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1 Theory of business cycles

Business Cycle Facts:

� Macroeconomic 
uctuations vary in size and persistence

� Modern theory of business cycles assumes economy is perturbed by
shocks which propagate into the economy

� Di�erent output components have di�erent properties in terms of eco-
nomic 
uctuations: Inventories, consumption of durables, resident in-

vestment are very volatile, while non-durable consumption, govern-

ment expenditure and net exports are relatively stable.

� Size of upturns and downturns somewhat similar, but the former are
more persistent (di�erent this time around?)



Explaining the business cycles: need to modify neoclassical model of

Macro I as follows

� Include shocks (to technology, government expenditure, preferences,
monetary conditions, etc)

� Include 
uctuations in employment (endogenising labour supply)

� Result is a \frictionless" real business cycle model based on microeco-
nomic foundation

� Extensions to introduce real and nominal rigidities to explain empirical
facts in asset prices and nominal variables (future lectures)



Solving the model:

� Solution to non-linear dynamic forward looking rational expectations
stochastic models

� Traditional linearization approach

� Evaluation through impulse response analysis



Foundations: the basic Real Business Cycle model

The social planner's maximization problem

Basic problem: maximize lifetime utility, given resource constraint
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� Yt, Ct,Kt; Zt are time t levels of output, consumption, capital and pro-
ductivity, respectively. (NB Upper case are levels, lower case variables
are logs and variables with hats are log-deviations from steady-state -
more later)

� NB Kt represents the amount of capital available for production in
period t+ 1 - it is an end of period stock.�

� Nt is a measure of labour input. This will be �xed at 1 for now, but
we will analyse models with variable labour supply later.

� � is the subjective discount factor, � is a measure of the returns to
scale of capital, � is the coe�cient of relative risk aversion or the
inverse the elasticity of intertemporal substitution and � is the rate of
depreciation.

�Some frameworks adopt a start of period stock notation, that is, in this case, Kt repre-
sents the amount of capital available for production in period t. The reseource contrain
is then Yt = Ct +Kt+1 � (1� �)Kt



� Ct and Kt are the planner's choice variables.

� Zt and Kt�1 are so called state variables, i.e. they are predetermined.

� �t is the Lagrange multiplier associated with the resource constraint

First-order conditions:
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Alternatively, one can assume that agents can trade bonds:

Yt+i +Bt+i�1Rt+i = Ct+i +Bt+i +Kt+i � (1� �)Kt+i�1 (9)

First-order conditions:
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But does the introduction of bonds change the dynamics of the model?

All agents need is one asset to store savings from one period to the other.

Representative agents: bonds will be in zero net supply (Bt+i�1 = Bt+i�1 =
0) and all saving will be stored in the form of capital



Solving the deterministic steady state (DSS)

All expectations are realized and uncertainty is absent. How do we �nd

the DSS?

The case of no growth: set Ct+i = �C 8i, then combine and reduce equa-
tions such that we obtain variables as a function of only the deep pa-

rameters (�; �; �) : E.g. combining Euler equation and expression for Rt
gives

�R = 1=�

("upperbar" denotes the steady-state value of the variables)
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Similarly we �nd
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� At this point we can turn to the data to �nd out e.g. long run level
of CY ;

I
Y and from these we can judge the value of deep parameters.



Solving the RBC model

Linearizing the model

� For some special case we can �nd reduce form solutions for the non-

linear equilibrium conditions

� We could also simulate the model using numerical methods

� But solving the model explicitly can deliver better economic insights

� A log linear approximation to equilibrium allows the model to be solved
analytically



Linearization:

A �rst order Taylor expansion:

� Taylor expansions approximate analytical functions around a �xed point,
assuming that all their derivatives exist.

� In particular, we consider the case in which the �xed point constitutes
the steady-state value of the variables.

� A �rst-order Taylor expansion of a function F (X) is given by:

F (X) = F (X) + FX(X)(X �X) + o(k� � �k2); (13)

� where the term o(k�� �k)2 stands for terms of order higher than one

� and FX(X) is the �rst derivative of F (:) evaluated at the steady-state
value of X:



The log approximation:

� We have seen how to write the non-linear function F (X) as a linear
expression of (X �X)

� But macroeconomic models are often presents the system of equilib-

rium conditions in log deviations from steady-state.

� That is, the models are expressed in terms of x̂ = log
�
X=X

�
or

x̂ = x� x, where x = log(X)

� We should note that the logarithmic function must also be approxi-
mated to �rst-order.



� In order to do so we use the following identity:

X = exp fxg ,

� The �rst-order expansion to the above equation can be written as:

X = exp(x) + exp(x)(x� x) + o(k� � �k2); (14)

or, alternatively,

X �X
X

=
X � exp(x)
exp(x)

= (x� x) + o(k� � �k2)

= x̂+ o(k� � �k2) (15)

� We can rewrite equation 13 as:

F (X) = F (X) + FX(X)Xx̂+ o(kb�k2) (16)

� We have seen how to write the non-linear function F (X) as a linear
expression of x̂



The model's linearized conditions:
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And here we can use the steady state conditions derived above, and sum-

marize the dynamics as:
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h
r̂kt+1

i
(22)

r̂kt = ��yk
�
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The rational expectation solution

Solving linear di�erence equations:

We can write the model in the general form

AEtyt+1 = Byt + Cxt

where:

� xt is the vector of exogenous shocks

� yt is the vector of endogenous variables

� A, B and C are general matrices of structural parameters



Methods to solve linear rational expectations systems:

� Normally relies on numerical methods

{ Summary in McCallum, B. (1998)

{ Approaches of Klein (1997), King and Watson (1995), Sims

� McCallum, B. (1983), Uhlig (1997) and Blinder and Peseran (1995)
use methods of undetermined coe�cients (guess and verify)

� Existence and the uniqueness of a solution - Blanchard and Kahn
(1980)



Analytical solution: the state space representation:

Solutions for all variables in terms of state variables

k̂t = ckkk̂t�1 + ckzẑt (25)

ĉt = cckk̂t�1 + cczẑt (26)

r̂kt = crkk̂t�1 + crzẑt (27)

Example - method of undetermined coe�cients:

Assume:

� � = 0 (no depreciation) and

� � = 1(log utility)



The system of equilibrium conditions becomes
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So, we can guess a formulation for ct as a function of the states, such as

ĉt = cczẑt + cckk̂t�1 (33)

and �nd the coe�cients ccz and cck by plugging this expression into the

the above system.

From equation 32
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�ẑt � (1� �)

1� �
��

(1� ccz)ẑt �
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Equalizing the RHS and LHS coe�cients in k̂t�1

�c2ck + [�� (1� �)(1� �)] cck + �(1� �) = 0

� Pick the solution that guarantees ckk < 1: As shown Campbell (1994),
this is given by the positive root of the above equation.

� After �nding cck, we can then follow the same approach to �nd ccz

� As shown in Campbell (1994), this solution leads to a very weak prop-
agation mechanism of shocks (no persistence) (See discussion O&R).



Impulse response analysis

With the state space representation for ĉt, we can use the other equations

to obtain a full state space representation for the model - of the form:

k̂t = ckkk̂t�1 + ckzẑt (35)

ĉt = cckk̂t�1 + cczẑt (36)

r̂kt = crkk̂t�1 + crzẑt (37)

and given the evolution of the exogenous variable
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Can then express solutions to all variables in terms of ARMA representa-

tion:

ẑt =
1
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to see how each variable react to shock in each period



Details for the ARMA representation

Eg k̂t

k̂t = ckkk̂t�1 + ckzẑt
= (1� Lckk)�1ckzẑt = (1� Lckk)�1(1� Lckk)�1ckz"t

why is this an AR(2)? Mechanically - it contains L2:

Illustration:

k̂t = ckkk̂t�1 + ckz�ẑt�1 + ckz"t
k̂t�1 = ckkk̂t�2 + ckzẑt
k̂t = (�+ ckk)k̂t�1 � ckk�k̂t�2 + ckz"t - AR(2)



Numerical methods:

King and Watson algorithm - MATLAB REDS-SOLDS code

REDS-SOLDS is a package of Matlab codes written to solve rational ex-

pectations models numerically. It takes as input a model written in the

form:

AEtyt+1 = Byt + Cxt

where:

� xt is the vector of exogenous shocks

� yt is the vector of endogenous variables



Moreover:

� yt is ordered so that variables that are predetermined appear last in a
subvector kt

y

� we denote NY = dim(yt), NX = dim(xt), and NK = dim(kt)

� in the program, we input A, B, C, NY , NX, NK

yEg: lagged variables are preditermined. Or if you de�ne Kt represents the amount of
capital available for production in period t, then kt is also a predetermined variable.



� The program REDS.M reduces the system, i.e., transforms it so that
it contains a non-singular subsystem that can be solved and turned
into a solution of the whole model.

� This whole solution operation is performed by SOLDS.M, whose out-
put are the matrices D, F , G, and H in:

yt = Dkt + Fxt
kt+1 = Gkt +Hxt

� So the solution delivers a state space representation of the model

Together, REDS.M and SOLDS.M are a simpli�ed version of a package
of codes written by Robert King and Mark Watson, implementing the
algorithms described in their paper \System Reduction and Solution Al-
gorithms for Singular Linear Di�erence Systems Under Rational Expecta-
tions" (mimeo, 1995).



We can use D, F , G, and H as inputs to compute impulse responses using

the m-function:

IRF (SHOCK;NIR;D; F;G;H)

� the �rst entry speci�es the impulse (i.e., the component of xt to which
the system is responding)

� NIR is the number of periods for impulse-response computation

� The output of IRF:M is a NY x NIR matrix in which each row

corresponds to the path of the corresponding component of yt along

the NIR periods.

Userguide and �les can be found in Woodford's webpagez

zhttp://www.columbia.edu/~mw2230/Tools/
Ulhlig also has a toolkit for solving RE models in his web: http://www2.wiwi.hu-
berlin.de/institute/wpol/html/toolkit.htm



Example:

Summary of model in log linear terms
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h
r̂kt+1

i
(43)

r̂kt = ��yk
�
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MATLAB �le (instructions and example):

% Specify parameter values:

alpha = 0.3;

sigma = 1.0;

rho = 0.95;

beta = 1/1.01;

delta = 0.025;

% Constructed parameters

y k=((1/beta)-1+delta)/alpha;



% Specify model - matrices A, B and C

% Dimensions

NY=6;

NK=2;

NX=1;

A = zeros(NY,NY);

B = zeros(NY,NY);

C = zeros(NY,NX);

% Can enter matrix directly in the code, or organize them by indexing

the variables



% index variables - with pre-determined variables last

% 1st) index endogenous variables:

ic=1;

ir=2;

ik=3;

iz=4;

% 2nd) index pre-determined variables:

iklag=5;

izlag=6;

% 3rd) index exogenous variables (shocks):

eps=1;



% Model Equations

% Euler Equation

A(1,ic)=1;

B(1,ic)=1;

A(1,ir)=-sigma^-1;

% Marginal product of capital

B(2,ir)=-1;

B(2,iz)=alpha*beta*y k;

B(2,ik)=-alpha*beta*y k*(1-alpha);



% Capital accumulation equation

B(3,ik)=-1;

B(3,iz)=y k;

B(3,iklag)=y k*alpha+(1-delta);

B(3,ic)=-y k+delta;

% Identity for productivity process

B(4,iz)=-1;

C(4,eps)=1;

B(4,izlag)=rho;



% Lag identity for k

A(5,iklag)=1;

B(5,ik)=1;

% Lag identity for z

A(6,izlag)=1;

B(6,iz)=1;



% Load solution program

% program for REDUCTION OF DYNAMIC SYSTEMS

reds;

% (the program checks for solvability- that is, checks if jAz-Bj is identi-
cally null)

% program for SOLUTION OF DYNAMIC SYSTEMS

solds;

% (the program obtain the �nal expressions for C, D, E and F)



% Plot impulse responses under both policy rules

NIR=80;

lead = 0:(NIR-1);

IMP = irf (eps, NIR, D, F, G, H);

�gure ('Name', 'Responses to productivity shock')

subplot (311), plot (lead, IMP (ic, :)), title ('Consumption')

subplot (312), plot (lead, IMP (ir, :)), title ('Interest Rate')

subplot (313), plot (lead, IMP (ik, :)), title ('Capital')





Capital: Productivity shock => higher marginal product of capital =>

capital cannot jump (predetermined variable - see capital accumulation

equation) => capital slowly goes up and then down

Return on capital: higher marginal product of capital implies higher return

on capital => but as capital increases interest, marginal product of capital

and its rental return falls => hump in the response of capital implies return

on capital undershooting => Similarly for interest rates

Consumption: higher productivity and output leads to an increase in con-

sumption => and as long as interest rates are falling, and so is the marginal

cost of consuming today relative to tomorrow, consumption is increasing

=> only when interest rates start increasing, consumption starts coming

back to steady state => hump in the response of capital implies an interest

rate undershooting, which in turn implies a hump in consumption



Perturbation methods

� Userguide and �les can be found in Dynare's webpage:

http://www.cepremap.cnrs.fr/dynare/

� Can write the model in non-linear form

� Program derives a �rst (or second) order approximation of the model

� For details on Perturbation methods, see:

� Kenneth Judd. 1996. \Approximation, Perturbation, and Projec-

tion Methods in Economic Analysis". 511-585. Hans Amman, David

Kendrick, and John Rust. Handbook of Computational Economics.

1996. North Holland Press.



Simulating using Dynare

The following code solves the above model in Dynare.

// Variable declaration

// endogenous variables listed by `var', exogenous variables listed by

`varexo' commands

var C, K, Z, R, Y, K Y, I Y, C Y, I, MU;

varexo e;



// Parameter declaration and calibration

// List parameters

parameters beta, sigma, rho, delta, alpha, Zbar;

// Calibration of Parameters (in quarterly units)

alpha = 0.3;

sigma = 1.0;

rho = 0.95;

beta = 1/1.01;

delta = 0.025;

Zbar = 1;



// Model declaration

model;

K = Z*K(-1)^alpha - C + (1-delta)*K(-1);

C^(-sigma) = (beta*C(+1)^(-sigma))*(1 + alpha*Z(+1)*K^(alpha-1) -

delta);

Z = Zbar^(1-rho)*Z(-1)^rho*exp(e);

R = 1 + alpha*Z*K(-1)^(alpha-1) - delta;

Y = Z*K(-1)^alpha;

MU = C^(-sigma);

I =K-(1-delta)*K(-1);

K Y = K/Y;

C Y = C/Y;



I Y = I/Y;

end;

// Steady-state values

initval;

Z = 1;

K = ((1/beta - (1-delta))/(Z*alpha))^(1/alpha-1);

C = Z*K^alpha - delta*K;

R = 1/beta;

MU = C^(sigma);

Y = Z*K^alpha;

I = delta*K;



K Y = K/Y;

C Y = C/Y;

I Y = I/Y;

e = 0;

end;

steady;

// Shock declaration

shocks;

var e = 0.01^2;

end;

stoch simul(order=1, irf=80);
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Varying the elasticity of intertemporal substitution

Calibration:

� = 0:3; � = 0:025

But now we vary � to see what happens to the responses.

��1 = [0:05; 0:5; 1:0; 1:5]
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Possible homework:

- Replicate the linearization and the method of undetermined coe�cients

- Arrive at the ARMA representation and illustrate the autoregressive

process

- Simulate the model with preference shocks - ie utility
"t+iC

1��
t+i

1��


