Markets and Values The Evolution of Intrinsic Motivation

Tim Besley and Maitreesh Ghatak

November 2015

Besley & Ghatak (LSE)

Markets and Values

November 2015 1 / 26

Motivation

- Many commentators e.g. Durkheim, Weber and Polanyi remark on how culture changes with economic development
 - a key example is changes in the nature of employment relations from systems based on reciprocity and trust towards modern wage-labor contracts
 - economists have not paid much attention to cultural dynamics
- However, there has been some recent interest in the importance of intrinsic motivation
 - the possibility that people do not need to be incentivized to perform tasks
 - indeed, incentives can sometimes be counter-productive
- But there is not much on what socializes people into being intrinsically motivated.
 - or are preferences just fixed genetic endowments?

- To study the dynamics of intrinsic motivation when preferences respond to workplace socialization
- Basic set up has
 - firms offer wage contracts
 - workers sort across firms
 - workers influence those with whom they work but socialization does depend on the "fitness" of each type
- Core outputs
 - show how intrinsic motivation in the population as a whole can increase or diminish over time
 - show how this dynamic path responds to technological change and migration
 - draw some policy implications

- Literature on intrinsic motivation
 - anomie when intrinsically motivated workers are monitored and incentivized
- Optimal and Equilibrium Labor contracts
 - show that we cannot have a separating equilibrium with unobserved heterogeneous motivation, moral hazard and team production
- Literature on cultural evolution
 - mostly in anthropology but recently small literature in economics

- Key contributions by Boyd & Richerson (1985) and Cavalli-Sforza & Feldman (1981)
 - uses evolutionary models with exposure to a range of "cultural parents"
 - emphasizes dynamics due to social learning
- In economics Bisin & Verdier (2001)
 - adds a strategic dimension to intergenerational socialization
 - applied, for example, in Tabellini (2008).
- Approach taken here is essentially the indirect evolutionary approach of Guth & Yaari (1992) and Guth (1995)
 - mainly focused on small group interactions and preference change
 - espoused by Ostrom (2000) to study collective action.

- Lay out core model with three features
 - team production with moral hazard
 - heterogeneous motivation and firms
 - competition for workers
- Derive optimal labor contracts
- Dynamic model of socialization
- Role of productivity growth and migration
- Welfare results

Framework

- A measure N < 1 of producers (firms) and a measure 1 of workers who are of two types: $\tau \in \{m, s\}$ where *m* stands for motivated and *s* for selfish.
- Time is infinite and indexed by t.
- Let μ_t be the fraction of motivated workers in the population at date t.
- Workers can choose to put in one unit effort $e \in \{0, 1\}$.
- Effort costs c to a selfish agent, who decides whether to put in effort or not
- Intrinsically motivated agents get $\theta > 0$ from effort & puts in effort automatically
- But they incur a cost of $\nu \in (0, \theta)$ if they are incentivized (e.g., resents the lack of trust).

- Two workers are needed to produce output.
- Output is produced only if *both* agents put in effort.
- Firm owner then gets $\pi \in [2(c+z), \Pi]$ with cdf $G(\pi)$ where $z \ge 0$ is subsistence consumption.
- Workers are matched with firms who post employment contracts which comprise a type-specific wage, w_{τ} , and an output contingent payment (bonus) b_{τ} which is strictly positive.
- Effort is not contractible and workers have no wealth which they can post as a bond against poor performance.
- Workers have a common outside option \bar{u} .

- Equilibrium contracts $\{w_m, b_m, w_s, b_s\}$ in a market equilibrium where firms compete for workers.
- The model therefore has both adverse selection and moral hazard.
- We will require that contracts are incentive compatible in two senses:
 - workers select the contract intended for their type and
 - effort decisions are optimal (for selfish types).

Effort Decisions

• Let $E(b, \tau)$ be the effort decision of type τ when the bonus is b. (E(b, m) = 1 for all $b \ge 0$)

Lemma

If $b \ge c$, then there is an equilibrium in which all selfish agents put in effort whether they are matched with a selfish or a motivated agent.

Focus on the case where:

$$E\left(b,s
ight) = \left\{ egin{array}{cc} 1 & ext{if }b\geq c \ 0 & ext{otherwise.} \end{array}
ight.$$

• The payoff of the selfish agent is:

$$V(b,s) = E(b,s)[b-c].$$

while

$$V(b,m) = \begin{cases} \theta & \text{if } b = 0\\ \theta + b - \nu & \text{otherwise.} \end{cases}$$

is the utility of a motivated agent when the bonus is b = + + = +

Besley & Ghatak (LSE)

(1)

• Standard conditions

Besley & Ghatak (LSE)

Markets and Values

November 2015 11 / 26

э

æ

• • • • • • • • • • • •

(2)

Outside Opportunities

- Outside option is unemployment where a worker receives a subsistence consumption level of z > 0.
- This implies that total remuneration cannot fall below z, i.e.

$$b_{\tau} + w_{\tau} \ge z.$$
 (3)

- This will create a bound on the ability of firms to extract back from the utility rent θ which motivated workers earn.
- Also suppose that there is a small disutility ε > 0 from being unemployed so that all workers strictly prefer to work if they can even if the consumption level is z under both options.
- Hence the outside option for both types of worker is $z \varepsilon \ge 0$.

- Contracts must also be consistent with competitive profit maximization by firms.
- Firms offer a common contract $C = \{w_m, b_m, w_s, b_s\}$ and are atomistic and take the outside utility of workers, denoted by $\{u_m, u_s\}$, as fixed.
- Suppose that a firm hires two worker's i and j of type $\tau(i)$ and $\tau(j)$.
- Let \mathcal{P} be the set of permutations of the types of worker pairs, i.e. $\{(s, s), (s, m), (m, s), (m, m)\}$ with typical element p.
- Then we define the set S with elements $\{i, j\}$ such that for all $p \in \mathcal{P}$, there exists $\{i, j\} \in S$ such that $\{\tau (i), \tau (j)\} \in \mathcal{P}$.
 - Intuitively, when we consider $\{i, j\}$ from S we cover all permutations of worker types that a firm could choose from.

Competition and Profit Maximization

• Focus on contracts where (1) and (2) hold then the profits of the firm are:

$$\Pi(i, j : \pi, C) = E(b_{\tau(i)}, \tau(i)) E(b_{\tau(j)}, \tau(j)) \{\pi - b_{\tau(i)} - b_{\tau(j)}\} - w_{\tau(i)} - w_{\tau(j)}.$$

- Given any equilibrium contract C, the equilibrium utilities of workers are $w_s + V(b_s, s)$ and $w_m + V(b_m, m)$.
- Profit maximization requires that, for all $i, j \in S$ there does not exist $C' = \left\{ w'_m, b'_m, w'_s, b'_s \right\}$ which satisfies (1), (2) and (3) such that:

$$w'_{s} + V\left(b'_{s}, s\right) \geq w_{s} + V\left(b_{s}, s\right) \& w'_{m} + V\left(b'_{m}, m\right) \quad (4)$$

$$\geq w_{m} + V\left(b_{m}, m\right).$$

and $\Pi(i,j:\pi, C') > \Pi(i,j:\pi, C)$.

- There is a fraction μ_t of motivated workers in the population
- **2** Firms post contracts $\{w_m, b_m, w_s, b_s\} \in C^*$.
- Irrms and workers match and workers choose their effort levels.
- Socialization takes place and the fraction of motivated workers is updated to $\mu_{t+1}.$

We will work backwards through each stage of the model.

Socialization

• Given a set of equilibrium contracts C^* and a fraction of motivated workers, let $U(C^*, \mu, \tau)$ be the expected utility of being a type τ and let

$$\Delta(\mu) = U(C^*, \mu, m) - U(C^*, \mu, s)$$

be the utility difference between the motivated type and the selfish type.

- We will characterize $\Delta(\mu)$ below.
- Co-workers serve as "cultural parents".
- Suppose that socialization has bite in situations where there is non-assortatively matching.
- Probability of becoming motivated in a mixed setting is

$$\rho\left(\Delta\left(\boldsymbol{\mu}_{t}\right)\right) = \frac{\exp\left[\Delta\left(\boldsymbol{\mu}_{t}\right)\right]}{1 + \exp\left[\Delta\left(\boldsymbol{\mu}_{t}\right)\right]}.$$

This implies that

$$\mu_{t+1} = \sigma \mu_t + (1 - \sigma) \left[\mu_t^2 + 2\mu_t \left(1 - \mu_t \right) \rho \left(\Delta \left(\mu_t \right) \right) \right].$$

where σ is fraction of assortative matching.

Rewrite as

$$\mu_{t+1}-\mu_t=\left(1-\sigma\right)\mu_t\left(1-\mu_t\right)\left[2\rho\left(\Delta\left(\mu_t\right)\right)-1\right].$$

• Thus the sign of the change is determined by $\rho\left(\Delta\left(\mu_t\right)\right)^>_< 1/2$ or equivalent $\Delta\left(\mu_t\right)^>_< 0.$

- Equilibrium contracts C^{*} which satisfy (1), (2) and (3) and are profit maximizing for all π ∈ [2 (c + z), Π].
- Show that C* comprises two sets of pooling contracts both of which are typically on offer in a market equilibrium.

Proposition

All contracts in C^* set subsistence wages, i.e. $w_m = w_s = z$. For bonuses, the market offers two possible contracts: a bonus contract where $b_s = b_m = c$ and a fixed-wage contract where $b_s = b_m = 0$. Firms choose which contract to offer as follows:

• if
$$\pi \ge \frac{2c}{1-\mu^2}$$
 then $b_s = b_m = c$
• if $\pi < \frac{2c}{1-\mu^2}$ then $b_s = b_m = 0$

Dynamics

- Last result shows that $\sigma=0$
- Focus on case where

$$0 > \theta + c - \nu > -\varepsilon. \tag{5}$$

- This is the *anomie* condition where values or norms have broken down causing a state of anxiety to workers, a form of personal demoralization.
 - Requires ν to be large enough and will be enough to generate the possibility of breakdown an intrinsic motivation norm.
- In the contracting equilibrium, the probability that any type of worker is employed is *N*.
- Thus,

$$U(C^*,\mu,s) = -(1-N)\varepsilon,$$

• The expected utility of a motivated worker is

$$U(C^*, \mu, m) = N\Delta(\mu) - (1 - N)\varepsilon.$$

Key expression is

$$\Delta\left(\mu\right) = \left[\theta + \left(1 - G\left(\frac{2c}{(1-\mu^2)}\right)\right)(c-\nu)\right]$$

which is increasing in μ .

- Expected payoff to being motivated agent is greater when there are more motivated workers around since firms offer more fixed wage opportunities.
- Define $\hat{\mu}$ from

$$heta = \left(1 - G\left(rac{2c}{\left(1 - \hat{\mu}^2
ight)}
ight)
ight) \left[
u - c
ight].$$

 $\text{Then } \Delta\left(\mu\right) \geq \text{0 for all } \mu \geq \hat{\mu} \text{ and if } \mu < \hat{\mu} \text{, then } \Delta\left(\mu\right) < \text{0}.$

Proposition

For $\mu_t < \hat{\mu}$, $\lim_{t \to \infty} \mu_t = 0$ and for $\mu_t > \hat{\mu}$, $\lim_{t \to \infty} \mu_t = 1$.

- ullet Thus there is a "tipping point" around $\hat{\mu}$
- Extent of worker motivation either increases or decreases over time depending on which side of the tipping point the starting point is
- Thus the economy naturally has multiple steady states: $\mu = 1$ or $\mu = 0$.

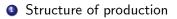


Image: A mathematical states and a mathem

æ

- Structure of production
- Ø Migration

æ

- Structure of production
- Ø Migration
- Welfare and nature of rewards

3

Proposition

Consider two distributions of productivity A and B where the first dominates the second in a first order sense, i.e.

$$\mathcal{G}^{\mathcal{A}}\left(\pi
ight)\leq\mathcal{G}^{\mathcal{B}}\left(\pi
ight)$$
 for all $\pi\in\left[2\left[c+z
ight],\Pi
ight]$.

then the threshold fraction of motivated individuals for economy A, $\hat{\mu}^A$ will be everywhere above the threshold fraction of individuals in economy B, $\hat{\mu}^B$.

- Thus more productive economy is likely to have less intrinsic motivation all else equal.
- So technological change can lead to a move towards an economy dominated by selfish individuals.

Migration

- Pool of migrants of measure M and two economies A and B with the same structure of productivity and other parameters where the first economy has more motivated workers, $\mu^A > \mu^B$.
- Among the migrants, let μ^M be motivated and let $\Delta^A = \Delta(\mu^A)$ and $\Delta^B = \Delta(\mu^B)$ be the expected gain from being a motivated worker in each economy.
- Motivated migrant will pick the economy to migrate to based on max $\{\Delta^A, \Delta^B\}$.

Proposition

Potential migrants will sort according to the fraction of motivated workers in each country. Specifically, if $\Delta^A > \Delta^B (\Delta^A < \Delta^B)$ the fraction of motivated workers in A increases (decreases) to $\frac{\mu^A + \mu^M M}{N + M\mu^M} \left(\frac{\mu^A}{N + M(1 - \mu^M)}\right)$.

• So migration reinforces the dynamics.

< □ > < ---->

Welfare

• Aggregate surplus when the fraction of workers is μ is:

$$\begin{split} S\left(\mu\right) &= & \mathcal{N}\left[\mu\theta + G\left(\frac{2c}{\left(1-\hat{\mu}^2\right)}\right) \left[\mu^2 E\left(\pi:\pi \le \frac{2c}{\left(1-\hat{\mu}^2\right)}\right)\right] \\ &+ \left(1 - G\left(\frac{2c}{\left(1-\hat{\mu}^2\right)}\right)\right) \left[E\left(\pi:\pi \ge \frac{2c}{\left(1-\hat{\mu}^2\right)}\right) - \nu\right] \right] \\ &- (1-\mathcal{N})\,\varepsilon. \end{split}$$

Proposition

In the long-run economies based on intrinsic motivation will have higher welfare and similar income levels to those which rely on incentives

• This is because we allow motivated workers to earn θ .

- We have put forward a framework for studying cultural dynamics when there is endogenous motivation due to workplace socialization
- Contracts and labor allocation is endogenous
- Allows us to think about a range of issues
- Part of a wider agenda to understand situations where preferences and institutions interact.