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Abstract

What is the effect of offering agents an option to delay their choices in a global coor-
dination game? We address this question by considering a canonical binary action global
game, and allowing players to delay their irreversible decisions. Those that delay have
access to accurate private information at the second stage, but receive lower payoffs. We
show that, as noise vanishes, as long as the benefit to taking the risky action early is
greater than the benefit of taking the risky action late, the introduction of the option to
delay reduces the incidence of coordination failure in equilibrium relative to the standard
case where all agents must choose their actions at the same time. We outline the welfare
implications of this finding, and probe the robustness of our results from a variety of
angles.
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1 Introduction

Coordination problems arise naturally in many economic settings. These problems share the
feature that for a given set of payoffs, agents may fail to take an action that would be in their
collective interest, because they fear that others will not do so: a coordination failure. In
this paper, we explore how providing participants in coordination problems with the option
to delay their choices affects the extent of coordination failure.

Coordination games typically have multiple equilibria. This makes it hard to quantify the
incidence of coordination failure. In order to begin with a well-specified measure of the extent
of coordination failure, we focus on a well-known subclass of coordination problems called
global games. Carlsson and van Damme [8], Morris and Shin [29], and Frankel, Morris, and
Pauzner [16] have identified a class of Bayesian coordination games each member of which is
characterized by a unique dominance-solvable equilibrium. In this class of games, therefore,
the extent of coordination failure can be easily quantified: it is the measure of states in
which agents fail, in equilibrium, to select some action even though it is collectively in their
interest to do so. We consider the effect of introducing an option to delay on the extent of
coordination failure in global games.

In addition to being of theoretical interest, there is also a natural applied motivation for
studying this question. Global games have recently been applied to a wide variety of economic
settings.1 Many such applications are inherently dynamic: players in these applications do
have the option to delay their decision in order to garner more precise information. This
makes it all the more important to examine the impact of the option to delay in global games.
Before describing our theoretical results, we briefly digress to provide a leading example of
such a situation: foreign direct investment (FDI) in an emerging market.

Consider an emerging market which begins a liberalization program, giving foreigners
access to positive net present value (NPV) domestic projects. The number of these projects
is fixed. Eventual payoffs from such FDI projects depend both on the state of the economy
and on the number of FDI investors: for a given state of the economy, there must be sufficient
numbers of foreign investors for the liberalization program to “take-off” and generate high
returns for investors. Liberalization programs last several years. Foreign investors can invest
early or late in the process, and entry involves a transaction cost. Early entrants have wide
choice of positive NPV projects. Late entrants have less choice. Thus, there is a cost to
delaying the entry decision. Late investors, however, have more information. For example,
they could observe the choices of other potential FDI investors, which in turn informs them

1Examples of applications of global games include the work of Morris and Shin [27], [30] to currency crises

and debt pricing, Goldstein and Pauzner [19] to bank runs, and Dasgupta [13] and Goldstein and Pauzner [18]

to financial contagion.
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about the chances for success. Thus, there is also a benefit to delaying the entry decision.
The information obtained by waiting in such a setting is typically not transparent or public
(FDI figures are often late and unreliable). Investors have to individually obtain (private)
information. This is an example of the class of settings we have in mind.

1.1 Summary of Results

We study a two-period binary action global game motivated by the example described above.
A continuum of players face an investment project and choose between investing (irreversibly)
or not at time t1, with the option to delay their decision until a later time t2. There is a state
variable which is observed privately with some initial noise at the beginning of the game.
Investment succeeds as long as there are enough investors in the course of the game relative
to the underlying state variable. The costs (ct) and benefits (bt) of investment may both
depend on the time at which investment takes place. Delaying the decision to invest results
in potentially lower payoffs, but better information. Players who wait receive a private signal
based on the aggregate number of early investors. This signal is informative about the state.
We focus on games where such learning is precise, i.e., almost all uncertainty is resolved at
the second stage of the game.

In the baseline model, we fix the cost of investment to be time-independent at c > 0. The
cost of delay is, therefore, generated by varying the benefit of investment: b1 > b2. In such
games, as initial observation noise becomes small, we report the following results.

1. The provision of an option to delay reduces the incidence of coordination failure relative
to the static benchmark where choices are made only in one period.

2. An intermediate cost of delay minimizes the incidence of coordination failure.

Following our analysis of the baseline case, we examine the robustness of our findings
from two different angles:

3. First, we examine a larger class of possible payoffs by simultaneously varying the cost
and benefit of investment over time, i.e., by considering four parameters, b1, b2, c1, and
c2.

2 In this richer setting, when initial observation noise becomes small, we show that
the provision of the option to delay reduces the incidence of coordination failure if and
only if the benefit to investing early is bigger than the benefit to investing late, i.e.,
b1 > b2.3

2These parameters are chosen to satisfy conditions (outlined later) that ensure that the game always has

a positive cost of delay.
3This property was built into the baseline model.
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4. Second, holding fixed the payoffs of the baseline model, we enlarge the set of informa-
tional parameters. While our main focus is on limiting cases where the initial noise
in observation is quite small, we numerically analyze the problem in the presence of
substantial amounts of noise. In such cases, we show that initial levels of optimism, as
represented by the mean of the common (Gaussian) prior, may matter: when agents
are sufficiently optimistic ex ante, coordination failure can be enhanced by the option
to delay.

5. Finally, we sketch the welfare implications of our results on coordination failure.

We now provide some insight into the trade-offs that drive the efficiency of coordination
in our model, and into the theoretical ingredients that generate our result. We focus on the
results for the limiting case, when the initial noise in observing the state variable becomes
small. Coordination failure is reduced by inducing more players to invest in equilibrium.
Introducing the option to delay affects the investment incentives of players in two opposing
ways. First, it makes players reluctant to invest early: this can have a negative impact on
the mass of investors. Second, it introduces the possibility that they can invest late: this
can have a positive impact on the mass of investors. Thus, in general, there is a trade-off
between the negative early impact and positive late impact of the option to delay on the
equilibrium mass of investors. Which effect will dominate? While the answer to this question
may be complex in general, we provide a very simple characterization for a widely-used class
of binary-action global games. We show that the negative early impact is dwarfed by the
positive late impact if and only if the benefit to investing early is bigger than the benefit to
investing late.

The simplicity of our answer can be traced to two ingredients of our analysis. The
first ingredient involves showing that when noise in the second period becomes negligible in
comparison to the first, the complex dynamic decision of first-period players reduces to a
simple one. We show that first-period agents, who choose to invest early or to wait, act “as
if” they are playing a simple static global game in which the cost to investing early is c1, and
the benefit to investing early is b1 − (b2 − c2). This is because, by investing early, they give
up the option of waiting and making the correct decision with certainty (with payoffs b2− c2)
later. Those that choose to wait, subsequently behave “as if” they are playing a static global
game in the second period with benefit b2 and cost c2.

Having thus reduced the dynamic problem to a sequence of static ones, the second crucial
ingredient of our results is to utilize a fundamental property of global games information
systems: as noise vanishes, at any given (true) state, the proportion of players who believe
that the state is higher (or lower) than the true state is uniformly distributed. This property
makes it simple (as we show later) to pin down the proportions of investors and non-investors
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at the “critical state” of a static global game: the proportion of non-investors is given by the
ratio of costs to benefits associated with that game. The critical state is the lowest value of
the state variable for which agents are able to successfully coordinate on investing: a higher
equilibrium mass of investors at the critical state reduces the extent of coordination failure.
The uniform posteriors property thus implies that if all players had to decide simultaneously
in the first period, in the absence of the option to delay, the mass of investors at the critical
state of such a one-period game would be 1 − c1

b1
. However, when the option to delay is

provided, the mass of early investors at the critical state of the induced dynamic game falls
to 1 − c1

b1−(b2−c2)
, where c1 and b1 − (b2 − c2) are the effective costs and benefits in the first

stage of the dynamic game as discussed above. This captures the negative early impact of the
cost of delay. Yet, with the option to delay, the mass c1

b1−(b2−c2)
of players who do delay, get

another chance to invest, and, reutilizing the same argument, the mass of late investors at
the critical state is c1

b1−(b2−c2)
(1− c2

b2
). This mass of late investors represents the positive late

effect of the option to delay. It is easy to see that the positive effect outweighs the negative
effect if and only if b1 > b2.

Binary action global games have been used extensively in the literature. For this class of
games, our analysis provides a simple characterization of the effect of providing an option to
delay in terms of parameters. We thus provide stylized guidance for applied modelers who
wish to use this class of games for analyzing dynamic settings. In what follows, we relate our
work to the existing literature.

1.2 Related Literature

Within the global games literature, the paper that comes closest to ours is by Heidhues and
Melissas [23]. Like us, they consider a global game with private learning and endogenous
timing. However, both their model and the focus of their analysis is different from ours.
In their game the payoff from taking the risky action varies continuously in the mass of
players who take that action, and also depends on the time at which they take that action.
They thus consider “cohort effects” which are absent in our model, and their main emphasis
is on characterizing conditions under which the two-period global game will have a unique
rationalizable strategy profile. In contrast, we focus on the effect of the option to delay on
the incidence of coordination failure. Finally, in contrast to their work, our paper provides a
microfoundation for how additional information can be generated later in the game.4

4Our paper bears a general connection to a number of other strands within the global games literature.

The first strand is the growing literature on endogenous public signals in global games. These are reviewed in

Section 8. Also related are the papers on dynamics in global games (e.g. Morris and Shin [28] and Angeletos,

Hellwig, and Pavan [3], [4], and the equilibrium selection papers of Burdzy, Frankel, and Pauzner [7] and

Frankel and Pauzner [15]. Finally, our work also has a general connection to the literature on endogenous
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Beyond global games, the question of whether providing the option to delay participation
in a risky project is socially beneficial or not has been debated extensively in the literature on
coordination problems in general (e.g. Farrell and Saloner [14], Gale [17], Choi [11], and Xue
[33]).5 No unified conclusion emerges from this literature. Within this broader literature, the
paper that is closest to ours is by Choi [11]. Choi studies a dynamic coordination game with
social learning. He presents a two-player game in which the option to delay can be harmful for
a range of parameter values: the fear of being stranded in a suboptimal technology induces
excessive delay, thus hindering participation in the risky project. Similarly, in our model
the option to delay can increase or decrease participation in the risky project depending on
the payoff parameters. There are at least two important distinctions between our model
and Choi’s. The first is that, unlike in Choi [11], each of our players is “small”, and thus
individual investment does not produce social benefits or information. Second, we consider
a finite-time setting where there is heterogeneity of beliefs amongst players, which creates
strategic uncertainty and limits the set of possible equilibrium outcomes. Our models are,
therefore, not directly comparable. The two models are applicable to different settings and
our results are complimentary to Choi’s.

The rest of the paper is organized as follows. In the next section we describe the baseline
investment problem. Section 3 analyzes the problem using the traditional static global games
approach. In section 4 we extend the analysis to include the option to delay. Section 5
examines the effect of the option to delay on the incidence of coordination failure, while
section 6 discusses welfare. Section 7 introduces more general payoffs by allowing the cost of
investment to vary over time. Section 8 concludes.

2 The Investment Project

The economy is populated by a continuum of risk neutral agents indexed by [0, 1]. Each agent
must choose whether to invest (irreversibly) in a risky project. Not investing (N) is a safe
action with benefits and costs equal to zero. Economic fundamentals are summarized by a
state variable θ which is distributed N(μθ, σ

2
θ) and is revealed at time T , when consumption

occurs. There are two periods in which an agent might be able to invest in the risky project:
t ∈ {t1, t2}, where t1 < t2 < T .

Proceeds to a particular investor depend on whether the project succeeds or not, and when
the agent chooses to invest. The success of the project, in turn, depends on the actions of the
agents and the realized value of θ. In particular, if p denotes the total mass of agents who

timing in the absence of strategic complementarities, e.g. Chamley and Gale [10] and Gul and Lundholm [22].
5This debate has been mirrored in the literature on pure public goods provision (e.g. Admati and Perry

[1] and Marx and Matthews [26]).
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invest at the times when opportunities are available, then investment succeeds if p ≥ 1 − θ.
It costs an amount c > 0 to invest in the project. If the project succeeds, it pays b1 to those
who invested at time t1, and b2 to those who invested at time t2. We impose the restriction
that b1 > b2 > c. Thus there is a cost to delay in investment. Payoffs from the risky project
can be summarized as follows, where Ij indicates the act of investing at time tj:

u(I1, p, θ) =

{
b1 − c if p ≥ 1 − θ

−c otherwise
(1)

u(I2, p, θ) =

{
b2 − c if p ≥ 1 − θ

−c otherwise
(2)

u(N, p, θ) = 0 (3)

At the beginning of t = t1 agents observe the state of fundamentals with idiosyncratic
noise. In particular, each agent i receives the following signal at the beginning of the game:

xi = θ + σεi

where ε is distributed Standard Normal in the population and independent of θ.
In what follows, we normalize the prior mean of θ, μθ = 0, and the prior variance σ2

θ =
1. This normalization is innocuous when considering limiting cases where θ is observed
with vanishing noise (σ → 0), which will be the main focus of the paper, and simplifies
computations. However, when we discuss results away from the limit (in sections 5.2 and
6.2), we shall consider arbitrary prior parameters.

The unconstrained efficient outcome of this investment problem would have all agents
investing at t1 whenever θ ≥ 0 and not at all otherwise. We now present two games that
can be used to study this investment problem in a decentralized context. We begin with the
benchmark static global games analysis. We then extend by introducing the option to delay.

3 The Benchmark Static Game

To analyze this investment problem within the framework of static global games requires that
we place a restriction on the actions of players: we insist that all players make their choices
at t = t1. The payoffs of this game are given by (1) and (3). We label this game Γst.

It is useful to begin with a preliminary definition. Note that in these games, agents’
strategies map from their private information into their action spaces.

Definition 1 An agent i is said to follow a monotone strategy if her chosen actions are
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increasing in her private information, i.e., if her strategy takes the form:

σi(xi) =

{
I when xi ≥ x∗

N otherwise

We shall call symmetric equilibria in monotone strategies monotone equilibria. Monotone
equilibria can be given a natural economic interpretation: when an agent chooses to invest,
she correctly believes (in equilibrium) that all agents who have more optimistic beliefs than
her also choose to do so.

If a continuum of players follow monotone strategies, a threshold level emerges naturally
in the underlying state variable of the game. Therefore, we look for monotone equilibria
which take the form (x∗

st, θ
∗
st) where agent i invests iff xi ≥ x∗

st and investment is successful
iff θ ≥ θ∗st. Now we may state:

Proposition 1 6 If σ <
√

2π, there is a unique equilibrium in Γst. This equilibrium is in
monotone strategies. In the limit as σ → 0, it is given by the pair

x∗
st →

c

b1
θ∗st →

c

b1

The proof is in the appendix. We note that this result does not rely on the specific mean
and variance assumed for θ. For arbitrary μθ and σ2

θ , uniqueness of monotone equilibria would
have prevailed in the region σ

σ2
θ

<
√

2π. Thus, the “small noise” condition of Proposition 1
should be read as a relative statement: uniqueness of monotone equilibria holds as long as
private signals are sufficiently precise relative to the common prior. If the prior is diffuse
(σ2

θ → ∞), then there is always a unique monotone equilibrium. The same intuition is true
for all of the results stated in the remainder of the paper. Morris and Shin [29] discuss this
issue further.

We now extend our analysis to introduce the option to delay.

4 The Dynamic Game with the Option to Delay

We now augment the original game to last two periods, and allow agents to choose both the
action they take and the time at which they act. The payoffs of the game are given by (1-3).

The option to delay, when exercised, generates an informational benefit. Agents who
choose to act at t2 are able to observe a statistic based on the proportion of agents who chose

6This result is a special case of Morris and Shin [29], Proposition 3.1. It can be obtained by setting the

precision of the public signal to 1. For an analysis of the role of public vs private information in inducing

multiplicity of equilibria in global games, see Hellwig [24].
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to invest at t1, which we denote by p1. Agents observe this statistic with some idiosyncratic
noise. Agents who delay receive an additional signal:

yi = Φ−1(p1) + τηi

where η is Standard Normal in the population, and independent of ε and θ.
There are two important points that should be noted regarding the second period signal.

First, the signal received by agents at t2 is private. This makes our model very different from
the canonical social learning model (Bikhchandani, Hirshleifer, and Welch [6] and Banerjee
[5]). Second, while there are many ways of generating additional information (and thus a
benefit of delay) at t2, we have chosen a specific microfoundation (learning from the aggregate
actions of others), and a specific technology (via the Φ−1transformation). While we shall
characterize equilibria for all (σ, τ), we shall draw economic conclusions only for the case
where τ → 0, that is, when learning becomes very precise. In this limit, neither the specific
learning technology (the Φ−1transformation) nor the specific microfoundation for additional
information (social learning) affect the results.7

At time t1, agents have the choice to invest or not. If they invest, then their choice is
final. If they choose not to invest, however, they get another opportunity at t2 to make the
same choice, based on the additional information they receive at that time. As we have noted
earlier, the payoffs to the investment project given in (1-3) induce a cost to delay in investing.
Agents will thus rationally trade off the possible excess gains to choosing early against the
option value of waiting and choosing with more information at t2. We call this game Γen and
look for Bayes Nash equilibria.

Players who wait until t2 observe two noisy signals, x and y. Let s(x, y) denote a sufficient
statistic for (x, y).We look for equilibria in which agents choose monotone strategies with
thresholds (x∗

en, s∗en), such that:

1. Invest at t = t1 iff xi ≥ x∗
en. Otherwise choose to wait.

2. Conditional on reaching t = t2 with the option to invest, invest iff si ≥ s∗en

Before proceeding to analyze such equilibria, we first demonstrate that, given the assumed
strategies at t1, the information held by players at t2 can indeed be characterized by a

7In the limit as τ → 0, observing any monotone transformation of p1 (for example, Φ−1(p1)) is equivalent

to observing p1. Away from the τ → 0 limit, this transformation of p1 is not without loss of generality.

Since the action of t1 investors are monotone functions based on their informative signals, observing a

statistic based on aggregate behaviour at t1is informative about the state. In particular, with a continuum of

players, observing the proportion without noise is equivalent to observing θ. As τ → 0, therefore, essentially

all uncertainty is resolved, and the specific microfoundation for additional information (social learning) does

not affect the results.
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sufficient statistic. Note that θ|x is distributed N( x
1+σ2 , σ2

1+σ2 ). The mass of people who
invest at t1 in state θ is

p1 = Φ(
θ − x∗

en

σ
)

Substituting into the definition of the second period signal, y, we get:8

yi =
θ − x∗

en

σ
+ τηi

Now, using Bayes’s Rule, we know that:

θ|xi, yi ∼ N

[
xi + σ

τ2 yi + 1
τ2 x∗

en

1 + σ2 + 1
τ2

,
σ2

1 + σ2 + 1
τ2

]

Thus if we define:

si =
xi + σ

τ2 yi + 1
τ2 x∗

en

1 + σ2 + 1
τ2

then

θ|xi, yi ≡ θ|si ∼ N

[
si,

σ2

1 + σ2 + 1
τ2

]
In what follows, where there is no confusion, we drop the agent subscript i. In Γst, it was
apparent that when agents followed monotone strategies there were corresponding equilibrium
thresholds in the fundamentals above which investment would be successful, and below which
it would fail. This characterization is not immediate in the current game (since the decisions
to invest or not in the two periods are not independent) and requires closer examination.

When agents follow monotone strategies as outlined above, at any θ, a mass Pr(x ≥
x∗

en|θ) + Pr(x < x∗
en, s ≥ s∗en|θ) will choose to invest. Thus, investment is successful at θ if

and only if:
Pr(x ≥ x∗

en|θ) + Pr(x < x∗
en, s ≥ s∗en|θ) ≥ 1 − θ

Lemma 1 (stated and proved in the appendix) shows that there exists a critical θ∗ above
which investment is successful and below which it is not.

Given Lemma 1, we can now look for monotone equilibria of the form (x∗
en, s∗en, θ∗en) where

x∗
en and s∗en are defined as above, and investment is successful if and only if θ ≥ θ∗en.

8It is clear that observing yi is equivalent in equilibrium to observing an exogenous signal zi = σyi +x∗
en =

θ + στηi. The consequence of microfounding t2 information via social learning is to make the precision of the

second period signal increasing in the precision of the first period signal. However, as τ → 0, the precision of

the first period signal becomes irrelevant, and thus our limiting results will also hold for any exogenous private

second-period signal which becomes arbitrarily precise. It is also worth pointing out that the precision of the

signal is independent of the mass of agents who invest early. Thus, there is no informational externality in

our model.
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Necessary conditions for such equilibria are as follows:
The indifference equation for those players who arrive at period t2 with the option to

invest:
Pr(θ ≥ θ∗en|s∗en) =

c

b2
(4)

The critical mass condition:

Pr(x ≥ x∗
en|θ∗en) + Pr(x < x∗

en, s ≥ s∗en|θ∗en) = 1 − θ∗en (5)

Finally, the indifference condition of players in period t1: At t1, agents trade off the expected
benefit of investing early against the expected benefit of waiting and then acting optimally.
Thus the marginal t1 investor who receives signal x∗

en must satisfy:

Pr(θ ≥ θ∗en|x∗
en)b1 − c = Pr(θ ≥ θ∗en, s ≥ s∗en|x∗

en)[b2 − c] + Pr(θ < θ∗en, s ≥ s∗en|x∗
en)(−c) (6)

Using (4), we can rewrite equation (5) as follows:

Pr(x ≥ x∗
en|θ∗en) + Pr(x < x∗

en, s ≥ θ∗en + M |θ∗en) = 1 − θ∗en

where M is a constant. This is an equation in x∗
en and θ∗en. Lemma 2 (stated and proved

in the appendix) shows that as long as σ is small enough, this equation implicitly defines
θ∗en as a smooth function of x∗

en with a bounded derivative. Using (4) and Lemma 2, we can
express (6) purely in terms of x∗

en. In the appendix, we establish that there exists a unique
solution to (6), which via, Lemma 2, implies that there is a unique solution to the system
(4-6). We also show that agents who receive signals x > (<)x∗

en prefer to invest early (wait).
It is obvious that agents who wait until t2 and receive signals s > s∗en at t2 will invest at t2,
while those who receive signals s < s∗en will not. Thus, we can now state:9

Proposition 2 If σ <
√

2π
1+ τ√

1+τ2

, there exists a unique monotone equilibrium in Γen.

9Readers familiar with the literature on global games will have noticed that the uniqueness result proved

for the dynamic game is restricted to monotone strategy equilibria. For static global games Carlsson and van

Damme [8] later generalized by Frankel, Morris, and Pauzner [16] prove a stronger result: the unique monotone

equilibrium is also the unique strategy profile surviving the iterated deletion of dominated strategies. Existing

arguments for this stronger result do not generalize to our dynamic game due to Bayesian learning. In Γen

the type-space at t2 depends on the strategies employed at t1. Thus, starting from the unrestricted set

of strategies at t1 generates arbitrarily complex type-spaces at t2, thereby vastly complicating the iterative

deletion of dominated strategies. Nevertheless, as we shall show later, merely focussing on monotone equilibria

is sufficient to generate interesting results. In particular, we shall show that there is a monotone equilibrium

in which agents can coordinate more efficiently than in the unique rationalizable strategy profile of the static

game.
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The proof is in the appendix.10 We can now compare the equilibria of the static and
dynamic games to understand the effects of providing the option to delay and learn.

5 The Effect of the Option to Delay

In this section, we compare the equilibria of the static and dynamic games to understand the
effect of the option to delay. We focus exclusively on the case where t2 information is very
precise, that is τ → 0. This implies that we are examining the special case where (essentially)
all uncertainty is resolved at time t2. Our results provide a benchmark for a more general
comparison for games for all (σ, τ).

As τ → 0, equation (5) reduces to:

Φ(
x∗

en − θ∗en
σ

)
c

b2
= θ∗en (7)

At the same time, equation (6) becomes:

Φ

(
x∗

en
1+σ2 − θ∗en

σ√
1+σ2

)
=

c

b1 − (b2 − c)
(8)

The formal derivations of (7) and (8) are given in the appendix, in section A.1. Combining
these two, we get:

Φ

⎛⎝Φ−1
(

b2
c θ∗en

)
√

1 + σ2
− σθ∗en√

1 + σ2

⎞⎠ =
c

b1 − (b2 − c)
(9)

In the limit as τ → 0, we can now use this characterization to compare equilibria for
all σ > 0 which satisfy the uniqueness conditions in Γst and Γen. It is useful to divide
this comparison into two parts. Our main emphasis will be on comparing equilibria in “small
noise” games, that is, in games where agents receive very accurate signals at t1, that is, where
σ → 0. This case is particularly relevant because it has been the focus of the literature on
static global games: when σ → 0 the static game of asymmetric information becomes a small
perturbation of the original coordination problem. In addition, when σ → 0 the incidence of
coordination failure can be characterized in closed form in Γst allowing for clear comparisons
with Γen. Following our examination of this limiting case, we proceed to examine the case of
genuinely noisy signals at time t1.

10The uniqueness condition reduces to the familiar condition σ <
√

2π as τ → 0. Note that since both

first and second period signals are private, their precisions are complements: σ and τ must be “jointly small

enough” to guarantee uniqueness.
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5.1 Comparing Equilibria in the Limiting Case

In order to compare equilibria in games where τ → 0 and t1 signals are very precise, we let
σ → 0 in (9). This results in a characterization of the equilibria of Γen in the ordered limit
where τ → 0 and σ → 0.11 In this limit, we can solve for the equilibrium thresholds of the
endogenous order game in closed form. As σ → 0, the unique solution to (9) is given by

θ∗en → c2

b2(b1 − b2 + c)

Thus we can now summarize:

Corollary 1 In the ordered limit as τ → 0 and σ → 0, the unique equilibrium thresholds of
Γen can be written as:

x∗
en → c2

b2(b1 − b2 + c)
s∗en → c2

b2(b1 − b2 + c)
θ∗en → c2

b2(b1 − b2 + c)

Conveniently, when σ → 0, we can also characterize the thresholds of the static game in
closed form. This allows us to compare the thresholds of the dynamic and static games in
closed form, leading immediately to the following conclusion:

Proposition 3 In the ordered limit as τ → 0 and σ → 0, for all b1 > b2 > c > 0,

θ∗en < θ∗st

Proof: Our analysis to date establishes that in the ordered limit as τ → 0 and σ → 0,
θ∗en → c2

b2(b1−b2+c) and θ∗st → c
b1

. Suppose θ∗en ≥ θ∗st.Then it follows from simple algebraic
manipulation that b2 ≥ b1. But we know that b1 > b2. A contradition. �

Thus, successful coordinated investment becomes more probable when we let agents choose
both how to act and when to act. The crucial condition turns out to be b1 > b2, which, in
this baseline set-up, is synonymous with the existence of a cost of delay. However, we show
later in Section 7, that it is possible, by varying investment costs over time, to consider games
with costs of delay where b1 < b2. It is shown that in such cases the opposite conclusion is
reached.

Returning to our baseline model, a second result relates to the maximal probability of suc-
cessful coordinated investment in the dynamic game. Given (b1, c) what value of b2 maximizes
the probability of coordinated investment? It is easy to see that:

11The interpretation of this ordered limit is that we are letting τ approach zero faster than σ, that is, σ → 0

and τ
σ
→ 0. It would have been desirable to consider cases where σ → 0 and τ

σ
→ r for r ≥ 0, but the problem

proves analytically intractable.
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Proposition 4 In the ordered limit as τ → 0 and σ → 0, the probability of successful
coordinated investment is maximized when b2 = 1

2 (b1 + c).

The proof is obvious and is thus omitted. Since b2 ∈ (c, b1), this means that an interme-
diate cost of delay maximizes the probability of coordinated investment. In what follows, we
provide a detailed discussion of these two limiting results.

5.1.1 Discussion of Results in the Limiting Case

We begin by discussing the first result: that the provision of an option to delay enhances
the ability of agents to coordinate whenever b1 > b2 > c. Note that the dynamic critical
threshold, θ∗en, will be lower than the static critical threshold, θ∗st, if and only if the mass
of players who invest at the critical state in the dynamic game is greater than the mass of
players who invest at the critical state of the static game. The mass of players who invest at
the critical threshold in the dynamic game is the sum of the mass of players who invest at t1

and those who invest at t2. Let us consider these masses in turn.
Consider the static game first. Recalling our earlier analysis, we know that x∗

st = (1 +
σ2)θ∗st + σ

√
1 + σ2Φ−1( c

b1
), and thus the proportion of investors is given by

Pr(x ≥ x∗
st|θ) = Φ

(
θ − θ∗st

σ
− σθ∗st −

√
1 + σ2Φ−1(

c

b1
)
)

As σ → 0

Pr(x ≥ x∗
st|θ) →

⎧⎪⎨⎪⎩
1 if θ > θ∗st

1 − c
b1

if θ = θ∗st
0 if θ < θ∗st

Thus, the mass of agents who invest at t1 at the critical state in the static game is given
by 1 − c

b1
. In other words, the mass of investors at the critical state is “one minus the ratio

of costs to benefits”. This characterization follows from a basic property of the information
system of global games, which we shall call the “Uniform Posteriors Property”, which is
stated here in the context of Γst:

Proposition 5 At any given state θ = θ̂, the random variable Pr(θ ≥ θ̂|x) is uniformly
distributed on [0, 1] in the limit as σ → 0.

The proof is in the appendix.12 The interpretation is simple: at a particular state θ̂, the
proportion of agents who believe that the state is above (or below) θ̂ is uniformly distributed.

12An equivalent formulation in terms of θ and s is immediate. The uniform posteriors property is the “mirror

image” of the better-known Laplacian Beliefs Property that is discussed extensively in Morris and Shin [29].

The uniform posteriors property is explicated in Steiner [31] and Guimaraes and Morris [21].
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Heuristically, knowledge of the state provides no information about the optimism of the
population relative to that state. This property immediately pins down the proportion of
agents who invest at the critical state.

To see why, note that when θ̂ = θ∗st, the random variable Pr(θ ≥ θ∗st|x) assumes added
economic meaning: it is the probability of success of the investment project from the per-
spective of a player who has observed signal x. Given the payoffs of Γst, any agent requires
that the investment project succeeds with probability at least c

b1
in order to invest. At the

critical state of Γst, what is the proportion of agents who will assign probability at least
c
b1

to success as σ → 0? The uniform posteriors property dictates that this proportion will
be exactly 1 − c

b1
. Thus the proportion of non-investors is given by c

b1
, and the proportion

of investors by 1 − c
b1

. This characterization will also turn out to be useful in our limiting
analysis of the dynamic game.

Now consider the dynamic game. Consider late investors first. For any (σ, τ), the mass
of players who invest at t2 in state θ is given by

Pr(x < x∗
en, s ≥ s∗en|θ) =

∫ x∗

−∞
Pr(s ≥ s∗|θ, x)f(x|θ)dx

As τ → 0 we show in the appendix (see the derivation of equation 7) that:

Pr(x < x∗
en, s ≥ s∗en|θ) →

⎧⎪⎪⎨⎪⎪⎩
Pr(x < x∗

en|θ) if θ > θ∗en
Pr(x < x∗

en|θ)
(
1 − c

b2

)
if θ = θ∗en

0 if θ < θ∗en

The decomposition of the product terms arises because as τ → 0, Cov(x, s|θ) → 0, since
s → θ.

Thus, the mass of late investors in the dynamic game can be expressed as the product of
two terms. The first term is the mass of investors who chose to wait until t2. Inspection of
the second term shows that it is equal to the proportion of players who would have invested
in the critical state of a static game played at t2, with benefit b2 and cost c. It is, therefore,
“as if” the players who chose not to invest at t1 subsequently play a static global game with
benefit b2 and cost c at t2.

In addition as τ → 0, we have shown that the agents t1 indifference condition reduces to
(8) which, in turn, implies that

x∗
en → (1 + σ2)θ∗en + σ

√
1 + σ2Φ−1(

c

b1 − b2 + c
)

Since x|θ ∼ N(θ, σ2), the mass of early investors can be written as follows:

Pr(x ≥ x∗
en|θ) → Φ

(
θ − θ∗en

σ
− σθ∗en −

√
1 + σ2Φ−1(

c

b1 − b2 + c
)
)
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Now, as σ → 0

Pr(x ≥ x∗
en|θ) →

⎧⎪⎨⎪⎩
1 if θ > θ∗en

1 − c
b1−b2+c if θ = θ∗en
0 if θ < θ∗en

Thus, a mass 1 − c
b1−b2+c of agents invest early at the critical state of the dynamic game.

Inspection of this term show that it is “as if” at t1 agents were playing a static game with
cost c, and benefit b1 − (b2 − c), that is, the benefit from investing early, minus what they
give up by not waiting.

The remaining agents, of mass c
b1−b2+c , enter the second period with their option to invest

intact. Of these, a proportion 1 − c
b2

choose to invest at t2 at the critical state, leading to a
total mass of late investors of c

b1−b2+c(1− c
b2

). Thus, the total mass of investors at the critical
state is

1 − c

b1 − b2 + c
+

c

b1 − b2 + c
(1 − c

b2
) = 1 − c

b1 − b2 + c

(
c

b2

)
It is no coincidence, then, that θ∗en → c2

b2(b1−b2+c) .
Notice, then, that the mass of agents who invest at t1 at the critical state of the dynamic

game is lower than the mass of agents who invest at t1 at the critical state the static game
(because c

b1
< c

b1−(b2−c)). In other words, the existence of the option to delay makes players
less aggressive at t1 in the dynamic game than in the static game. The mass of investors
“lost” at t1 (L(t1))can be expressed as follows:

L(t1) =
(

1 − c

b1

)
−
(

1 − c

b1 − (b2 − c)

)
=

c

b1 − (b2 − c)

(
b2 − c

b1

)
that is, the proportion of players who do not invest at t1 times the ratio of the net gains from
successful investment at t2 to the gross benefits to successful investment at t1.

However, each player who does not invest at t1, gets the chance to invest at t2 in the
dynamic game. Hence, at the critical state of the dynamic game, the mass of investors
“gained” at t2 (G(t2)) is given by

G(t2) =
c

b1 − (b2 − c)
(1 − c

b2
) =

c

b1 − (b2 − c)

(
b2 − c

b2

)
that is, the proportion of players who do not invest at t1 times the ratio of the net gains from
successful investment at t2 to the gross benefits to successful investment at t2.

The total mass of investors at the critical state in the dynamic game will be higher than
the total mass of investors at the critical state of the static game exactly when G(t2) > L(t1).
But this occurs exactly when b2−c

b2
> b2−c

b1
, that is, if and only if b2 < b1.

The second result, that an intermediate cost of delay maximizes the probability of coor-
dinated investment, follows quite simply from the main result. The cost of delay, which is
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determined by the size of b2 relative to b1, has opposite impacts on the proportion of players
who invest early and late. For a fixed (b1, c), a low b2 (high cost of delay) induces more people
to invest at t1, but, for those who choose to wait until t2, acts as a deterrent to investment.
In contrast, a high b2 (low cost of delay) makes investment at t2 attractive, but discourages
investment at t1, by inducing more players to wait. As b2 → c essentially nobody waits, and
the game reduces to Γst (indeed, limb2→c θ∗en = θ∗st). Similarly, as b2 → b1 essentially every-
body waits, and the game again reduces to Γst (indeed, limb2→b1 θ∗en = θ∗st). Thus, an interior
extremum must exist. The main result, in turn, establishes that the interior extremum must
be a maximum, since 1 − θ∗en > 1 − θ∗st for all b1 > b2 > c.

It is also instructive to consider the incentives of players at t1 and t2. At any stage of the
game, players require a “high enough” probability of successful investment in order to invest.
The higher this required probability, the lower will be the equilibrium mass of investors.13

The required probability is defined by the beliefs of the marginal investor: the player who is
indifferent between investing or not. At t1, therefore, the minimum required probability of
success is:

Pr(θ ≥ θ∗en|x∗
en) =

c

b1 − b2 + c

At t2 the minimum required probability of success is:

Pr(θ ≥ θ∗en|s∗en) =
c

b2

Notice that Pr(θ ≥ θ∗en|x∗
en) increases in b2: that is, the mass of t1 investors decreases in

b2, as already discussed earlier. Similarly, Pr(θ ≥ θ∗en|s∗en) decreases in b2. Inspection of the
right-hand sides of the two equations above indicate that the (absolute value of the) impact of
changing b2 is highest on Pr(θ ≥ θ∗en|x∗

en) and lowest on Pr(θ ≥ θ∗en|s∗en) when b2 = b1.14 On
the other hand, the (absolute value of the) impact of changing b2 is lowest on Pr(θ ≥ θ∗en|x∗

en)
and highest on Pr(θ ≥ θ∗en|s∗en) when b2 = c. Thus, when the cost of delay is increased from 0
(by reducing b2 from b1), the positive impact on the incentives of t1 investors initially swamps
the negative impact on incentives of t2 investors. This leads to an increase in investment.
However, when when b2 is decreased far enough, bringing us closer to b2 = c, the negative
impact on the incentives of t2 investors swamps the positive impact on the incentives of t1

investors, reversing the earlier positive impact on investment.
13The uniform posteriors property implies that as τ → 0, Pr(s ≥ s∗en|θ∗

en) → 1 − Pr(θ ≥ θ∗
en|s∗en), and as

σ → 0, Pr(x ≥ x∗
en|θ∗

en) → 1 − Pr(θ ≥ θ∗
en|x∗

en). Thus, there is a clear link between the incentives of the

marginal investor and the proportion that invest at the critical state in the limit.
14Formally,

˛
˛
˛

∂
∂b2

c
b1−b2+c

˛
˛
˛
b2=b1

=
˛
˛
˛

c
(b1−b2+c)2

˛
˛
˛
b2=b1

= 1
c

>
˛
˛
˛

∂
∂b2

c
b2

˛
˛
˛
b2=b1

=
˛
˛
˛
−c
b22

˛
˛
˛
b2=b1

= c
b21

, since b1 > c > 0.
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5.2 Comparing Equilibria Away from the Limit

We now turn our attention to a comparison of equilibria of Γst and Γen when τ → 0 but
σ � 0. In this case we cannot provide a closed form characterization of the equilibria in
either Γst or Γen, and we must rely on numerical methods. Not surprisingly, therefore, the
comparison away from the σ → 0 limit is less clear cut. Nevertheless, a number of important
conclusions can be reached, as we point out here.

First, we note that while the values of the parameters of the prior distribution of θ do not
matter in the limit when σ → 0, they may well have an effect away from the limit.15 Varying
the prior precision is not interesting, since the extent of noise in the game is determined by
the ratio of the precision of the signal to the precision of the prior. Thus, we hold fixed
σ2

θ = 1 but allow for a general prior mean μθ. We examine results for low (μθ = −1) and high
(μθ = 2) prior means. Our choice of means is determined by their distance from the crucial
region of θ, θ ∈ (0, 1), in which the coordination problem is relevant. In all our simulations,
normalize b1 = 1, and let b2 = 1 − k, thus denoting by k the cost of delay. Clearly k lies in
the set (0, 1 − c). We set c = 0.3, and vary k in (0, 0.7).16 The plots show θ∗st and θ∗en(k) for
selected parameters.

We present two sets of simulations. First, we illustrate, as a baseline case, that for small
σ (σ = 0.01), the properties of the limiting case are preserved: θ∗en < θ∗st for all k, and it is
minimized for k ≈ 1−c

2 = 0.35. This is shown in Figures 1 (μθ = −1) and 2 (μθ = 2).

INSERT FIGURES 1 AND 2 HERE

Next, we examine the case of substantial noise: σ = 1.17 In Figure 3 and 4 we plot θ∗st
and θ∗en(k) for μθ = −1 and μθ = 2 respectively. It is evident that the results differ from the
limiting case to varying degree. The main result of the limiting case, that θ∗en < θ∗st for all k,
is preserved for the μθ = −1 case, but is reversed for μθ = 2. We now discuss why this is so.

INSERT FIGURES 3 AND 4 HERE

The strategies of players at t1 (x∗
en) are decreasing in μθ. It is easy to see that for any

μθ, as τ → 0,
x∗

en → (1 + σ2)θ∗en − σ2μθ + σ
√

1 + σ2Φ−1(
c

b1 − b2 + c
)

15I thank a referee for urging me to explore this case.
16We have checked several high and low values of c ∈ (0, 1) and the qualitative properties discussed here are

not affected by our choice of c.
17We have examined even larger values of σ, up to

√
2π, and the results are qualitatively similar.
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Intuitively, this arises because the higher is μθ, the more optimistic players become, and the
lower the incentive to wait. This intuition holds also for the static game, Γst, where

x∗
st = (1 + σ2)θ∗st − σ2μθ + σ

√
1 + σ2Φ−1(

c

b1
)

However, for those players who wait until t2 in Γen, strategies are independent of the prior
μθ, because τ → 0, and they thus observe θ with vanishing noise.

For low μθ, very few people invest in the static game, because of the pessimism generated
by the prior. The same intuition applies to the first period of the dynamic game. In the
dynamic game, however, the actions of those who wait until t2 are unaffected by μθ, thus less
pessimistic, generating more investment overall, and thus a lower θ∗en (relative to θ∗st). How
much more investment (and thus how low θ∗en(k) is relative to θ∗st) depends on how many
people wait until t2, and thus play mean-independent strategies. The lower is k, the higher
the proportion of agents who make choices at t2, and thus the lower is θ∗en(k) relative to θ∗st.

For high μθ, many people invest in the static game, because of the optimism generated by
the prior. The same intuition applies to the first period of the dynamic game. In the dynamic
game, however, the actions of those who wait are unaffected by μθ, thus less optimistic,
generating less investment overall, and thus a higher θ∗en (relative to θ∗st). How much less
investment (and thus how high θ∗en(k) is relative to θ∗st) depends on how many people wait
until t2, and thus play mean-independent strategies. The lower is k, the higher the proportion
of agents who make choices at t2, and thus the higher is θ∗en(k) relative to θ∗st.

For an intermediate value of μθ the effect of the prior mean is not dominant, and the
probability of coordinated investment can be non-monotonic in k, as in the limiting case.
Figure 5 illustrates the case for μθ = 0.5, in the centre of the crucial (0, 1) area, and half way
between the extreme means considered already.

INSERT FIGURE 5 HERE

6 Welfare

As in the previous section, we discuss welfare only for games where essentially all uncertainty
is resolved at t2, i.e., as τ → 0. In the limit as τ → 0, we denote ex-ante social welfare in the
static coordination game Γst by Wst(b1, c, σ). It is given by:

Pr(θ ≥ θ∗st,1, x ≥ x∗
st,1)(b1 − c) + Pr(θ < θ∗st,1, x ≥ x∗

st,1)(−c)

For the dynamic game, Γen, ex-ante social welfare Wen(b1, b2, c, σ) is given by:

Pr(θ ≥ θ∗en, x ≥ x∗
en)(b1 − c) + Pr(θ < θ∗en, x ≥ x∗

en)(−c) + Pr(θ > θ∗en, x < x∗
en)(b2 − c)
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As before, it is useful to divide our discussion into two cases: first, we consider the limiting
case where σ → 0, and then we consider welfare away from this limit.

6.1 Welfare Comparison in the Limiting Case

As we let noise vanish in the games, i.e., as σ → 0, the product probability terms simplify.
Now, writing W (b1, b2, c, σ → 0) for limσ→0 W (b1, b2, c, σ), we can state:

Remark 1 In the ordered limit as τ → 0 and σ → 0, for all b1 > b2 > c > 0

Wen(b1, b2, c, σ → 0) > Wst(b1, c, σ → 0)

In addition Wen(b1, b2, c, σ → 0) is maximized when b2 = 1
2 (b1 + c).

As σ → 0, ex-ante welfare in each game becomes a monotone decreasing function of its
unique equilibrium fundamental threshold. The lower the threshold, the higher is ex-ante
social welfare. Thus, Remark 1 follows immediately upon inspection of Propositions 3 and
4. We now proceed to consider welfare comparisons away from the limit.

6.2 Welfare Comparison away from the Limit

Welfare in our games broadly depends on two factors. One factor is the probability of
coordinated investment. It is welfare improving, ceteris paribus, to enhance the probability of
coordinated investment.18 The second factor is the measure of agents who take the incorrect
action (that is, agents who receive signals x > (<)x∗ when θ < (>)θ∗) in equilibrium. It is
welfare improving, holding fixed the probability of coordinated investment, to decrease the
measure of agents who choose incorrectly in equilibrium. As σ → 0 the second factor becomes
irrelevant, and welfare is driven entirely by the probability of coordination. Away from this
limit, both factors are relevant.

We first note, as before, that the limiting results also hold close to the limit. Figures
6 and 7 illustrate this for σ = 0.01. In this case, welfare is driven almost entirely by the

18It is worth being precise about what we mean by ceteris paribus here. Welfare in the dynamic game can

be written as follows:

Pr(θ ≥ θ∗
en) [Pr(x ≥ x∗

en|θ ≥ θ∗
en)(b1 − c) + Pr(x < x∗

en|θ ≥ θ∗
en)(b2 − c)]

+ Pr(θ < θ∗
en) Pr(x ≥ x∗

en|θ < θ∗
en)(−c)

By ceteris paribus, in this statement, we mean “holding the conditional probability terms constant”. Clearly,

Pr(θ ≥ θ∗
en) multiplies a positive number, while Pr(θ < θ∗

en) multiplies a negative number. Thus, holding

the conditional probability terms constant, it increases welfare to increase Pr(θ ≥ θ∗
en), the probability of

coordinated investment.
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probability of successful coordination. It is not surprising, then, that welfare in the dynamic
game is always higher than welfare in the static game, and the former is maximized at an
intermediate cost of delay.

INSERT FIGURES 6 AND 7 HERE

Further from the limit, for σ = 1, learning can make an important difference to welfare.
When θ is observed with large amounts of noise at t1, but perfectly (since τ → 0) at t2, large
welfare gains are to be had at small costs of delay because many agents wait and improve
their information significantly. In addition, as before, the prior mean can have an impact.

We have seen that when the prior mean μθ is low, the probability of successful investment
is higher in Γen than in Γst. Thus, for a low prior mean, the presence of the option to delay
simultaneously enhances the probability of successful investment and reduces the probability
of errors (via learning). Welfare should be unambiguously higher in Γen than in Γst when
μθ is low. Figure 8 illustrates that this is the case. It is also intuitive that welfare should
be decreasing in k, since both the probability of coordinated investment and the net benefit
from learning are higher for lower costs of delay.

On the other hand, we have also seen that when the prior mean μθ is high, the probability
of successful investment is lower in Γen than in Γst. Thus, for a high prior mean, the presence
of the option to delay reduces the probability of successful investment and simultaneously
reduces the probability of errors (via learning). The overall effect on welfare is ambiguous
when μθ is high.

However, when μθ is sufficiently high, there is little loss from errors (because the prob-
ability of failed investment is very low), and thus learning becomes less important. Then,
welfare should be lower in Γen than in Γst. Figure 9 illustrates that this is the case for μθ = 2.

INSERT FIGURES 8 AND 9 HERE

However, for intermediate values of μθ, welfare may be non-monotone in k, and no clear
conclusions can be reached. Figures 10 illustrates the case for μθ = 0.5. As we have seen
above, in this case the cost of delay has a non-monotone effect on the probability of coordi-
nation. The effect on welfare due to learning is, as always, decreasing in k. The overall effect
is non-monotone, with highest welfare achieved at low k.

INSERT FIGURE 10 HERE

7 Time-varying investment costs

In the analysis to date, we have fixed the cost of investment to be c > 0 independent of the
time at which investment was made. An obvious extension to the model would be to allow
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the cost of investing at t2 to be different from the cost of investing at t1: c1 �= c2. Thus,
our payoffs would be parameterized by four numbers: benefits (b1, b2) and costs (c1, c2), with
b1 > c1 > 0 and b2 > c2 > 0. In this section, we provide a analysis of the limiting result for
this case.

In order to ensure that our game has a genuine (payoff) cost of delay (without which, the
problem becomes uninteresting), we require two crucial conditions. First, it must be the case
that b1

c1
> b2

c2
: otherwise more players would invest in a static game played at t2 than in a

static game played at t1, implying that we are simply improving payoffs over time. Second, it
must be the case that b1−c1 > b2−c2: otherwise no player would ever be indifferent between
investing at t1 and waiting until t2 as τ → 0. We shall refer to these as the “cost of delay”
conditions.

We note that the equilibrium characterization in Proposition 2 is valid, as the proof in
the appendix shows, for all payoff parameters that satisfy the cost of delay conditions. In
addition, we show in section A.1, that the limiting characterization for all (b1, b2) and (c1, c2)
that satisfy the cost of delay conditions is as follows: as τ → 0 and σ → 0

θ∗en → c1

(b1 − b2 + c2)
c2

b2

while as σ → 0, θ∗st → c1
b1

. It is then clear that in this more general set-up θ∗en < θ∗st if and
only if b1 > b2. Thus, we can summarize:

Proposition 6 Consider the generalized model with benefits (b1, b2) and costs (c1, c2), with
b1 > c1 > 0 and b2 > c2 > 0, where these payoffs satisfy the cost-of-delay conditions. In
the limit as τ → 0 and σ → 0, the provision of the option to delay reduces the incidence of
coordination failure if and only if b1 > b2.

The intuition for this result is identical to that in the baseline case described already. It is
easy to see that the mass of early investors falls at the critical state of Γen relative to the
mass of investors at the critical state of Γst. However, when b1 > b2 the mass of late investors
at the critical state of Γen more than erases the earlier deficit, leading to more investment
overall, and vice versa.

When will the provision of the option to delay help or hurt coordination in applied con-
texts? The most natural interpretation of costs {ct} in this model (arising, for example, from
the foreign direct investment application) is that the ct is a transaction cost (physical cost)
paid at the time of investment t. The payoff is realized later, at T > t2 > t1. Under this
interpretation, the assumption at c2 = c1 = c, is equivalent the absence of discounting. If
agents discounted, then for a given transaction cost, it is less costly to pay later, so that
c2 < c1. Then, the cost of delay conditions would imply that b1 > b2, thus implying that
θ∗en < θ∗st. Thus, the provision of the option to delay improves coordination in this case.
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When can the provision of the option to delay increase coordination failure? We have
shown that only way to achieve this is to choose b1 < b2; the cost of delay conditions then
imply that it must be the case that c1 < c2. It is easy to choose such parameters, as following
example demonstrates, without violating the cost of delay conditions. For example, with
(b1, c1) = (1, 3

10) and (b2, c2) = (12
10 , 6

10 ), in the limit as τ → 0 and σ → 0, θ∗en → 3
8 , while as

σ → 0, θ∗st → 3
10 < 3

8 . Thus, in this case, the option to delay actually lowers the probability
of successful investment. Such examples are characterized by the properties that the payoff
benefit to investing increases with delay, and the transaction cost increases over time. These
properties are not natural in the contexts we have discussed. The precise nature of payoffs,
however, must necessarily follow from specific applications, and a microfounded approach is
necessary to be substantive. A general analysis of such applications is clearly beyond the
scope of the current exercise.

8 Conclusion

Binary action global games are widely used in the literature to analyze many applied coor-
dination problems, several of which are inherently dynamic. It is, therefore, important to
understand the effect of the option to delay decisions on the ability of agents to coordinate on
efficient outcomes. Our analysis provides benchmark guidance to applied modelers who use
global games to study multi-period coordination problems. To conclude, we point out two
natural aspects of dynamics and delay in global games that are not captured by our model.

First there is a restriction implicit in the learning technology. An important aspect
of this model is that learning is private: signals observed at t2 are observed with some
idiosyncratic noise. Though we consider the limit as idiosyncratic noise vanishes (τ → 0), it
is well understood from the higher order beliefs and global games literature that the limiting
properties of a model in which τ → 0 are very different from those of one in which τ = 0.
For example, with τ = 0, our model will have multiple equilibria. Thus, our model is not
a natural candidate to analyze settings in which there is a public variable which aggregates
information precisely, such as a market price. Instead, this set-up is better for analyzing
instances where such publicly available variables are absent: foreign direct investment (where
accurate figures are hard to come by, and often quite delayed), technology adoption, or club
formation settings all share this property. For analyses of publicly observed variables in global
games, see Chamley [9], Tarashev [32], Corsetti, Dasgupta, Morris, and Shin [12], Angeletos
and Werning [2], and Hellwig, Mukherji, and Tsyvinski [25].

Second, we note that in many of the applied settings that we have discussed, the cost
of delay is not exogenous, as we have assumed in the model, but actually depends on the
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proportion of investors who invest early. Such a modification would vastly complicate the
model, but remains an interesting area for future research.

A Omitted Proofs

Proof of Proposition 1: The following are necessary for a monotone equilibrium:
The marginal agent, who receives signal x∗

st must be indifferent between investing or not,
i.e.

Pr(θ ≥ θ∗st|x∗
st) =

c

b1

Since θ|x ∼ N( x
1+σ2 , σ2

1+σ2 ), the indifference condition can be written as:

1 − Pr(θ < θ∗st|x∗
st) = 1 − Φ(

θ∗st − x∗
st

1+σ2

σ√
1+σ2

) =
c

b1

Thus,
x∗

st = (1 + σ2)θ∗st + σ
√

1 + σ2Φ−1(
c

b1
) (10)

The critical mass condition requires that:

Pr(x ≥ x∗
st|θ∗st) = 1 − θ∗st

Substituting the indifference condition into the critical mass condition we get

Φ(σθ∗st +
√

1 + σ2Φ−1(
c

b1
)) = θ∗st (11)

Consider the function

F (θ∗st) = Φ(σθ∗st +
√

1 + σ2Φ−1(
c

b1
)) − θ∗st

Clearly as θ∗st → 1, F (·) < 0, and as θ∗st → 0, F (·) > 0. Differentiating yields

F ′(θ∗st) = σφ(·) − 1

If σ <
√

2π, then F ′(θ∗st) < 0 for all θ∗st, which establishes that there is a unique (x∗
st, θ

∗
st)

that solves the necessary conditions for the equilibrium. In addition, note that Pr(θ ≥ θ∗st|x)
is strictly increasing in x, so that agents who receive x > x∗

st will choose to invest while
those who receive x < x∗

st will choose not to invest. Thus, there exists a unique monotone
equilibrium. The nonexistence of nonmonotone equilibria follows from the iterative deletion
of dominated strategies, as is shown by Morris and Shin (2002) amongst others. This part of
the proof is omitted for brevity. This establishes the first part of the result. Letting σ → 0
in (10) establishes the second part. �
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Lemma 1 Fix any (x∗, s∗). Let

G(θ) = Pr(x ≥ x∗|θ) + Pr(x < x∗, s ≥ s∗|θ) − 1 + θ

Then G(θ) is monotone and crosses zero exactly once.

Proof: Since s = τ2x+σy+x∗
1+τ2+σ2τ2 , writing x = θ + σε, y = θ−x∗

σ + τη, and substituting, we
get s = 1+τ2

1+τ2+σ2τ2 θ + στ
1+τ2+σ2τ2 (τε + η). Then s ≥ s∗ ⇔ γ ≥ 1+τ2+σ2τ2

στ s∗ − 1+τ2

στ θ, where
γ = τε + η. Thus, we can rewrite:

G(θ) = 1 − Φ(A(θ)) +
∫ A(θ)

−∞

∫ ∞

B(θ)
f(ε, γ)dγdε − 1 + θ

where A(θ) = x∗−θ
σ and B(θ) = 1+τ2+σ2τ2

στ s∗ − 1+τ2

στ θ. Differentiating under the double
integral:

G′(θ) = −A′(θ)φ(A(θ)) + A′(θ)
∫ ∞

B(θ)
f(A(θ, γ))dγ − B′(θ)

∫ A(θ)

−∞
f(ε,B(θ))dε + 1

Writing the joint densities as products of conditionals and marginals:

f(ε = A(θ), γ) = φ(A(θ))f(γ|ε = A(θ))

f(ε, γ = B(θ)) = φ̂(B(θ))f(ε|γ = B(θ))

writing φ(·) to denote the standard normal PDF of ε, and φ̂(·) to denote the (non-standard)
Normal PDF for γ. Finally,

A′(θ) = − 1
σ

,B′(θ) = −1 + τ2

στ

Now we can rewrite G′(θ) as:

1
σ

φ(A(θ))

[
1 −

∫ ∞

B(θ)
f(γ|ε = A(θ)dγ

]
+

1 + τ2

στ
φ̂(B(θ))

∫ A(θ)

−∞
f(ε|γ = B(θ))dε + 1

i.e. G′(θ) > 0. Note that limθ→∞ G(θ) = ∞, and limθ→−∞ G(θ) = −∞. Thus there exists a
unique solution to G(θ) = 0. �

Lemma 2 Assume σ <
√

2π
1+ τ√

1+τ2

. Then, for any x∗there is a unique θ̂(x∗) such that

G(θ̂, x∗) = 0 where

G(θ, x∗) = Pr(x ≥ x∗|θ) + Pr(x < x∗, s ≥ θ + M |θ) − 1 + θ

Moreover, dθ̂
dx∗ ∈ (0, 1

1+σ2 )
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Proof: As above, we know that s = 1+τ2

1+τ2+σ2τ2 θ̂ + στ
1+τ2+σ2τ2 (τε + η). Since s∗ = θ̂ + M ,

s ≥ s∗ ⇔ γ ≥ στ θ̂ + 1+τ2+σ2τ2

στ M . Let

B(θ̂) = στ θ̂ +
1 + τ2 + σ2τ2

στ
M

Note that B′(θ̂) = στ , and so, using the proof of Lemma 1,

∂G(θ̂, x∗)
∂θ̂

=
1
σ

φ(A(θ̂, x∗))

[
1 −

∫ ∞

B(θ̂)
f(γ|ε = A(θ̂, x∗))dγ

]

−στφ̂(B(θ̂))
∫ A(θ̂,x∗)

−∞
f(ε|γ = B(θ̂))dε + 1

where φ̂(·) denotes the non-standard Normal pdf of γ. Let

P1 =
∫ ∞

B(θ̂)
f(γ|ε = A(θ̂, x∗))dγ

P2 =
∫ A(θ̂,x∗)

−∞
f(ε|γ = B(θ̂))dε

Since the variance of γ is 1 + τ2, φ̂(·) < 1√
2π

√
1+τ2

, and P2 ≤ 1, clearly if σ <
√

2π
τ√

1+τ2

,

∂G(θ̂,x∗)

∂θ̂
> 0. Similarly,

∂G(θ̂, x∗)
∂x∗ = − 1

σ
φ(A(θ̂, x∗)) [1 − P1] < 0

By the implicit function theorem

dθ̂(x∗)
dx∗ = −

∂G(θ̂,x∗)
∂x∗

∂G(θ̂,x∗)
∂θ̂

Let Q = −∂G(θ̂,x∗)
∂x∗ , where Q > 0. Then,

dθ̂(x∗)
dx∗ =

Q

Q − στφ̂(·)P2 + 1

It is easy to check, that when σ <
√

2π
1+ τ√

1+τ2

1
1 + σ2

− dθ̂(x∗)
dx∗ > 0

Since σ <
√

2π
1+ τ√

1+τ2

implies that σ <
√

2π
τ√

1+τ2

, we are done. �
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Proof of Proposition 2: For pedagogical purposes, it is worth writing this proof for a
general set of payoffs (b1, c1) for t1 and (b2, c2) for t2 where b1 > c1 > 0, b2 > c2 > 0, b1

c1
> b2

c2
,

and b1 − c1 > b2 − c2. Proposition 2 requires only the special case where c1 = c2 = c, which
then implies that b1 > b2.

Initially, agents trade off the expected benefit of investing in period 1 against the expected
benefit of retaining the option value to wait. Thus the marginal period 1 investor who receives
signal x∗

en must satisfy:
Pr(θ ≥ θ∗en|x∗

en)b1 − c1

= Pr(θ ≥ θ∗en, s ≥ s∗en|x∗
en)[b2 − c2] + Pr(θ < θ∗en, s ≥ s∗en|x∗

en)(−c2)

We can rewrite the indifference condition for t2 players as:

s∗en = θ∗en +
σ√

1 + σ2 + 1
τ2

Φ−1(
c2

b2
) (12)

By Lemma 2, we can write θ∗en = g(x∗
en), and thus rewrite equation (12) as:

s∗en = g(x∗
en) + M (13)

where M = σq
1+σ2+ 1

τ2

Φ−1( c2
b2

). Write x for x∗
en and let

G(x) = Pr(θ ≥ θ∗en|x)b1 − c1 − (b2 − c2)Pr(θ ≥ θ∗en, s ≥ s∗en|x) + c2Pr(θ < θ∗en, s ≥ s∗en|x)

Note that

Pr(θ ≥ θ∗en|x) = 1 − Φ(
θ∗en − x

1+σ2

σ√
1+σ2

)

Let A(x) =
θ∗en− x

1+σ2
σ√

1+σ2

. Given x,

s =
τ2x + θ + στη

1 + τ2 + σ2τ2

Rearranging terms, we can write this as

s =
x

1 + σ2
+

σ

1 + τ2 + σ2τ2

[
z√

1 + σ2
+ τη

]

where z =
θ− x

1+σ2
σ√

1+σ2

is distributed N(0, 1) conditional on x. Let γ = z√
1+σ2

+ τη. Then, s ≥ s∗

is equivalent to

γ ≥ 1 + τ2 + σ2τ2

√
1 + σ2

A(x) + τ
√

1 + τ2 + σ2τ2Φ−1(
c2

b2
)

Let

B(x) =
1 + τ2 + σ2τ2

√
1 + σ2

A(x) + τ
√

1 + τ2 + σ2τ2Φ−1(
c2

b2
)
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Now, we may rewrite:
G(x) = b1(1 − Φ(A(x))) − c1

−(b2 − c2)Pr(z ≥ A(x), γ ≥ B(x)) + c2Pr(z < A(x), γ ≥ B(x)) (14)

Differentiating under the double integral and rearranging we get:

G′(x) = −φ(A(x))A′(x) [b1 − b2P1] + B′(x)φ̂(B(x)) [b2P2 − c2]

where by φ̂(·) we denote the non-standard normal density of γ, and P1 and P2 are defined as
follows:

P1 =
∫ ∞

B(x)
f(γ|z = A(x))dγ

P2 =
∫ ∞

A(x)
f(z|γ = B(x))dz

Using standard formulae for computing conditional distributions of Normal random variables
(see, for example, Greene [20]), we know that:

z|γ = B(x) ∼ N(A(x) +
τ
√

1 + σ2

√
1 + τ2 + σ2τ2

Φ−1(
c2

b2
),

τ2(1 + σ2)
1 + τ2 + σ2τ2

)

Thus,

P2 =
∫ ∞

A(x)
f(z|γ = B(x))dz =

c2

b2

and therefore
G′(x) = −φ(A(x))A′(x)[b1 − b2P1]

Under the conditions of the theorem A′(x) < 0, so G′(x) > 0. In addition, note that as
x → −∞, G(x) → −c1 < 0, and as x → ∞, G(x) → (b1 − c1) − (b2 − c2) > 0. Thus,
there exists a unique (x∗

en, s∗en, θ∗en) that satisfies the three necessary conditions for monotone
equilibrium in Γen.

Finally, fixing θ∗en, note that inspection of (14) shows that the indifference condition for t1

players depends on x only via the functions A(x) =
θ∗en− x

1+σ2
σ√

1+σ2

, and B(x) = 1+τ2+σ2τ2√
1+σ2

A(x) +

τ
√

1 + τ2 + σ2τ2Φ−1( c2
b2

). Fixing θ∗en, it is clear that A(x, θ∗en) is always strictly decreasing
in x (for all σ > 0), and thus agents who receive signals x > x∗

en will choose to invest at t1,
and agents who receive signals x < x∗

en will choose to wait. Therefore the proof is complete. �

Proof of Proposition 5: Since θ|x is distributed N( x
1+σ2 , σ2

1+σ2 ), l = Pr(θ ≥ θ̂|x) =

Φ(
x

1+σ2 −bθ
σ√

1+σ2

). Thus,

Pr(l ≤ l̂|θ = θ̂) = Pr(x ≤ (1 + σ2)θ̂ + σ
√

1 + σ2Φ−1(l̂)|θ = θ̂)

= Φ(
(1 + σ2)θ̂ + σ

√
1 + σ2Φ−1(l̂) − θ̂

σ
) = Φ(σθ̂ +

√
1 + σ2Φ−1(l̂))
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Thus, as σ → 0, Pr(l ≤ l̂|θ = θ̂) → l̂, as required. �

A.1 Detailed derivations of equations (7) and (8)19

Again, for pedagogical purposes, we write this derivation for a general set of payoffs (b1, c1)
for t1 and (b2, c2) for t2 where b1 > c1 > 0, b2 > c2 > 0, b1

c1
> b2

c2
, and b1 − c1 > b2 − c2. The

equations to be derived require only the special case where c1 = c2 = c, which then implies
that b1 > b2. First consider the derivation of (7). By Lebesgue dominated convergence:

Pr(x < x∗, s ≥ s∗|θ∗) =
∫ x∗

−∞
Pr(s ≥ s∗|θ∗, x)f(x|θ∗)dx

By definition s = τ2x+σy+x∗
1+τ2+σ2τ2 . Given x and θ∗, and substituting in y = θ∗−x∗

σ + τη, we get

s = τ2x+θ∗+στη
1+τ2+σ2τ2 . We know that s∗ = θ∗ + στ√

1+τ2+σ2τ2
Φ−1( c2

b2
). Thus,

s ≥ s∗|x, θ∗ ⇔ τ2x + θ∗ + στη

1 + τ2 + σ2τ2
≥ θ∗ +

στ√
1 + τ2 + σ2τ2

Φ−1(
c2

b2
)

After some algebra, this reduces to:

η ≥ τ

σ
[θ∗(1 + σ2) − x] +

√
1 + τ2 + σ2τ2Φ−1(

c2

b2
)

As τ → 0, the RHS converges pointwise to Φ−1( c2
b2

). Thus

Pr(s ≥ s∗|θ∗, x) → 1 − Φ(Φ−1(
c2

b2
)) = 1 − c2

b2

Thus,

Pr(x < x∗, s ≥ s∗|θ∗) → Pr(x ≤ x∗|θ∗)[1 − c2

b2
] = Φ(

x∗ − θ∗

σ
)[1 − c2

b2
]

Thus, equation (5) reduces to 1 − Φ(x∗−θ∗
σ ) + Φ(x∗−θ∗

σ )[1 − c2
b2

] = 1 − θ∗, or in other words:
Φ(x∗−θ∗

σ ) c2
b2

= θ∗, which, setting, c2 = c, is (7).

Now consider the derivation of (8).

Pr(θ ≥ θ∗, s ≥ s∗|x∗) =
∫ ∞

θ∗
Pr(s ≥ s∗|θ, x∗)f(θ|x∗)dθ

Pr(θ < θ∗, s ≥ s∗|x∗) =
∫ θ∗

−∞
Pr(s ≥ s∗|θ, x∗)f(θ|x∗)dθ

19I am particularly grateful to an anonymous referee for proposing this elegant shortening of my original

proof.
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Given x∗ and θ, it is easy to see that s = τ2x∗+θ+στη
1+τ2+σ2τ2 . Thus,

s ≥ s∗ ⇔ τ2x∗ + θ + στη

1 + τ2 + σ2τ2
≥ θ∗ +

στ√
1 + τ2 + σ2τ2

Φ−1(
c2

b2
)

which reduces to

η ≥ θ∗ − θ

στ
+

τ

σ
[(1 + σ2)θ∗ − x∗] +

√
1 + τ2 + σ2τ2Φ−1(

c2

b2
)

As τ → 0, the RHS tends to −∞ or ∞ depending on whether θ > θ∗ or θ < θ∗. Thus

Pr(θ ≥ θ∗, s ≥ s∗|x∗) → Pr(θ ≥ θ∗|x∗)

Pr(θ < θ∗, s ≥ s∗|x∗) → 0

Thus, (6) reduces to

Pr(θ ≥ θ∗|x∗)b1 − c1 = Pr(θ ≥ θ∗|x∗)(b2 − c2)

In other words,

Φ

(
x∗

en
1+σ2 − θ∗en

σ√
1+σ2

)
=

c1

b1 − (b2 − c2)

which, setting c2 = c1 = c, is (8).
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Figure 1: Thresholds with Low Prior and Low Noise (Γen: solid line, Γst: dashed line)

Figure 2: Thresholds with High Prior and Low Noise (Γen: solid line, Γst: dashed line)
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Figure 3: Thresholds with Low Prior and High Noise (Γen: solid line, Γst: dashed line)

Figure 4: Thresholds with High Prior and High Noise (Γen: solid line, Γst: dashed line)
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Figure 5: Thresholds with Intermediate Prior and High Noise (Γen: solid line, Γst: dashed
line)

Figure 6: Welfare with Low Prior and Low Noise (Γen: solid line, Γst: dashed line)
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Figure 7: Welfare with High Prior and Low Noise (Γen: solid line, Γst: dashed line)

Figure 8: Welfare with Low Prior and High Noise (Γen: solid line, Γst: dashed line)
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Figure 9: Welfare with High Prior and High Noise (Γen: solid line, Γst: dashed line)

Figure 10: Welfare with Intermediate Prior and High Noise (Γen: solid line, Γst: dashed line)
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