoregressive errors for each hour of a day. Univariate
methods such as those based on SARIMA models or exponen-
tial smoothing can be found in Hyndman et al. (2002), Taylor, de
Menezes, and McSharry (2006), and Taylor (2010), and those
based on state-space models in Dordonnat et al. (2008) and
Dordonnat et al. (2011). Among the nonparametric and semi-
parametric methods, Engle et al. (1986) proposed to include
the temperature effect in the load modeling, and Harvey and
Koopman (1993) proposed a time-varying spline model that
captured both the temperature effect and the seasonal patterns
in a semiparametric way. GAMs for electricity loads were stud-
ied in Pierrot and Goude (2011) and Fan and Hyndman (2012),
where the semiparametric approaches were shown to be well
adapted to nonlinear behaviors of the electricity load signal.
In Antoniadis, Paparoditis, and Sapatinas (2006), a forecasting
model based on functional data analysis was proposed, which
treated the daily electricity loads as curves, and the approach
has been further developed in Cugliari (2011). Cottet and Smith

(2003) proposed a Bayesian autoregressive model for short-term
forecasts, where the meteorological effects were estimated as
nonlinear using semiparametric regression methods. They ob-
tained good forecasting results with New South Wales dataset.

The rest of the article is organized as follows. In Section 2,
we present the modeling of weekly average loads using a GAM.
Then Section 3 discusses the modeling of the dependence struc-
ture between daily loads in a curve linear regression framework.
We conduct a comparison study in Section 4, where our new
method as well as other competitors are applied to predict the
French daily loads in 2009. Section 5 contains some conclusive
remarks. All the proofs are relegated to an online supplementary
document.

2. MODELING WEEKLY AVERAGES

Assuming that the overall trend and seasonality do not vary
greatly within a week, we propose to model the long-term trends
with the weekly averages, that is, we treat the trend and seasonal
component as being constant within each week. In this manner,
we lose little from the gradual changes of the trends within each
week, while preserving the dependence structure across the elec-
tricity loads of different days. The weekly averages of the EDF
loads from 1996 to 2008 are plotted in Figure 2. In the literature,
it has been noted that some meteorological factors, such as tem-
perature and cloud cover, have a significant impact on electricity
consumption patterns. While there are other detrending tech-
niques that have been proposed for removing long-term trends
and seasonal cycles, we fit the weekly averages using a GAM
for its ability to model implicit nonlinear relationships between
response and explanatory variables without suffering from the
so-called “curse of dimensionality”; see Hastie and Tibshirani
(1990) and Wood (2006) for further details on the GAM, and
Pierrot, Laluque, and Goude (2009), Pierrot and Goude (2011),
and Fan and Hyndman (2012) for its application to electricity
load modeling. Denoting the time index representing each week
by t, the explanatory variables considered in fitting the weekly
average load process Lt are as follows:Ot is the weekly median
of the offset (a temporal variable determined by the experts at
EDF to represent the seasonal trend in the data, taking values
−3, −2, −1, and 0 to denote different winter holidays, 1 to de-
note spring, 2–6 to denote summer and summer holidays, and 7
to denote autumn), Tt is the weekly average of the temperature,
Ct is the weekly average of the cloud cover, and It is the weekly
index ranging from 1 to 53.
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Figure 2. Weekly average electricity load in France from 1996 to 2008.

Our first attempt at taking into account the meteorological
effects as well as the temporal trend is summarized in the fol-
lowing GAM with the Gaussian link function

Lt = f1(t) + f2(Ot ) + f3(Lt−1) + f4(Tt ) + f5(Tt−1) + f6(Ct ),
(1)

where each fj is a smooth function of the corresponding co-
variate with thin plate regression splines as a smoothing basis.
We use the R package mgcv introduced in Wood (2006), where
each smooth function fj is estimated by penalized regression
splines. In this implementation, the amount of penalization is
calibrated according to the generalized cross-validation (GCV)
score, see Wood (2004, 2011) for details.

We note that the basis used to estimate f1 has knots at each
first week of September, which are imposed to model the time-
varying trend in the electricity load at the yearly level. The

boxplot of the residuals from fitting the above GAM to the
weekly average load between 1996 and 2008 is provided in
Figure 3, and the estimated curves for f1, . . . , f6 in (1) are
plotted in Figure 4, with shaded area representing the twice
standard error bands below and above the estimate. The fitted
curve explains 98.7% of the data, and the MAPE and the root
mean square error (RMSE) from the estimated curve are 1.63%
and 1014 MW, respectively. The two error measures, MAPE
and RMSE, are defined as

MAPE = 1

T

T∑
t=1

∣∣∣∣ L̂t − Lt

Lt

∣∣∣∣ and

RMSE =
{

1

T

T∑
t=1

(L̂t − Lt )
2

}1/2

, (2)
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Figure 3. Boxplots of the residuals from fitting the weekly average load between 1996 and 2008 using the model (1) (left) and the model (3)
(right).

D
ow

nl
oa

de
d 

by
 [

L
SE

 L
ib

ra
ry

] 
at

 1
3:

36
 1

8 
M

ar
ch

 2
01

3 



10 Journal of the American Statistical Association, March 2013

0 100 200 300 400 500 600 700

−5
00

0
0

50
00

15
00

0

Trend

−2 0 2 4 6

−5
00

0
0

50
00

15
00

0

Yearly Pattern

30000 40000 50000 60000 70000

−5
00

0
0

50
00

15
00

0

Lagged Load Effect

0 5 10 15 20 25

−5
00

0
0

50
00

15
00

0

Temperature Effect

0 5 10 15 20 25

−5
00

0
0

50
00

15
00

0

Lagged Temperature Effect

2 3 4 5 6 7

−5
00

0
0

50
00

15
00

0

Cloud Cover Effect

t Ot

Lt−1 Tt

Tt−1 Ct

f
1
(t

)

f
2
(O

t
)

f
3
(L

t−
1
)

f
4
(T

t
)

f
5
(T

t −
1
)

f
6
(C

t
)

Figure 4. Estimated f1, . . . , f6 from model (1); shaded regions represent the confidence bands.

where L̂t denotes the estimated (or predicted) load in the
week t.

We state below some observations based on the estimated
functions in Figure 4. The top left panel shows that the electricity
load increases over time t, and that the trend is almost linear.
The top right panel shows clearly the presence of seasonality as
the load is lower during holidays and in summer than in winter.
As for the lagged load effect, Lt increases with respect to its
lagged valueLt−1 (the second left panel) and the rate of increase
is greater when Lt−1 > 5 × 104 approximately, which implies
that the value 5 × 104 may be regarded as a “threshold” acting
on the impact of Lt−1 on Lt . Since the increase in the usage
of electricity is closely related to the climate, which in turn is
linked to the time of the year, we may include the joint effect

of Lt−1 and It in the model to accommodate the dependence
between those two variables. Also, the impact of temperature is
significant (the second right panel). Low temperatures lead to
high electricity consumption due to electrical heating, resulting
in the initial sharp decrease in f̂4. Then as the temperature
increases from about 17◦C upward, f̂4 also increases slowly,
which can be accounted for by the use of cooling systems in hot
weather. As the meteorological changes within a year are closely
related to the time index, we may include the joint effect of the
variables Tt and It in the model. The bottom panels show that,
although not as prominent as other terms, the lagged temperature
and the cloud cover do have an impact on the weekly average
load at large values of Tt−1 and Ct . The effect of cloud cover
is significantly different from 0 for large values of Ct , as heavy
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Figure 5. Estimated f3 (left) and f4 (right) from model (3).

cloud cover induces the increasing use of lighting (the bottom
right panel). We note that the estimated effect of low cloud cover
may be an artifact: there are only few observations available for
low cloud cover and thus the variance of the fitted curve at such
small values of Ct is large.

Based on the above observations, we propose another model

Lt = f1(t) + f2(Ot ) + f3(Lt−1, It ) + f4(Tt , It ) + f5(Tt−1, It )

+ f6(Ct, It ), (3)

where f3, . . . , f6 include the weekly index It as a covariate. To
study the bivariate effects, the estimated f3 and f4 are plotted
in Figure 5. The impact of the lagged load Lt−1 on the load Lt
is similar as previously described in the sense that the rate of
increase of Lt changes when Lt−1 is greater than a threshold
value. However, we also note that the relationship betweenLt−1

and Lt varies throughout a year with the weekly index It , and
that the impact of Lt−1 is far stronger in winter than in summer.
As for the effect of temperature, there is a smooth transition
observable throughout a year from the winter heating effect to
the summer cooling effect.

With the new model, there is an increase in the percentage of
the data explained (99.2%), and both the MAPE (1.28%) and the
RMSE (801 MW) of the fitted trend have decreased. Fur-
ther, the GCV score indicates that the new model is favored
(8.4 × 105) over the previous one (1.2 × 106). Also, when com-
paring the forecasts from the two models for the weekly average
loads of 2009, model (3) performed considerably better (MAPE
1.72%, RMSE 1250 MW) than model (1) (MAPE 2.15%, RMSE
1532 MW). We note that the superior performance of the model
(3) at the weekly level carries over to that at the daily electric-
ity load forecasting; when applied to forecast the daily loads in
2009, the MAPE and RMSE from the model (3) were 1.35%
and 869 MW, respectively, whereas the model (1) led to 1.41%
and 901 MW (see Section 4 for full details of the forecasting
procedure). From these observations and also from the residual
boxplots in Figure 3, we choose model (3) over model (1).

3. REGRESSION OF DAILY LOAD CURVES

Once the long-term trend is fitted as in Section 2 and removed,
we regard the residuals on the ith day as a curve Yi(·) defined
on the index set I1, and model the dependency among the daily
loads via curve linear regression as

Yi(u) =
∫
I2

Xi(v)β(u, v)dv + εi(u) for u ∈ I1, (4)

where Xi(·) can be, for example, the residual curve on the
(i−1)th day (i.e., Yi−1(·)), or the curve joining Yi−1(·) and the
temperature curve on the ith day. Therefore, the index set of
Xi(·), say I2, may be different from I1. In (4), β is a regression
coefficient function defined on I1 × I2, and εi(·) is noise with
mean 0.

Linear regression with curves as both response and regressor
has been studied by Ramsay and Dalzell (1991), He, Müller,
and Wang (2000), Chiou, Müller, and Wang (2004), and Yao,
Müller, and Wang (2005) among others. The conventional ap-
proach is to apply the Karhunen–Loève decomposition to both
Yi(·) and Xi(·), and then to fit a regression model using the fi-
nite number of terms obtained from such decompositions. The
Karhunen–Loève decomposition has featured predominantly in
functional data analysis; see also Fan and Zhang (1998) and
Hall and Horowitz (2007). This approach is identical to di-
mension reduction based on principal component analysis in
multivariate analysis. Since the principal components do not
necessarily represent the directions in which Xi(·) and Yi(·) are
most correlated, we present below a novel approach where the
SVD is applied to single out the directions upon which the pro-
jections of Yi(·) are most correlated with Xi(·). Our method is
closely related to canonical correlation analysis yet we focus
on regressing Yi(·) on Xi(·), and thus Yi(·) and Xi(·) are not
treated on an equal footing, which is different from, and much
simpler than, the canonical correlation analysis. The literature
on functional canonical correlation analysis includes Hannan
(1961), Silverman (1996), He, Müller, and Wang (2003), Cupi-
don et al. (2008), Eubank and Hsing (2008), and Yang, Müller,
and Stadtmüller (2011).
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3.1 Curve Linear Regression via Dimension Reduction

Let {Yi(·), Xi(·)}, i = 1, . . . , n, be a random sample where
Yi(·) ∈ L2(I1),Xi(·) ∈ L2(I2), and let I1 and I2 be two compact
subsets of R. We denote by L2(I) the Hilbert space consisting
of all the square integrable curves defined on the set I, which is
equipped with the inner product 〈f, g〉 = ∫

I f (u)g(u)du for any
f, g ∈ L2(I). We assume that E{Yi(u)} = 0 for all u ∈ I1 and
E{Xi(v)} = 0 for all v ∈ I2, and denote the covariance function
between Yi(·) andXi(·) by�(u, v) = cov{Yi(u), Xi(v)}. Under
the assumption∫

I1

E{Yi(u)2}du+
∫
I2

E{Xi(v)2}dv < ∞, (5)

� defines the following two bounded operators between L2(I1)
and L2(I2):

f1(u) →
∫
I1

�(u, v)f1(u)du ∈ L2(I2),

f2(v) →
∫
I2

�(u, v)f2(v)dv ∈ L2(I1)

for any fi ∈ L2(Ii). Based on the SVD, there exists a triple
sequence {(ϕj , ψj , λj ), j = 1, 2, . . .} for which

�(u, v) =
∞∑
j=1

√
λj ϕj (u)ψj (v), (6)

where {ϕj } is an orthonormal basis of L2(I1), {ψj } is an or-
thonormal basis of L2(I2), and {λj } are ordered such that

λ1 ≥ λ2 ≥ · · · ≥ 0. (7)

Further, it holds that for u ∈ I1, v ∈ I2 and j = 1, 2, . . . ,∫
I1

M1(u, z)ϕj (z) dz = λj ϕj (u),∫
I2

M2(v, z)ψj (z) dz = λj ψj (v), (8)

where Mi is a nonnegative operator defined on L2(Ii) as

M1(u, u′) =
∫
I2

�(u, z)�(u′, z) dz,

M2(v, v′) =
∫
I1

�(z, v)�(z, v′) dz.

It is clear from (8) that λj is the jth largest eigenvalue of M1

and M2 with ϕj and ψj as the corresponding eigenfunctions,
respectively. Since {ϕj } and {ψj } are the orthonormal basis of
L2(I1) and L2(I2), we may write

Yi(u) =
∞∑
j=1

ξijϕj (u), Xi(v) =
∞∑
j=1

ηijψj (v), (9)

where ξij and ηij are random variables defined as

ξij =
∫
I1

Yi(u)ϕj (u)du, ηij =
∫
I2

Xi(v)ψj (v)dv. (10)

It follows from (6) that

cov(ξij , ηik) = E(ξij ηik) =
{√

λj for j = k,

0 for j 
= k.
(11)

We refer to Smithies (1937) for further details on the SVD in a
Hilbert space.

Now, we are ready to introduce the notion of the correlation
dimension between the two curves. See Hall and Vial (2006)
and Bathia, Yao, and Ziegelmann (2010) for the definitions of
curve dimensionality in different contexts.

Definition 1. The correlation between curves Yi(·) and Xi(·)
is r-dimensional if λr > 0 and λr+1 = 0 in (7).

When the correlation between Yi(·) and Xi(·) is r-
dimensional, it follows from (11) that cov{ξij , Xi(v)} = 0 for all
j > r and v ∈ I2. Moreover, the curve linear regression model
(4) admits an equivalent representation with r (scalar) linear
regression models; see Theorem 1. Before presenting the the-
orem, we further assume that the regression coefficient β(u, v)
is in the Hilbert space L2(I1 × I2), and that εi(·) are iid with
E{εi(u)} = 0 and E{Xi(v)εj (u)} = 0 for any u ∈ I1, v ∈ I2,
and i, j ≥ 1.

Theorem 1. Let the linear correlation between Yi(·) andXi(·)
be r-dimensional. Then the curve regression (4) may be repre-
sented equivalently by

ξij = ∑∞
k=1 βjkηik + εij for j = 1, . . . , r,

ξij = εij for j = r + 1, r + 2, . . . ,
(12)

where εij = ∫
I1
ϕj (u)εi(u)du and βjk = ∫

I1×I2
ϕj (u)ψk(v)

β(u, v)dudv.

The proof of Theorem 1 can be found in the supplementary
document. Some remarks are listed in order.

(a) For each j = 1, . . . , r , we may apply model selec-
tion criteria such as the Akaike information criterion,
to select the variables to be included in the first lin-
ear regression model of (12) among {ηik, k ≥ 1}, not-
ing var(ηik) → 0 as k → ∞; see (5) and (9). We also
note that {ϕj (u)ψk(v)}j,k form an orthonormal basis of
L2(I1 × I2). Since β(u, v) ∈ L2(I1 × I2), it holds that∑∞

j=1

∑∞
k=1 β

2
jk = ∫

I1×I2
β(u, v)2dudv < ∞.

(b) In fact, Theorem 1 holds for any valid expansion of
Xi(v) as Xi(v) = ∑

k ηikψk(v), provided {ξij } are ob-
tained from the SVD. For example, we may use the
Karhunen–Loève decomposition ofXi(·). Then resulting
ηik is the projection ofXi(·) on the kth principal direction,
and those {ηik} are uncorrelated with each other.

(c) Let Xi(·) be of finite dimension in the sense that its
Karhunen–Loève decomposition has q terms only as
Xi(v) = ∑q

k=1 ζikγk(v), where q(≥ r) is a finite inte-
ger, {γk(·)}qk=1 are q orthonormal functions in L2(I2),
and ζi1, . . . , ζiq are uncorrelated with var(ζik) > 0 for all
k = 1, . . . , q. Without loss of generality, we may assume
that var(ζik) = 1, which can be achieved by replacing
Xi(v) with its linear transformation

∫
I2
�(v,w)Xi(w)dw,

where �(v,w) = ∑q

k=1 γk(v)γk(w)/
√

var(ζik). Then for
such Xi(·), the second equation in (9) is reduced to
Xi(v) = ∑q

k=1 ηikψk(v) with {ηik} satisfying var(ηik) =
1 and cov(ηik, ηil) = 0 for any k 
= l. This, together with
(11) and (12), implies that βjk = 0 in (12) for all j 
= k.
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Cho et al.: Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach 13

Hence, Equation (12) is reduced to

ξij = βjjηij + εij for j = 1, . . . , r,
ξij = εij for j = r + 1, r + 2, . . . ,

(13)

that is, under the additional condition on the dimension-
ality of Xi(·), the curve regression (4) is reduced to r
simple linear regression problems.

(d) We provide a recap of the above results in the context
of vector regression. Let yi and xi be, respectively, p ×
1 and q × 1 vectors. Suppose that rk(�yx) = r , where
�yx = cov(yi , xi). Then the multiple linear regression
problem yi = Bxi + εi may be reduced to the r scalar
linear regression problems:

uij = v′
iβj + εij , j = 1, . . . , r. (14)

Here, (ui1, . . . , uip)′ = U′yi and vi = (vi1, . . . , viq)′ =
V′xi . Also, �yx = U�V′ is the SVD of �yx with UU′ =
Ip, VV′ = Iq and � is a p × q diagonal matrix with
only the first r(≤ min(p, q)) main diagonal elements be-
ing nonzero. If var(xi) = σ 2Iq is satisfied in addition,
Equation (14) reduces to r simple regression models
uij = vijβj + εij for j = 1, . . . , r .

3.2 Estimation

We assume the availability of observed curves {Yi(·), Xi(·)}
for i = 1, . . . , n. Recalling �(u, v) = cov{Yi(u), Xi(v)}, let

�̂(u, v) = 1

n

n∑
i=1

{Yi(u) − Ȳ (u)}{Xi(v) − X̄(v)},

where Ȳ (u) = n−1 ∑
i Yi(u) and X̄(v) = n−1 ∑

i Xi(v). Per-
forming the SVD on �̂(u, v), we obtain the estimators
(̂λj , ϕ̂j , ψ̂j ) for (λj , ϕj , ψj ) as defined in (6). Note that this
SVD is effectively an eigenanalysis of the nonnegative operator

M̂1(u, u′) =
∫
I2

�̂(u, v)�̂(u′, v)dv, (15)

which may be transformed into an eigenanalysis of a nonnega-
tive definite matrix. Furthermore, ϕ̂j (·) and ψ̂j (·) may be taken
as linear combinations of, respectively, the observed curves Yi(·)
and Xi(·). See, for example, Section 2.2.2 of Bathia, Yao, and
Ziegelmann (2010). Proposition 1 presents the asymptotic prop-
erties for the estimators λ̂j . Its proof is similar to that of Theorem
1 of Bathia, Yao, and Ziegelmann (2010) and is thus omitted.

Proposition 1. Suppose that {Yi(·), Xi(·)} is strictly sta-
tionary and ψ-mixing with the mixing coefficients ψ(k) sat-
isfying the condition

∑
k≥1 kψ(k)1/2 < ∞. Further, assume

E{∫I1
Yi(u)2du+ ∫

I2
Xi(v)2dv}2 < ∞ and letλ1 > · · · > λr >

0 = λr+1 = λr+2 = · · ·. Then as n → ∞,

(1) |̂λk − λk| = Op(n−1/2) for 1 ≤ k ≤ r , and
(2) |̂λk| = Op(n−1) for k > r .

We refer to Section 2.6 of Fan and Yao (2003) for further
details on mixing conditions. The fast convergence for the zero-
eigenvalues λj with j > r is due to the quadratic form in (15),
and the relevant discussion is provided in Bathia, Yao, and
Ziegelmann (2010) and Lam and Yao (2012). It follows from
Proposition 1 that the ratios λ̂j+1/̂λj for j < r are asymptot-
ically bounded away from 0, and λ̂r+1/̂λr → 0 in probability.

This motivates the following ratio-based estimator. In Lam and
Yao (2012), a more elaborate investigation of this estimator can
be found in a different context.

The Ratio-based Estimator for the Correlation Dimension
r. r̂ = arg min1≤j≤d λ̂j+1/̂λj , where d > r is a fixed and pre-
specified integer.

One alternative is to use properly defined information criteria
as in, for example, Hallin and Liška (2007), where a similar idea
was adopted for high-dimensional time series analysis. To this
end, we define

IC1(q) = 1

d2

d∑
k=q+1

λ̂k + τ1q · g(n), and

IC2(q) = log

⎛⎝c∗ + 1

d2

d∑
k=q+1

λ̂k

⎞⎠ + τ2q · g(n),

where c∗, τ1, τ2 > 0 are constants, d > r is a prespecified inte-
ger, and g(n) > 0 satisfies

n · g(n) → ∞ and g(n) → 0, as n → ∞. (17)

Theorem 2 shows that r̂ ≡ arg min0≤q<d ICi(q) is a consistent
estimator of r for both i = 1, 2. The proof is given in the online
supplementary document.

Theorem 2. Let the conditions of Proposition 1 hold and both
r and d be fixed as n → ∞. Then, for both i = 1, 2, we have
P {ICi(r) < ICi(q)} → 1 for any 0 ≤ q < d and q 
= r .

The choice of c∗ is not critical as it is introduced to ensure that
the term inside the logarithm is positive. The proof of Theorem
2 indicates that the consistency holds for any constants τ1 and
τ2. However, they affect the finite sample performance of the
method and therefore in practice, the choice of the tuning pa-
rameters τ1 and τ2 and the penalty function g(n) requires more
care. In our data analysis, we set g(n) = n−1/2 and elaborate the
choice of τi using the following majority voting scheme.

We start with two values τ∗ and τ ∗ such that ICi(q) is mini-
mized at q = d for τi ≤ τ∗, and at q = 0 for any τi ≥ τ ∗. Over
the interval [τ∗, τ ∗], the function h(τ ) ≡ arg minq ICi(q) is non-
increasing in τ . Then, assigning a grid of values from [τ∗, τ ∗]
as τi , we look for the q that is returned over the longest in-
terval of τi within [τ∗, τ ∗], and set such q as the estimate of
r. Figure 8 shows an example of applying IC2(q) for the se-
lection of r, where IC2(q) is computed over q = 1, . . . , 20 for
100 different values of τ2. In this example, q = 4 was returned
most frequently as the minimizer of IC2(q). We have further
conducted a simulation study to check whether the proposed
scheme worked well on simulated datasets of varying dimen-
sionalities, and the results have confirmed its good performance
over a range of r.

3.3 An Illustration

We illustrate the hybrid approach by predicting the load curve
on April 2, 2009, which is denoted by Z(·). Unfortunately, even
after removing the long-term trend estimated in Section 2, there
exist some systematic discrepancies among the profiles of daily
load curves over different days in a week and different months
in a year. Figure 6 shows that, while the daily loads on Tuesdays
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Figure 6. Detrended daily curves for Tuesdays in July (black),
Saturdays in July (red), and Tuesdays in December (blue) between
1996 and 2008.

in July are similar to each other, they are distinctively differ-
ent from those on Saturdays in July, and also from those on
Tuesdays in December. Those profile differences are reflected
predominantly in the locations and magnitudes of daily peaks.

Typically in France, daily peaks occur at noon in summer and in
the evening in winter, due to the economic cycle as well as the
usage of electrical heating and lighting. Hence, the daily curves
and presumably their dynamic structure vary over different days
within a week, and also over different months in a year; further
elaboration on those features is provided in Section 4.

To forecast the load curve on Wednesday, April 2, 2009, we
take the joined curve of the detrended curve on Tuesday, April
1, 2009 (= XL(·)) and the temperature curve on April 2, 2009
(= XT(·)) as the regressor, that is, X(·) = (XL(·), XT(·)). We
use all the pairs of curves on Tuesdays and Wednesdays in April
from 1996 to 2008 as our observations to fit a curve regression
model, and the total number of observations is n = 53. As the
curves XL

i (·) range between −10,000 and 10,000 while XT
i (·)

between 0 and 20, we apply a simple standardization step to
arrange the regressor observations in the same scale. Those 53
pair curves {Xi(·), Yi(·)} are plotted in Figure 7 together with
their demeaned and standardized counterparts.

From those observations, we form a sample covariance matrix

�̂(u, v) = 1

53

53∑
i=1

{Yi(u) − Ȳ (u)}{Xi(v) − X̄(v)}, (18)

where Ȳ (u) = 1
53

∑
1≤i≤53 Yi(u) is the average of all the de-

trended daily curves on Wednesdays in April between 1996 and
2008, and X̄(v) is obtained analogously. Applying the SVD to
�̂(u, v), we obtain the estimators (̂λk, ϕ̂k, ψ̂k). To determine

Figure 7. The 53 curves XL
i (·) (top left), XT

i (·) (top middle), and Yi(·) (top right), are plotted in the top panels along with their respective
mean curves which appear in bold. The demeaned and standardized curves are plotted in the bottom panels.
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Cho et al.: Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach 15

Figure 8. Plots of IC2(q) against q for 100 different values of τ2.
The curves with the minimum attained at q = 4 are highlighted in red.

the correlation dimension, we apply the information criterion
IC2(q) with 100 different values of τ2, as discussed in Section
3.2. Figure 8 shows IC2(q) against q for each of the 100 τ2-
values. With this set of data, q = 4 minimizes IC2(q) over the
longest interval of τ2, which leads to the estimator r̂ = 4.

Then, our predicted load curve is of the form

Ẑ(u) = L̂w + Ȳ (u) +
4∑
j=1

ξ̂j ϕ̂j (u), (19)

where L̂w is the predicted weekly trend for the week containing
April 2, 2009 from the GAM (3) in Section 2, Ȳ (u) is the mean
curve as in (17), and ξ̂j , j = 1, . . . , 4 are the predictors based
on linear regression models defined as follows. Based on Theo-
rem 1, the curve linear regression Yi(·) on Xi(·) may be recast
into r̂ = 4 ordinary regression models

ξ̂ij =
10∑
k=1

βjkη̂ik + εij , i = 1, . . . , 53, j = 1, . . . , 4, (20)

where

ξ̂ij =
∫
I1

{Yi(u) − Ȳ (u)}ϕ̂j (u)du,

η̂ik =
∫
I2

{Xi(v) − X̄(v)}ψ̂k(v)dv,

see (10). In (19), we choose to use the first 10 singular value
components of the regressor only, as having more terms does
not improve the forecasting result dramatically. Based on the
least-square estimators β̂jk from the regression models (20),
we obtain the predictors ξ̂j as ξ̂j = ∑10

k=1 β̂jkη̂k , where η̂k =∫
I2

{X(v) − X̄(v)}ψ̂k(v)dv.
We compare our method with two alternative predictors, the

oracle and the baseline predictors. The oracle predictor is of the

form

Z̃(u) = L̂w + Ȳ (u) +
4∑
j=1

ξ̃j ϕ̂j (u), (21)

which is defined similarly as our predictor (18) except with ξ̂j
being replaced by ξ̃j ≡ 〈Y (·) − Ȳ (·), ϕ̂j 〉, where Y (·) = Z(u) −
L̂w denotes the detrended load curve on April 2, 2009. Since
Y (·) is unavailable in practice, Z̃(u) is termed as an “oracle”
predictor. The baseline predictor is defined as

Z̄(u) = L̂w + Ȳ (u), (22)

which is the sum of the first two terms in our predictor, ignoring
the dynamic dependence between days. We compare the per-
formance of the three predictors in terms of the following two
error measures

MAPE = 1

48

48∑
j=1

∣∣∣∣ f̂j − fj

fj

∣∣∣∣ and

RMSE =
⎧⎨⎩ 1

48

48∑
j=1

(f̂j − fj )
2

⎫⎬⎭
1/2

,

where f̂j and fj denote the predicted and the true loads in the
jth half-hour interval. The MAPE and RMSE for our predictor
Ẑ(·), the oracle predictor Z̃(·), and the baseline predictor Z̄(·)
are (0.91%, 634 MW), (0.60%, 420 MW), and (3.14%, 1911
MW), respectively. The three predicted curves are plotted in
Figure 9 together with the true curve. Our predictor Ẑ(·), making
good use of the dynamic dependence across different days, is a
significant improvement from the baseline predictor Z̄(·). While
the oracle predictor Z̃(·) is impractical as ξ̃j is unavailable in
practice, its superior performance in terms of both MAPE and
RMSE indicates that the dimension reduction achieved via SVD
retains the relevant dynamic information in the system.

We briefly discuss the extension to multistep ahead predic-
tions using the hybrid approach, which straightforwardly trans-
lates to producing multistep ahead predictions from the GAM
at the weekly level, and from the ordinary (scalar) linear regres-
sion models at the daily level. Specifically, if the corresponding
week of the multistep ahead forecast is different from that of
the one-step ahead forecast, the forecast is obtained by plugging
the average temperature and cloud cover of the week into the
fitted GAM. At the daily level modeling, the forecast of the next
day’s load replaces (part of) the regressor curve to produce that
of the following day, and this is repeated until the desired mul-
tistep ahead prediction is achieved. In the above example, when
making a two-day ahead prediction for Thursday, April 3, 2009
on April 1, 2009, the first part of the regressor curve becomes
the predicted load curve on April 2, 2009, while the second part
is the daily temperature curve on April 3, 2009. The two-step
ahead forecast obtained following the identical steps described
in this section achieves MAPE 1.06% and RMSE 657 MW. In
general, the performance of multistep ahead forecasts is worse
than that of one-day-ahead forecasts as the errors in the latter
are carried over to the errors in the former.
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Figure 9. The true daily load curve (gray, solid) of April 2, 2009, together with its predicted curves by our method (black, filled circle), the
oracle method (red, empty square), and the baseline (blue, empty triangle).

4. PREDICTING DAILY LOADS IN 2009

To compare different predictive models more systematically,
and to gain further appreciation of the performance of our
method over different periods of a year, we predict the daily
load curves for all days in 2009. For each day in 2009, we used
the data from January 1, 1996 to its previous day to build the
prediction models in the same manner as described in Section
3.3, that is, first the trend component (i.e., as L̂w in (19)) is pre-
dicted by the GAM model in (3), and then the residual process
is divided into daily curves for curve linear regression.

4.1 Classification of Daily Curves

Discussions in Section 3.3 indicate that we need to treat the
daily residual curves on each day of a week differently. For the
French electricity load dataset, we are furnished with the day
type of each day, which is a classification of the daily curves
determined by the experts at EDF. The day type is defined
with respect to different days of a week, and bank holidays are
assigned to separate day types according to their profiles. See
Table 1 for the summary of day types. Furthermore, to take into

account the seasonal changes which may be present in the shapes
(E{Yi(·)} and E{Xi(·)}) as well as the dependence structure
(�(u, v) = cov(Yi(u), Xi(v))) of daily curves, we divide 1 year
into nine seasonal segments: January to February, March, April,
May, June to July, August to September, October, November,
and December. This segmentation was determined by inspecting
the decomposition of electricity loads with respect to adaptively
chosen orthonormal functions. More precisely, we performed
principal component analysis on the pool of demeaned daily
curves (according to the day type), and decomposed them with
respect to the first principal direction. By examining the changes
in the decomposition over a year (see Figure 10), we obtained
the segmentation of a year as provided above.

While the above classification lacks a rigorous statistical
foundation, the prediction model based on this classification
performs well in practice. Besides, classification of electric-
ity load curves can stand alone as an independent research
problem which has attracted considerable attention, see, for ex-
ample, Chiou and Li (2007), Ray and Mallick (2006), Serban
and Wasserman (2005), and James and Sugar (2003) for func-
tional clustering, and Antoniadis et al. (2010) in the context of

Table 1. Day types furnished by the EDF experts

Index 0 1 2 3 4 5 6 7

Day type Mon Tue–Thu Fri Sat Sun (rest) Sun (Jun–Jul) Sun (Aug) Sun (Dec)
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Figure 10. Decomposition of the daily curves from 2008 with respect to the first principal component estimated from the pooled daily curves
between 1996 and 2008: seasonal segments are denoted by dotted, red lines. The online version of this figure is in color.

electricity loads classification. In summary, each daily curve is
classified according to the day of a week and the season of a
year, and there are 67 pairs of classes for any two consecutive
days between 1996 and 2009. For each pair of classes, we fit a
prediction model separately in the same manner as described in
Section 3.3.

4.2 Prediction Comparisons

In applying the proposed hybrid method, we consider four
different versions H1–H4 depending on the choice of regressor.
H1 uses the load curve on the current day as the regressor
(i.e., X(·) = XL(·)). H2 uses the joined curve of the load curve
on the current day and the temperature curve on the next day
(i.e., X(·) = (XL(·), XT(·))), as demonstrated in Section 3.3.
H3 adopts the same regressor as H1 but with a half-day curve
such that, if we are forecasting the electricity load from 00:30
to 12:00 on the next day, the load curve on the current day from
12:30 to 24:00 is used as the regressor curve; when forecasting
the curve from 12:30 to 24:00, the regressor curve is the
load curve from 00:30 to 12:00 on the same day. Similarly,
H4 employs the same regressor as H2 but also with half-day
curves. To facilitate a more comprehensive comparison, we
predict the daily load curves by our proposed hybrid method
(19), the oracle method (21), and the baseline method (22).
We also include in the comparison study, the prediction results
from the EDF operational model, the SARIMA model as in
Taylor and McSharry (2008), a combination of the GAM
and SARIMA (GSARIMA) methods, and the exponential
smoothing technique (EST) discussed in Taylor (2010). In total,
there are 10 different models used in our comparison study.

Denote the number of observations for each pair of classes
by n. Since we impose an upper bound of 10 on the correlation
dimension r, we choose to include only those classes with n
greater than 15 in our comparison study. Also, only the first
10 ηik’s are used in the scalar linear regression models (12), as

having more than 10 terms does not improve the results dra-
matically while n is allowed to be as small as 15. We further
note that it is considered a more challenging task to forecast
electricity loads for holidays than those for working days, and
often additional prior information is used for holidays in prac-
tice. Instead of making the whole exposition overcomplicated,
we focus on the forecasting for the working days only. There are
315 days in total where all the conditions stated above are satis-
fied. Note that in the hybrid approach, we require the forecasts
of the average temperature of the following week, as well as
the temperature curve of the next day. As such information can
easily be furnished by Météo-France for this particular dataset,
we may assume that the forecast of the next day’s temperature
has been provided in the form of a curve, and the weekly av-
erage temperature of the following week can be replaced by
the mean of such a forecast (in accordance with the assumption
that the long-term trend varies little within each week). Since
the resulting MAPE (1.38%) and RMSE (891 MW) from (H2)
with the predicted temperature values are only slightly worse
than those obtained with the true temperature values (MAPE
1.35%, RMSE 869 MW), we report in what follows the results
obtained assuming that all such necessary information is avail-
able. Forecasting errors measured by the MAPE and RMSE
are summarized in Table 2, and we also present the errors with
respect to different seasons and day types in Figures 11 and
12.

The prediction based on any model considered is more accu-
rate in summer than in winter, see Figure 11. The relative diffi-
culty of load forecasting in winter has been noted for the French
dataset in Dordonnat et al. (2008), Dordonnat et al. (2011), and
Cugliari (2011). SARIMA and GSARIMA are consistently out-
performed by other methods by a large margin, and between the
two, GSARIMA achieves smaller forecasting errors. Between
H1 (H3) and H2 (H4), the latter attains considerably smaller
forecasting errors as it makes use of more information on the
temperature, although Figure 11 shows that this observation is
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Table 2. Summary of MAPE and RMSE of the electricity load forecasts for January 1, 2009–December 31, 2009 from our hybrid modeling
(H1, H2, H3, H4), oracle, base, SARIMA, GSARIMA, EST, and operational model

H1 H2 H3 H4 Oracle Base SARIMA GSARIMA EST Operation

MAPE (%) 1.54 1.35 1.37 1.20 0.46 3.05 2.55 2.49 1.97 0.93
RMSE (MW) 1018 869 918 787 317 1882 1607 1586 1330 625
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Figure 11. Bar plots of MAPE (top) and RMSE (bottom) with respect to months.
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Figure 12. Bar plots of MAPE (top) and RMSE (bottom) with respect to the day type determined by experts; from left to right: Mondays,
Tuesdays–Thursdays, Fridays, Saturdays, Sundays (except for June–August and December), Sundays in June and July, Sundays in August, and
Sundays in December.

not held consistently throughout the year. We note that the per-
formance of our approach may further be improved by making
an adaptive choice of regressor curve dependent on the level of
temperature.

From Figure 11, it is interesting to observe that the half-day-
based approaches, H3 or H4, achieve better forecasting perfor-
mance than H1 or H2 in some colder months (February–April,
October–November), while the opposite is true in warmer
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months. This may be understood in relation with the variabil-
ity among the curves, which is considerably greater in winter
than in summer (see, e.g., Figure 6). On a similar note, while
forecasting errors from the EDF operational model are smaller
than those from hybrid approaches on average, the difference
is noticeably reduced from May to September. Indeed, H1 and
H2 return errors that are comparable to or even smaller than
those from the operational model in June, July, and Septem-
ber. In terms of day type, the forecasting errors from the hybrid
methods are larger on Mondays than for the rest of a week on
average (see Figure 12), which may also be due to the greater
variability in the relationship between the curves from Sundays
and Mondays. The oracle predictor attains the minimum errors
throughout the year except for in December, which suggests
that there is a scope for improvement in the hybrid approach by
improving the linear regression fit at the daily level.

There are certain factors that are known to have substantial
influence on daily electricity loads yet have not been incorpo-
rated into our hybrid modeling. For example, from November
to March, EDF offers special tariff days to large businesses as
financial incentives, which are activated to cut heavy electricity
consumption in winter. Since the scheme is known to affect not
only the daily loads on the special tariff days but also on the
days before and after those days, we expect that including prior
information on such days, for example, by creating new classes,
can further improve the quality of the forecasts especially in
winter.

5. CONCLUSIONS

In this article, we proposed a hybrid approach to electric-
ity load modeling with the aim of forecasting daily electricity
loads. In the hybrid procedure, we model the overall and sea-
sonal trends of the electricity load data at the weekly level, by
fitting a GAM with temporal and meteorological factors as ex-
planatory variables. At the daily level, the serial dependence
among the daily load curves is modeled under the assumption
that the curves from two successive days have a linear relation-
ship, and we propose a framework that effectively reduces the
curve linear regression to a finite number of scalar linear regres-
sion problems. To the best of our knowledge, it has not been
explored elsewhere how to model the multilayered features of
an electricity load dataset at multiple levels separately. Com-
pared with the current operational model at EDF, our proposed
method is more model-centered and developed without much
of a specific knowledge that has been included in the former,
while it still retains a competitive prediction capacity. We also
note that our approach has the potential to be more adaptive to
the changing electricity consumption environment, as well as
being applicable to a wider range of problems without much
human intervention.

When applying the hybrid approach to the real-life dataset in
Section 4.2, some factors which may have substantial influence
over daily electricity loads have not been fully exploited. This
could have resulted in worsening the performance of our method
for winter days when compared with the operational model,
and it remains as a task to incorporate such relevant information
into our method for practical applications. Also, as briefly
mentioned in Section 4.2, an adaptive choice of the regressor

curve, depending, for example, on the level of temperature,
may lead to better results in daily load forecasting. Indeed,
an automatic selection of the regressor in the curve linear
regression framework may benefit the prediction performance
as a generic tool beyond electricity load forecasting, and we
leave the problem for future research.

SUPPLEMENTARY MATERIALS

The supplementary document includes the proofs of Theo-
rems 1–2.

[Received January 2012. Revised May 2012.]
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