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Abstract

We study efficiency of coordination in incomplete information games with private
learning. Two players face the option to invest irreversibly in a project in one of many
rounds. The project succeeds if some underlying state variable θ is positive and both
players invest, possibly asynchronously. In each round they receive informative private
signals about θ, and asymptotically learn the true value of θ. Players choose in each
period whether to invest or to wait for more precise information about θ.

We show that with sufficiently many rounds, both players invest with arbitrarily high
probability whenever investment is socially efficient, and delays in investment disappear
when signals are precise. This result stands in sharp contrast to the usual static global
game outcome in which players coordinate on the risk-dominant action. We provide a
general foundation for these results in terms of higher order beliefs. We use this foun-
dation to solve examples with varying degrees of asynchronicity, and show that little
asynchronicity is required to achieve efficient coordination when learning is quick.
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1 Introduction

Coordination problems arise in a wide variety of economic situations. A typical example is
of a setting where the successful implementation of some socially beneficial project depends
on whether enough agents participate. Such settings may lead to coordination failure, which
arises when a given group of agents fails to participate in the project despite the fact that it
is in their collective interest to do so.

The traditional theoretical analysis of coordination problems, where payoffs are typically
assumed to be commonly known, has been characterized by the existence of multiple equi-
libria. For a given payoff rule, there exists at least one equilibrium with coordination failure,
and one without. Such analysis is unable, therefore, to identify the extent and relevance of
coordination failure, since it is not possible to assign probabilities across equilibria.

The literature on global games (Carlsson and van Damme [3], Morris and Shin [20])
has made substantial progress in resolving the problem of multiplicity in the analysis of
coordination problems. This literature has identified an important class of coordination
games, in which underlying payoffs are observed with small amounts of idiosyncratic noise,
where the multiplicity of equilibria is eliminated. The “refinement” thus achieved allows us
to quantify the extent of coordination failure, and indeed coordination failures do occur in
the unique equilibrium of the canonical global game. Whether coordination failure arises
depends on the payoffs of the underlying complete information game. Roughly speaking,
agents are only able to coordinate on some risky action in the unique equilibrium of a global
game if that action is risk dominant, i.e., it is optimal for each agent to choose that action
in the underlying complete information game even when there is only a “low” probability
that his fellow players will choose that action.1 This can only happen if the benefits that
arise from the action conditional upon success are high relative to the cost of undertaking
it. Thus, the global games literature has negative implications for the ability of agents to
coordinate on socially beneficial actions: only projects that involve “little strategic risk” will
be implemented in equilibrium. In all other cases, coordination failure will arise.

The canonical global game requires that all agents choose their actions simultaneously.
Our analysis is motivated by the following question: To what extent would the incidence of
coordination failure change if we allowed for some asynchronicity in the actions of potential
participants in a coordination problem, while they privately learn about payoffs over time?

To be specific, consider a benchmark setting in which the success of a socially beneficial
1More precisely, equilibria of the underlying complete information game survive in the induced global game

only if they are p-dominant (Morris, Rob, and Shin [19]) for “low” p. Exactly how low p must be depends on

the structure of the game. In two player games, p-dominant equilibria for p < 1
2

survive. See Kajii and Morris

[17] for a generalization of this idea.
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investment project depends on the total number of agents who invest over the course of
T distinct periods. Two players choose at which period (if any) to invest irreversibly, while
observing noisy private signals about the underlying state variable (θ). Players do not observe
each other’s actions; in Section 7 below, we show how to interpret this information structure as
social learning with noisy observation of actions. At each period t, the information structure
is that of a canonical global game. We assume that agents privately learn the fundamental
θ asymptotically: if the number of periods gets arbitrarily large, each agent’s cumulative
individual information becomes arbitrarily precise. The project succeeds if the fundamental
is good and each player invests in some period. Note that it is not necessary for success that
both players invest in the same period. This is, therefore, an asynchronous investment game.
The choice between early versus late investment is driven by a trade-off: early investment
generates higher payoffs if the project succeeds, while late investors have more accurate
private information about payoffs. As in a standard global game, we assume that there
exist values of θ that make investment dominant (θ ≥ 1) or dominated (θ ≤ 0). To fix
ideas, imagine that 0 < θ < 1 and the payoffs are such that investing is not risk-dominant.
This means that if agents had to choose their actions simultaneously in some period, say
T , and thus play a static global game, then, in the limit as noise vanishes, coordinated
investment could not be supported as an equilibrium outcome, and coordination failure arises.
To what extent will the possibility of choosing actions asynchronously affect the incidence of
coordination failure?

We show that coordination failure almost never arises in a sufficiently long asynchronous
investment game. For any ε > 0 there exists some T such that for any T > T , investment
succeeds with probability at least 1− ε in the asynchronous game with T periods whenever
θ > 0. In addition, as noise in observation vanishes (i.e., σt → 0 for all t) there is also no delay
in investment: players successfully coordinate on implementing the project immediately, thus
achieving the social optimum.

The forces driving our results can be cleanly characterized in terms of higher order be-
liefs in the asynchronous coordination game. Building on the standard belief operators of
Monderer and Samet [18], we construct generalized belief operators that are suitable for char-
acterizing behavior in asynchronous investment games. Using these operators, we show that
by choosing sufficiently long asynchronous investment games, it is possible to generate ade-
quate levels of generalized approximate common knowledge (i.e., generalized common p-belief
for arbitrarily high p) in order to support asynchronous coordination. The generalization lies
in allowing the required beliefs to be attained at different times.

If synchronous participation at the last round T was necessary for the success of the
project, then players invest only if, at T, they individually believe θ ≥ 1 or commonly believe
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(in the sense of Monderer and Samet [18]) that θ > 0, that is, that the fundamental allows
success. It is now well understood (see, for example, Morris and Shin [20]) that, even when
players receive arbitrarily precise private signals, the global games information structure does
not generate common p-belief for p > 1

2 , and thus coordination fails whenever investment is
not risk-dominant. In our setting, players do not have to participate synchronously at T ,
but both players must participate eventually by period T for investment to succeed. In
such a situation, only a relaxed version of common beliefs is necessary for coordination. Fix
a probability of success p ∈ (0, 1) sufficient to induce players to invest in period t. Both
players will invest by period T if each assigns probability at least p in some period to the
fundamental being good, and in the same period, believes with probability p that the other
assigns probability at least p in some period to the fundamental being good, etc. We refer to
such an event as generalized common p-belief of the event θ > 0. This variation of standard
common belief turns out not to be very demanding in our setting.

The intuition for why generalized approximate common knowledge is attained would
be relatively simple if we considered a game with infinitely many rounds in which each
player asymptotically privately learns the fundamental. Then whenever the fundamental θ
is positive, all players will eventually believe, at any arbitrarily high level of confidence, that
θ is positive.

Analyzing only infinite-horizon games with asymptotically complete learning would ef-
fectively restrict attention to situations in which all fundamental uncertainty is completely
resolved by the end of the game. In many applications, however, some uncertainty remains.
For this reason, it is important to analyze long but finite games with incomplete learning. In
such games, however, the argument outlined above becomes more subtle.

For example, consider the event that all players p-believe that fundamental is positive
at least once during the game. One may reasonably be concerned that the length of game
required for this event to have at least some fixed probability becomes infinite as θ approaches
0 from above. However, we show that this is not the case. Indeed, we show that, for any
given confidence level, the probability that all players are confident that θ > 0 at least once
during the game converges to 1 uniformly across all θ > 0 as T → ∞. Such uniformity is
essential for efficient coordination to occur.

Existing results on static global games show that there is an important discontinuity in
the structure of standard common beliefs as information about the fundamental becomes
infinitely precise. We find that such a discontinuity does not arise in asynchronous coordi-
nation problems. Generalized approximate common knowledge is attained even if a small
amount of fundamental uncertainty remains.

In addition to explaining the efficiency result in the benchmark asynchronous investment
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game, our higher order belief framework may be applied to different games with varying
degrees of asynchronicity. Section 4 introduces two such games. In the first of these games,
when θ ∈ (0, 1), each player prefers not to invest before the other player invests: there
are small losses for being (exclusively) the first to invest. In the second, each player would
prefer to invest one period before the other player invests: there is a small reward for being
(exclusively) the first to invest. We show that coordination failure occurs in the first game
but, when learning is sufficiently fast, efficient coordination arises in the second. Thus even
a small change in tolerance to asynchronicity can have a dramatic effect on the ability to
successfully coordinate. These further results reinforce the conclusion that the ability of
agents to coordinate in dynamic settings is highly sensitive to the details of timing and payoffs.
Thus, our analysis suggests that caution is warranted when drawing policy implications from
the static analysis of coordination problems that may have dynamic elements. Simultaneously,
the dynamic higher order beliefs framework of Section 5 provides some tools and methods
which may be useful for analyzing a large class of dynamic coordination problems.

Our results suggest that allowing asynchronicity and private learning in coordination
problems may substantially reduce the extent of coordination failure in global games. In
addition to being of theoretical interest, our results are potentially widely applicable. For
example, consider the problem of foreign direct investment (FDI) into a newly liberalizing
emerging market. Payoffs from FDI depend on whether the emerging economy “takes off”,
which in turn depends on the amount of FDI. Thus, this is a coordination problem. In
addition, it may not matter precisely that all FDI takes place at the same time, but simply
that it occurs during the first several months to several years of the liberalization programme.
It is not uncommon for liberalization to be accompanied by government subsidies to early
investors. Yet, it is also likely that late investors will have better information about the
state of the underlying emerging markets. Thus, the class of stylized games outlined above
represents trade-offs that are not dissimilar to those outlined in this applied context. The FDI
example is not unique. Indeed, it may be reasonable to argue that several of the applications
studied to date using global games (e.g., currency crises, bank runs, financial contagion etc.2)
may well have an element of asynchronicity to them.

The rest of the paper is organized as follows. In section 2 we outline the model. Section 3
states our main result for the benchmark game with pure asynchronicity. After introducting
additional examples in section 4, section 5 examines the generalized common beliefs required
to obtain efficient coordination. Section 6 applies the common belief framework of section
5 to the examples of section 4. Sections 7 and 8 discuss the role of our main assumptions,

2See Morris and Shin [21] for currency crises, Goldstein and Pauzner [12] for bank runs, and Dasgupta [7]

and Golstein and Pauzner [13] for financial contagion.
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consider potential extensions, and conclude. Before proceeding to the main model, we first
outline the related literature.

1.1 Literature Review

Our analysis originated in the work of Dasgupta [6]. Dasgupta outlines conditions under
which the provision of the option to delay combined with private learning improves efficiency
in two-stage global games. We study a related framework with many periods and show that
full efficiency can be achieved as the number of periods grows large. Our analysis highlights
the role of asynchronicity in generating efficient coordination. Another example of a dynamic
global game with private learning can be found in Heidhues and Melissas [15].

The current analysis bears a general connection to models of information dynamics in
multi-stage global games (e.g., Chamley [4], Angeletos, Hellwig and Pavan [1]). In contrast
to our work, papers in this strand of the literature focus on the robustness of equilibrium
uniqueness in global games when learning is based on endogenously generated public signals
and actions are reversible. We focus on characterizing the (lack of) incidence of coordination
failure in pure private information settings with irreversibility in which there is a unique
long-run outcome.

Our explanation of the efficiency result in terms of higher order beliefs builds on the work
of Monderer and Samet [18] and Morris and Shin [22]. The analysis is also related to the
work of Cripps, Ely, Mailath, and Samuelson [5] (henceforth CEMS). CEMS delineate general
conditions under which agents asymptotically attain approximate common knowledge via
private learning. The analysis of CEMS has important implications for long-run outcomes
in situations which can be divided into two distinct phases: agents learn privately in the
first phase, and attempt to coordinate synchronously in the second. We study situations in
which those two phases are merged together: players attempt to coordinate asynchronously
while they privately learn about payoffs. Both papers study whether private learning leads
to approximate common knowledge. However, different concepts of approximate common
knowledge are relevant for ensuring successful coordination in synchronous and asynchronous
coordination games, because the payoff-relevant events differ in these two types of games.
CEMS study standard common beliefs as defined in Monderer and Samet [18], while we
study an asynchronous form of common beliefs. The two concepts turn out to have very
different properties. In our model, private learning fails to deliver common knowledge in the
standard sense as studied by CEMS, but succeeds in delivering asynchronous common beliefs.
This explains why coordination failure arises in the synchronous coordination game but does
not arise in our asynchronous game.3

3In an earlier paper Ely [8] informally discusses the notion of asynchronous common belief, but only to
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Gale [10] provides an elegant analysis of the extent of inefficient delay in dynamic coordi-
nation games with complete information. He shows that inefficient delay can be eliminated
when the period length becomes very small. Hörner [16] and Xue [24] similarly obtain ef-
ficient coordination in incomplete information games with observable irreversible actions.
While our main result implies efficient delay-free coordination in the limit as private signals
become accurate, and thus bears a resemblance to Gale’s, the forces driving the results are
very different. Gale’s result builds on backward induction based on the observability of past
actions in a game of perfect information, while we consider an asymmetric information setting
in which players do not observe each others’ actions. When the efficient action is irreversible,
observability favors efficient coordination by eliminating strategic uncertainty once a player
has chosen the irreversible action. Our results indicate that efficiency does not require ob-
servability per se; thus efficient coordination may arise even in games with large numbers of
players where perfect observation of actions is not feasible. In Section 7 below, we describe
how to reinterpret our model as one of noisy social learning.

2 Model

Two players i ∈ {1, 2} play a joint investment game ΓT , with T ∈ N.4 The game consists of
T rounds, all of which may take place within a finite, possibly short time window. In each
round t ∈ {1, . . . , T}, each player chooses one of the two actions ait ∈ {0, 1}; we interpret
Action 1 as “invest”, and Action 0 as “wait”. Investment is irreversible.5 To keep notation
simple, we model irreversibility by making action choices payoff-irrelevant after a player has
invested once. Whenever we refer to rationalizable actions below, we implicitly condition on
the player not having invested in an earlier round.

The payoffs in the game depend on the action profiles and the value of a fundamental
parameter θ ∈ R describing the characteristics of the project. The fundamental θ is drawn
before the first round according to an improper uniform distribution on R, and remains fixed
over all rounds.

The players do not observe the true value of the fundamental θ; instead, they receive
private noisy signals of the value of θ in every round. Specifically, each player i receives a
signal x̃(i,t) = θ + σ̃tε

(i,t) in round t, where the errors ε(i,t) are drawn from N(0, 1) and are
independent across players and rounds. The standard errors σ̃t are strictly positive for all
t, and the sequence (σ̃)∞t=0 is fixed throughout independent of the value of T , which we will

contrast it to the standard common belief which is the relevant concept for the problems he considers.
4All of our results extend to games with any finite number of players.
5We discuss the role of irreversibility and other robustness issues in Section 7.
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vary. Player i does not observe the choices of player −i before the end of the game.6

Players form their beliefs in each period about the true value of the fundamental through
Bayesian updating given their received signals. Conditional on a sequence of signals (x̃(i,t))tt′=1,
player i believes θ is distributed as N(x(i,t), σ2

t ), where

x(i,t) =

∑t
t′=1 x̃

(i,t) 1
σ̃2

t′∑t
t′=1

1
σ̃2

t′

,

and
1
σ2
t

=
t∑

t′=1

1
σ̃2
t′
.

We will refer to x(i,t) as the cumulative signal, and to σt as the cumulative standard error.
We assume that players asymptotically privately learn the true fundamental, that is,

lim
t→∞

σt = 0.

Note that, since each standard error σ̃t is strictly positive, each cumulative standard error
σt is also strictly positive. Thus even though players learn the true fundamental in the limit
over all periods, some uncertainty remains in each round.

The success of the project is determined at the end of the game, based on the fundamental
θ and the actions of the players:

• For θ ≤ 0, the project fails regardless of the players’ actions.

• For θ ≥ 1, the project succeeds regardless of the players’ actions.

• For 0 < θ < 1, the project succeeds if and only if both players invest by round T ,
possibly asynchronously.

Each player’s payoff in the game depends on whether and in which round the player
invested, and whether the project succeeded. The payoffs are

• 0 if the player never invests,

• δtb if the player invests in round t and the project succeeds, and

• −δtc if the player invests in round t and the project fails,
6However, as we demonstrate in Section 7, under certain circumstances, the signals x̃(i,t) can be thought

to arise from noisy social learning based on the observation of past actions.
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where the parameters b and c are both strictly positive, and δ ∈ (0, 1).
We assume throughout that players’ strategies depend only on their aggregate signal in

each period, not on the full sequence of signals to date.7

Accordingly, a behavioral strategy for player i is a collection si = {sit}Tt=1 of measurable
functions sit : X(i,t) −→ {0, 1}. Let U i(a, si, s−i|x(i,t)) denote the expected payoff for type x(i,t)

choosing action a conditional on player i having chosen action 0 in every period 1, . . . , t− 1
and following strategy si in every period t+ 1, . . . , T . Letting S denote the set of behavioral
strategies for each player, define the (interim) best response correspondence B(·) over subsets
S ⊆ S by

B(S) =
{
si | ∀x(i,t) ∃s−i ∈ S such that sit

(
x(i,t)

)
∈ arg max

a∈{0,1}
U i
(
a, si, s−i|x(i,t)

)}
.

Note that, since we restrict our attention to symmetric games, we do not distinguish between
the best response correspondences of the two players. The set of (interim) rationalizable
strategies for each player is defined to be

∞⋂
n=1

Bn(S).

We say that action a is rationalizable for x(i,t) if there is exists a rationalizable strategy si

such that si(x(i,t)) = a.
Notions of rationalizability in dynamic games are typically more complicated than the

one employed here. The main complication is how players revise conjectures about their
opponents’ strategies that are contradicted by their opponents’ actions (see, e.g., Pearce
[23]). This issue does not arise in our model because actions are unobservable.

We now proceed to analyze this game, and demonstrate how asynchronicity combined
with asymptotic learning can eliminate coordination failure.

3 Analysis

The payoffs outlined above imply a simple property of the best response correspondence,
which we describe in the following lemma.

Lemma 1 There exists some p ∈ (0, 1) such that, in any round t, investing at t is the unique
best response for any type that assigns probability greater than p to the success of the project.

7This assumption simplifies notation but is not necessary for the results since the set of rationalizable

actions depends only on the ∆-hierarchy of beliefs (see Ely and Peski [9]), which in turn depends only on the

aggregate signal.
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Proof. The payoff to investing at t is

δt (pb+ (1− p)(−c)) .

The value to waiting at t is at most δt+1b. Thus taking p to satisfy

δt (pb+ (1− p)(−c)) = δt+1b,

or equivalently,

p =
δb+ c

b+ c
,

gives the result.
We note that 0 < p < 1. Finally, we observe that the existence of p < 1 implies that

however great the amount of future information, any player will choose to invest whenever
she is sufficiently optimistic.

We are now in a position to state our main results, which demonstrate the stark difference
between synchronous and asynchronous coordination games. We begin with the benchmark
synchronous case.

3.1 The failure of coordination in the synchronous game

As a benchmark to compare our results to the existing literature on static global games,
consider the following static, synchronous version of the game ΓT . In the synchronous version,
which we label by ΓST , for 0 < θ < 1, the project succeeds if and only if both players invest
synchronously at round T . All other features remain unchanged. Let p = c

b+c , and notice
that player in the last round T prefers to invest only if she assigns probability at least p to
the success of the project. We show that for any θ < 1 coordinated investment fails with
arbitrarily high probability as long as T is big enough, whenever p > 1

2 .

Proposition 1 Suppose p > 1
2 . Suppose further that both players play interim rationalizable

strategies. For any θ < 1 and ε > 0 there exists some T such that for any T > T , the project
fails with probability at least 1− ε in ΓST whenever θ ≤ θ.

This result is a consequence of results from the extant literature on static global games
(see Morris and Shin [20]), and so we only describe the intuition here.8 In Section 6 we revisit
the synchronous game and provide its formal analysis using our general higher order belief
framework.

8Note that, when p > 1
2
, not investing is the risk-dominant action whenever θ < 1. Proposition 1 is

therefore consistent with the usual selection of the risk-dominant equilibrium in 2× 2 global games (Carlsson

and Van Damme [3]).
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Suppose that the two players use symmetric strategies characterized by a threshold aggre-
gate signal x∗ at time T above which each invests and below which each does not invest. A
player who receives exactly the threshold signal must be indifferent between investing and not
investing. The threshold type suffers from strategic uncertainty; by symmetry, she assigns
probability exactly 1/2 to her opponent receiving a signal above x∗, and hence probability
1/2 to her opponent investing. Since p > 1/2, not investing is a strict best response unless
the player assigns high enough probability to θ being greater than 1. When T is large, this
condition cannot be satisfied for signals bounded below 1 since the noise in the aggregate
signals is small in period T . Therefore, the threshold x∗ must be close to 1, and players are
unlikely to invest if θ ≤ θ < 1.

We now show that coordination almost never fails in the asynchronous game for θ > 0.

3.2 The success of coordination in the asynchronous game

The following proposition establishes that, in the game with many rounds, both players are
likely to invest whenever the fundamental allows for success of the project (θ > 0). The
intuition behind the contrast between the outcomes of the synchronous and asynchronous
games is as follows. When T is large, the noise in the aggregate signal is small in round T ,
so there is little payoff uncertainty (except for signals very close to 0 or 1). However, there is
strategic uncertainty in equilibrium since player’s actions are based on private information.
This strategic uncertainty leads to coordination failure in the synchronous game. In the
asynchronous game, strategic uncertainty is mitigated since a player who believes that the
fundamental is good assigns high probability to the opponent sharing this belief in some
period. When combined with irreversible investment, we show that these second-order beliefs
allow each player to be confident that the other invests whenever the fundamental is good.

Proposition 2 Suppose that both players play interim rationalizable strategies. For any
ε > 0 there exists some T such that for any T > T , the project succeeds with probability at
least 1− ε in ΓT whenever θ > 0.

Proof. The result follows from two core lemmas (Lemmas 3 and 4). The proof consists of
three steps: first, we briefly outline some notation and prove a technical lemma (Lemma 2).
Second, we state the two core lemmas. Finally, we argue that the main result follows from
the lemmas.

Let p be as in Lemma 1 and fix q ∈ (p, 1). For each (Lebesgue) measurable subset E ⊂ R,
let B(i,t)

q (E) =
{
x(i,t) | Pr

(
θ ∈ E|x(i,t)

)
≥ q
}

, that is, B(i,t)
q (E) is the set of aggregate signals

for player i at time t for which she assigns probability at least q to θ lying in the set E.
Denote by lθ

∗,q
t (θ) the probability that, when the fundamental is θ, the player q-believes that
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the fundamental exceeds θ∗ in at least one round up to and including round t:

lθ
∗,q
t (θ) = Pr

 ⋃
t′=1,...,t

B(i,t)
q ([θ∗,∞))

∣∣∣∣∣∣ θ
 .

Lemma 2 The function lθ
∗,q
t (θ) is continuous and nondecreasing in θ for each t, θ∗, and q.

The proof of Lemma 2 is in the appendix.
The following lemma demonstrates one important consequence of our assumption that

players asymptotically learn the true state. Such asymptotic learning guarantees that, when
the true state is θ∗, each player will, at least once during the course of an arbitrarily long
game, believe with arbitrarily high probability that the true state is not below θ∗.

Let lθ
∗,q(θ) denote limt→∞ l

θ∗,q
t (θ). This limit exists because lθ

∗,q
t (θ) is non-decreasing in

t and bounded above by 1. When θ∗ = 0, the following lemma implies that, as t → ∞, the
probability that each player p-believes the fundamental is positive converges to 1 uniformly
across all θ ≥ 0.

Lemma 3 For all 0 < q < 1 and all θ∗ ∈ R, lθ
∗,q(θ) is continuous at θ∗ and lθ

∗,q(θ∗) = 1.

The proof of the lemma is provided in the appendix. The main idea of the proof of Lemma
3 is the following: conditional on θ∗, the probability that a player q-believes θ ≥ θ∗ is 1− q in
each round, but with the complication that the posterior probabilities p(i,t) = Pr(θ ≥ θ∗|x(i,t))
are correlated across rounds. We show, roughly, that beliefs across sufficiently distant rounds
t and t′ are approximately independent. The intuition is that if the amount of information
that a player receives between t and t′ is large relative to what she knew at t, then the
information at t has only a negligible impact at t′. For long games, we can choose a long
subsequence of rounds such that all rounds in the subsequence are sufficiently distant. Hence
the probability of q-believing θ ≥ θ∗ in at least one of these rounds approaches one as the
number of rounds grows large.

Our next result shows that, in a sufficiently long (but finite) game, whenever a given
player assigns probability greater than p to the fundamental being positive, the player invests
immediately.

Lemma 4 For each q ∈ (p, 1), there exists some T such that for any T > T , investing is the
unique rationalizable action in the game ΓT for any type x(i,t) ∈ B(i,t)

q ([0,∞)).

Proof. Fix q ∈ (p, 1) throughout the proof. Let S(θ) denote the following statement: there
exists some T such that for every T > T , investing is the unique rationalizable action in ΓT
for any type x(i,t) that q-believes θ ≥ θ.
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We proceed by a contagion argument. The statement clearly holds for θ ≥ 1. The proof
consists of showing that if, for some θ∗ ≥ 0, the statement S(θ) holds for all θ > θ∗, then
S(θ∗) holds, and, moreover, if θ∗ > 0, then there exists some ε > 0 such that the statement
S(θ) holds for all θ > θ∗− ε. Let θ∗∗ denote the infimum of those θ∗ for which the statement
S(θ) holds for all θ > θ∗. We must have θ∗∗ = 0, for otherwise taking θ∗ = θ∗∗ contradicts
the contagion step. It follows that S(θ) holds for all θ > 0 and hence S(0) holds, as needed.

It remains to prove the contagion step. Suppose that, for some θ∗ ≥ 0, S(θ) holds for all
θ > θ∗. Fix some r ∈

(
p
q , 1
)

. Lemma 3 implies that there exists θ > θ∗ such that

lθ,q(θ∗) > r.

Hence there exists some T ′ such that

l
θ,q
T ′ (θ

∗) > r.

Since the function l
θ,q
T ′ (·) is continuous, there exists some ε > 0 such that

l
θ,q
T ′ (θ

∗ − ε) ≥ r.

Since lθ,qT (θ) is non-decreasing in T and θ, we have

l
θ,q
T (θ) > r

for all T > T ′ and θ > θ∗ − ε.
Let T ′′ be such that the statement S(θ) holds with T = T ′′. Consider a game ΓT with

T > max(T ′′, T ′). Suppose, for some t, player i q-believes at t that θ > max{0, θ∗ − ε}.
Since T > T ′, θ > θ∗ − ε implies that lθ,qT (θ) ≥ r. Since T > T ′′, by hypothesis, player −i
invests in any period at which she q−believes that θ > θ. Thus, conditional on θ > θ∗ − ε,
the probability that player −i invests is no less than r. Therefore, at t, player i attaches
probability at least rq to the event that the project succeeds. Since rq > p, this implies that
investing is the unique rationalizable action for player i at t.

Our main result follows immediately from Lemmas 3 and 4. Fix ε > 0. By Lemma 4,
there exists some T ′ such that each player invests in the game ΓT with T > T ′ if she q-believes
that θ ≥ 0. By Lemma 3, there exists some T ′′ such that for T > T ′′, when the fundamental
is at least 0, the probability that both players q-believe that θ ≥ 0 in some round in ΓT is
greater than 1− ε. Taking T = max{T ′, T ′′} gives the result.

Thus, in sharp contrast to the synchronous case, coordination failure arises with vanishing
probability in the asynchronous case as the number of rounds grows large. In addition, if, as
in the synchronous case, we let observation noise vanish, we get the even stronger implication
that there is no delay in successful coordination. This is a corollary of Proposition 2. To

13



make this idea precise, consider a family of sequences (σσt)∞t=1, where σ > 0 is a scaling
factor, and (σt)∞t=1 is some fixed sequence with strictly positive members converging to 0. We
will denote by ΓT (σ) game with T rounds and noise parameters (σσt)Tt=1.

Corollary 1 Suppose that both players play rationalizable strategies. For any θ > 0 and
ε > 0 there exist some σ > 0 and T such that for any σ < σ and any T > T , both players
invest in round 1 of game ΓT (σ) with probability at least 1− ε whenever θ ≥ θ.

While we have focused on simple payoffs to investment that can attain only values −c
or b, our main results hold much more generally. For each player i, let ai = 1 if i invests in
at least one round, and ai = 0 otherwise. Suppose that each player i receives a payoff of 0
if she never invests, and δtu(θ, a−i) if she invests in period t, where u : R × {0, 1} −→ R is
bounded in absolute value by some u. Suppose moreover that there exists b > 0 such that
u(θ, a−i) ≥ b whenever θ > 0 and a−i = 1, or θ ≥ 1. Then Proposition 2 and Corollary 1
hold. The key step in extending the results to this broader class of payoffs is the following
analogue to Lemma 1.

Claim 1 There exists some p ∈ (0, 1) such that, in any round t, investing at t is the unique
best response for any type of player i that assigns probability greater than p to{(

θ, a−i
)
|
(
θ > 0 and a−i = 1

)
or θ ≥ 1

}
.

The proof of the claim is in the appendix. Given the claim, the proofs of Proposition 2
and Corollary 1 are the same as above since they rely only on the sufficient condition for
investment from Lemma 1.

Note that the class of payoffs satisfying our conditions is large. In particular, payoffs need
not be monotonic in actions or in θ.

What explains the stark difference in outcomes in the synchronous and asynchronous co-
ordination games? One instructive way to interpret this difference arises out of characterizing
the higher order beliefs of players in these games. We turn to such a characterization after
describing several related examples in the next section.

4 Examples

The preceding section shows that the benchmark cases of purely synchronous and purely
asynchronous coordination lead to starkly different predictions in terms of efficiency of coor-
dination. We develop a framework below for analyzing higher order beliefs in these games
that can also be applied to intermediate cases with partial asynchronicity. The intermediate
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cases we analyze involve games in which, even if both players do not have to invest at the
same time, the relative timing of their investment affects their payoffs. In the first of these
games, when θ ∈ (0, 1), each player prefers not to invest before the other player invests: there
are small losses for being (exclusively) the first to invest. In the second, each player would
prefer to invest one period before the other player invests: there is a small reward for being
(exclusively) the first to invest.

For these intermediate cases, only the payoffs differ from the games of Section 2 above; the
players, action sets, and information structures remain the same, and investment continues to
be irreversible. Both cases consist of games in which players receive flow payoffs that depend
on whether the other player has invested. The rules for success of the project are the same
as in Section 2 but the success is determined during the coordination process instead of at
the end.

Example 1 (game in which neither player wants to invest before the other) Let st
be a success indicator at round t, defined by

st =

1 if (ait = a−it = 1 and θ > 0) or θ ≥ 1;

0 otherwise,

recalling that, since investment is irreversible, if ait = 1 for some t then ais = 1 for all s > t.
Each player i maximizes the discounted sum

1
1− δ

T∑
t=1

δtu(i,t)

of flow payoffs u(i,t), where

u(i,t) =


0 if ait = 0,

b if ait = 1 and st = 1,

−c if ait = 1 and st = 0.

Unlike in the asynchronous game of Section 2, players in Example 1 care about the timing
of their opponents’ investment; neither wants to invest before the other does. One may readily
verify that investing is a best response for player i at time t only if she p-believes at t that
the project will succeed at t if she invests, where p = c

b+c .
The next example captures situations in which early investors receive a reward if the

project succeeds.
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Example 2 (game in which each player wants to invest before the other) The game
is almost identical to the previous one, except that players begin to receive the payoff b one
period before the project succeeds. That is

u(i,t) =


0 if ait = 0,

b if ait = 1, and st+1 = 1,

−c if ait = 1 and st+1 = 0,

where sT+1 is defined to be equal to sT .9

As in Example 1, players in Example 2 care about the timing of their opponents’ invest-
ment; neither wants to invest too early before the other does. One may readily verify that a
result analogous to Lemma 1 holds: investing is a best response for player i at time t if she
p-believes at t that, if she invests, the project will succeed at or before time t+ 1.

In the next section, we develop tools that we use to characterize the outcomes in Examples
1 and 2. We find that the small difference in incentives can generate a large difference in
behavior. Rationalizable outcomes in Example 1 turn out to be just as inefficient (for large
T and small σ) as those in the fully synchronous game of Section 2. Thus private learning
and irreversibility alone are not sufficient to increase efficiency relative to the synchronous
benchmark. In contrast, when learning is sufficiently fast, the small incentive to invest just
before the opponent leads to full efficiency in Example 2 (again for large T and small σ).

5 Asynchronous Higher Order Beliefs

It is well-known that the coordination failure arising in static global games can be explained
by the lack of approximate common knowledge. The finding that coordination failure does
not arise in our asynchronous global game indicates that some aspects of higher order beliefs
differ between synchronous and asynchronous global games. The current section is devoted to
examining this difference. In the process, we characterize general properties favoring efficiency
or failure in coordination that can be applied to a large class of dynamic coordination games
including those from Examples 1 and 2.

5.1 Preliminary notation and definitions

Throughout this section, we retain the same information and action structure as above, but
allow for more general payoffs. Thus two players i ∈ {1, 2} learn in periods t = 1, 2, . . . by

9For simplicity, we assume that the early investment reward corresponds to a flow payoff of b. The relevant

feature for our analysis is only that belief that the project will succeed at t+ 1 induces investment at t. This

feature also arises for many other reward specifications that differ in size and timing from that of the example.
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receiving noisy private signals of a common payoff parameter θ ∈ Θ = R. The parameter
θ is drawn from an improper uniform distribution on R, and the noise in players’ signals is
normally distributed and independent over time and across players. As above, we denote
by σσt the standard deviation of the players’ aggregate signals at time t where σ is a noise-
scaling parameter. The sequence (σt)t is fixed throughout. The action space for player i
at time t is {0, 1}, and action 1 is irreversible, which we capture by assuming that choices
are payoff-irrelevant after choosing 1 once. We restrict attention to common value games in
which payoffs depend only on θ and chosen actions, not on players’ signals.

We focus on asymptotic results characterizing rationalizable behavior in games with many
rounds and small noise. We denote by Γ = (ΓT (σ))T,σ a class of games with varying scaling
factor σ > 0 and number of rounds T ∈ N. The payoff functions vary across T but not across
σ.

We refer to each player-time pair (i, t) as an agent. The type of agent (i, t), denoted by
x(i,t) ∈ X(i,t) = R, consists of player i’s aggregate signal at time t. The ordinary state space
is Ω = Θ ×(i,t) X

(i,t). Let ΣΩ denote the Borel σ-algebra on Ω (endowed with the usual
Euclidean topology) and ΣΘ the Borel σ-algebra on Θ. An element of ΣΩ is an ordinary
event. Note that the posterior beliefs of each agent (i, t) over ordinary events are well-defined
and continuous in the uniform topology as the type x(i,t) varies.

In order to conveniently describe strategy profiles, we follow Morris and Shin [22] and
introduce compound events. A compound event F is a vector

(
F (i,t)

)
(i,t)

of length 2T in
which each component F (i,t) is a Borel-measurable subset of the type space X(i,t). Let S
denote the class of all compound events. Each compound event F =

(
F (i,t)

)
(i,t)

can be
interpreted as the strategy profile in which each agent (i, t) plays action 1 if and only if
x(i,t) ∈ F (i,t). We identify each compound event with the corresponding strategy profile.
Note that we omit from the notation the dependence of compound events on T .

For two compound events F, F ′ ∈ S, we write F ⊆ F ′ if F (i,t) ⊆ F ′(i,t) for each (i, t). We
define binary operations ∧ and ∨ by

F ∧ F ′ =
(
F (i,t) ∩ F ′(i,t)

)
(i,t)

,

F ∨ F ′ =
(
F (i,t) ∪ F ′(i,t)

)
(i,t)

.

Negation of a compound event is defined as ¬F =
(
F (i,t)

)
(i,t)

, where F (i,t) denotes the

complement of the set F (i,t). Note that the class of compound events S is closed under the
operations ∧, ∨, and ¬. We abuse notation by writing ∅ for the empty compound event

( ∅, . . . , ∅︸ ︷︷ ︸
2T times

).
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We denote the negation of ∅ by vector X =
(
X(i,t)

)
(i,t)

.

For each (i, t) and p ∈ [0, 1], define the belief operator B(i,t)
p mapping ordinary events to

subsets of X(i,t) by

B(i,t)
p (E) =

{
x(i,t) ∈ X(i,t) : Pr

(
E|x(i,t)

)
≥ p
}
.

Thus, B(i,t)
p (E) is the set of types of agent (i, t) that p-believe the event E. Note that,

although the notation is the same, the domain of the belief operator B(i,t)
p differs from that

in the proof of Proposition 2.
Define the compound belief operator Bp : [ΣΩ]2T −→ S component-wise by

[Bp(E)](i,t) = B(i,t)
p

(
E(i,t)

)
,

where E =
(
E(i,t)

)
(i,t)

is a vector of ordinary events E(i,t) ∈ ΣΩ. Note that the notation
omits dependence of the belief operators on σ and T .

5.2 Necessary and sufficient conditions for investment

In this section we introduce a formal method for describing necessary or sufficient conditions
for investment in a large class of games which includes, but is not limited to, our benchmark
games of Section 2 and the games in Examples 1 and 2.

In each class of games Γ, we assume: (i) for each θ ∈ U = [1,∞), action 1 would be
strictly dominant in each period if a player knew θ, and (ii) for each θ ∈ G = (0,∞) and
each agent (i, t), there exists an action profile for the opponent such that investing would be
a best response for agent (i, t) if she knew θ. Below we abuse notation by identifying the sets
U,G ∈ ΣΘ with the ordinary events U ×(i,t) X

(i,t) and G×(i,t) X
(i,t), respectively.

Unlike in the fully asynchronous game, we now consider conditions on best responses that
are sensitive to the timing of investment. These conditions make use of operators OT,(i,t) :
S −→ ΣΩ that map compound events to ordinary events. We denote by OT =

(
OT,(i,t)

)
(i,t)

the vector of such operators; thus OT : S −→ [ΣΩ]2T . Finally, we denote by O =
(
OT
)
T

the
sequence of operators OT . When there is no risk of confusion, we sometimes omit dependence
of OT and OT,(i,t) on T . Let p ∈ [0, 1].

Definition 1 We say that (O, p) describes sufficient conditions for investment in a
class of games Γ if for any strategy profile F , in every game ΓT (σ), action 1 is the unique
best response for x(i,t) whenever

x(i,t) ∈ B(i,t)
p

([
G ∩OT,(i,t)(F )

]
∪ U

)
. (1)
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Thus investing is a best response whenever agent (i, t) p-believes that the fundamental
is very good (θ ∈ U) or that the fundamental is good (θ ∈ G) and that the timing of the
opponent’s investment satisfies certain requirements, which are summarized by O.

Definition 2 We say that (O, p) describes necessary conditions for investment in a
class of games Γ if for any strategy profile F , in every game ΓT (σ), action 1 is a best response
for type x(i,t) only if

x(i,t) ∈ B(i,t)
p

([
G ∩OT,(i,t)(F )

]
∪ U

)
. (2)

To illustrate the definitions, consider the classes of games in Sections 2 and 4. In each
case, we abuse notation by identifying measurable subsets F (i,t) ⊆ X(i,t) with the ordinary
events in which every other component consists of the full space.

• In the fully asynchronous game of Section 2, by Lemma 1, (O, p) describes sufficient
conditions for investment where

O(i,t)(F ) =
T⋃
t′=1

F (−i,t′).

• In Example 1, (O, p) describes necessary conditions for investment, where

O(i,t)(F ) =
t⋃

t′=1

F (−i,t′).

• In Example 2, (O, p) describes sufficient conditions for investment, where

O(i,t)(F ) =
min{t+1,T}⋃

t′=1

F (−i,t′).

We restrict attention to sufficient or necessary conditions for investment satisfying three
natural properties that are assumed to hold throughout the remainder of the paper. This
amounts to restricting the class of games that we consider.

Assumption 1 For any F and F ′ such that F (−i,t′) = F ′(−i,t
′) for all t′, OT,(i,t)(F ) =

OT,(i,t)(F ′) for all T and (i, t).

The first assumption states that necessary and sufficient conditions for investment do not
depend on the player’s own strategy.

Assumption 2 For each F and F ′ such that F ⊆ F ′, OT,(i,t)(F ) ⊆ OT,(i,t)(F ′) for all T and
(i, t).
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Assumption 2 states that if sufficient or necessary condition for investment is satisfied
for a type x(i,t) under some strategy of the opponent −i, the condition continues to be
satisfied if the opponent increases her strategy. This assumption is closely related to the
action monotonicity assumption in static global games. Action monotonicity requires that
best responses be non-decreasing in the opponent’s strategy. Assumption 2 requires only
that the lower or upper bound Bp ([G ∧O(F )] ∨ U) of the best response correspondence be
non-decreasing in the opponent’s strategy.

Before introducing the next assumption, we define a useful concept.

Definition 3 Let D and R be classes of subsets of partially ordered sets. An operator H :
D −→ R is point-monotone if for every upper contour set D ∈ D, H(D) is also an upper
contour set.

Assumption 3 The operator OT,(i,t) is point-monotone for each T and (i, t).

The point-monotonicity assumption is related to the state monotonicity assumption in
static global games that requires own-action payoff differences to be monotone in θ. State
monotonicity implies that the best response correspondence is point-monotone. Assumption
3 requires only that the lower or upper bound Bp ([G ∧O(F )] ∨ U) of the best response
correspondence be point-monotone.

5.3 Strategic optimism and pessimism

In Section 3 we found that, for high ratio c/b, investing is rationalizable for players in the
synchronous game only if they believe that the fundamental is very good (θ ≥ 1); players
turn out to be “strategically pessimistic” in the sense that they are only willing to invest
when they believe that the project will succeed regardless of their opponent’s actions. In the
asynchronous game, players invest whenever they believe that the fundamental is good (θ >
0). In this case, players turn out to be “strategically optimistic.” The following definitions
formalize notions of strategic pessimism and optimism.

Definition 4 We say that there is strategic pessimism in a class of games Γ if there exist
T and, for each T , q(T ) ∈ (0, 1) and σ(T ) > 0 such that for all σ < σ(T ) and T > T ,
investing is rationalizable in ΓT (σ) for type x(i,t) only if

x(i,t) ∈ B(i,t)
q(T )(U).

Definition 5 We say that there is strategic optimism in a class of games Γ if there exist
T and, for each T , q(T ) ∈ (0, 1) and σ(T ) > 0 such that for all σ < σ(T ) and T > T investing
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is the unique rationalizable action in ΓT (σ) for type x(i,t) whenever

x(i,t) ∈ B(i,t)
q(T )(G).

Note that in both of the preceding definitions, q may depend on T but not on σ.

Remark 1 Strategic optimism and pessimism are closely related to efficient and inefficient
coordination respectively. If there is strategic pessimism, then players fail to coordinate on
investing for fundamentals bounded away from the upper dominance region U in games with
many rounds and precise signals. Similarly if there is strategic optimism, then players suc-
cessfully coordinate on investing without delay for fundamentals bounded away from the lower
dominance region Θ \G in games with many rounds and precise signals. This connection is
formalized as follows.

1. Suppose there is strategic pessimism in Γ. For each sufficiently large T , given any ε > 0
and θ < 1, there exists σ > 0 such that for any rationalizable strategies in the game
ΓT (σ) with σ < σ,

Pr
(
s(i,t)

(
x(i,t)

)
= 0 ∀i, t | θ

)
> 1− ε

whenever θ < θ.

2. Suppose there is strategic optimism in Γ. Given any ε > 0 and θ > 0 there exist some
σ(T ) > 0 and T such that for any rationalizable strategies in any game ΓT (σ) with
σ < σ(T ) and T > T ,

Pr
(
s(1,1)

(
x(1,1)

)
= 1 = s(2,1)

(
x(2,1)

)
| θ
)
> 1− ε

whenever θ > θ.

5.4 Generalized belief operators

We characterize rationalizable actions using a generalization of the common beliefs introduced
by Monderer and Samet [18]. Our generalized belief operators and generalized common belief
operators are closely related to those of Morris and Shin [22]. Morris and Shin identify the
belief operator with the best response correspondence, which is convenient for analysis of
rationalizability but complicates interpretation since the domain of beliefs does not include
simple events describing θ. We define generalized belief operators for which the interpretation
of common beliefs remains intuitive. In particular, we formulate necessary conditions for
rationalizability of investment in terms of generalized common belief that the fundamental is
good (θ > 0).
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Given a pair (O, p), define the generalized belief operator Bp : ΣΘ ∪ S −→ S by

Bp(F ) =

Bp(F ) if F ∈ ΣΘ

Bp(OTF ) if F ∈ S.

Note that we suppress the dependence of Bp on O, T and σ from the notation. Also note
that we abuse notation by identifying F ∈ ΣΘ with the ordinary event F ×(i,t) X

(i,t).
Generalized belief Bp(F ) is a vector with 2T components, one for each (i, t), where each

is a set B(i,t)
p (F ) of types of agent (i, t). If F ∈ ΣΘ is an event describing θ then B(i,t)

p (F ) is
the set of types of (i, t) that p-believe F . If F ∈ S is a compound event — a strategy profile
— then B(i,t)

p (F ) is the set of types of (i, t) that, given the profile F , p-believe that the timing
of their opponent’s investment satisfies the conditions described by O.

The following definition generalizes Monderer and Samet’s common beliefs to our dynamic
setting.

Definition 6 For any operator K : S ′ −→ S with S ⊆ S ′, let C1
K(F ) = K(F ), and re-

cursively define CnK for n = 2, 3, . . . by CnK(F ) = K(Cn−1
K (F )) ∧ Cn−1

K (F ). The generalized
common belief operator CK is defined by

CK(F ) =
∞∧
n=1

CnK(F ).

We note without proof that the generalized common belief operator satisfies Monderer
and Samet’s belief operator axioms.

To intuitively understand the relationship between the generalized common belief operator
and Monderer and Samet’s common p-belief, recall that (standard) common p-belief of an
event G refers to the event that both players p-believe G, both p-believe that both p-believe
G, and so on. Since the standard notion focuses on fixed beliefs for each player, dynamic
considerations do not arise.

Generalized common belief corresponds to the standard notion in static environments.
Consider an information structure with only one round, T = 1, and let O(i,1)(F ) = F (−i,1)

be the event that the opponent invests under strategy profile F . Then CBp may be identified
with the common p-belief operator of Monderer and Samet.

The crucial difference between generalized and standard common beliefs is that the gen-
eralized formulation allows the timing of beliefs to vary across players and across orders of
belief in dynamic setups. To fix ideas, we provide an informal discussion of the generalized
belief operator in the context of a particular example with O(i,t)(F ) =

⋃T
t′=1 F

(−i,t′), which
corresponds to our fully asynchronous game. Generalized common belief CBp(G) of the event
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G is a vector of length 2T with components [CBp(G)](i,t). If players follow the strategy profile
CBp(G) then ⋂

i

Oi(CBp(G)), (3)

is the event that each player invests during the game. The object (3) is, with a caveat that
we explain below, the event that

1. each player p-believes G in some round,

2. each p-believes in some round that each p-believes G in some round,

3. etc.

It is easy to show that the component [CBp(G)](i,t) is the set of types of agent (i, t) that
p-believe the above object.

The caveat is that the description does not specify the relationship among the timings of
the various orders of beliefs held by different players. A more precise description is as follows:
The object (3) is the event that

1. for each player i there exists ti1 ∈ {1, . . . , T} such that player i p-believes G at ti1,

2. each player i p-believes at ti1 that there exists t−i2 ∈ {1, . . . , T} such that player −i
p-believes G at t−i2 (and i p-believes at ti1 that i herself p-believes G at ti1),

3. etc.

For this particular O, the times tin are unrelated across players i and orders n. This
corresponds to the feature of the fully asynchronous game that the specific timing of −i’s
investment is irrelevant to player i. For more restrictive conditions O, corresponding to games
in which the timing of −i’s investment is relevant to i, the timing of beliefs in the above list
could be connected.

Next we define an operator, called the expansion operator, that is similar to the gener-
alized common belief operator except with componentwise unions instead of componentwise
intersections. Our use of the two operators is complementary; we use the generalized com-
mon belief operator to identify sufficient conditions for strategic pessimism and the expansion
operator to identify sufficient conditions for strategic optimism.

Definition 7 For any operator K : S ′ −→ S with S ⊆ S ′, let E1
K(F ) = K(F ), and re-

cursively define EnK for n = 2, 3, . . . by EnK(F ) = K(En−1
K (F )) ∨ En−1

K (F ). The expansion

operator EK is defined by

EK(F ) =
∞∨
n=1

EnK(F ).
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For O(i,t)(F ) = Oi(F ) =
⋃T
t′=1 F

(−i,t′), corresponding to the fully asynchronous game,
the event

⋂
iO

i(EBp(G)) is described by the same list as above, but with the word “and”
replaced everywhere with the word “or”.

The generalized common belief and expansion operators are connected by a simple rela-
tion. We say that L is the dual operator to K if L(F ) = ¬K(¬F ) for all F . One may readily
verify that if L is dual to K then

EL(F ) = ¬CK(¬F ), (4)

that is, EL is dual to CK .
The next proposition provides a characterization of rationalizability of investment using

the generalized common belief operator CBp and the expansion operator EBp . The first
part of the proposition generalizes the well-known necessary condition for rationalizability
of investment in static coordination games (see, for example, Morris and Shin 2003). The
second part is derived from the first using the duality of the two operators.

Proposition 3 1. Suppose that (O, p) describes necessary conditions for investment in
a class of games Γ. If there exist p′ < p, σ(T ), and T such that CBp′ (G) = ∅ for all
σ < σ(T ) and T > T , then there is strategic pessimism in Γ.

2. Suppose that (O, p) describes sufficient conditions for investment in a class of games
Γ. If there exist p′ > p, σ(T ), and T such that EBp′ (U) = X for all σ < σ(T ) and
T > T , then there is strategic optimism in Γ.

The proof of the proposition is in Subsection A.1 of the appendix.
When generalized common belief is based on necessary conditions for investment, if in

every state players fail to commonly believe that the fundamental is good, then the propo-
sition says that players invest only if they individually believe that the fundamental is very
good. Similarly, if the generalized belief operator (and hence also the expansion operator)
is based on sufficient conditions for investment, then investment is the unique rationalizable
action for any type that believes the fundamental is good if every type has, for some k, a kth
order generalized belief that the fundamental is very good.

The following result describes a condition for strategic optimism that is easier to apply
than that of part 2 of Proposition 3.

Proposition 4 Suppose that (O, p) describes sufficient conditions for investment in a class
of games Γ. If there exist p′ > p, q ∈ (0, 1), σ(T ), and T such that for all σ < σ(T ), T > T ,
and all θ∗ ∈ R

Bq(θ ≥ θ∗) ⊆ Bp′ (Bq(θ ≥ θ∗)) (5)

then there is strategic optimism in Γ.
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The proof of the proposition is relegated to the appendix.
The discerning reader may notice that Proposition 4 generalizes the key step of the proof

of Proposition 2. There we observed that event that both players q-believe θ ≥ θ∗ is in
some, asynchronous sense evident (in sufficiently long games) — whenever the event holds
each player believes it at some time. Based on this observation we could use the contagion
argument; the observation implied the contagion step: if investment is rationalizable whenever
players q-believe θ ≥ θ∗ then investment is rationalizable also whenever players q-believe
θ ≥ θ∗ − ε. Proposition 4 states that if Bq(θ ≥ θ∗) is evident in a generalized sense that
reflects sufficient conditions for investment (O, p) then strategic optimism arises. The proof
in appendix is again based on the contagion argument. We could have also formulated
a symmetric result based on a contagion of not investing from lower dominance region in
games with necessary conditions for investment. We omit such result because we will not use
in the next section where we apply the results of this section to particular games.

6 Applications

In this section we use the preceding results to characterize the rationalizable outcomes in
several games. As above, the information structure in each game is identical to that in
Section 2. For each game, we show that there is strategic optimism or strategic pessimism
by analyzing a pair (O, p) that describes sufficient or necessary conditions for investment,
respectively. By Remark 1, this establishes efficiency or inefficiency of coordination in each
game.

6.1 The fully asynchronous game

First we return to the fully asynchronous game. The next proposition essentially replicates
Lemma 4 to illustrate the relationship between the general method of Section 5 and the
results of Section 3.

Proposition 5 Suppose that (O, p) describes sufficient conditions for investment in a class
of games Γ, where

OT,(i,t)(F ) =
T⋃
t′=1

F (−i,t′). (6)

Then there is strategic optimism in Γ.

Recall that if p = p, then (O, p) describes sufficient conditions for investment in the fully
asynchronous game if O is as in (6).
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Proof. We will show that for each p′ there exist q and T such that for each T > T and all
σ > 0,

Bq(θ ≥ θ∗) ⊆ Bp′ (Bq(θ ≥ θ∗)) .

Proposition 4 then implies strategic optimism in Γ.
By Lemma 3, we have

lim
T→∞

Pr
(
OT,(i,t)Bq(θ ≥ θ∗) | θ∗

)
= 1.

Choose p′ > p, q > p′, and T such that

Pr
(
OT,(i,t)Bq(θ ≥ θ∗) | θ∗

)
≥ p′

q

for all T > T and σ > 0 (which is possible since the given probability is independent of
σ). Every type x(i,t) ∈ Bq(θ ≥ θ∗) assigns probability at least q × p′

q = p′ to the event
OT,(i,t)Bq(θ ≥ θ∗), as needed.

6.2 Game with reward for early investment

Next we return to Example 2 of Section 4. We find that, if learning is sufficiently quick,
strategic optimism arises in this class of games.

Proposition 6 Suppose that (O, p) describes sufficient conditions for investment in a class
of games Γ, where

OT,(i,t)(F ) =
min{t+1,T}⋃

t′=1

F (−i,t′). (7)

If there exists τ ∈ (0, 1) such that σt+1 ≤ τσt for each t, then there is strategic optimism in
Γ.

Recall that if p = p then (O, p) describes sufficient conditions for investment in Example
2 if O is as in (7).
Proof. We again show that for each p′ there exist q and T such that for each T > T and
σ > 0,

Bq(θ ≥ θ∗) ⊆ Bp′ (Bq(θ ≥ θ∗)) . (8)

Proposition 4 then implies strategic optimism in the class Γ.
We use the following lemma to prove (8).

Lemma 5 Suppose there exists τ ∈ (0, 1) such that σt+1 ≤ τσt for every t. Then for each
p′ ∈ (0, 1), there exists q ∈ (0, 1) such that

B(i,t)
q (θ ≥ θ∗) ⊆ B(i,t)

p′

(
B(−i,t+1)
q (θ ≥ θ∗)

)
for all t = 1, . . . , T − 1.
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The proof of the lemma is in the Appendix. Roughly speaking, Lemma 5 states that
if a player believes θ ≥ θ∗, then she also believes that her opponent will believe θ ≥ θ∗ in
the next period. This property implies that the first-order belief Bq(θ ≥ θ∗) is evident in a
generalized, asynchronous sense reflecting sufficient conditions for investment in this class of
games.

Given p′, let q be as in Lemma 5. The lemma implies that

B(i,t)
q (θ ≥ θ∗) ⊆ B(i,t)

p′

(
OT,(i,t)Bq(θ ≥ θ∗)

)
for each t = 1, . . . , T − 1 since B(−i,t+1)

q (θ ≥ θ∗) ⊆ OT,(i,t)Bq(θ ≥ θ∗).
All that remains is to show that in the last round T

B(i,T )
q (θ ≥ θ∗) ⊆ B(i,T )

p′

(
OT,(i,T )Bq(θ ≥ θ∗)

)
when T is sufficiently large. This last containment follows from the proof of Proposition 5
since OT,(i,T ) =

⋃T
t′=1 F

(−i,t′) is identical to the corresponding operator for the fully asyn-
chronous game.

6.3 Fully synchronous game

Next we use the generalized common belief framework to prove that coordination failure
arises in the synchronous game, as described in Section 3.1. The proof essentially replicates
that for the failure of common knowledge in static global games (see Morris and Shin [20]).

Proposition 7 Suppose that (O, p) describes necessary conditions for investment in class of
games Γ, where

OT,(i,t)(F ) = ∅, for t < T,

OT,(i,T )(F ) = F (−i,T ).

and p > 1
2 . Then there is strategic pessimism in Γ.

Letting p = p, the pair (O, p) of the proposition describe necessary conditions for invest-
ment in the synchronous game of Section 3.1, in which players invest only in round T .
Proof. Fix p > 1

2 . We will show that CBp(G) = ∅ for any T and σ > 0. Strategic pessimism
then follows from Proposition 3.

Clearly
[
CBp(G)

](i,t) = ∅ for any t < T by the definition of O. Consider round T . Recall
that B(i,T )

p (G) is the set
[
σTF

−1(p),∞
)

of types of (i, T ) that p-believe G. Turning to the
second order of beliefs,

[
B2
p

](i,T ) (G) is the set of types of (i, T ) that p-believe that (−i, T )
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p-believes G. Conditional on x(i,T ), (i, T ) believes that x(−i,T ) is normally distributed with
mean x(i,T ) and variance 2σ2

T . Therefore, we have[
B2
p

](i,T ) (G) =
[
σTF

−1(p) +
√

2σTF−1(p),∞
)
.

Proceeding inductively, we see that[
CBp(G)

](i,T ) =
⋂
n

[Bnp ](i,T )(G) =
⋂
n

[
σTF

−1(p)
(

1 + (n− 1)
√

2
)
,∞
)

= ∅,

as needed.

6.4 Game with loss for early investment

Next we return to Example 1 of Section 4. We find that strategic pessimism arises in this
class of games.

Proposition 8 Suppose that (O, p) describes necessary conditions for investment in class of
games Γ, where

OT,(i,t)(F ) =
t⋃

t′=1

F (−i,t′) (9)

and p > 1
2 . Then there is strategic pessimism in Γ.

Recall that if p = p, (O, p) describes necessary conditions for investment in Example 1 if
O is as in (9).
Proof. Fix any p > 1

2 . We will show that CBp(G) = ∅ for any T and σ. Strategic pessimism
then follows by Proposition 3.

First note that
[
CBp(G)

](i,1) coincides with the usual static common p-belief of G, which
is empty for p > 1

2 (see the previous subsection). The result for periods t ≥ 2 follows by
induction. Suppose

[
CBp(G)

](i,t′) = ∅ for i = 1, 2 and t′ = 1, . . . , t − 1. Then
[
CBp(G)

](i,t)
coincides with the usual static common p-belief of G in period t, which is again empty.

7 Discussion

In this section, we discuss the roles of our major assumptions, and consider potential exten-
sions.

First, we discuss the information structure. The uniform prior assumption simplifies the
analysis but, as is well understood in the global games literature, is not important when
signals are precise. Any prior with a continuous density leads to posteriors close to those
arising from a uniform prior when the noise in signals is small.
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A significant feature of the information structure is the (lack of) feedback the players
receive during the course of the game. In particular, we assume that players do not observe
each other’s past choices. Instead, in each period, they observe a noisy private signal x̃(i,t)

of the state θ. The lack of learning from past actions may seem artificial. However, we can
reinterpret our model as one with a continuum of players, as described in brief below. Under
this reinterpretation, in the class of symmetric monotone equilibria, the per-period signals
x̃(i,t) can be shown to be equivalent to noisy observation of the past actions of other players.

To see this, we begin by describing how to reinterpret our fully asynchronous game as
having a continuum of players of unit measure. Let lt denote the measure of players who
have invested by period t. Payoffs for investing at t are given by δt(blT − c(1 − lT )) if
θ ∈ (0, 1), by b if θ ≥ 1, and by −c if θ ≤ 0. Each player has one investment option. At
each time t, each player can either invest irreversibly or wait. At t = 1, let the information
structure for each player be identical to that of the original two player game. If players follow
symmetric monotone strategies at t = 1, then there exists an increasing function λ1 such
that l1 = λ1 (θ). At t = 2, players observe a monotone statistic based on the measure of first
period investors, with some private noise. In particular, assume that at t = 2, each player
i observes x̃(i,2) = λ−1

1 (l1) + σ̃2ε
(i,2), where ε(i,2) ∼ N(0, 1) independently across players.

Since λ−1
1 (l1) = θ, the observation of x̃(i,2) is informationally equivalent to the observation

of a noisy private signal directly about θ: x̃(i,2) = θ + σ̃2ε
(i,2). Thus, the exogenous private

signal at t = 2 in the original model can be microfounded as a particular form of noisy
social learning. But now, if players follow symmetric monotone strategies at t = 2, there
will be an increasing function λ2, such that l2 = λ2 (θ). In turn, by allowing agents to
observe λ−1

2 (l2) with private noise at t = 3, we can also reinterpret the private signal at
t = 3 as arising out of the noisy observation of past play. Proceeding iteratively in this
way, we can microfound the entire sequence of private signals in the original model. Thus,
while our baseline analysis abstracts from the observability of past actions for tractability, our
exogenous learning process can be viewed through the lens of endogenous noisy social learning.
Although the precise translation between exogenous and social learning relies on particular
parametric assumptions, this approach to modeling social learning has become common in
the global games literature because of its tractability (see, for example, Angeletos, Hellwig,
and Pavan [1] (online supplement), Angeletos and Werning [2], and Goldstein, Ozdenoren,
and Yuan [11]).

Finally, we discuss the role of irreversibility in our arguments. Irreversibility itself is not
necessary for the main results of Section 5. Even when actions are reversible, there may exist a
pair (O, p) describing necessary or sufficient conditions for investment based on which we can
derive conditions for strategic pessimism or optimism respectively. However, irreversibility
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plays an important role in the analysis of our specific games. The tendency towards efficiency
in the fully asynchronous game is related to the fact that we chose the efficient rather than
the inefficient action to be irreversible. This assumption forms a natural benchmark in the
context of many applications, including the leading example of foreign direct investment
which we used to motivate our stylized game. However, in other applications, alternative
assumptions may be more appropriate. Had we chosen differently, that is, had we assumed
that the project succeeds only if all players choose to invest in all rounds, the project would
always fail outside the upper dominance region.

8 Conclusion

Static coordination games represent a useful abstraction for studying coordination problems
in the real world. However, the associated requirement of synchronicity in participation may
be a strong restriction: the outcomes generated in such models may not be good represen-
tations for real-world coordination problems where agents are able to participate at different
points of time and can learn about payoffs while deciding when to participate. We illus-
trate the radical difference between synchronous and asynchronous coordination problems
within the framework of global games. In canonical synchronous (one-shot) global games,
the risk-dominant equilibrium of the underlying complete information game is selected. Thus,
coordination failure is endemic in static global games: there exist a wide class of payoffs for
which players fail to efficiently coordinate in the unique equilibrium of the canonical global
game despite the fact that it is in their collective interest to do so.

We introduce a class of enriched asynchronous global games where agents have many
opportunities to participate, while they asymptotically and privately learn the true payoffs.
In our benchmark analysis, we consider an extreme version of such games, in which the
specific timing of the other player’s investment is irrelevant to one’s own payoffs. We show
that rationalizable play in such a game ensures Pareto dominant outcomes. Coordination
failure is eliminated.

We also analyze intermediate cases in which players care to some extent about the timing
of opponent’s investment. We show that the coordination outcome is highly sensitive to the
details of players’ tolerance to asynchronicity of investment. A small reward for investing
before one’s opponent results in full efficiency, as in the benchmark fully asynchronous game.
A small penalty for investing before one’s opponent ensures complete coordination failure, as
in the canonical static global game. A deeper understanding of timing incentives in dynamic
coordination problems may pinpoint details in the design of coordination processes that could
help to prevent coordination failures. Our results provide a starting point for such design
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exercises.

A Appendix

Proof of Lemma 2. First we prove continuity. Note that for every δ,

lθ
∗,q
t (θ + δ) = lθ

∗−δ,q
t (θ). (10)

Hence lθ
∗,q
t (θ) is continuous in θ if and only if it is continuous in θ∗. Since the density of

posterior beliefs is uniformly bounded in each period t′, given any η > 0, there exists some
δt′ > 0 such that ∣∣∣Pr

(
B(i,t′)
q ([θ∗,∞))

∣∣∣ θ)− Pr
(
B(i,t′)
q

(
[θ′,∞)

)∣∣∣ θ)∣∣∣ < η

t

whenever |θ∗ − θ′| < δt′ . Letting δ = mint′=1,...,t δt′ , it follows that∣∣∣lθ∗,qt (θ)− lθ
′,q
t (θ)

∣∣∣ < η

whenever |θ∗ − θ′| < δ, as needed.
Monotonicity also follows from (10) since lθ

∗,q
t (θ) is nonincreasing in θ∗.

Proof of Lemma 3. We begin by showing that lθ
∗,q(θ∗) = 1. For any infinite sequence

τ = (t1, t2, . . .), let

lθ
∗,q(θ∗; τ) = Pr

 ⋃
t′=t1,t2,...

B(i,t′)
q (θ ≥ θ∗)

∣∣∣∣∣∣ θ∗
 .

We have lθ
∗,q(θ∗; τ) ≤ lθ

∗,q(θ∗), so it suffices to show that, for any ε > 0, there exists some
sequence τ for which lθ

∗,q(θ∗; τ) ≥ 1− ε.
Given ε > 0, let x < θ∗ be such that Pr(x(i,1) < x|θ∗) < ε(1− ε). Let t1 = 1 and choose

each subsequent tk so that
Pr(x(i,tk) < x|θ∗) < εk(1− ε).

For this sequence t1, t2, . . ., we have

Pr(x(i,tk) < x for some k|θ∗) < ε.

Thus it suffices to show that, as long as x(i,tk) ≥ x for all k, there almost surely exists some
period tk in this sequence at which the player q-believes that θ ≥ θ∗. Hence the result follows
if, for some δ > 0 and some subsequence τ of this sequence, the player q-believes that θ ≥ θ∗

with independent probability δ in each period in τ .
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Player i q-believes in period t that θ ≥ θ∗ as long as x(i,t)−θ∗
σt

> Φ−1(q), where Φ(·) denotes
the standard normal distribution function. Given that x(i,tk) ≥ x, for t > tk, we have

x(i,t) =
σ2
t

σ2
tk

x(i,tk) + σ2
t

t∑
s=tk+1

x̃(i,s)

σ̃2
s

≥ σ2
t

σ2
tk

x+ σ2
t

t∑
s=tk+1

x̃(i,s)

σ̃2
s

.

Hence x(i,t)−θ∗
σt

> Φ−1(q) whenever

σ2
t

σ2
tk

x+ σ2
t

∑t
s=tk+1

x̃(i,s)

σ̃2
s
− θ∗

σt
> Φ−1(q). (11)

Since
1
σ2
t

=
1
σ2
tk

+
t∑

s=tk+1

1
σ̃2
s

, (12)

we have 1
σt

= σt

σ2
tk

+σt
∑t

s=tk+1
1
σ̃2

s
, and the left-hand side of Inequality (11) may be rewritten

as

σ2
t

σ2
tk

x+ σ2
t

∑t
s=tk+1

x̃(i,s)

σ̃2
s
− θ∗

σt
=

σt
σ2
tk

x+ σt

t∑
s=tk+1

x̃(i,s)

σ̃2
s

−

 σt
σ2
tk

+ σt

t∑
s=tk+1

1
σ̃2
s

 θ∗

=
σt
σ2
tk

(x− θ∗) + σt

t∑
s=tk+1

1
σ̃2
s

∑t
s=tk+1

x̃(i,s)

σ̃2
s∑t

s=tk+1
1
σ̃2

s

− θ∗


=
σt
σ2
tk

(x− θ∗)

+

(
σt

√
1
σ2
t

− 1
σ2
tk

)√√√√ t∑
s=tk+1

1
σ̃2
s

∑t
s=tk+1

x̃(i,s)

σ̃2
s∑t

s=tk+1
1
σ̃2

s

− θ∗
 ,

where the last equality follows again from Equation (12). Inequality (11) is therefore equiv-
alent to

σt
σ2
tk

(x− θ∗) +

(
σt

√
1
σ2
t

− 1
σ2
tk

)√√√√ t∑
s=tk+1

1
σ̃2
s

∑t
s=tk+1

x̃(i,s)

σ̃2
s∑t

s=tk+1
1
σ̃2

s

− θ∗
 > Φ−1(q).

The first term on the left-hand side of this inequality tends to zero as t grows large. The
second term is a product of two factors, the first of which tends to one as t grows large, and
the second of which is a standard normal random variable independent of the realizations
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of all signals up to period tk. Therefore, for small enough δ > 0, the inequality holds with
probability at least δ when t is sufficiently large given δ, q, x, and tk. We may therefore
construct the desired subsequence τ by selecting sufficiently distant elements of the sequence
t1, t2, . . ..

To prove that lθ
∗,q(θ) is continuous at θ∗, note that for each t, lθ

∗,q
t (θ) is continuous and

bounded above by 1. Given ε > 0, let T be such that lθ
∗,q
t (θ∗) > 1−ε/2 for every t ≥ T ; such

a T exists since lθ
∗,q(θ∗) = 1. Since lθ

∗,q
T (θ) is continuous, there exists some δ > 0 such that

lθ
∗,q
T (θ) > 1 − ε for every θ ∈ (θ∗ − δ, θ∗ + δ). Since lθ

∗,q
t (θ) is nondecreasing in t, it follows

that lθ
∗,q(θ) > 1 − ε for every θ ∈ (θ∗ − δ, θ∗ + δ), and therefore lθ

∗,q(θ) is continuous at θ∗

since it is bounded above by 1.
Proof of Claim 1. Let F i =

{(
θ, a−i

)
| θ > 0 and a−i = 1 or θ ≥ 1

}
. Consider a type

x(i,t) that assigns probability at least p to F i. The expected payoff to investing at t for type
x(i,t) is at least

δt
(
pE
[
u(θ, a−i) | F i, x(i,t)

]
+ (1− p)(−u)

)
.

The expected payoff to not investing is at most

δt+1
(
pE
[
u(θ, a−i) | F i, x(i,t)

]
+ (1− p)u

)
since, in round t+ 1, conditional on F i, the payoff to investing always exceeds the payoff to
not investing. Note that the last expression is also trivially an upper bound on the payoff to
not investing if t = T . Therefore, investing is the unique best response for x(i,t) if

p
(

(1− δ)E
[
u(θ, a−i) | F i, x(i,t)

]
+ (1 + δ)u

)
> (1 + δ)u.

Since E
[
u(θ, a−i) | F i, x(i,t)

]
≥ b, taking

p =
(1 + δ)u

(1− δ)b+ (1 + δ)u

gives the result.

A.1 Proof of Proposition 3

Before getting to the main proof we provide two lemmas.

Lemma 6 [Morris and Shin [22]] Suppose that K : S −→ S is an increasing operator
such that for any strategy profile that prescribes action a ∈ {0, 1} on F (i,t) for each (i, t),
action a is a best response for any agent (i, t) in ΓT (σ) only on a subset of K(i,t)(F ). Then
action a is rationalizable in ΓT (σ) for each agent (i, t) only on some subset of [CK(X)](i,t).
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There is a small difference between Lemma 6 and Proposition 10 of Morris and Shin
[22]. Lemma 6 specifies necessary conditions for rationalizability based on a bound on the
best response correspondence whereas Morris and Shin [22] specify necessary and sufficient
conditions based directly on the best response correspondence.
Proof. Recall from the definition of generalized common beliefs that C1

K = K(X) and
CnK = K

(
Cn−1
K

)
∧Cn−1

K for n ≥ 2. Consider iterated deletion of never best responses. Action
a is never a best response for types outside K(X) = C1

K since K is increasing. After one
round of deletion, action a is never a best response outside C2

K . Proceeding in this fashion,
action a is deleted for all types of each agent (i, t) outside [CK(X)](i,t) =

⋂
n [CnK ](i,t).

If (O, p) describes necessary conditions for investment, then Lemma 6 gives necessary
conditions for rationalizability of investment. Define B̃p : S −→ S by

B̃p(F ) = Bp
(
[G ∧OTF ] ∨ U

)
.10

Note that the operator B̃p(F ) differs from the generalized belief operator Bp(F ) defined in
Section 5.4, which is independent of G and U .

One can express necessary conditions for rationalizability of investment in terms of gen-
eralized common belief CB̃p

(X). However, such a characterization is complicated by the
influence of the upper dominance region on the operator B̃p. The following lemma provides
a partial characterization of CB̃p

(X) in terms of the simpler common belief operator CBp ,
which is independent of the upper dominance region.

First we extend the definition of the operator B̃p by replacing the particular sets G and
U with arbitrary upper contour sets D and D′ in ΣΘ such that D ⊆ D′. For any O satisfying
A1-3, define B̃p : S −→ S by

B̃p(F ) = Bp
(
[D′ ∧OTF ] ∨D

)
.

Lemma 7 For each p′ ∈ (0, p) and T , there exist q ∈ (0, 1) and σ > 0 such that

¬CBp′ (D
′) ∧ CB̃p

(X) ⊆ Bq(D),

for all σ ≤ σ.

To interpret the statement of the lemma, consider D′ = G and D = U . Roughly speaking,
the lemma says that if the necessary conditions for rationalizability from Lemma 6 are satisfied
in some state where (generalized) common belief of G fails, then players must assign high
enough probability to U . The failure of common belief refers to the common belief operator
based on Bp, where Bp reflects sufficient conditions for investment (O, p).

10Note that we abuse notation by identifying G (resp. U) with vectors of ordinary events, each component

of which is the event G×(i,t) X
(i,t) (resp. U ×(i,t) X

(i,t)).
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Proof of Lemma 7. We prove the equivalent statement

¬Bq(D) ∧ CB̃p
(X) ⊆ CBp′ (D

′). (13)

To keep notation simple, we assume that O is symmetric across players; the proof for the
asymmetric case is similar.

Let T (q, σ) ⊆ {1, . . . , T} be the set of rounds for which the left hand side of (13) is empty,
that is, T (q, σ) is the set of rounds t for which, given σ,[

CB̃p
(X)

](i,t)
⊆ B(i,t)

q (D). (14)

Note that T (q, σ) is non-increasing in q and non-decreasing in σ. The first of these
monotonicity properties is trivial. The second follows from the symmetry of the model with
respect to the scale parameter σ. If σ′ > σ, then D′ \D is smaller relative to σ′ than relative
to σ, and hence if (14) holds for σ then it holds for σ′.

Let

T (q) =
⋂
σ>0

T (q, σ)

and T =
⋃

q∈(0,1)

T (q).

Note that the lemma holds for all components (i, t) for which t ∈ T : there exists q such
that all rounds t ∈ T belong to the set T (q, σ) for sufficiently small σ, and (13) holds trivially
for such t because the left-hand side is empty.

It remains to show that the lemma holds for all components (i, t) for which t ∈ T ′ =
{1, . . . , T} \ T . Take any t ∈ T ′. We have t /∈ T (q) for each q > 0, and hence, by the
monotonicity of T (q, σ) with respect to σ, for each q > 0 there exists σ such that t /∈ T (q, σ)
for each σ ≤ σ.

Let q′ and σ′ be such that T ⊆ T (q′, σ) for all σ ≤ σ′, which exist since T is finite. Let
q < q′ and σ′′ > 0 be such that T (q, σ) ⊆ T for all σ ≤ σ′′. Letting σ = min{σ′, σ′′}, we have
T = T (q, σ) for all σ ≤ σ since T (q, σ) is non-increasing in q. Henceforth we restrict σ to be
at most σ.

Let C̃n = CnB̃p
(X) and Cn = CnBp′

(D′), and similarly for C̃ and C. Let x∗(i,t) = inf C̃(i,t).

For each t ∈ T ′, we have x∗(i,t) /∈ B(i,t)
q (D), for otherwise (14) would hold for t and t would

belong to T (q, σ) = T , contradicting that t ∈ T ′.
We will prove by induction that C̃n,(i,t) ⊆ Cn,(i,t) for all n and all t ∈ T ′. This implies

that C̃(i,t) ⊆ C(i,t) for all t ∈ T ′, as needed.
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The statement C̃n,(i,t) ⊆ Cn,(i,t) holds trivially for n = 1. Assume for induction that the
statement holds for n− 1 for all t ∈ T ′. We will show that C̃n,(i,t) ⊆ Cn,(i,t), that is, that

B(i,t)
p

((
D′ ∩O(i,t)C̃n−1

)
∪D

)
∩ C̃n−1,(i,t) ⊆ B(i,t)

p′

(
O(i,t)Cn−1

)
∩ Cn−1,(i,t).

Let x(i,t)
n = inf C̃n,(i,t). Note that, by induction, C̃n is a closed upper contour set for each n

since Bp(S) is closed for any upper contour set S, and hence x(i,t)
n ∈ C̃n,(i,t). Since x(i,t)

n ≤
x(i,t), it follows that x(i,t)

n /∈ B(i,t)
q (D).

For q sufficiently small relative to q′, the type x(i,t)
n assigns arbitrarily small probability

to the event D ∪t∈T B(−i,t)
q′ (D) independent of σ. Hence, for sufficiently small q, x(i,t)

n ∈

B
(i,t)
p

((
D′ ∩O(i,t)C̃n−1

)
∪D

)
implies that

x(i,t)
n ∈ B(i,t)

p′

(
D′ ∩ Ô(i,t)C̃n−1

)
,

where the operator Ô(i,t) is defined by

Ô(i,t)(F ) = O(i,t)(Q(F )),

where

Q(F )(i,t) =

∅ if t ∈ T ,

F (i,t) otherwise.

Next, we have

x(i,t)
n ∈ B(i,t)

p′

(
D′ ∩ Ô(i,t)C̃n−1

)
⊆ B(i,t)

p′

(
Ô(i,t)C̃n−1

)
⊆ B(i,t)

p′

(
Ô(i,t)Cn−1

)
,

where the last containment follows from the induction hypothesis that C̃n−1 ⊆ Cn−1 for all
components where t ∈ T ′, together with Ô being increasing. Finally, we have

x(i,t)
n ∈ B(i,t)

p′

(
Ô(i,t)Cn−1

)
⊆ B(i,t)

p′

(
O(i,t)Cn−1

)
because Ô(i,t)F ⊆ O(i,t)F for any F . Since x(i,t)

n ∈ C̃n−1,(i,t) ⊆ Cn−1,(i,t) for all t ∈ T ′, we
have x(i,t)

n ∈ B(i,t)
p′

(
O(i,t)Cn−1

)
∩ Cn−1,(i,t) for all t ∈ T ′.

All that remains is to show that Bp′
(
OCn−1

)
∧Cn−1 is an upper contour set. This follows

by induction on n since O and Bp′ are point-monotone and A ∧ B is an upper contour set
whenever A and B are.
Proof of Proposition 3. First we prove part 1. By Lemma 6, action 1 is rationalizable in
ΓT (σ) only on a subset of CB̃p

(X), where the operator B̃p : S −→ S is defined by

B̃p(F ) = Bp ([G ∧OF ] ∨ U) .
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Suppose that for some q ∈ (0, p), CBp−q(G) = ∅ whenever σ ≤ σ(T ) and T is sufficiently
large. By Lemma 7 with D = U and D′ = G, we have CB̃p

(X) ⊆ Bq(T )(U). Therefore,
action 1 is rationalizable in ΓT (σ) (for all σ ≤ σ(T ) and sufficiently large T ) only if agent
(i, t) q(T )-believes U , as claimed.

Next we prove part 2. Suppose (O, p) describes sufficient conditions for investment in a
class of games Γ. Consider a strategy profile F in a game ΓT (σ). Action 0 is best response
for type x(i,t) in ΓT (σ) only if

x(i,t) /∈ B(i,t)
p

([
G ∩O(i,t)F

]
∪ U

)
,

or equivalently, only if

x(i,t) ∈ B(i,t)
1−p

[([
G ∩O(i,t)F

]
∪ U

)]
= B

(i,t)
1−p

([
G ∪O(i,t)F

]
∩ U

)
= B

(i,t)
1−p

(
[U ∩O(i,t)F ] ∪G

)
,

where X denotes the complement of an event X.
By Lemma 6, action 0 is rationalizable in ΓT (σ) only on CB̂1−p

(X), where the operator

B̂1−p : S −→ S is defined by

B̂1−p(F ) = B1−p
([
U ∧ ¬OF

]
∨G

)
,

where ¬O is defined component-wise by ¬OT,(i,t)(F ) = OT,(i,t)(F ). Note that since ¬O is
decreasing, the operator B̂1−p satisfies the monotonicity requirement for K in Lemma 6: if
F ′ prescribes action 0 to more types than does F , then B̂1−p(F ′) prescribes 0 to more types
than does B̂1−p(F ).

Applying Lemma 7 with D = G and D′ = U , we find that for each q ∈ (0, 1− p),(
¬CB1−p−q(U) ∧ CB̂1−p

(X)
)
⊆ Bq(G). (15)

Suppose that for some q ∈ (0, 1− p),

¬CB1−p−q(U) = X (16)

whenever σ ≤ σ(T ) and T is sufficiently large. Then (15) implies that

CB̂1−p
(X) ⊆ Bq(G),

which in turn implies that ¬Bq(G) ⊆ ¬CB̂1−p
(X), and therefore

B1−q(G) ⊆ ¬CB̂1−p
(X).
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Thus, given (16), if (i, t) (1− q)-believes G then not investing is not rationalizable and hence
investing is the unique rationalizable action (for σ ≤ σ(T ) and sufficiently large T ).

It remains to show that (16) is equivalent to

EBp+q(U) = X.

This equivalence follows from duality (as discussed on page 24). Noting that B1−p−q(F ) =
¬Bp+q(¬F ), the equivalence follows from (4) since B1−p−q is dual to Bp+q.

A.2 Additional Proofs

Proof of Proposition 4. We prove that (5) implies that there exists p′′ > p such that
EBp′′ (U) = X whenever σ ≤ σ(T ) and T is sufficiently large. This result in turn implies
strategic optimism by part 2 of Proposition 3.

Define the function π(i,t) : X(i,t) −→ [0, 1] by

π(i,t)(x) = Pr
(
O(i,t)Bq(θ ≥ θ∗) | x(i,t) = x

)
.

Note that the dependence of π(i,t) on σ and T is suppressed from the notation. The function
π(i,t)(·) is continuous since posterior beliefs are continuous in types.

Relation (5) implies that π(i,t)(x) ≥ p′ for all x ≥ θ∗ + σtF
−1(q). Choose p′′ ∈ (p, p′).

By the continuity of π(i,t), there exists ε(i,t) > 0 such that π(i,t)(x) ≥ p′′ for all x ≥ θ∗ +
σtF

−1(q)− ε(i,t). Thus we have

B(i,t)
q

(
θ ≥ θ∗ − ε(i,t)

)
⊆ B(i,t)

p′′ (Bq(θ ≥ θ∗)) .

Letting ε = min(i,t) ε
(i,t), it follows that

Bq(θ ≥ θ∗ − ε) ⊆ Bp′′ (Bq(θ ≥ θ∗)) , (17)

where ε depends on the length of game T but is strictly positive for any finite T .
Let E1 = Bp′′(U), and recursively define Ek = Bp′′(Ek−1) ∨ Ek−1 for k = 2, 3 . . . .
We will prove that

Bq(θ ≥ 1− kε) ⊆ Ek+1 (18)

for each k. For q > p′′, the statement holds trivially for k = 0. Suppose for induction that
the statement holds for k − 1. Then

Bq(θ ≥ 1− (k − 1)ε− ε) ⊆ Bp′′ (Bq(θ ≥ 1− (k − 1)ε)) ⊆ Bp′′ (Ek) ⊆ Ek+1,

where the first containment follows from (17) with θ∗ = 1 − (k − 1)ε, and the second from
the fact that Bp′′ is increasing.

38



By (18), we have

∞∨
k=0

Bq(θ ≥ 1− kε) ⊆
∞∨
k=0

Ek+1 = EBp′′ (U).

Since
∨∞
k=0Bq(θ ≥ 1− kε) = X, it follows that EBp′′ (U) = X, as needed.

Proof of Lemma 5. We have

B(−i,t+1)
q (θ ≥ θ∗) =

{
x(−i,t+1) | x(−i,t+1) ≥ θ∗ + σt+1F

−1(q)
}

and x(−i,t+1) | x(i,t) ∼ N
(
x(i,t), σ2

t + σ2
t+1

)
. Therefore

Pr
(
B(−i,t+1)
q (θ ≥ θ∗) | x(i,t)

)
= F

x(i,t) − θ∗ − σt+1F
−1(q)√

σ2
t + σ2

t+1

 . (19)

The set B(i,t)
q (θ ≥ θ∗) consists of all x(i,t) such that x(i,t) ≥ θ∗+σtF

−1(q). Thus for every
x(i,t) ∈ B(i,t)

q (θ ≥ θ∗), the right-hand side of (19) is at least

F

θ∗ + σtF
−1(q)− θ∗ − σt+1F

−1(q)√
σ2
t + σ2

t+1

 = F

(
F−1(q)

1− τt√
1 + τ2

t

)
,

where τt = σt+1/σt. The last expression is decreasing in τt for τt ∈ (0, 1). Since 0 < τt ≤ τ < 1
by assumption, each type x(i,t) ∈ B(i,t)

q (θ ≥ θ∗) assigns probability at least F
(
F−1(q) 1−τ√

1+τ2

)
to B(−i,t+1)

q (θ ≥ θ∗). For q sufficiently large, F
(
F−1(q) 1−τ√

1+τ2

)
≥ p′, as needed.
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