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1 Theory of business cycles

Business Cycle Facts:
e Macroeconomic fluctuations vary in size and persistence

e Modern theory of business cycles assumes economy is perturbed by
shocks which propagate into the economy

e Different output components have different properties in terms of eco-
nomic fluctuations: Inventories, consumption of durables, resident in-
vestment are very volatile, while non-durable consumption, govern-

ment expenditure and net exports are relatively stable.

e Size of upturns and downturns somewhat similar, but the former are

more persistent (different this time around?)



Explaining the business cycles: need to modify neoclassical model of
Macro | as follows

e Include shocks (to technology, government expenditure, preferences,
monetary conditions, etc)

e Include fluctuations in employment (endogenising labour supply)

e Result is a “frictionless” real business cycle model based on microeco-
nomic foundation

e Extensions to introduce real and nominal rigidities to explain empirical
facts in asset prices and nominal variables (future lectures)



Solving the model:

e Solution to non-linear dynamic forward looking rational expectations
stochastic models

e Traditional linearization approach

e Evaluation through impulse response analysis



Foundations: the basic Real Business Cycle model
The social planner’s maximization problem
Basic problem: maximize lifetime utility, given resource constraint
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o Y;, C4, Ky, Zy are time t levels of output, consumption, capital and pro-
ductivity, respectively. (NB Upper case are levels, lower case variables
are logs and variables with hats are log-deviations from steady-state -
more later)

e NB K represents the amount of capital available for production in
period t + 1 - it is an end of period stock.”

e V; is a measure of labour input. This will be fixed at 1 for now, but
we will analyse models with variable labour supply later.

e (3 is the subjective discount factor, « is a measure of the returns to
scale of capital, o is the coefficient of relative risk aversion or the
inverse the elasticity of intertemporal substitution and ¢ is the rate of
depreciation.

*Some frameworks adopt a start of period stock notation, that is, in this case, K; repre-
sents the amount of capital available for production in period t. The reseource contrain
is then Y; = C; + Kt_|_1 — (1 — 5) K



e (4 and K; are the planner’s choice variables.

e /; and K;_1 are so called state variables, i.e. they are predetermined.

e /\; is the Lagrange multiplier associated with the resource constraint

First-order conditions:
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Alternatively, one can assume that agents can trade bonds:

Yiti+ Bivi—1Riti = Ciqi + By + Ky = (1 = 6) Kyg—1 - (9)
First-order conditions:
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But does the |ntroduct|on of bonds change the dynamics of the model?
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All agents need is one asset to store savings from one period to the other.

Representative agents: bonds will be in zero net supply (By;—1 = By1i—1 =
0) and all saving will be stored in the form of capital



Solving the deterministic steady state (DSS)

All expectations are realized and uncertainty is absent. How do we find
the DSS?

The case of no growth: set C;; = C Vi, then combine and reduce equa-
tions such that we obtain variables as a function of only the deep pa-
rameters (o, 5,0). E.g. combining Euler equation and expression for Ry
gives

R=1/8
(" upperbar” denotes the steady-state value of the variables)

Using this in R; and assuming Z = 1, we obtain
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Similarly we find
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e At this point we can turn to the data to find out e.g. long run level

of %, % and from these we can judge the value of deep parameters.



Solving the RBC model

Linearizing the model

e For some special case we can find reduce form solutions for the non-

linear equilibrium conditions
e We could also simulate the model using numerical methods
e But solving the model explicitly can deliver better economic insights

e A log linear approximation to equilibrium allows the model to be solved

analytically



Linearization:

A first order Taylor expansion:

e Taylor expansions approximate analytical functions around a fixed point,
assuming that all their derivatives exist.

e In particular, we consider the case in which the fixed point constitutes
the steady-state value of the variables.

e A first-order Taylor expansion of a function F'(X) is given by:

F(X) = F(X) + Fx(X)(X — X) + o(||¢ - &%), (13)
e where the term o(||¢ — £||)? stands for terms of order higher than one

e and F'x(X) is the first derivative of F(.) evaluated at the steady-state
value of X.



The log approximation:

e \We have seen how to write the non-linear function F'(X) as a linear
expression of (X — X)

e But macroeconomic models are often presents the system of equilib-
rium conditions in log deviations from steady-state.

e That is, the models are expressed in terms of £ = log (X/Y) or
T =x — T, where x = log(X)

e We should note that the logarithmic function must also be approxi-
mated to first-order.



In order to do so we use the following identity:
X =exp{z},

The first-order expansion to the above equation can be written as:

X = exp(Z) + exp(T)(x — T) + o( || — &|%), (14)
or, alternatively,
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We can rewrite equation 13 as:

F(X) = F(X) + Fx(X)X2 + o(||¢]1*) (16)

We have seen how to write the non-linear function F'(X) as a linear
expression of &



The model’s linearized

conditions:
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And here we can use the steady state conditions derived above, and sum-

marize the dynamics as:

0By [¢41 — &) = Bt |74 14] (22)
7 = apyg (2 — (1 — a)k_1) (23)
uk(Zt + aki_1) = (yp — 6)& + k¢ — (1 — 8) ky—1 (24)
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The rational expectation solution
Solving linear difference equations:

We can write the model in the general form

AEryir1 = Byt + Cxy

where:
e X; is the vector of exogenous shocks
e y: is the vector of endogenous variables

e A, B and (' are general matrices of structural parameters



Methods to solve linear rational expectations systems:

e Normally relies on numerical methods
— Summary in McCallum, B. (1998)
— Approaches of Klein (1997), King and Watson (1995), Sims

e McCallum, B. (1983), Uhlig (1997) and Blinder and Peseran (1995)
use methods of undetermined coefficients (guess and verify)

e Existence and the uniqueness of a solution - Blanchard and Kahn
(1980)



Analytical solution: the state space representation:

Solutions for all variables in terms of state variables

kt = cgrpki—1+ cp 2t
&t = cepki—1 + ce2ft
7%\1156 = Crrkt—1+ crzzt

Example - method of undetermined coefficients:

Assume:
e 9 = 0 (no depreciation) and

e 0 = 1(log utility)
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The system of equilibrium conditions becomes

Ei[éiy1— & = Ex [Tt+1]
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So, we can guess a formulation for ¢; as a function of the states, such as
Ct = CezZt + Copkp—1 (33)

and find the coefficients cc; and c.;.. by plugging this expression into the
the above system.

From equation 32
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Equalizing the RHS and LHS coefficients in k;_1

—Z A fa—(1-8)1—-a)eq+a(l —a)=0

e Pick the solution that guarantees ¢z, < 1. As shown Campbell (1994),
this is given by the positive root of the above equation.

e After finding c.;, we can then follow the same approach to find cc;

e As shown in Campbell (1994), this solution leads to a very weak prop-
agation mechanism of shocks (no persistence) (See discussion O&R).



Impulse response analysis

With the state space representation for ¢;, we can use the other equations
to obtain a full state space representation for the model - of the form:

ki = cprpki_1+ cpab (35)
Ct = Cepki—1+ CezZt (36)
P = ekt + crafs (37)

and given the evolution of the exogenous variable

2t = pZi_1 + €444, €t ~ 0.d.N (0, 0'2) (38)



Can then express solutions to all variables in terms of ARMA representa-

tion:
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to see how each variable react to shock in each period



Details for the ARMA representation

Eg kq
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why is this an AR(2)? Mechanically - it contains L?.
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Numerical methods:

King and Watson algorithm - MATLAB REDS-SOLDS code

REDS-SOLDS is a package of Matlab codes written to solve rational ex-
pectations models numerically. It takes as input a model written in the

form:

ABtyiy1 = Byt + Cxy

where:
e X; is the vector of exogenous shocks

e y; is the vector of endogenous variables



Moreover:

e y; is ordered so that variables that are predetermined appear last in a

subvector k1
e we denote NY = dim(y¢), NX = dim(x¢), and NK = dim(ky)

e in the program, we input A, B, C, NY, NX, NK

fEg: lagged variables are preditermined. Or if you define K; represents the amount of
capital available for production in period ¢, then k; is also a predetermined variable.



e The program REDS.M reduces the system, i.e., transforms it so that
it contains a non-singular subsystem that can be solved and turned
into a solution of the whole model.

e This whole solution operation is performed by SOLDS.M, whose out-
put are the matrices D, F', G, and H in:

yt = Dki+ Fxy
kiy1 = Gk + Hxy

e So the solution delivers a state space representation of the model

Together, REDS.M and SOLDS.M are a simplified version of a package
of codes written by Robert King and Mark Watson, implementing the
algorithms described in their paper “System Reduction and Solution Al-
gorithms for Singular Linear Difference Systems Under Rational Expecta-
tions” (mimeo, 1995).



We can use D, F', G, and H as inputs to compute impulse responses using
the m-function:

IRF(SHOCK,NIR, D, F,G, H)

e the first entry specifies the impulse (i.e., the component of x; to which
the system is responding)

e NIR is the number of periods for impulse-response computation

e The output of IRF.M is a NY x NIR matrix in which each row

corresponds to the path of the corresponding component of y; along
the NIR periods.

Userguide and files can be found in Woodford's Webpage;t

thttp: / /www.columbia.edu/~mw2230/Tools/
Ulhlig also has a toolkit for solving RE models in his web: http://www2.wiwi.hu-
berlin.de/institute/wpol /html /toolkit.htm



Example:

Summary of model in log linear terms

0Bt [¢41 — &) = Bt |74 14] (43)
= aByg (20— (1 — a)ke_1) (44)
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MATLAB file (instructions and example):

% Specify parameter values:

alpha = 0.3;
sigma = 1.0;
rho = 0.95;
beta = 1/1.01;
delta = 0.025;

% Constructed parameters

y_k=((1/beta)-1+4delta)/alpha;



% Specify model - matrices A, B and C
% Dimensions

NY=6;

NK=2:

NX=1;

A = zeros(NY,NY);
B = zeros(NY,NY);
C = zeros(NY,NX);

% Can enter matrix directly in the code, or organize them by indexing

the variables



% index variables - with pre-determined variables last
% 1st) index endogenous variables:
ic=1;
ir=2;
ik=3;
1z=4;
% 2nd) index pre-determined variables:
iklag=>5;
izlag=6;
% 3rd) index exogenous variables (shocks):

eps=1;



% Model Equations

% Euler Equation
A(1,ic)=1;

B(1,ic)=1,
A(1,ir)=-sigma”-1;

% Marginal product of capital
B(2,ir)=-1;
B(2,iz)=alpha*beta*y k;
B(2,ik)=-alpha*beta*y k*(1-alpha);



% Capital accumulation equation
B(3,ik)=-1;
B(3,iz)=y k;
B(3,iklag)=y k*alpha+(1-delta);
B(3,ic)=-y _k+delta;

% Identity for productivity process
B(4,iz)=-1;
C(4,eps)=1;
B(4,izlag)=rho;



% Lag identity for k
A(5,iklag)=1;
B(5,ik)=1;

% Lag identity for z
A(6,izlag)=1;
B(6,iz)=1;



% Load solution program
% program for REDUCTION OF DYNAMIC SYSTEMS
reds;

% (the program checks for solvability- that is, checks if |[Az-B| is identi-
cally null)

% program for SOLUTION OF DYNAMIC SYSTEMS
solds;

% (the program obtain the final expressions for C, D, E and F)



% Plot impulse responses under both policy rules

NIR=80;

lead = 0:(NIR-1);

IMP = irf (eps, NIR, D, F, G, H);

figure ("Name’, 'Responses to productivity shock’)

subplot (311), plot (lead, IMP (ic, :)), title ("Consumption’)
subplot (312), plot (lead, IMP (ir, :)), title ('Interest Rate’)
subplot (313), plot (lead, IMP (ik, :)), title ('Capital’)
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Capital: Productivity shock => higher marginal product of capital =>
capital cannot jump (predetermined variable - see capital accumulation
equation) => capital slowly goes up and then down

Return on capital: higher marginal product of capital implies higher return
on capital => but as capital increases interest, marginal product of capital
and its rental return falls => hump in the response of capital implies return
on capital undershooting => Similarly for interest rates

Consumption: higher productivity and output leads to an increase in con-
sumption => and as long as interest rates are falling, and so is the marginal
cost of consuming today relative to tomorrow, consumption is increasing
=> only when interest rates start increasing, consumption starts coming
back to steady state => hump in the response of capital implies an interest
rate undershooting, which in turn implies a hump in consumption



Perturbation methods
e Userguide and files can be found in Dynare's webpage:
http: //www.cepremap.cnrs.fr/dynare/
e Can write the model in non-linear form
e Program derives a first (or second) order approximation of the model
e For details on Perturbation methods, see:

e Kenneth Judd. 1996. “Approximation, Perturbation, and Projec-
tion Methods in Economic Analysis”. 511-585. Hans Amman, David

Kendrick, and John Rust. Handbook of Computational Economics.
1996. North Holland Press.



Simulating using Dynare
The following code solves the above model in Dynare.

// Variable declaration

// endogenous variables listed by ‘var’, exogenous variables listed by

‘varexo’' commands

var C, K, Z, R, Y, KY, LY, CY, |, MU;

varexo €,



// Parameter declaration and calibration
// List parameters
parameters beta, sigma, rho, delta, alpha, Zbar;

// Calibration of Parameters (in quarterly units)

alpha = 0.3;
sigma = 1.0;
rho = 0.95;
beta = 1/1.01;
delta = 0.025;

/bar = 1;



// Model declaration

model:
K = Z*K(-1)"alpha - C + (1-delta)*K(-1);

C”(-sigma) = (beta*C(+41)"(-sigma))*(1 + alpha*Z(+1)*K"(alpha-1) -
delta);

Z = Zbar"(1-rho)*Z(-1)"rho*exp(e);

R = 1 + alpha*Z*K(-1)"(alpha-1) - delta;
Y = Z*K(-1)"alpha;

MU = C"(-sigma);

| =K-(1-delta)*K(-1);

KY = K/Y;

CY = C/Y;



LY = 1/Y;
end;
// Steady-state values

initval;

/ = 1;

K = ((1/beta - (1-delta))/(Z*alpha))”(1/alpha-1);
C = Z*K"alpha - delta*K;

R = 1/beta;
MU = C"(sigma);
Y = Z*K"alpha;

| = delta*K;



K.Y = K/Y;

CY = C/Y;
LY = 1/Y;
€=y

end;

steady;

// Shock declaration
shocks;

var e = 0.017°2;

end;

stoch_simul(order=1, irf=80);
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Varying the elasticity of intertemporal substitution
Calibration:

a=0.3; 6 =0.025

But now we vary o to see what happens to the responses.

o1 =10.05,0.5,1.0,1.5]
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Possible homework:

- Replicate the linearization and the method of undetermined coefficients

- Arrive at the ARMA representation and illustrate the autoregressive

process
. e €44 CRC
- Simulate the model with preference shocks - ie utility —7—2




