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Summary. It is widely believed that call options induce risk-taking behavior. How-
ever, Ross (2004) challenges this intuition by demonstrating the impossibility of
inducing managers with arbitrary preferences to always act as if they were less
risk averse. If preferences and price distributions are unknown, risk-taking behav-
ior cannot be always induced by an option contract. Here, we prove a new result
showing that, with no information about preferences and some knowledge about
prices, one can write a call option that makes all managers prefer riskier projects
to safer ones. This points out that in order to design options that induce risk taking
it is sufficient to have information about price distributions.
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1 Introduction

Regardless of the reasons why firms grant stock options to their executives, it is
widely believed that a consequence of this practice is an increase in managerial
willingness to take risks. Intuitively, it is reasonable to expect that compensation
schedules based on call options would induce risk taking, since call options dis-
play convex payoff structures and their values increase with the volatility of the
underlying stock – see Smith and Stulz (1985) and DeFusco, Johnson, and Zorn
(1990). However, as noticed by Ross (2004), this argument ignores the fact that
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option-based compensation schemes move the evaluation of a given lottery to a lo-
cus in the domain where utility functions might be more concave. Thus, the convex
shape of call payoffs could be offset by locally higher degrees of risk aversion.1

In fact, Ross (2004) proves an impossibility theorem. He shows that, among the
class of strictly convex compensation schedules, there is no single schedule that
would make all strictly concave utility functions uniformly display lower risk aver-
sion everywhere in their domains. Based on this result, Ross (2004) states that “the
common folklore that giving options to agents will make them more willing to take
risks is false.”

In this paper, we ask what the conditions are under which call options may
induce risk taking. We prove a new result that is helpful in understanding the rela-
tionship between options and risk taking. If F and G are two cumulative distribution
functions and F second-order stochastically dominates G (i.e. G is unambiguously
riskier than F ), then there is a censoring point such that the distribution G censored
at this point first-order stochastically dominates the distribution F censored at the
same point.

Because call options pay only if the stock price surpasses a threshold level (the
strike price), the payoff distribution implied by a call option is a linear transforma-
tion of the original stock-price distribution censored at the strike price. According
to our result, by choosing a proper censoring point (i.e., an appropriate strike price),
one can transform a project that is unambiguously riskier than others into a lottery
that first-order stochastically dominates all others. Consequently, executives facing
compensation schedules based on call options with such strike prices will always
prefer to implement riskier projects, regardless of the specific functional form of
their utility functions. We also show that this result is robust to scenarios in which
one has limited information about the price probability distributions implied by
each project.

These findings are complementary to Ross’s (2004) in the following sense.
Given Ross’s impossibility result, one needs to further restrict the environment in
order to get some possibilities. By restricting the class of admissible utility func-
tions, Ross (2004) is able to find convex compensation schedules that would make
any agent displaying decreasing absolute risk aversion become less risk averse. Our
possibility theorem takes an alternative route. We do not restrict the class of utility
functions; in fact, utilities here can be concave, convex, or neither. We show that
if the distribution functions of the available projects are at least partially known,
then one can find call options that would make all agents behave as if they were
less risk averse, regardless of their risk preferences. Thus, this paper identifies the
information about projects’ distributions as a key determinant of the risk-taking
inducing property of call options.

Two important points are worth stressing. First, as in Ross (2004), we do not
adopt an optimal-contracting approach. It is not our goal to explain why options
are used in executive compensation. Instead, we focus on a more basic question:
Can stock options be used to make managers choose riskier projects over safer
ones regardless of their risk preferences? Second, the novelty of our result is not

1 Qualitatively similar results are derived by Carpenter (2000) and Lewellen (2002).
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that using option contracts can induce agents to prefer riskier projects. This result is
obviously true for some price distributions and utility functions. The not-so-obvious
result proven here is that it is possible to find one option contract that would make all
agents behave as if they were less risk averse, regardless of their utility functions.
In practice, option contracts are very homogeneous across managers, thus it is
important to find out which properties of option contracts are robust to arbitrary
preferences.

Our exposition is organized in the following manner. We present our setup and
main results in Section 2. In Section 3, we apply the analysis to two commonly
used families of distribution functions: Lognormal and Normal. Interestingly, the
rules for determining robust strike prices are extremely simple. Section 4 serves as
a brief conclusion.

2 Call options and risk taking

Consider a firm run by a manager whose actions have stochastic effects on the
firm’s stock price (t). The manager has to implement only one project among those
that are available. Contracts specifying which project the manager must choose are
not enforceable. Managers have no private preferences over projects. The economy
lasts for one period and different projects induce different stock-price distributions
for the next period. Managers’ preferences have the expected-utility property and
their utility functions over wealth, u : R+ → R, are continuous and increasing.

Our risk metric for now will be the concept of second-order stochastic domi-
nance. For any two distribution functions F : [0, T ] → [0, 1] and G : [0, T ] → [0, 1]
such thatF �= G, one has thatF second-order stochastically dominatesG (F �s G)
if:

EF (t) = EG (t) , and (1)∫ τ

0
G(t)dt ≥

∫ τ

0
F (t)dt, ∀τ ∈ [0, T ] . (2)

Our goal is to find a compensation schedule that would induce any type of
manager to implement the riskiest project available, regardless of the specific func-
tional form of u. When these schedules exist, we say that they are robust to different
preferences.

We restrict our analysis to one of the simplest convex schedules used in man-
agerial compensation: call options of stock prices. In our setup, an option is fully
specified by its strike price, s. When a manager with utility u is faced with a call
option with strike price s, his expected utility is given by:

U (s, H) =
∫ T

0
u (max (t − s, 0)) dH (t) , (3)

where H represents a generic distribution function for t.
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2.1 Two-project environment

Initially, we consider the case in which there are two projects available and extend
the analysis later. Fix F and G to be such that F �= G and F �s G in order to
compute risk-taking inducing strike prices that might depend on F and G, but are
independent of managers’ utilities.

Before stating our main result, we need a technical assumption to rule out
distribution functions displaying pathological behaviors in a neighborhood of the
stock-price upper bound (T ). Define TFG as the limit point at which the two
distributions differ from each other, i.e.:

TFG = min{θ ∈ [0, T ] : F (t) = G (t) for all t ∈ [θ, T ]}. (4)

Notice that TFG always exists, since F (T ) = G(T ) = 1 and distribution functions
are right continuous. (Also, TFG = T unless F (t) = G(t) in a neighborhood of
T .) We thus make the following assumption.

Assumption 1. There is a neighborhood of TFG in which the number of times
F (t) − G(t) changes sign is finite.

Assumption 1 is very weak. In particular, it is satisfied by any pair of proba-
bilities with finite support and all standard distribution functions such as Normal,
Lognormal, Chi-Square, Gama, Beta, Weibull, t and F, among others. We are now
ready to state our main result.

Proposition 1. Under Assumption 1, there exists a strike price ŝ ∈ (0, T ) such
that:

∫ T

0
u (max (t − ŝ, 0)) dG (t) >

∫ T

0
u (max (t − ŝ, 0)) dF (t) , (5)

for any continuous and increasing u. In other words, there always exists a call
option that is robust to preferences and induces any type of manager to choose the
riskier project.

Proof. Under Assumption 1, if F �s G then ∃δ > 0 such that G(t) < F (t), ∀t ∈
(TFG − δ, TFG). To see this, first note that Assumption 1 implies that there exists
δ > 0 such that F (t) − G(t) is either positive or negative, ∀t ∈ (TFG − δ, TFG).
Moreover, from the definition of second-order stochastic dominance, one must have∫ TF G

τ
(G(t) − F (t))dt ≤ 0, ∀τ < TFG.2 Hence, G(t) − F (t) must be negative,

∀t ∈ (TFG − δ, TFG).
Next, define A = {t ∈ [0, T ] : G(t) > F (t)}. The set A is non-empty,

otherwise we would have either F = G or EF (t) > EG(t). Moreover, it must
be the case that sup(A) < TFG, since ∃δ > 0 such that G(t) < F (t), ∀t ∈
(TFG − δ, TFG). Define then ŝ = sup(A) and let Go : [0, T − ŝ] → [0, 1] and
F o : [0, T − ŝ] → [0, 1] denote the distributions of max(t − ŝ, 0) when t follows
F and G, respectively. Notice that the definition of ŝ and right continuity of F and

2 Notice that, EF (t)−EG(t)=0⇔ ∫ T
0 t(dG(t)−dF (t))=0 ⇔ − ∫ T

0 (G(t) − dF (t))dt = 0 ⇔
∫ TF G
0 G(t)dt =

∫ TF G
0 F (t)dt. The inequality follows thus from equation (2).
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G imply Go(t) = G(ŝ + t) ≤ F o(t) = F (ŝ + t), ∀t ∈ [0, T − ŝ]. Therefore, Go

first-order stochastically dominates F o.
Finally, notice that ∃δ > 0 such that ŝ = sup(A) ≤ TFG − δ and Go(t) =

G(ŝ + t) < F (ŝ + t) = F o(t), ∀t ∈ (TFG − δ − ŝ, TFG − ŝ). Therefore,
one has

∫ T

0 u(max(t − ŝ, 0))dG(t) =
∫ T−ŝ

0 u(t)dGo(t) >
∫ T−ŝ

0 u(t)dF o(t) =∫ T

0 u(max(t − ŝ, 0))dF (t), for any continuous and increasing u. 	

Our proof is constructive, thus one can compute the strike price that induces

such a result, namely ŝ = sup{t ∈ [0, T ] : G(t) > F (t)}. Figure 1 displays two
cumulative distribution functions to illustrate our proof. In this figure, TFG = T =
1 and ŝ = 0.5. Notice that, under Assumption 1, F �s G implies G(t) < F (t) for
all t ∈ (ŝ, TFG). But this implies that G always yields higher payoffs than F when
the domain is restricted to values higher than ŝ, implying that any agent that prefers
more money to less should prefer G. In other words, a call option that censors both
distributions at point ŝ would generate two new distributions, F o and Go, such that
Go first-order stochastically dominates F o.

Proposition 1 is considered our main result because all the other results that fol-
low can be seen as extensions or variations of it. The next proposition, for instance,
generalizes the previous result.

Proposition 2. Define ŝ = sup{t ∈ [0, T ] : G(t) > F (t)} and suppose Assump-
tion 1 holds. Then:
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(i) For any s′ ∈ [ŝ, TFG), one has:
∫ T

0
u (max (t − s′, 0)) dG (t) >

∫ T

0
u (max (t − s′, 0)) dF (t) , (6)

for any continuous and increasing u.
(ii) If s′ ≥ TFG, the inequality sign in (6) should be replaced by an equality sign.

Proof. Similarly to the proof of Proposition 1, define Go(t) = G(s′ + t) and
F o(t) = F (s′ +t), where s′ ≥ ŝ. From the definition of ŝ, one must have Go ≤ F o

(which implies that Go first-order stochastically dominates F o). If s′ ∈ [ŝ, TFG),
one must have Go < F o for some open interval in [ŝ, TFG), which implies the
strict inequality in (6). Moreover, Go = F o if s′ ≥ TFG, which implies part (ii).
	


This result is important because it suggests that fine-tuning the strike price is
not necessary in order to induce the risk-taking behavior. With limited information
about the environment (i.e., with imperfect estimates of F and G), one may choose
to overshoot the strike price to guarantee that G is chosen over F . Ideally, one should
choose s′ ∈ [ŝ, TFG), but if by mistake s′ is set to be larger than TFG, managers
would still be indifferent between the projects. Therefore, we have shown that with
no information about preferences and with only rough estimates of F and G, one
can find a family of option-based compensation schedules which induce the choice
of risky projects. In this sense, these schedules are not only robust to preferences,
but they are also robust to some small perturbations of the functions F and G.

2.2 Multiple projects

We now study the case where managers choose among many different projects. The
basic intuition remains the same, but we need some additional assumptions.

The concept of second-order stochastic dominance defines a partial ordering of
projects, that is: �s is reflexive (F �s F ); antisymmetric (if F �s G and G �s F
then F = G); and transitive (if F �s G and G �s H then F �s H). Thus, define
Ω as a set of distribution functions linearly ordered by �s (where a set is said to
be linearly ordered by a partial order �s if, for any two distinct elements F and G,
one has that either F �s G or G �s F ).

Now, suppose that a manager is exogenously exposed to a finite number of
projects and has to decide which one will be implemented. Technically, the manager
must implement a project selected from a finite subset of Ω, say Ω̂, which is assumed
to be known. Since Ω̂ is finite, there exists the riskiest project,G∗ ∈ Ω̂.We introduce
Assumption 2, which is analogous to Assumption 1 for the multiproject setup.

Assumption 2. For each F ∈ Ω̂, there is a neighborhood of TFG∗ in which the
number of times F (t) − G∗(t) changes sign is finite.

We can prove two related results in this setup. If TFG∗ is constant for all F in
Ω̂\{G∗}, then one can generalize Proposition 1. This technical condition is satis-
fied, for instance, if G∗ �= F almost everywhere, for all F ∈ Ω̂\{G∗}. However,
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when such a condition does not hold, we can still prove a weaker version of Propo-
sition 1 in which the manager weakly (rather than strictly) prefers the option written
on the riskiest project. In any case, given a finite set of projects, one can always find
a call option that would induce any type of manager to choose the riskiest project
available.

Proposition 3. Under Assumption 2, there exists a strike price smax ∈ (0, T ) such
that:

(i) If TFG∗ = T ∗ for all F ∈ Ω̂\{G∗}, then:

∫ T

0
u (max (t − smax, 0)) dG∗ (t) >

∫ T

0
u (max (t − smax, 0)) dF (t) ,

(7)

for any F ∈ Ω̂\{G∗} and any continuous and increasing u;
(ii) If TFG∗ is not constant for all F ∈ Ω̂\{G∗}, then (7) holds with weak in-

equality.

Proof. Fix F ∈ Ω̂ and define ŝF = sup{t ∈ [0, T ] : G∗(t) > F (t)}. Since Ω̂
is finite, there is a maximum strike price, say smax = max(ŝF , ∀F ∈ Ω̂\{G∗}).
From Proposition 1, we know that a call option with a strike price equal to ŝF

would induce the choice of G∗ over F . If TFG∗ = T ∗ for all F ∈ Ω̂\{G∗}, then
smax < T ∗ and part (i) is guaranteed by Proposition 2. Otherwise, one might have
smax ≥ TFG∗ for some F , making the option written on F identical to the option
written on G∗. 	


2.3 Random binary choices

So far we have assumed that the manager’s choice set is known.A different problem
arises when one is uncertain about which choices are feasible for the manager.

As in the previous subsection, suppose there is a finite set of projects available,
Ω̂, and that these projects are ordered by second-order stochastic dominance. But
now the manager is randomly exposed to a pair of them. The set of all available
projects is known, but one does not know which specific pair of projects will be
available to the manager. We need to find a call option that would induce any type
of manager to choose the riskier of any two projects, for any possible pair in Ω̂×Ω̂.

Clearly, inducing this type of behavior is much more difficult than inducing
the choice of a particular project, as done in the previous subsection. Nevertheless,
we have a proposition with the same flavor of the previous ones. We introduce
Assumption 3 before stating our result.

Assumption 3. For each pair (F, G) ∈ Ω̂ × Ω̂, there is a neighborhood of TFG in
which the number of times F (t) − G(t) changes sign is finite.

Proposition 4. Under Assumption 3, there exists a strike price smax ∈ (0, T ) such
that:
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(i) If TFG = T ∗ for all (F, G) ∈ Ω̂ × Ω̂, then:
∫ T

0
u (max (t − smax, 0)) dG (t) >

∫ T

0
u (max (t − smax, 0)) dF (t) , (8)

for any (F, G) ∈ Ω̂ × Ω̂ such that F �s G, and any continuous and increasing
u;

(ii) If TFG is not constant for all (F, G) ∈ Ω̂ × Ω̂, then (8) holds with weak
inequality.

Proof. Fix a pair (F, G) ∈ Ω̂×Ω̂ where F �s G (this is without loss of generality,
since Ω̂ is linearly ordered by �s). From Proposition 1, there is a strike price
ŝFG = sup{t ∈ [0, T ] : G(t) > F (t)} that induces any manager to strictly prefer
calls written on G. Since Ω̂×Ω̂ is finite, there is a finite set of strike prices defined in
this way. Take the maximum of these strike prices, smax = max{ŝFG, ∀(F, G) ∈
Ω̂ × Ω̂}. Note that smax < T ∗ in case (i) but, in case (ii), one might have smax ≥
TFG, for some (F, G) ∈ Ω̂ × Ω̂. The result follows then from Proposition 2. 	


This proposition illustrates another kind of robustness property of option-based
compensation schedules. It shows that wisely chosen schedules can induce risk
taking when preferences are unknown, even without complete information about
the choices that will be available to the manager.

3 Simple rules under some standard distributions

Here, we apply the previous analysis to two commonly used families of distribution
functions: Lognormal and Normal. Unlike in the previous sections, we use variance
as our measure of risk. This is mainly for simplicity: it facilitates the analysis
and allows us to work with unbounded supports. It should be clear that the same
propositions we have derived so far could be applied in the current setting, once
one truncates the support. Incidentally, the examples of this section show that, for
some distribution functions, neither the bounded-support assumption nor the use
of second-order stochastic dominance as the risk metric are necessary for robust
risk-taking inducing option schedules to exist.

The most interesting results of this section concern the simplicity of the rules
used to compute strike prices. Here, the strike price takes the form of a simple
function of some moments of the distributions.

3.1 Lognormal distributions

LetF andG represent two different projects following Lognormal distributions with
the same mean, but different variances. Project F induces a distribution of prices
such that ln(t) ∼ N(µF , σ2

F ). Similarly, project G implies ln(t) ∼ N(µG, σ2
G).

Then F (t) = Φ( ln(t)−µF

σF
) and G(t) = Φ( ln(t)−µG

σG
), where Φ represents the

standard normal cumulative distribution. We assume that σ2
G > σ2

F so that
varG(t) > varF (t), i.e., G is riskier than F .
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Notice that F and G are equal to each other at the points 0 and ŝ (and when
t → ∞), where ŝ is given by:

F (ŝ) = Φ

(
ln (ŝ) − µF

σF

)
= Φ

(
ln (ŝ) − µG

σG

)
= G (ŝ) . (9)

By assumption, F and G have the same mean (t̄), where:

t̄ = EF (t) = exp
(

µF +
σ2

F

2

)
= exp

(
µG +

σ2
G

2

)
= EG (t) . (10)

Using (10) and (9), one obtains:

ŝ = t̄ exp
(σGσF

2

)
. (11)

Note that if the stock-price mean and variance induced by each project were
unknown, one still could use an upper-bound estimate for these variables (say, t̄max

and σ2
max) and set the strike price to be s′ = t̄max exp(σ2

max
2 ).

3.2 Normal distributions

Let F (t) = Φ( t−µF

σF
) and G(t) = Φ( t−µG

σG
) represent two different projects, where

Φ is the standard Normal cumulative distribution.3 These functions are equal to
each other at ŝ (and when t → ±∞), where ŝ is the solution of:

F (ŝ) = Φ

(
ŝ − µF

σF

)
= Φ

(
ŝ − µG

σG

)
= G (ŝ) , (12)

that is,

ŝ = µF = µG. (13)

In the case of Normal distributions (or others that can be reasonably approxi-
mated by them), the only information needed is the expected stock price. By setting
ŝ equal to the average stock price, one is able to induce any type of manager to
choose the riskier project regardless of σG and σF .

4 Final remarks

Ross’s (2004) results suggest that call options might be a very ineffective way
of inducing risk-taking behavior. This is particularly true in cases in which one
has limited information about the environment. A firm that would like to force its
manager to implement a risky project is typically unaware of the specific functional
form of the manager’s utility function, and might also have imperfect information
about the projects’ stochastic properties. In this paper, we studied conditions under
which call options may robustly induce risk taking. We showed that it is the lack
of information about projects’ distributions, rather than the absence of information
about preferences, that may hinder the use of call options as a means of inducing
managerial risk taking.

3 Obviously, price distributions cannot be Normal, since prices must be nonnegative. We use this
case only to illustrate our method.
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