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A Appendix: Complete Markets Speci�cation

Our complete market setup closely follows the one of Chari et al (2002). In order to illustrate
this speci�cation we introduce some further notation, which explicitly accounts for the di¤erent
states of nature s. We assume that agents meet and trade assets, which are contingent on the
di¤erent states s, before monetary policy decisions are made. Given that agents do not know
the policy decisions when trading �nancial assets, we implicitly consider the case in which the
di¤erent policy choices are included in the state vector s.1

Denoting st = (s0;s1;s2;::) the history of states up to period t, we assume that Home
consumers choose consumption, labour and state-contingent bond holdings to maximize their
utility
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subject to a sequence of consumer budget constraints
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(A.2)

where we de�ne private income as PIt

PIt �
(1� �t)

R n
0 pt(h)yt(h)dh

n
+ PH;tTrt (A.3)

and �
�
st
�
is the probability of state history st occurring. The variable B

�
st+1

�
denotes

home consumer�s holdings of a one period nominal bond (denominated in domestic currency)
purchased in period t and state st with payo¤s contingent on state st+1 at period t+1. Finally,
the variable Q

�
st+1=st

�
is the price of such a bond in period t and state st.

Domestic �rst order conditions with respect to bond holdings, in states st�1 and st, imply
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(A.4)

1That is, in this setup, one coordinate of the state vector e¤ectively indexes the di¤erent policy choices,
though we do not specify the mapping between policies and the state explicitly. For examples where this could
be done, see Senay and Sutherland (2007), Ho¤mann and Holtemoller (2008) and Berger (2008). In these works
policy is written as a money supply rule governed by a single parameter. So this parameter could be included
as a coordinate of the state vector and claims could be written contingent on it.
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where �
�
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�
= �

�
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�
=�
�
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�
: Similar optimality conditions in the rest of the world

imply
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P �
�
st�1

�
S (st)P � (st)

: (A.5)

Given that domestic and foreign households face the same subjective probabilities, �
�
st=st�1

�
,

and assuming no-arbitrage in asset markets, we can combine the two expressions above and
iterate backward to get

U�C
�
st
�

UC (st)
= k

S
�
st
�
P �
�
st
�

P (st)
(A.6)

where

k =
U�C
�
s0
�

UC (s0)

P
�
s0
�

S (s0)P � (s0)
: (A.7)

So the parameter k is pinned down by initial conditions in the market for state contingent
bonds. In our analysis we assume that the monetary authorities chose policy taking k as
given. That is, policy rules are determined after the state-contingent �nancial markets are
closed. In addition, we assume a symmetric equilibrium in which k = 1, and given that the
equation above holds in every state of the world, we can write

UC(C
�
t )

UC(Ct)
=
StP

�
t

Pt
: (A.8)

B Appendix: Approximating the Model

In this Appendix, we derive �rst and second order approximations to the equilibrium conditions
of the model. Lowercase variables denote log deviations from steady state. We allow for an
asymmetric steady state in the analysis of the incomplete market case. All variables in steady
state are denoted with a bar. We assume that in steady state 1 + it = 1 + i�t = 1=� and
PHt =P

H
t�1 = PFt =P

F
t�1 = 1. We normalize the price indexed such that PH = PF and assume

G = 0: Moreover, we use the following isoelastic functional forms for the utility functions:

U(Ct) =
C1��t

1� � (B.9)

V (yt(h); "T ) =
"��y;t yt(h)

�+1

� + 1
(B.10)

B.1 Demand

The �rst order approximation to the small open economy demand is

yH = ��pH + dbc+ (1� db)c� + �(1� db)q + g; (B.11)

where db = (1 � �)(1 + a) and a = �(C�C�)
Y

. Moreover, Home relative prices are denoted by

pH = PH=P and the �scal shock gt is de�ned as Gt�GY , allowing for the analysis of this shock
even when steady-state government consumption is non-zero. In the symmetric steady state,
in which db = 1� �, Equation (B.11) becomes

yH = ��pH + (1� �)c+ �Ĉ� + ��q + g: (B.12)

2



The second order approximation to the demand function isX
�t
�
d0yyt +

1

2
y0tDyyt + y

0
tDeet

�
+ t:i:p+O(jj�jj3) = 0; (B.13)

where

yt =
�
yt ct pHt qt

�
;

et =
�
"t �t gt c�t

�
;

d0y =
�
�1 db �� �(1� db)

�
;

D0
y =

2664
0 0 0 0
0 (1� db)db 0 ��(1� db � dg)db
0 0 0 0
0 ��(1� db)db 0 �2(1� db)db

3775 ;
and

D0
e =

2664
0 0 0 0 0
0 0 0 �db �(1� db)db
0 0 0 � 0
0 0 0 ��(1� db) �(1� db)db

3775 :
B.2 The Real Exchange Rate

Given that, in the rest of the world, PF = SP �; Equation (6) in the main text can be expressed
as: �

Pt
PH;t

�1��
= (1� �) + �

�
Qt

Pt
PH;t

�1��
: (B.14)

The �rst order approximation to the above expression is:

pH;t = �
�qt
1� �: (B.15)

The second order approximation to Equation (B.14) is:X
Et�

t

�
f 0yyt +

1

2
y0tFyyt + y

0
tFeet

�
+ t:i:p+O(jj�jj3) = 0; (B.16)

where
f 0y =

�
0 0 �(1� �) ��

�
;

f 0e =
�
0 0 0 0

�
;

F 0y = �(� � 1)

2664
0 0 0 0
0 0 0 0
0 0 0 �1
0 0 �1 (1� �=(1� �))

3775 ;
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and

F 0e =

2664
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3775 :
B.3 Price Setting

The �rst and second-order approximations to the price setting equation follow Benigno and
Benigno (2003). These conditions are derived from the following �rst order condition of sellers
that can reset their prices:

Et

(X
(��)T�tUc(CT )

�
~pt(h)

PH;t

���
YT

�
~pt(h)

PH;T

PH;T
PT

� �T
Vy (~yt;T (h); "t)

Uc(CT )

�)
= 0; (B.17)

where

~yt(h) =

�
~pt(h)

PH;t

���
Yt; (B.18)

and

(PH;t)
1�� = �P 1��H;t�1 + (1� �) (~pt(h))

1�� : (B.19)

With markup shocks, �t; de�ned as �
(��1)(1��Ht )

; the �rst order approximation to the price

setting equation can be written in the following way:

�t = k (�ct + �yt � pH;t + �t � �"t) + �Et�t+1; (B.20)

where k = (1� ��)(1� �)=�(1 + ��):
The second order approximation to Equation (B.17) can be written as follows:

Qto = �
X

Et�
t

�
a0yyt +

1

2
y0tAyyt + y

0
tAeet +

1

2
a��

2
t

�
+ t:i:p+O(jj�jj3); (B.21)

a0y =
�
� � �1 0

�
;

a0e =
�
�� 1 0 0

�
;

A0y =

2664
�(2 + �) � �1 0

� ��2 � 0
�1 � �1 0
0 0 0 0

3775 ;

A0e =

2664
��(1 + �) 1 + � 0 0

0 0 0 0
0 0 0 0
0 0 0 0

3775 ;
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and
a� = (� + 1)

�

k
:

B.4 Incomplete Markets: Approximating the Current Account equation

We assume that home-currency denominated bonds are in zero net supply. The net foreign
asset position is therefore fully denominated in foreign currency. Aggregating private and
public budget constraints, the law of motion for bt can be written as

PtCt +
StBF;t

(1 + i�t ) 
�
StBF;t
Pt

� = StBF;t�1 + PH;t(Yt �Gt) (B.22)

De�ning BF;tSt
Pt

� Bt we can rewrite the government budget constraint as

Bt = Bt�1
StPt�1
St�1Pt

(1 + i�t ) (Bt) +
PH;t
Pt

(Yt �Gt) (1 + i�t ) (Bt)� Ct (1 + i�t ) (Bt) : (B.23)

From agents�intertemporal choice,

UC (Ct) = (1 + i
�
t ) (Bt)�Et

�
UC (Ct+1)

St+1Pt
StPt+1

�
: (B.24)

We can therefore write (B.23) as

Bt�Et

�
UC (Ct+1)

St+1Pt
StPt+1

�
= Bt�1

StPt�1
St�1Pt

UC (Ct)+
PH;t
Pt

(Yt�Gt)UC (Ct)�CtUC (Ct) : (B.25)

And the log linear representation of the above equation, de�ning a� = a
1�� ; is

� �a�ct + bt�1 + a�(�Qt � ��t ) (B.26)

= �yt + (1 + a)ct � �act � pH;t + gt
+ �Et

�
��a�ct+1 + bt + a�(�Qt+1 � ��t+1)

�
:

Furthermore, if we allow BW;t = BF;t�1
Pt�1
Pt

St
St�1

UC (Ct) and st = �PH;t
Pt
(Yt �Gt) +Ct, the

intertemporal government solvency condition can be written as

bW;t = UC (Ct) st + Et�bW;t+1 = Et

1X
T=t

�T�tUC (CT ) st; (B.27)

and the term UC (CT ; �C;T ) st can be approximated, up to the second order, by

UCY

�
a� bYt + (1 + a(1� �))ct � pH;t � 1

2y
2
t + �ytct � ytpH;t

+1
2(a�

2 + (1 + a)(1� 2�))c2t + �ctpH;t � 1
2p
2
H;t

�
:

Thus, de�ning bW;t =
BW;t�BW

B
0
W

and B
0
W = UcY

(1��) , we have,

bW;t = (1� �)
�
bi0yyt +

1

2
y0tB

i
yyt + y

0
tB

i
eet

�
+ �EtbW;t+1

+ t:i:p+O(jj�jj3) (B.28)
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where

bi0y =
�
�1 1 + a(1� �) �1 0

�
;

Bi0y =

2664
�1 � �1 0
� a(1� �)2 + (1� 2�) � 0
�1 � �1 0
0 0 0 0

3775 ;
and

Bi0e =

2664
0 0 0 0
0 0 �� 0
0 0 1 0
0 0 0 0

3775 :
Special Case: Note that if � = � = 1; a = 0 and b�1 = 0; the second order current

account approximation becomes

ct = yt + pH;t � gt � gtpH;t + gctCt; (B.29)

which combining with the demand equation implies

ct = qt + c
�
t : (B.30)

This is identical to the perfect risk sharing condition.

B.5 Financial Autarky: the Extreme Case of Market Incompleteness

In this case we assume that there is no risk sharing between countries. The inability to trade
bonds across borders impose that the value of imports equates the value of exports:

(1� n)SP �H;tC�H;t = nPF;tCF;t; (B.31)

given the preference speci�cation, we can write:

CH;t = v

�
PH;t
Pt

���
Ct; CF;t = (1� v)

�
PF;t
Pt

���
Ct; (B.32)

C�H;t = v�
�
P �H;t
P �t

���
C�t ; C

�
F;t = (1� v�)

�
P �F;t
P �t

���
C�t : (B.33)

Substituting in Equation (B.31):

Ct =

�
pH;t
Qt

�1��
[Qt]

� C�t : (B.34)

And using the de�nition of the consumption indexes and market clearing, condition (B.34)
implies

PH;t(Yt �Gt) = PtCt: (B.35)

Assuming C = C
�
; the second order approximation is
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pH;t + yt � gt + ytgt = ct; (B.36)

and can be represented as follows:X
Et�

t

�
bfa0y yt +

1

2
y0tB

fa
y yt + y

0
tB

fa
e et

�
+ t:i:p+O(jj�jj3) = 0;

bfa0y =
�
�1 1 �1 0

�
;

Bfa0y = 0;

and

Bfa0e =

2664
0 0 �1 0
0 0 0 0
0 0 0 0
0 0 0 0

3775 :
Special Case: when � = 1; Equation (B.36) combined with the demand equation becomes

c�t = ct + qt: (B.37)

B.6 Complete markets: the Risk Sharing Equation

Assuming a symmetric steady-state equilibrium, the log linear approximation to the risk shar-
ing Equation (29) in the main text is

c�t = ct +
1

�
qt: (B.38)

Given our utility function speci�cation, Equation (29) gives rise to an exact log linear
expression and therefore the �rst and second order approximations are identical. In matrix
notation, we have X

Et�
t

�
bc0y yt +

1

2
y0tB

c
yyt + y

0
tB

c
eet

�
= 0;

where
bc0y =

h
0 �1 0 1

�

i
;

bc0y =
�
0 0 0 1

�
;

Bc0y = 0;

and
Bc0e = 0:
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C Appendix: Welfare and Optimal Monetary Policy

C.1 Welfare with Incomplete Asset Markets:

Following Benigno and Benigno (2003), the second order approximation to the utility function,
Ut; can be written as:

Ut = Et

1X
s=t

�s�t
�
U(Cs)�

1

n

Z n

0
V (yjs; "Y;s)dj

�
; (C.39)

Wto = Uc �CEt0
X

�t
�
w0yyt �

1

2
y0tWyyt � y0tWeet �

1

2
w��

2
t

�
+ t:i:p+O(jj�jj3); (C.40)

where
w0� =

�

�k
;

w0y =
�
�1=�(1 + a) 1 0 0

�
;

W 0
y =

26664
(1+�)
(1+a)� 0 0 0

0 �(1� �) 0 0
0 0 0 0
0 0 0 0

37775 ;
and

W 0
e =

2664
� �
�(1+a) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

3775 :
Using the second order approximation to the equilibrium condition, we can eliminate the

term w0yyt. We derive the vector Lx; such that�
ay dy fy biy

�
Lx = wy:

Thus, the loss function can be written as

Lto = Uc �CEt0
X

�t
�
1

2
y0tL

i
yyt + y

0
tL
i
eet +

1

2
li��

2
t

�
+ t:i:p+O(jj�jj3); (C.41)

where

Liy =Wy + Lx
i
1Ay + Lx

i
2Dy + Lx

i
3Fy + Lx

i
4B

i
y;

Lie =We + Lx
i
1Ae + Lx

i
2De + Lx

i
4Be;

and
li� = w� + Lx

i
1a�:

Given the values of ay; dy; biy; fy, de�ned in this Appendix, we have:
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Lxi1 =
(1 + a)�(l1(2� �) + (�� �))� a(l1 + �)

(1 + a)�(l2(2� �)� (�+ �)(1� �)� �(�� 1))� al2
;

Lxi2 =
��((�+ �)� �(�� 1))

(1 + a)�(l2(2� �)� (�+ �)(1� �)� �(�� 1))� al2
;

Lxi3 =
�(�+ (1� �)a)�((�+ �)� (�� 1)(�� (�� 1)a))
(1 + a)�(l2(2� �)� (�+ �)(1� �)� �(�� 1))� al2

;

and

Lxi4 =
(1 + a)�(l3(2� �)� (�� �))� a(l3 � �)

(1 + a)�(l2(2� �)� (�+ �)(1� �)� �(�� 1))� al2
;

where l1 = �a(���(��1))+�(��1),l2 = �((�+�)��(��1)a), l3 = �((�+�(1+a)�(��1)�)

and (1� �) = 1
� :

We write the model just in terms of the output, real exchange rate and in�ation, using the
matrixes N and Ne; as follows:

y0t = N [Yt; Tt] +Neet;

N =

26664
1 0
1
db

�dq
db

0 � �
(1��)

0 1

37775 ;
and

Ne =

2664
0 0 0 0

0 0 � 1
db

� (1�db)
db

0 0 0 0
0 0 0 0

3775 ;
where dq =

�(�+(1�db)(1��))
(1��) .

Equation (C.41) can therefore be expressed as

Lto = Uc �CEt0
X

�t
�

1
2 [yt; qt]

0 Li
0
y [yt; qt]

+ [yt; qt]
0 Li

0
e et +

1
2 l
i
��

2
t

�
+ t:i:p+O(jj�jj3); (C.42)

where:

Li0y = N 0LiyN;

Li0e = N 0LiyNe +N
0Le;

[yt; qt]
0 Li

0
y [yt; qt] = [yt; qt]

0
�
liyy liyq
liyq liqq

�
[yt; qt]

[yt; qt]
0 Li

0
e et = [yt; qt]

0
�
liye
liqe

�
L
0
eet; (C.43)
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liye =
�
liy" liy� liyg liyc�

�
;

liqe =
�
liq" liq� liqg liqc�

�
;

liyy =
(� + 1)(1� �)

(1 + a)
+
�� 1
d2b

+

�
� (�� 2db)

d2b
+ �(2 + �)

�
Lx1

+
(1� db)
d2b

Lx2 +
�
�
a�+ 2(a(1� �)� �) + (1 + a)�1��1

�
d2b

Lx4;

liyq = liqy =
�(1� �)�1 + (1 + a)

d2b
((r1 � �)(1 + a) + a��)Lx1 +

�(a� � (1� �)�1)
d2b

Lx2

+

�
(1� �)�1�+ �(1 + a)�

d2b

�
Lx4 +

��
�d�1b + r3

�
Lx4 � 1

� r2
db
;

liqq = r22(�� 1) + (�(1� �)�1 � r2�)2Lx1 + �db(1� db)(1 + r2)Lx2
+ (1� �)�1�(� � 1)Lx3
+
�
(�(1� �)�1 + r2r3)r2 + �(1� �)�1(��(1� �)�1 + r2�)

�
Lx4;

li� =
�

k

�
(1� �)
(1 + a)

+ (� + 1)Lx1

�
;

liy" =
��(1� �)
(1 + a)

� �(� + 1)Lx1;

liy� = (� + 1)Lx1;

liyg =
� (�� 1)

d2b
+
� (db � �)

d2b
Lx1 �

Lx2
db

� (r3 + �)Lx4
db

;

liyc� =
� (�� 1) (1� db)

d2b
+�� (db � �)

d2b

(1� db)
db

Lx1�
(�(1 + a)� a)Lx2

db
�(1� db)

db

�
�+

r3
db

�
Lx4;

liq" = 0;

liq� = 0;

liqg =
� (�� 1) (a� �(2� �)(1 + a))

(1� �)d2b
+
((r1 + �)(1 + a)� a��) �

(1� �)d2b
(Lx1 + Lx4)

+
(�(1 + a)� a)Lx2

(1� �)db
� ((r3 + �)(2� �) + �)(1 + a) + a�r3) �

(1� �)d2b
Lx4
db

;
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and

liqc� =
� (�� 1) (�(1 + a)� a)((1� �)�1 + db)

d2b
� ((r1 + �)(1 + a)� a��) (�(1 + a)� a)Lx1

(1� �)d2b

+
�(�(1 + a)� a)Lx2

(1� �)db
+
(�(1 + a)� a)

db

�
��(1� �)�1 + r2r3

�
Lx4;

where r1 = �(2� �)(�� � 1), r2 = �((1�db)+(1��)�1�)
db

and r3 = (1 + �2)a+ 1� 2�

C.2 Optimal Plan with Incomplete Asset Markets:

The optimal plan consists of minimizing (31) subject to equations in Table 4. Therefore, the
�rst order conditions with respect to �t; yt; qt; ct, and bt are:

li��t +�'1;t = 0; (C.44)

0 = liyyyt + l
i
yqqt + l

i
yebet � k�'1;t + '2;t � '4;t;

0 = liyqyt + l
i
qqqt + l

i
qebet � k �

(1� �)'1;t � dq'2;t + '3;t � �
�1'3;t�1

+
�

(1� �)'4;t � a��'4;t + a���Et'4;t+1; (C.45)

0 = ��k(1 + a)'1;t� (1 + a)(1� �)'2;t� �'3;t+ ���1'3;t�1+ (1+ a)'4;t+ �a��'4;t; (C.46)

and
Et�'4;t+1 = ��1�'3;t: (C.47)

The case of no intermediation costs:
When � = 0, the �rst order conditions can be written as

QiyEt�(yt+1 � y
T;i
t+1) +Q

i
qEt�(qt+1 � q

T;i
t+1) +Q

i
�Et�t+1 = 0; (C.48)

with
Qiy = liyq + (dq + (1 + a)(1� �)��1)liyy;

Qiq = liqq + (dq + (1 + a)(1� �)��1)liyq;

Qi� = k
�
(1 + a)(�+ �(1� �)��1) + �dq + �(1� �)�1

�
li�;

qT;it =
�lqe
Qiq

bet;
and

yT;it =
�(dq + (1 + a)(1� �)��1)liye

Qiy
bet:

Special Case: Incomplete markets, symmetric steady state, no trade imbalances
and speci�c level of steady-state output

In the case we have
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1. � = 1=(1� �)

2. � = � = 1

3. a = 0

In this case, the �rst order conditions can be written as:

0 = (liyy + l
i
yq(1� �))�yt + ((1� �)liqq + liyq)�qt + (liye + liqe(1� �))�bet + k(� + 1)li��t (C.49)

Moreover:

Lx1 = 0; Lx2 = �1; Lx3 = �1; and Lx4 = 2� �:

And therefore:
lyy + lyq(1� �) = (� + 1)(1� �)
(1� �)lqq + lyq = 0
l� = (1� �)�=k
(lye + lqe(1� �)) =

�
��(1� �) 0 �(1� �) 0

�
Hence, the targeting rule can be written as

0 = �

�
yt �

�

(� + 1)
"t �

1

(� + 1)
gt

�
+ ��Ht : (C.50)

In addition, using Equation (B.29), we can write the Phillips Curve as follows:

�t = k ((� + 1)yt � �"Y t � gt + �t) + �Et�t+1: (C.51)

By inspection of Equation (C.50) and (C.51), we can see that domestic in�ation target is the
optimal plan if there are no markup shocks, �t.

C.3 Welfare under Financial Autarky

Using an analogous derivation for welfare, but substituting the matrices biy; B
i
y and B

i
e for b

fa
y ;

Bfay and Bfae ; the loss function under �nancial autarky has the following weights2:

lfayy = (� + 1)(1� �) +
�� 1
d2b

+

�
� (�� 2db)

d2b
+ �(2 + �)

�
Lxfa1 +

(1� db)
d2b

Lxfa2 ;

lfayq = lfaqy =
�(1� �)�1

d2b
((r1 � �)(1 + a) + a��)Lxfa1

+
�(a� � (1� �)�1)

d2b
Lxfa2 � r2

db
;

2Note that for the derivation of wefare under Complete Market and Financial autarky, we assume a = 0:

12



lfaqq = r22(�� 1) + (�(1� �)�1 � r2�)2Lx
fa
1 + �db(1� db)(1 + r2)Lxfa2

+ (1� �)�1�(� � 1)Lxfa3 ;

lfa� =
�

k

�
(1� �) + (� + 1)Lxfa1

�
;

lfay" = ��(1� �)� �(� + 1)Lx
fa
1 ;

lfay� = (� + 1)Lx
fa
1 ;

lfayg = �
(Lx2(1� �) + �Lxfa4 )

db
;

lfayc� =
� (�� 1) (1� db)

d2b
� � (db � �)

d2b

(1� db)
db

Lxfa1 � (�(1 + a)� a)Lx
fa
2

db
;

lfaq" = 0;

lfaq� = 0;

lfaqg =
(r2 + �)Lx

fa
4

d2b
;

lfayc� =
� (�� 1) (�(1 + a)� a)((1� �)�1 + db)

d2b
� ((r1 + �)(1 + a)� a��) (�(1 + a)� a)Lx

fa
1

(1� �)d2b

+
�(�(1 + a)� a)Lxfa2

(1� �)db
;

and

lfayc� = �
(Lxfa2 (1� �) + (�r2 � �+ �)Lx

fa
4 )

db
;

with

Lxfa1 =
�(lfa1 (2� �) + (�� �))

�(lfa2 (2� �)� (�+ �)(1� �)� �(�� 1))
;

Lxfa2 =
��((�+ �)� �(�� 1))

�(lfa2 (2� �)� (�+ �)(1� �)� �(�� 1))
;

Lxfa3 =
���((�+ �)� (�� 1)�)

�(lfa2 (2� �)� (�+ �)(1� �)� �(�� 1))
;

and

Lxfa4 =
�(lfa3 (2� �)� (�� �))

�(lfa2 (2� �)� (�+ �)(1� �)� �(�� 1))
;

where lfa1 = �(� � 1),lfa2 = �((�+ �) and lfa3 = �((�+ � � (�� 1)�):
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C.4 Optimal Plan under Financial Autarky

We can write the system of equations given in Table 2 in terms of yt and qt as follows:

�t = �
�
(� + �)yt � (�� 1)�(1� �)�1qt + �t � �"t

�
+ �Et�t+1; (C.52)

and

yt = qt
(1 + li)

(1� �) + c
�
t + �

�1gt: (C.53)

The policymaker minimizes the loss function subject to the problem (C.52) and (C.53).
Given that the multipliers associated with (C.52) and (C.53) are, respectively, '1 and '2; the
�rst order conditions with respect to �t; yt and qt are given by:

('1;t � '1;t�1) = klfa� �t; (C.54)

'2;t � (� + �)'1;t = lfayyyt + l
fa
yq qt + l

fa
ye bet; (C.55)

and
�(1 + li)(1� �)�1'2;t + (�� 1)�(1� �)�1'1;t = lfaqy yt + l

fa
qq qt + l

fa
qe bet: (C.56)

The last 3 equations can be combined, giving rise to the following targeting rule

Qfay �(yt � y
T;fa
t ) +Qcq�(qt � q

T;fa
t ) +Qfa� �t = 0; (C.57)

where

Qfay = (lfayy + l
fa
qy (1� �)(1 + li)�1);

Qfaq = ((1� �)(1 + li)�1lfaqq + lfaqy );

Qfa� = k((� + �)� (�� 1)�(1� �)(1 + li)�1)lfa� ;

yT;fat = (Qfay )
�1lfaye bet;

and
qT;fat = (Qfaq )

�1lfaqe (1� �)(1 + li)�1bet:
Special Case: when � = 1=(1��) and � = � = 1, the targeting rule is identical to (C.50).

Also, in the less restrictive case that only � = 1, the targeting rule would be given by

0 = �
�
yt � yFlext

�
+ ��Ht ; (C.58)

where yFlext = �
(�+�)"t +

�
(�+�)gt: In other words, producer price stability consists the optimal

plan under the assumptions of � = 1=(1� �) and � = 1, regardless of the value of �:
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C.5 Welfare with Complete Markets

Following the derivation in De Paoli (2009), the loss function with complete markets can be
written as

Lito = Uc �CEt0
X

�t
�
1

2
lcyy(yt � y

T;c
t )2 +

1

2
lcqq(qt � q

T;c
t )2 +

1

2
lc�(�t)

2

�
+ t:i:p+O(jj�jj3) (C.59)

where:

lcyy = (� + �)(1� �) +
(�� 1) [�lc(1� �)� (�� �)]

(1 + lc)

+ Lxc1

�
(� + �) + �(� + 1)� �(�� 1)

(1 + lc)

�
� Lxc2(1� �)2�(�� � 1)

(1 + lc)
;

lcqq = �
(�+ lc)(�� 1)
(1� �)�2

+
Lxc1l

c(�� 1� lc)
(1� �)2�

+
Lxc2�(�� � 1) [��(1� �) + �+ lc]

�2

+
Lxc3

�
1 + �2(2� �)

�
�(� � 1)

1� � ;

lc� =
�

�k
+ (1 + �)

�

k
Lxc1;

yT;ct = qeyet;

and
qT;ct = qeqet;

where
qey =

1

�Y

h
�
� + Lx

c
1(1 + �)� �Lxc1(1 + �)

(��1)(1��)+Lxc2
1+lc 0

i
;

qeQ =
1

�Q

h
0 0

(��1�lc)Lxc1
(1��) +

Lxc2�(�(1��)+1)(���1)
�(1��)

�Lxc2�(1��)(���1)
�

i
;

Lxc1 =
1

(�+ �) + lc�

�
l��1 + (1� �)� ��1

�
;

Lxc2 =
1

(�+ �) + lc�

�
�(��1 � (1� �)) + (1� �)(� + �)

�
;

Lxc3 =
1

(�+ �) + lc�

�
(�� � 1)(1� �)��1 � (�� + 1)

�
; (C.60)

and lc = (�� � 1)�(2� �):
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C.6 Optimal Plan with Complete Markets

The optimal plan consists of minimizing the loss function subject to

�t = k
�
�Ŷt + (1� �)�1qt + �t � �"t + �c�t

�
+ �Et�t+1; (C.61)

and

yt = qt
(1 + lc)

�(1� �) + gt + c
�
t : (C.62)

The multipliers associated with (C.61) and (C.62) are, respectively, '1 and '2. The �rst order
conditions with respect to �t; yt and qt are, therefore, given by

('1;t � '1;t�1) = klc��t; (C.63)

'2;t � �'1;t = lcyy(yt � yTt ); (C.64)

and

�'2;t �
�

(1 + l)
'1;t =

�(1� �)
(1 + l)

lcqq(qt � qTt ): (C.65)

To obtain a targeting rule for the small open economy, we combine equations (C.63), (C.64),
and (C.65):

Qcy�(yt � y
T;c
t ) +Qcq�(qt � q

T;c
t ) +Qc��t = 0; (C.66)

where

Qcy = (1 + l
c)lcyy;

Qcq = �(1� �)lcqq;

and
Qc� = (�+ �(1 + l))kl

c
�:

Special Case: when � = 1=(1 � �) and � = � = 1; the targeting rule is identical to
(C.50). This con�rms that, under these circumstances, the asset market structure is irrelevant
for monetary policy.

C.7 The welfare cost of in�ation

Under some simplifying assumptions, the weight of in�ation in the loss function for, l�; can be
expressed as:3

li� = lfa� =
�(1� �)

k

�
1 +

li�(1� �)�1(� + 1)
li(�+ �) + �(1� �) + � + �

�
and

lc� =
�(1� �)

k

�
1� lc(� + 1)

(�+ �) + �l

�
3Here we assume that the level of output is e¢ cient in the steady state (for the small open economy) and

that the net foreign asset position is zero. In particular, we set � = 1=(1� �) and B = 0:
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with li = (� � 1)(2� �) and lc = (�� � 1)�(2� �).
These expressions demonstrate that when domestic and foreign goods are substitutes in

the utility function, in�ation variability is less costly when asset markets are complete. More
speci�cally, when �� > 1 and � > 1 then li� = lfa� > q� and lc� < q�. When welfare is
expressed as a purely quadratic expression, the weight on in�ation under incomplete markets
and �nancial autarky increases, while in the case of complete markets it decreases. It follows
that, with complete markets, the linear term ct� 1

�(1+a)yt in Equation (C.40) can be written as
an increasing function of in�ation variability. On the other hand, with imperfect risk sharing,
either in the case of �nancial autarky or market incompleteness, this term is a decreasing
function of (�t)

2. This conclusion if reversed if domestic and foreign goods are complements
in the utility. Now, if �� < 1 and � < 1; the conclusion is reversed: li� = lfa� < q� and lc� > q�.

C.8 Randomization Problem - the Financial Autarky Case

To ensure that the policy obtained from the minimization of the loss function is indeed the
best available policy, we should con�rm that no other random policy plan can be welfare
improving. De Paoli (2009) analyses the case of complete markets. We present the conditions
under which no random policy can enhance welfare. As shown inWoodford and Benigno (2003),
these conditions coincide with the second order condition for the linear quadratic optimization
problem. In the present Section, we study the case of �nancial autarky.

Following the same steps as De Paoli (2009), we characterize the relationship between
in�ation and output and in�ation and the real exchange rate. Equation (AS) combined with
Equation (FA) leads to the following expression:

�t = k

�
(� + �)d1 � (�� 1)�

d1
yt + �t + �"t

�
+ �Et�t+1; (C.67)

where d1 = (� � 1)(1� �)� ��. Alternatively,

�t = k

�
(� + �)d1 � (�� 1)�

(1� �) qt + �t + �"t

�
+ �Et�t+1: (C.68)

A random sunspot realization that adds 'jvj to �t+j ; will, therefore, add a contribution of
�yk

�1('j � �'j+1)vj to yt and �qk�1('j � �'j+1)vj to qt, where

�faq =
(� + �)d1 � (�� 1)�

(1� �) ; (C.69)

and

�fay =
(� + �)d1 � (�� 1)�

d1
: (C.70)

To obtain what is the contribution to the loss function of the realization 'jvj to �t+j ; we
rewrite the loss function as follows. Noticing that (dq��1 � 1)qt = yt + t:i:p; the loss function
under �nancial autarky can be written as

Lto = Uc �CEt0
X

�t

"
1
2(l

fa
yy + (dq�

�1 � 1)�1lfayq )(yt � yTt )2
+1
2(l

fa
qq + (dq�

�1 � 1)lfayq )(qt � qTt )2 + 1
2 l
fa
� �2t

#
+ t:i:p; (C.71)

where
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yTt = leyet;

ley =
1

(lfayy + (dq��1 � 1)�1lfayq )

h
lfaye lfay� lfayg lfayc�

i
;

qTt = leqet;

and
ley =

1

(lfayy + (dq��1 � 1)lfayq )

h
lfaqe lfaq� lfaqg lfaqc�

i
:

Consequently, the contribution to the loss function of a random realization in 'jvj is

Uc �C�
t�2vEt0

X
�t
h
�fak�1('j � �'j+1)2 + lfa� ('j)2

i
; (C.72)

where

�fa = �faY �
2
y +�

fa
Q �

2
q ;

�faY = (lfayy + (dq�
�1 � 1)�1lfayq );

and
�faQ = (lfaqq + (dq�

�1 � 1)lfayq ):

It follows that policy randomization cannot improve welfare if the expression given by Equation
(C.72) is positive de�nite. Hence, the �rst order conditions to the minimization problem are
indeed a policy optimal if �fa and lfa� are not both equal to zero and either: (a) �fa � 0 and
�fa + (1� �1=2)2k�2lfa� � 0; or (b) �fa � 0 and �fa + (1� �1=2)2k2lfa� � 0 holds.
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