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A Appendix: Complete Markets Specification

Our complete market setup closely follows the one of Chari et al (2002). In order to illustrate
this specification we introduce some further notation, which explicitly accounts for the different
states of nature s. We assume that agents meet and trade assets, which are contingent on the
different states s, before monetary policy decisions are made. Given that agents do not know
the policy decisions when trading financial assets, we implicitly consider the case in which the
different policy choices are included in the state vector s.!

Denoting s’ = (sg,s1,82,..) the history of states up to period ¢, we assume that Home
consumers choose consumption, labour and state-contingent bond holdings to maximize their
utility

i Z Bir (s U (s') (A1)

subject to a sequence of consumer budget constraints

P (s C(s") + Z Q (stH/st) B (st'H) < B(s') + PI(s") (A.2)

where we define private income as PI;

pr, = 127 Jo pe(h)ye(h)dh

+ PHjtT”I’t <A3)

and w (st) is the probability of state history s' occurring. The variable B (st“) denotes
home consumer’s holdings of a one period nominal bond (denominated in domestic currency)
purchased in period ¢ and state s* with payoffs contingent on state s;1 at period ¢+ 1. Finally,
the variable Q (s'*1/s) is the price of such a bond in period ¢ and state s'.

Domestic first order conditions with respect to bond holdings, in states s*~! and s, imply

Uc (s") P(s")

Q(s'/s'™) = 87 ('/8™) i P (a7

(A.4)

!That is, in this setup, one coordinate of the state vector effectively indexes the different policy choices,
though we do not specify the mapping between policies and the state explicitly. For examples where this could
be done, see Senay and Sutherland (2007), Hoffmann and Holtemoller (2008) and Berger (2008). In these works
policy is written as a money supply rule governed by a single parameter. So this parameter could be included
as a coordinate of the state vector and claims could be written contingent on it.



where 7 (s'/s'™1) = 7 (s") /m (s'™!) . Similar optimality conditions in the rest of the world

imply

U (s') S(s1) P*(s1)
U (s'=1)  S(s') P*(s")
Given that domestic and foreign households face the same subjective probabilities, 7 (st / st_l),

and assuming no-arbitrage in asset markets, we can combine the two expressions above and
iterate backward to get

Q (s'/s"™1) = pin (s'/s' 1) (A.5)

U (sh) _ S (s') P (s')

Vol —F PG (4.6)
where

L U P (A7)

 Uc (s9) S (s°) P (s°)
So the parameter k is pinned down by initial conditions in the market for state contingent
bonds. In our analysis we assume that the monetary authorities chose policy taking k as
given. That is, policy rules are determined after the state-contingent financial markets are
closed. In addition, we assume a symmetric equilibrium in which k£ = 1, and given that the
equation above holds in every state of the world, we can write
Uc(C) _ Siby

Uo(C) ~ B (A.8)

B Appendix: Approximating the Model

In this Appendix, we derive first and second order approximations to the equilibrium conditions
of the model. Lowercase variables denote log deviations from steady state. We allow for an
asymmetric steady state in the analysis of the incomplete market case. All variables in steady
state are denoted with a bar. We assume that in steady state 1 + i, = 1+ 4 = 1/8 and
PtH / Pﬁ 1= PtF / Ptli 1 = 1. We normalize the price indexed such that Py = Pp and assume
G = 0. Moreover, we use the following isoelastic functional forms for the utility functions:

o
U(Cy) = -+ B.9
(€)= (1.9)
ey ye(h)7!
V (v (h — _ytRV B.10
(ye(h),eT) o (B.10)
B.1 Demand
The first order approximation to the small open economy demand is
yr = —Opm + dyc+ (1 —dp)c™ + 0(1 — dp)q + g, (B.11)
where dy, = (1 — A\)(1 +a) and a = )‘(6%6*). Moreover, Home relative prices are denoted by

pg = Py /P and the fiscal shock g; is defined as Gt?_G, allowing for the analysis of this shock
even when steady-state government consumption is non-zero. In the symmetric steady state,
in which d, = 1 — A, Equation (B.11) becomes

yr = —0pr + (1 — Ne+ AC* +0Xg + g. (B.12)



The second order approximation to the demand function is

1 .
2.8 {d;yt + YDy + yi Deer | +tip + O([€]1*) =0, (B.13)
where
Yt = [ Ye G DPHt Gt ] )
ee=1e wm g |,
dy=[-1 dy —0 0(1—dp) ],
0 0 0 0
Do 0 (1—-dp)dy 0 —0(1—dp—dg)dy
Y 0 0 0 0 ’
0 —0(1—dy)d, 0 02(1 — dyp)dp
and
000 0 0
D 0 00 —dp —(1 —dp)dy
e 1000 0 0
000 —6(1—dy) 6(1—dy)d,

B.2 The Real Exchange Rate

Given that, in the rest of the world, Pr = SP*, Equation (6) in the main text can be expressed
as:

Pt ) 1-0 < Pt ) 1-0
—_— =1-XN+A —_— . B.14
R (T ®19
The first order approximation to the above expression is:
Agt
=— . B.15
pH 1— ( )

The second order approximation to Equation (B.14) is:

1 .
S B8 [fg,yt + R+ i Fe| + i+ O(EI) =0, (B.16)

where

fi=[00 —1-x -A],
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B.3 Price Setting

The first and second-order approximations to the price setting equation follow Benigno and
Benigno (2003). These conditions are derived from the following first order condition of sellers
that can reset their prices:

5 {Z(amTtUC(OT) (mm)” V. [pt(m Par MTV(yTM” _o, BN

Py Pyr Pr U.(Cr)
where
- pe(h)\ 7
() = (I;Z( )) i, (B.18)
Hit
and
(Puy)' ™7 = aPh %y + (1—a) (Fr(h) 7. (B.19)

With markup shocks, py, defined as , the first order approximation to the price

g
(o-1)(1-7/T)
setting equation can be written in the following way:

=k (pce + nye — pag + e — ne) + BEimi4a, (B.20)

where k = (1 — af)(1 —a)/a(l + on).
The second order approximation to Equation (B.17) can be written as follows:

1 1
Qto = ¢Z Etﬁt [a;yt + EyéAyyt + y;Aeet + §CL7T7T152

+ t.ip+ O(||€]]), (B.21)

a,=[n p -1 0],

n2+n) p -1 0

W P -p* p 0
-1 p -1 0|’

0 0 0 0

-n(1+n) 1+n 0 0

;L 0 0 00
Ae = 0 0 0 0|’

0 0 00



and -
= 1)=.

(n+1)y

B.4 Incomplete Markets: Approximating the Current Account equation

We assume that home-currency denominated bonds are in zero net supply. The net foreign
asset position is therefore fully denominated in foreign currency. Aggregating private and
public budget constraints, the law of motion for b; can be written as

SiBF

P,Cy + ‘ S BrN = SiBri—1+ Pr+(Y: — Gy) (B.22)
(I+3)y (T)
Defining BF 2t = B; we can rewrite the government budget constraint as
B, = By 21 N (B) + By, _ ¢ )¢ (By) - C )¢ (By). (B
1=Biag—p 1Pt(1+1t)¢( t) + Pt(t_ t) (L+1d7) Y (By) — Ce (L +i7) ¥ (Be) . (B.23)

From agents’ intertemporal choice,

St by

Uc (Ct) = (1 + Z?W (Bt) BE: |Uc (Ct+1) StPtJrl

(B.24)

We can therefore write (B.23) as

Ser1 B Se Py o
= B LY, — G U (Cy) —ChUs (Cy) . (B.25
StPri1 ARy 2) (Yi=G)Uc (C)=CiUc (Cy) - (B.25)

BiBE; |Uc (Cy1) P,

Uo (Ct>+

And the log linear representation of the above equation, defining ag = ﬁ, is

— pages + b1 + ag(AQ; — 7)) (B.26)
= —ys + (L +a)c; — pacy — prs + gt
+ BE; [—pagcpr + b+ ag(AQi11 — mi )] -

Furthermore, if we allow By, = prt_lpjjfl 5-Uc (Cy) and sy = Ht’t (Y: — Gi) + Cy, the
intertemporal government solvency condition can be written as
oo
bw: = Uc (Ct) st + Eifbwp1 = By Yy 87 Uc (Cr) s, (B.27)
T=t

and the term Uc (Cr,&c,1) s¢ can be approximated, up to the second order, by

vyl oe- Y, + (1+a(l = p))er — prs — 3Y2 + pyece — Yipmy
C 1 2 1 1—29 )) 2 + _ 1,2 :
+2(ap +(1+ CL)( P))Ct T PCPHt — 3P+

Bw,.—Bw
!

Thus, defining by, = —= and BW = (1 5), we have,
w

bw, = (1 —f) [buyt + thzyt +yiBle| + BEbw 1

+tip+ O(€]]P) (B.28)



where

by=[ -1 1+a(l—p) -1 0],

-1 p -1 0
gir_| p all=p?+(1=2p) p O
Y -1 P -1 0|’
0 0 0 0
and

00 0 O
w_ 100 —p 0
Be = 00 1 O
00 0 O

Special Case: Note that if p = 0 = 1, a = 0 and b_; = 0, the second order current
account approximation becomes

¢t =y +py — 9t — gipme + 9:Cy, (B.29)
which combining with the demand equation implies
ct=q +ci. (B.30)

This is identical to the perfect risk sharing condition.

B.5 Financial Autarky: the Extreme Case of Market Incompleteness

In this case we assume that there is no risk sharing between countries. The inability to trade
bonds across borders impose that the value of imports equates the value of exports:

(1 — n)SP;_}th}kLt = nPFJCF?t, (B.?)l)

given the preference specification, we can write:

Py Pr,]7°
Chi=v |:Pt’:| Ci, Cpp = (1—-v) |:Pt’:| C4, (B.32)
« 10 P
Cppy = 0" [];1;’5] Cr,Cpy = (1—v") [ffgf} Cr. (B.33)
Substituting in Equation (B.31):
1-6
Cy = [p Sj Q) cr. (B.34)

And using the definition of the consumption indexes and market clearing, condition (B.34)
implies

Py (Y — Gy) = RBCy. (B.35)

Assuming C = U*, the second order approximation is



PHt + Yt — Gt + YtGt = Ct, (B.36)

and can be represented as follows:
B8 |of i+ B + Bl + tin+ Ol€l®) =0,
bl'=[-11 -1 0],
B =0,

and
-1

o O O

Befa/ —

o O o o

0
0
0
0

o O O
@)

Special Case: when 0 = 1, Equation (B.36) combined with the demand equation becomes
¢ =ct+ g (B.37)

B.6 Complete markets: the Risk Sharing Equation
Assuming a symmetric steady-state equilibrium, the log linear approximation to the risk shar-

ing Equation (29) in the main text is

1
=+ ;qt. (B.38)

Given our utility function specification, Equation (29) gives rise to an exact log linear
expression and therefore the first and second order approximations are identical. In matrix
notation, we have

1
Z E;f’ |:bgcjyt + 5%’335% + yéBSet] =0,

where
/ 1
=0 -1 0},
by =[0 0 0 1],
B;’:o,
and
B¢ =0.



C Appendix: Welfare and Optimal Monetary Policy

C.1 Welfare with Incomplete Asset Markets:

Following Benigno and Benigno (2003), the second order approximation to the utility function,
U;, can be written as:

Gi=5 Y5 |vc - [ Vederadl, (C.39)
s=t " Jo
_ ~ t / 1 ! ! 1 2 : 3
Wio = U.CEy, Zﬁ Wy Yt — §thyyt — Yy Weer — inTFt + t.i.p + O([[]]°), (C.40)
where
w7
™ //Lk’
wy,=[-1/p(l+a) 1 0 0],
(1+n)
= ( 0 | 0 0
W — 0 —(1—-p) 0 O ’
v 0 0 0 0
0 0 0 0
and
__n__
(1+a) 0 00
W = 0 0 00
¢ 0 0 00
0 0 00

Using the second order approximation to the equilibrium condition, we can eliminate the
term wyy;. We derive the vector Lz, such that

[ay dy fy b;]Lx:wy.

Thus, the loss function can be written as

_ 1 ) ) 1. )
Lo =U.CEy, Yy B [2%{%% +yiLie; + 51;@2 +ti.p+ O(J|E]]?), (C.41)
where
L, = Wy + Lat A, + Lab Dy + LayF, + Lz} By,
L. =W, + Lai A, + Lab D, + Lz’ B,,
and

Il = wr + Lxfas.

Given the values of ay, d,, b;, fy, defined in this Appendix, we have:



(1+a)AL2=AN)+ (0 =) —alh +¢)

Lo = Tz me =N (N Ap 1) —aly
Iai —AMlp+m) —élp— 1))

= T BN - (p+ M- N~ A(p— 1) —aly’
L (- M@+ )~ (o~ V(6 (6 Da)

ST T ad L@ N — (N~ Ap 1)) —aly’

and

L (1 OMBE-N) (0= N) —alls— )

-

(1+a)A(12(2=A) = (p+n)(1 = A) = A(p—1)) —aly’
where l1 = fa(p—¢(p—1))+¢(0—1),l2 = 0((p+n) —n(p—1)a), ls = 0((p+n(1+a)—(p—1)$)
and (1—(;5):%.

We write the model just in terms of the output, real exchange rate and inflation, using the
matrixes N and N,, as follows:

1 0
g
N=| @ o ,
Y
0 1
and
00 O 0
1 (1—dy)
N, = 00 T dy dp ,
00 O 0
00 O 0
where d, = —9(’\“1(;‘1’3))(1_”).
Equation (C.41) can therefore be expressed as
Lo=UCE, 38| 2 gl Lylal Ty ipvoqel),  (ca2)
o C 0 ‘I’[Z/t,gt],Léet—i—%l;TrtZ 4. bl .

where:

§ L
Ly =N'L,N,
LY = N'L!N. + N'L.,

[yta%],Ly [y, qt] = [yt»Qt], [ lzijy fz’lq } [yt, ai]
yq  ‘qq

%

-/ l /
[yt,CIt],Lle €t = [ytaQt], [ lzz'}e } Les, (C-43)
qe



lzi/e = [ lzi/a lzi/u lzi/g lziJC* ] )

lée = [ lfze léu ltilg ltiJC* ] )

, 11— —1 —2d
i = (77+(1)Jfa> ¢)+pdg n (p(pdg b)+n(2+n)> ey

(1—ds) plap+2(a(l =X =N+ (1+a)'p )
+ 7 Lxo + 7
b b

L.’E4,

lz _lz _p(l_k)il—i_(l—i_a)

0a—X(1—=X)"h

7 ((ri = A)(1+a)+apf) Lz; + P Lxo
b b
+ ((1 -+ p(l;—ga)A) Lxy + ((pd +r3) Ly — 1) i
I, =13(p— 1) (A1 =Nt —rop)?Lay + 0dy(1 — dp) (1 + 72) Lao
+(1- ) ( —1)Las
+ ((A( Lt rarg)re + A1 — N)7H=A(1 = N) 7t + 72p)) Laa,
i 0 (1-9)
= Z ((1+a) +(77+1)L$1> ;
lze = _271(:_;)@ —n(n+ 1)L,
lli/# = (n+ 1)Lz,
i —(p=1)  pld—p) Lazy  (r3+p)Lay
lyg dz + d% Ll‘l — db — db s
i =11 —=dy)  pld—p)(1—dp) (A1 +a) —a)Laz (1 —ds) T3
bye = &z R o Lm- i — <p+ db> Lz,
l. =0,
lfm =0,
i _0(p—1D@=A2-NA+a))  ((n+N{1+a)—apb)p
g = 1-NE " - NE “(La1 + Laa)
N A1 +a)—a)Lzz  ((r3+p)(2=A) +N(1 +a)+abrs)p Lay
(1= N\)dy (1—N)d2 dy

10



and
O(p—1)A1+a)—a)(1=XN)"t+dy)  ((r1+ N1 +a)—apfd) (A1 +a)—a)Lz

li*: —

" 7 e
O(AN1+a)—a)Lzy (M1l+4+a)—a) _1
1-— L
+ (1— N)dy T dy (PA(L = N) 7" +rar3) Lay,
where r1 = A2 —A)(pf — 1), ro = 9((1_(1*’)221_)‘)71)‘) and r3 = (1+p?)a+1-2p

C.2 Optimal Plan with Incomplete Asset Markets:

The optimal plan consists of minimizing (31) subject to equations in Table 4. Therefore, the
first order conditions with respect to ¢, ¥+, q;, ¢¢, and by are:

l;ﬂ't + A@l,t =0, (044)

0 =10,y + Ly + lyelt — knore + 020 — Qa,

. . o \ -
0= lygye + lyqar + lgees — km@l,t —dgpat + @3 — B s

A
T Ay T WAt asBAER, (C.45)
— 1
0=—pk(l4+a)pr— (1+a)(l —=Np2t—ppss+pB~  @3i-1+ (1 +a)pss + pagApsy, (C.46)

and
EiApyp41 =B "0p34. (C.47)

The case of no intermediation costs:
When § = 0, the first order conditions can be written as

QLEA (i1 — yih) + QE A1 — ¢/y) + Qb By =0, (C.48)
with , . i
Q=1+ (dg+(1+a)1-Np M,
Qy = lag + (dg + (14 a)(1 = N~ )iy,
Q. =k [(L+a)(p+n(1=Xp™") +ndy + A1 =N,
T, _lq@’\
q = — Ct,
t Qz i
and

i _ —(dg+ (1L +a)(1 = Np~ "l
Y = 5 et.
@y

Special Case: Incomplete markets, symmetric steady state, no trade imbalances
and specific level of steady-state output
In the case we have

11



L. pu=1/(1—-X)
2. p=0=1
3.a=0
In this case, the first order conditions can be written as:
0= (I, + 11 = M)Ay + (1= Ny + L )Ag + (I, + o (1= ) AG + k(n + 1) e, (C.49)

Moreover:

Lx1=0; Lo =—1; Lz = —1; and Lzy =2 — A\

And therefore:
lyy +lyg(1 =A) = (n+1)(1 = A)
Il =(1—=X\o/k
(lye +lge(L =)= —n(1=X) 0 —(1—=X) 0|
Hence, the targeting rule can be written as

U 1 H
0=A - - . C.50
<yt (1" <n+1>9t>+”t (0

In addition, using Equation (B.29), we can write the Phillips Curve as follows:

=k ((n+ 1)yt —Neyt — gt + ,Ut) + BEmy1. (C.51)

By inspection of Equation (C.50) and (C.51), we can see that domestic inflation target is the
optimal plan if there are no markup shocks, .

C.3 Welfare under Financial Autarky

Using an analogous derivation for welfare, but substituting the matrices b;, B; and B! for bgja,

Bga and BZ%, the loss function under financial autarky has the following weights?:

p—1
dj

by =0+ 1)1 -¢)+

p(p—2dp)
“( &

(1 —dy)
dj

+n(2 + 77)) Lay® + Laf®,

a a p1_>\_1 a

lilcq = ltjzty = (dz) ((r1 = A)(1 4+ a) + apb) Lx{

Ola—A(1—-N)""

ISP
dy

Lx{a - =

2Note that for the derivation of wefare under Complete Market and Financial autarky, we assume a = 0.

12



1o =73(p— 1) + (A1 = N) " = rop)2Laf® + 0dy(1 — dy) (1 + ra) L}
+(1=N)"'A0 - 1)Lzl

=2 (=) +m+1)Lal"),

e =—n(l—¢) —n(n+1)La{",
e = (n+1)La]"
Y (77 ) Ly,

fa_ (Lzo(1 — N) + pLay®)
yg db ’

—(p=1)(L—dy) p(dp—p)(1—dyp)

a a ()\(1 + a) — a)Lac “
lgc* — — L.’L’{ — 2

d? d? dy dy ’
e =0,
Ja _
lqg =0,

(ro + A)Lzy”

lcj;; - 2 )
dy

0(p—1)(AN1+a)—a)((1—=XN)"1+dy) ((r1+ N1+ a)—apd) (A(1+a)—a)Lz”

e = -
ye 42 (1—N)d?
O(N1+a)—a)Lxl®
R : —)A)db) "
and
e _ (Lxy“(1 = X) + (—=r2 — A+ p)Lay®)
ye dy ’
with
Laft = A (2 =2 + (@ - V) |
A2 =N = (p+n)(1 = X) = A(p— 1))
Laf* = —Alp+n) —¢(p—1)) 7
ABH2 =N = (p+n)(1—X) = Ap—1))
Lal® —M((p+n) —(p=1)¢) 7
ABH2 =N~ (p+n)(1—A) = Ap—1))
and
Lala_ M 2= N — (6 - N)

LN~ (o) (1= A) = Ap - 1)

where 1{* = ¢(0 — 1),1{* = 0((p + ) and &§* = 0((p+ n = (p— 1)9).

13



C.4 Optimal Plan under Financial Autarky

We can write the system of equations given in Table 2 in terms of y; and ¢; as follows:

=0 (m+p)ye— (p— DAL =N + e — mer) + BE 41, (C.52)
and (1+1)
+ 4 N _
Yt = C]t(l N +c + A g (C.53)

The policymaker minimizes the loss function subject to the problem (C.52) and (C.53).
Given that the multipliers associated with (C.52) and (C.53) are, respectively, ¢1 and @3, the
first order conditions with respect to 7,y and ¢; are given by:

(pre — pri-1) = klfom, (C.54)
w21 — N+ p)pre = Uiy + g + 110%,, (C.55)

and
—(L+ 1)1 =N oo+ (p— DAL = N rorg = Uiy + 10q + 115, (C.56)

The last 3 equations can be combined, giving rise to the following targeting rule

QI Ay —y 1) + QeA (g — ¢/ 7*) + QL = 0, (C.57)
where
Q=W+ 1 —=N(1+L)),
Q=1 =N+ e+ 1),
QI*=k((n+p) — (p— DAL = AN)(1+ ;) Hife,
v = QI e,
and

a7 = QT =N+ 1)
Special Case: when = 1/(1—X\) and p = 6 = 1, the targeting rule is identical to (C.50).
Also, in the less restrictive case that only 8 = 1, the targeting rule would be given by
0=A (yt - yfl“) tonl (C.58)

where yf lez — (n”Tp)at + ﬁ g¢. In other words, producer price stability consists the optimal

plan under the assumptions of 4 =1/(1 — \) and 0 = 1, regardless of the value of p.
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C.5 Welfare with Complete Markets

Following the derivation in De Paoli (2009), the loss function with complete markets can be

written as

. ~ 1 c 1, c 1.
Ly = U.CE Y B | gl = v + gl — a7 + 55

9 949
+ ti.p+ O(€]]?) (C.59)
where:
¢ _ (p—1 [ =¢) —(A=9)]
. _plp—1)
+ Lai [(n+p) +n(n+1) )
 La(1 = XA)PA(pf - 1)
(1+1°) ’
“T A
La§lc(p —1—1°)
(1=X)%p
N LA (pf — 1) [pO(1 — X) + A + 1]
02
N La§ [1+ N (2= X)] A0 —1)
1—\ ’
c __ i E c
16 = e +(1 +77)ka1,
T.c e
yt = qyeta
and
0 = e,
where
e c c —1)(1=A)+Lag
W= 3y [ 14 Las(l+n)n —Lag(l+y) CUGREE } )
e 1 (p—1—1°)Lx§ Lz§A(A(1—X)+1)(p0—1) —La§A(1—X)(pd—1)
qQ_‘I’Q[O 0 (1-X) g p(1=X) : P }’
1
L= —————[Ip '+ (1 =) —p,
L= G| =3 =u]
1
Les=———[p(p =1 =X))+ 1 =N+ p)],
S = oy P =)+ =0+ )]
1
La§=———[(pf — 1)1 = Np~t — 08+ 1)], C.60
= Gy 0= D0 =Nt = (00 + 1) (C.60)

and 1€ = (pf — 1)A\(2 — N).

15



C.6 Optimal Plan with Complete Markets

The optimal plan consists of minimizing the loss function subject to

T =k <77Yt + (=Nt 4 e — e+ PCf) + BEmiy1, (C.61)
and (1+1)
+ C

— g 7 *. C.62

w=a gy tetd (C.62)

The multipliers associated with (C.61) and (C.62) are, respectively, ¢1 and ¢5. The first order
conditions with respect to 7,y and ¢; are, therefore, given by

(1t — p14-1) = klgmy, (C.63)
w20 — npre = 15 (e — b ), (C.64)
and (1)
P 1Y - c T
— — = ——7] — . C.65
9027t (1 + l) Sol,t (1 + l) qq(qt qt ) ( )

To obtain a targeting rule for the small open economy, we combine equations (C.63), (C.64),
and (C.65):

QSA(y: — 4 ) + QA (g — 4/ ) + QS = 0, (C.66)
where
Q, = 1+,
Qq = p(1 = N)lg,,
and

Qr = (p+n(L+1))kl.

Special Case: when u = 1/(1 — X) and p = 6 = 1, the targeting rule is identical to
(C.50). This confirms that, under these circumstances, the asset market structure is irrelevant
for monetary policy.

C.7 The welfare cost of inflation

Under some simplifying assumptions, the weight of inflation in the loss function for, I, can be
expressed as:>

i e o(1=N) LA —=XN)"tn+1)
b= 1" = k (1 li(p+n)+p(1—)\)+n+)\>

and
le(n+1)

Tk <_(p+n)+nl>

3Here we assume that the level of output is efficient in the steady state (for the small open economy) and
that the net foreign asset position is zero. In particular, we set 7 =1/(1 — A) and B = 0.
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with I; = (0 —1)(2 — ) and l. = (pf — 1)A(2 — N).

These expressions demonstrate that when domestic and foreign goods are substitutes in
the utility function, inflation variability is less costly when asset markets are complete. More
specifically, when pf > 1 and § > 1 then [} = lia > ¢r and [f < @¢p. When welfare is
expressed as a purely quadratic expression, the weight on inflation under incomplete markets
and financial autarky increases, while in the case of complete markets it decreases. It follows
that, with complete markets, the linear term ¢, — ﬁyt in Equation (C.40) can be written as
an increasing function of inflation variability. On the other hand, with imperfect risk sharing,
either in the case of financial autarky or market incompleteness, this term is a decreasing
function of (wt)2. This conclusion if reversed if domestic and foreign goods are complements
in the utility. Now, if pf < 1 and § < 1, the conclusion is reversed: I} = lia < qr and IS > qr.

C.8 Randomization Problem - the Financial Autarky Case

To ensure that the policy obtained from the minimization of the loss function is indeed the
best available policy, we should confirm that no other random policy plan can be welfare
improving. De Paoli (2009) analyses the case of complete markets. We present the conditions
under which no random policy can enhance welfare. As shown in Woodford and Benigno (2003),
these conditions coincide with the second order condition for the linear quadratic optimization
problem. In the present Section, we study the case of financial autarky.

Following the same steps as De Paoli (2009), we characterize the relationship between
inflation and output and inflation and the real exchange rate. Equation (AS) combined with
Equation (FA) leads to the following expression:

—(p—1
=k <(n+p)d1 (p— DA
dq
where d; = (0 — 1)(1 — ) — \0. Alternatively,
= (1P = (p = DA
(1=2X)
A random sunspot realization that adds ¢;v; to my;, will, therefore, add a contribution of

aykfl(goj — Byj+1)v; to y; and ozqkfl(goj — Bpjt1)vj to g, where

oo — (1t p)di—(p—1)X

Yt + e + 77€t> + BEmi41, (C.67)

qt + e + 77€t> + BEtTFt+1. (0.68)

fa — ) , (C.69)
and
Oézjja — (77 + p)dldz (P - 1))‘ (070)

To obtain what is the contribution to the loss function of the realization ¢;v; to my;, we
rewrite the loss function as follows. Noticing that (alq/\_1 — 1)q; = y¢ + t.i.p, the loss function
under financial autarky can be written as

Ly 4+ (A2 = D)) (e — yT)?

Ly, = U,CE, B N a A u + t.i.p, (C.71)
02 34+ (At = DI (a1 — f)? + Sikox?

where
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T _ je
Y = lyet7

1
- e g ),
Y (lifcy‘*‘(dq)‘_l—l)_llzjjq)[ Y ]

T _ qe
9 = lqeta

and 4
— = ey g e ],
Y (lgy + (dgA ™1 — 1)l5q) !

Consequently, the contribution to the loss function of a random realization in ¢;v; is

U.CB'o2E, Y B |97k (05 = By + (0] (C.72)
where
o/ = f"a2 + 0f'a2,
O = (1o + (d2 7t — 1)1,
and

O = (e + (dgA ! = D).

It follows that policy randomization cannot improve welfare if the expression given by Equation
(C.72) is positive definite. Hence, the first order conditions to the minimization problem are
indeed a policy optimal if ®/% and 1% are not both equal to zero and either: (a) ®/* > 0 and
&/ 4 (1 — BY2)2=21f* > 0, or (b) ®f* < 0 and &/ + (1 — BY/2)2k2L" > 0 holds.
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