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1. Introduction

To be successful, most firms need to strike a delicate balance between exploiting well-known business models and explor-
ing new approaches (cf. Roberts and Weitzman, 1981). Exploration is costly and inherently risky. Most untested approaches
fail, but some of them turn out to be exceptionally profitable.

Firms engaged in innovation typically require external financing to develop their ventures. Their choices of which projects
to pursue, and the economic rents obtained from them, depend on the financing contracts signed with outside investors.

As long recognized by economists, asymmetric information is a key determinant of financial contracts. Firms often have
an informational advantage (or expertise) on the potential of their innovative projects (exploration) - for example, because
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they have a better understanding of market conditions or the details of their technology.! They are also typically better
informed about the profitability of on-going business ventures and the best alternative use of their human and physical
assets (exploitation). The decision between exploiting and exploring (i.e., project selection) may also be affected by internal
agency problems? and indirect costs of failure, such as stigma,’ that constrain the ability or willingness of firms to innovate.

In this paper, we study financial contracting in environments in which firms have private information about the payoff
from both exploration and exploitation. Our analysis sheds light on three fundamental questions on the economics of in-
novation. First, what contractual solutions arise to mitigate adverse selection in the financing of innovation? Second, how
does asymmetric information affect project selection and the frequency/duration of experimentation? Third, in light of the
multiple sources of informational advantage held by firms, what determines the rents from engaging in innovation?

We employ a two-arm bandit problem to capture the firm’s exploration/exploitation trade-off.* In each period, the firm
(or entrepreneur) either plays a safe arm with a known distribution of payoffs (capturing exploitation) or a risky arm (cap-
turing exploration) that may be either “good” or “bad.” Revenues are always zero if the risky arm is bad. If the risky arm is
good, large revenues come at geometrically-distributed random times. Playing the risky arm therefore requires the firm to
forego the payoff from the safe arm.

We model the financing of innovation by embedding the two-arm bandit problem described above into a principal-agent
framework. The entrepreneur (agent) needs financing from an investor (principal) to play the risky arm. Without the in-
vestor’s assistance, the entrepreneur is only able to play the safe arm. Both the investor and the entrepreneur learn about
the risky arm by observing its revenues.

There is asymmetric information regarding the primitives of the bandit problem that the agent plays. The agent has
private information about the probability that the risky arm is good (the expected returns from exploration) and about the
expected payoff from playing the safe arm (the opportunity cost of exploration). We follow a mechanism design approach to
derive the revenue-sharing rules and the exploration/exploitation strategies that maximize investor profits and identify the
contractual features that optimally screen the entrepreneur’s (two-dimensional) private information.

We start by analyzing two natural benchmarks where the informational asymmetry between the investor and the en-
trepreneur is one-dimensional. In the first benchmark, the payoff from the safe project is common knowledge but the
entrepreneur has private information about the quality of the risky project. We show that the investor can attain the first-
best profits in this case by reimbursing the entrepreneur’s foregone rents from exploitation and collecting all the profit from
the project. This result, which echoes the classic contributions of Riordan and Sappington (1988) and Crémer and McLean
(1988), underscores the appropriability of innovation in arm’s length relationships.

Next, we consider the expert investor benchmark, where the probability that the risky project is good is common knowl-
edge, but the entrepreneur is privately informed about her opportunity cost of exploration. In the solution to this problem,
the investor offers a menu of stopping plans to the entrepreneur, guaranteeing the financing of exploration until a critical
period regardless of the output realizations. After this critical period, financing is continued if and only if high revenues
were produced in at least one period. The investor screens the entrepreneur’s opportunity cost by offering stopping plans
with different durations. Entrepreneurs with high opportunity costs choose shorter plans, while those with unprofitable
alternatives choose longer plans.

Because the investor needs to leave informational rents to the entrepreneur, the solution of this one-dimensional bench-
mark features under-experimentation (i.e., too few entrepreneurs experiment) and early termination (i.e., the risky project is
halted too early) relative to the first-best outcome where innovation is self-financed. Moreover, the investor can implement
the optimal mechanism using lump-sum payments (such as a golden handshake).

These two benchmarks lay the ground to our characterization of the optimal mechanism under two-dimensional private
information. Our main result gives a necessary and sufficient condition for the solution to the expert investor benchmark
to be implementable, in which case expertise about the risky project quality does not affect payoffs. We show that, with
two-dimensional asymmetric information, the investor can implement the optimal mechanism using linear contracts, which
are particularly simple and commonly used in project financing. A linear contract specifies the entrepreneur’s remuneration
as the sum of a lump-sum payment (such as a golden handshake) and a variable payment that is linear in the revenue from
the project (such as equity). The investor uses the duration of the contract and the exposure to the revenue from exploration
to screen the two dimensions of private information. Entrepreneurs with better projects pick higher-powered contracts (that
is, contracts with larger revenue shares but smaller lump-sum payments). Entrepreneurs with higher opportunity costs pick
contracts with smaller durations. The interaction between both dimensions of private information manifests itself in the
use of variable payments that depend on the project’s revenue (e.g., equity). Although expertise about the risky project’s
quality generates no additional informational rents to the entrepreneur, it determines the contractual form employed at the
optimum.

1 Aboody and Lev (2000) show that R&D is a major source of insider private information. Gompers (1995) shows that venture capitalists concentrate in
early-stage companies and high technology industries, where informational asymmetries are more prevalent. Gompers and Lerner (2004, chapter 7) describe
how staged investment helps venture capitalists screen asymmetric information about project quality.

2 There is empirical evidence that, when deciding between exploration and exploitation, firms often behave as if the returns from their on-going ventures
were larger than they actually are; as induced, for example, by career concerns of managers - see Kerr et al. (2014).

3 Landier (2006) argues that indirect costs such as the stigma from failure are important barriers to experimentation.

4 Two-arm bandit problems were first introduced in the economics literature by Rothschild (1974).
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The necessary and sufficient condition mentioned above requires the reverse hazard rate of the distribution of payoffs
from the safe project to be concave. Intuitively, this rate determines the impact of financing an entrepreneur with opportu-
nity cost ¢ on the informational rents that have to be left to all entrepreneurs with opportunity costs less than c. Concavity
means that informational rents change at a decreasing rate (that is, the marginal informational rent is decreasing). Under this
condition, holding fixed the probability 6 that the risky arm is good, the marginal firm to be financed is the one with the
highest opportunity cost ¢ and, therefore, the one with the lowest marginal impact on informational rents. As a result, an
increase in ® makes the expert investor willing to expand the range of opportunity costs that are financed, and the more so
the higher is 6. At the optimum, this results in expected payments that are convex in 6.

Convex expected payments can be obtained by offering a menu of linear contracts where the variable part is increasing
in the probability that the risky project is good, 6. Since incentive compatibility requires the variable pay to be increasing in
0, convexity of expected payments is the condition that allows the investor to use a menu of linear contracts to implement
the expert investor benchmark. That is, the incentive compatibility constraint associated with the quality of the risky project
is slack at the optimum if and only if the reverse hazard rate is concave.

It is well known that, in one-dimensional models, the principal’s ability to screen types depends solely on the slope of
informational rents. In our expert investor benchmark, for instance, the optimality of perfect screening is determined by
the slope of the reverse hazard rate of the distribution of opportunity costs. In our two-dimensional model, for perfectly
screening beliefs about project quality to be optimal, we have to take into account not only the slope of the reverse hazard
rate but also its curvature. Because perfect screening occurs at no additional cost relative to the one-dimensional benchmark,
the concavity of the reverse hazard rate also implies that the investor is able to fully extract the rents associated with the
firm’s private information about project quality.

When the concavity condition fails, the expert investor benchmark is not implementable under two-dimensional asym-
metric information. While it is hard to obtain a complete (closed-form) characterization of this case, we are able to
demonstrate two important facts. First, pooling is a robust feature of the optimal deterministic mechanism. Intuitively,
since screening beliefs about project quality is incompatible with screening the entrepreneur’s opportunity cost of explo-
ration, the investor offers the same contract to a positive-measure set of entrepreneurs. Second, in the case where one
round of experimentation perfectly distinguishes good and bad projects, we show that when the reverse hazard rate of the
distribution of payoffs from the safe project is strictly convex, the investor offers the same contract to all types (complete
pooling). Convexity magnifies the conflict between screening the payoffs from exploitation and exploration. When complete
pooling is optimal, some entrepreneurs obtain negative informational rents from their private information about the risky
project’s returns (i.e., the entrepreneur’s payoff would increase if the payoff from exploration were common knowledge).
The reason is that, because of binding global incentive constraints, the investor denies financing to entrepreneurs with risky
projects of intermediate expected quality as a way to reduce the informational rents of those with projects that are more
likely to succeed.

Empirical implications. Our model has three main empirical implications: (1) projects with longer duration are of-
fered greater protection (for example, through severance packages or golden parachutes) and are more likely to succeed;
(2) projects with higher-powered long-term incentives are more likely to succeed; and (3) firms with higher payoffs from
exploitation have shorter contracts.

The first and second implications are consistent with Lerner and Wulf (2007), who show that long-term incentives
(such as stock options and restricted stock) are positively correlated with the number of patents, citations, and “originality”
(measured by patent breadth). They are also consistent with Francis et al. (2009), who show that firms that offer golden
parachutes to their CEOs are more innovative (measured by number of patents filed and awarded). We are not aware of any
empirical work that tests the third implication.

Related literature
Many recent papers study agency issues related to experimentation. Most of them focus on the moral hazard aspect of
how to motivate an agent to experiment. Manso (2011) presents a two-period model where the agent may shirk, follow
a well-known approach, or explore a new approach. He shows that contracts that incentivize exploring new approaches
are fundamentally different from standard pay-for-performance contracts, which are meant to incentivize well-known ap-
proaches. Ederer (2013) extends his framework to a situation where a principal faces multiple agents. Klein (2015) considers
a continuous-time version of Manso’s two-period model. In his model, the principal either cannot implement the innova-
tive activity at all, or implements it at zero costs by making the exploitative activity sufficiently unappealing to the agent.
Using a laboratory experiment, Ederer and Manso (2013) discuss the effectiveness of different contracts for incentivizing
innovation.’

Bergemann and Hege (1998, 2005) and Horner and Samuelson (2013) analyze models of moral hazard without commit-
ment where the principal and the agent learn about the value of the investment over time.® Bonatti and Horner (2011)

5 Garfagnini (2011) considers a setting without transfers, and shows how the choice between a risky and a safe arm can be used to incentivize the agent
to pick higher effort.

6 Bergemann and Hege (1998) also study a version of their model with commitment. In contrast to Manso (2011), there is moral hazard on the provision
of effort, rather than on the choice between exploration and exploitation.
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study experimentation in teams with unobservable actions, and Campbell et al. (2014) analyze how sharing information
among team members affects experimentation.’

Our paper focuses on the adverse selection aspect of financing innovation. A few other papers also study experimentation
in settings with adverse selection. Heidhues et al. (2015) analyze the free-riding aspect of strategic experimentation among
multiple agents in a dynamic model with private payoffs. Bouvard (2014) studies a signaling model of financing. In his
model, entrepreneurs have private information about the quality of their projects, which can be high or low. He shows
that entrepreneurs signal the quality of their projects by distorting the timing of investments. Our model differs from his
in three aspects. First, we consider a screening environment where financiers are the ones designing the contract. In our
framework, the principal can always implement the first best if the only source of private information is the quality of
the project. Second, we allow for private information about the entrepreneur’s exploitation payoff. This additional source of
private information prevents the principal from implementing the first best and introduces a rationale for screening through
different contract durations. And third, we allow for a continuum of types whereas there are only two types in Bouvard’s
model.

Halac et al. (2015) also study optimal experimentation in a principal-agent relationship with a two-arm bandit problem.
In their model, there is moral hazard regarding the agent’s effort choice and adverse selection regarding the probability
that the risky arm yields a success conditional on being of good quality.® In the benchmarks with pure adverse selection or
pure moral hazard, the first-best allocation is implementable. In the full-blown model, however, the interaction between
learning, adverse selection and moral hazard makes it impossible to implement the first best allocation, resulting in under-
experimentation by low-ability agents. Similarly, in the version of our model where there is only adverse selection on the
agent’s exploration payoffs, the first-best allocation is implementable.” This is no longer the case when a second source of
asymmetric information is present (regarding exploitation payoffs), and under-experimentation occurs at the optimum. One
reason for this result is that there is no public signal available to the principal that is correlated with the agent’s exploitation
payoff.

Guo (2014) also embeds a two-arm bandit problem in a principal-agent framework but, instead, assumes that utility is
not transferable. She shows that optimal policies place a cap on experimentation.'® Finally, Fong (2009) studies a model
where the principal dynamically screens experts by offering scoring rules and threatening to end the relationship after
a bad performance. Our models differ in that she assumes that there is no experimentation, private information is one
dimensional, there is moral hazard, and side payments are not allowed.

It is often challenging to solve multi-dimensional screening problems, as one cannot determine from the outset the
direction in which incentive constraints bind (see Rochet and Stole, 2003 and the references therein). In our setting, the
nature of the bandit problem played by the agent allows us to identify the exact condition under which a single dimension
of private information is responsible for the agent’s informational rents. In this case, we are able to show that incentive
compatibility holds if and only if there are no profitable misreports along each dimension (in which case we can safely ignore
two-dimensional deviations). By contrast, and similarly to the seminal contribution of Rochet and Choné (1998), profitable
two-dimensional deviations cannot be ruled out when this condition does not hold. We then show that pooling is a robust
feature of the optimal deterministic mechanism.

The remainder of the paper is organized as follows. Section 2 introduces the framework. Section 3 solves for the first-best
and the two benchmark cases where the asymmetry of information is one-dimensional. Section 4 studies the optimal
mechanism under two-dimensional asymmetric information. Section 5 concludes.

2. Model

There is one investor (principal) and one innovative firm or entrepreneur (agent). Both of them are risk neutral. Time
te{1,...T} is discrete and finite, and both parties discount the future at rate § € (0, 1]. At every time t, the firm undertakes
either a risky but potentially profitable project (risky arm) or a safe project (safe arm).

Playing the risky arm corresponds to experimenting something new, with an unknown distribution of returns. The inno-
vative firm is not able to launch the risky project without the investor’s assistance. For example, the firm may need access
to assets or technology held by the investor in order to develop the project. It may also be financially constrained and there-
fore need the investor to help finance the project’s operational costs. Undertaking the risky project requires a per-period
outlay of K > 0.'" The innovative firm has private information about the quality of the risky project 6 (the expected returns
from exploration).

7 Canidio and Legros (2015) analyze how the presence of career concerns shapes optimal experimentation contracts. Board and Meyer-ter-Vehn (2013)
study the dynamics of reputation in a setting where firms make unobservable investments in quality and consumers learn about the quality of the good by
experimentation.

8 By contrast, the agent in our model has private information about the prior probability that the risky arm is good.

9 Our mechanism is however different from that of Halac et al. (2015), as the two papers assume different forms of asymmetric information about the
payoff distribution of the risky arm.

10" Because Guo (2014) studies an environment without side transfers, she is able to use Lagrangian methods to determine the optimal ranges of delegation.
This method seems less promising in our environment, as the problem may not be concave.

1 We set K =0 if the investor’s assistance consists in licensing intellectual property or providing expertise about how to develop and bring new projects
to the market.
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Playing the safe arm corresponds to exploiting business alternatives with a known distribution of returns. The expected
payoff from the safe project ¢ is also private information of the innovative firm. Beyond the pecuniary returns from exploita-
tion, ¢ may also reflect the inability or unwillingness of the firm to engage in experimentation (due to internal agency
problems or indirect costs of failure, such as stigma), or the firm’s cost of raising the capital needed to engage in the new
project. We refer to c as the opportunity cost of exploration.

Geometric bandit returns. The risky project is of either good or bad quality; it is good with prior probability 6. A bad project
always has zero revenues. A good project yields a positive revenue A > 0 at geometrically-distributed random times. That
is, in each period, a good project’s revenue equals A with probability A € (0, 1) and zero with complementary probability.'?
Therefore, the expected per-period profit (i.e., revenues net of costs) from a risky project of good quality is

A-A =K,

which we assume to be strictly positive. The probability A captures the underlying economic risk faced by agents in the
economy (e.g., due to unpredictable business fluctuations) and is common knowledge between the investor and the innova-
tive firm. The per period outlay K is also commonly known by both parties.

We refer to the event that the risky project generates revenue A as a success, and we refer to the event that it generates
no revenue as a failure. Let x; € {s, f,?} = X denote the output of the project at time t, where x; = s, denotes a success,
x; = f denotes a failure, and x; = ¢ means that the risky project is inactive at t. If the risky project is inactive, it produces
no cash flow. We adopt the accounting convention that, whenever the risky project produces a success, the revenue A
accrues to the investor.

Learning. An important feature of our model is that both the investor and the innovative firm learn about the quality of
the risky project from its realized outputs, which are observed by both parties. We refer to the vector X' = (x1....,x;) € X!
as the output history in period t. For future reference, and with a slight abuse of notation, let S(x) and F(x') denote the
number of successes and failures associated with the output history x!.

The firm and the investor update beliefs according to Bayes’ rule. A success immediately reveals that the risky project is
good, whereas a failure is only partial information about the quality of the risky project. A firm with initial belief & which
observes failures in all periods prior to t believes that the risky project is good with probability

6-(1—nt1
0-(1=1-1+01-0)
Thus, at each time before a success is observed, either a new failure happens, which reduces the posterior probability to

0t+1(0), or a success happens, which shifts the posterior probability to 1. The firm’s belief that the risky project is good
after t observations is a random variable with support on {6; (6), 1}. We denote this random variable by 6; (9).

6:(0) =

Asymmetric information. The firm has private information about the probability that the project is good # and about the
payoff from the safe project c. From the investor’s perspective, 6 is drawn from a distribution G with support [0, 1], while
c is drawn from a distribution H with support [c, ¢] € R, .. Both distributions are absolutely continuous with differentiable
densities g, h > 0.

We make two technical assumptions. First, as usual in bandit models, the distributions of the payoffs from each arm, G
and H, are independent. Second, as is standard in mechanism design, we require the distribution of safe project payoffs H
to be log-concave, or, equivalently, the reverse hazard rate y(c) = % to be weakly increasing.

To rule out uninteresting cases, we further assume that it is inefficient for firms with the highest ¢ to undertake the
risky project even when the project is known to be good, and that it is efficient for firms with the lowest ¢ to undertake
the risky project if it is known to be good: ¢ >A-A — K >c.

The firm’s private information at t =1 is described by the pair Tt = (0,c) e I' =[0, 1] x [c, c]. We refer to T as the firm’s

type.

Financing mechanisms
Since the output history is observable and verifiable, parties can write contracts contingent on the project’s revenues. The
investor makes a take-it-or-leave-it offer to the innovative firm in the form of a mechanism. No enforceability problems arise
(for example, because of vesting provisions or large severance payments); i.e., there is commitment.'>

A mechanism consists of an action plan ¢ and a payment rule p. The action plan ¢ determines when to undertake the
risky project as a function of the firm’'s type and the output history. Using the Revelation Principle, we define an action
plan as a collection of functions ¢; : I' x X1 -510,1], t=1,...,T, that map types and histories into the unit interval.4

12 Keller et al. (2005) consider the continuous-time version of this stochastic process and call it an exponential bandit process, as the time before a success
follows an exponential distribution. We adapt their nomenclature by noting that the geometric distribution is the discrete-time analog of the exponential
distribution and therefore refer to this process as a geometric bandit. Two-armed geometric bandits are adopted, among many others, by Bergemann and
Hege (1998, 2005), Horner and Samuelson (2013), and Gerardi and Maestri (2012).

13 Kaplan and Stromberg (2003) document the widespread use of vesting provisions and severance payments in venture capital financing.

14 For national convenience, we set X° = {fJ} to be the output history before the relationship begins.
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The function ¢;(t|x!~1) specifies, for each type T, the probability of undertaking the risky project in period t when the
output history up to that period is x~!. In this case, with probability 1 — ¢¢(z|x'~1), the risky arm is not played and
the firm is allowed to pursue the safe project (reaping a payoff of c). Fixing the firm’s type, we refer to the collection
¢(t)={¢e(t]"):t=1,...,T} as the type-t action plan.

A payment rule is a function p : T x XT — R that maps the firm’s type 7 and the final output history x” into a payment
to the firm. With no loss of generality, we evaluate payments in first period units. Although this normalization may seem
counterintuitive (payments are conditional on the final history), it allows us to compare payments between projects that
last for a different number of periods. A mechanism is therefore described by the pair M = (¢, p).

For a given 6, an action plan ¢ uniquely defines a probability measure over the space of final output histories X7,
denoted by p[¢|6]."> Notice that u[¢|0] depends on the prior belief that the risky project is good, 6, but not on the safe
project’s payoff, c.

In order to describe the incentive compatibility constraints, it is useful to define the expected payment of a firm that
reports type T when the prior probability that the risky project is good equals 8. This expectation is computed according
to the measure w[¢(7)|0], which assigns probabilities to final output histories as induced by the type-7 action plan ¢ (%)
when the true probability that the risky project is good equals 6:

P(#:0) = EHe®I0] [p(f,iT)]. 1)

Let P(t) = P(t;0) denote the expected payment when the firm reports types truthfully.
If a firm reports type T, the expected discounted duration of a project that is good with prior probability 6 equals

T
b(%;0) = EHODI0] [Z st1 .¢t(f|5<f—1)} ) (2)

t=1

Let ®(7) = ®(1;6) denote the expected discounted duration under truthful reporting.
Using this notation, we can write the expected payoff of a firm of type T = (6, c) which reports its type truthfully under
the mechanism M = (¢, p) as

UT|M)=P(t) — P(T)-C. (3)

A mechanism M = (¢, p) is incentive compatible (IC) if the firm cannot benefit from deviating to a non-truthful reporting
strategy:

P(;0) — ®(£;0)-c <U(T|M) (IC)

for all T =(0,¢) and T in I'. A mechanism M is individually rational (IR) if, for each T = (0, ¢) € T, the firm is better off by
accepting the investor’s mechanism rather than undertaking the safe project in all periods:

U(t|M) =>0. (IR)

A mechanism M = (¢, p) is feasible if it satisfies the (IC) and (IR) constraints. An action plan ¢ is implementable if there
exists a payment rule p such that M = (¢, p) is feasible. A mechanism M is optimal if it maximizes the investor’s ex-ante
expected profit,

T
(M) =E’¢ [EM¢<T>|91 [Z (8" ge@® - (G© 26— K)) = (. xT)} } : 4)

t=1

within the class of feasible mechanisms. To understand the expression above, note that the term inside brackets is the
expected discounted revenue of the investor net of payments when the firm has type t = (0, ¢). Taking expectations with
respect to the firm’s type gives the investor’s ex-ante expected profits.

3. Preliminaries

We first consider three benchmarks that lay the ground to our characterization of the optimal mechanism.

15 To understand how to compute 1[¢|0], let T =2 and consider the action plan according to which a type-t firm plays the risky arm in the first period,
and, only in case of failure, switches to the safe arm at t = 2. The probability of history (s, s), as induced by this action plan, is then the probability that
the risky project is good and that it produces two consecutive successes: j[¢|0](s,s) = OA2. By contrast, the measure j[¢|0] assigns zero probability to
any final output history where the risky arm is not played at t = 1. A similar reasoning can be used to compute the probability of any other history.
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3.1. First-best benchmark

In the first best, the investor observes the firm’s type T = (0, c¢), so we can disregard incentive constraints. A mechanism
is first-best optimal if it maximizes the investor’s ex-ante expected profit (4) subject to the (IR) constraint.

Because the investor wants to minimize payments to the firm, the (IR) constraint binds for every type 7 € I'. Using this
fact, the principal’s problem can be recast as that of choosing, for each t € I', a type-t action plan ¢(7) that maximizes

T
RHIO@IP] [Z ((SH (TR (9} @) h-D—K— c))i| . (5)

t=1

As the objective function (5) shows, the principal faces a two-arm bandit problem with (i) a risky arm that gives positive
revenues at geometrically-distributed random times (if the project is good) but costs K + ¢ at each round, and (ii) a safe
arm with a zero payoff.

For each type T = (9, ¢), the geometric bandit problem described above is the discrete-time analogue of the exponential
bandit considered by Keller et al. (2005). As in its continuous-time version, the principal maximizes payoffs (5) by offering
an action plan with the following threshold structure: If a success is observed in some period t, the risky project is con-
tinued until the end. If only failures occur, the project is terminated at some critical period k(7). An action plan with this
structure is called a stopping plan:

Definition 1 (Stopping plans). An action plan is a stopping plan if for every T € I' there exists a number k(t) € {1,..., T}
such that

1. the risky project is undertaken up to period k(t) irrespective of its output history: ¢¢(t|-) =1 for all t <k(7);

2. the risky project is terminated if no success occurs in the first k() periods: ¢ (t|xt=) =0 for all t > k(t) if F(xX() =
k(t); and

3. the risky project is undertaken in all periods if at least one success occurs before period k(t): ¢¢(z|x~1) =1 for all
t<Tif S¥®) >1.

In this case, we say that type 7 tolerates k(t) failures.

For a heuristic derivation of the first-best optimal action plan, fix the type T = (@, ¢) and assume that k — 1 failures were
observed in the first k — 1 periods. Consider the follow continuation strategy:

Pursue the risky project in period k. If a success happens in that period, continue until period T. Otherwise, terminate the project.
At time k, the expected payoff from this strategy is

1— 5T_k

Vi@,0)=6k(®) - A-A—K—-c + Aot 6(@)-1-6- [ﬁ

~()\~A—K—c)j|, (6)

flow payoff in period k

option value from a good project in period k+1

where 1,7} is the indicator function that equals one if k < T and zero if k =T. The first term is the expected flow payoff
from continuing the risky project at time k. The second term is the expected option value of arriving at period k+ 1 knowing
that the risky project is good.

Since the expected payoff Vi (6, c) is strictly decreasing in c, for every k € {1,..., T}, we can define the threshold value
sz(G) as the safe project’s payoff that makes the principal indifferent between pursuing the risky project at period k (and
following the strategy above) and letting the firm undertake the safe project from period k on. That is, the threshold value
vfB(6) is the solution to the following Gittins Formula:

Vi@, vi£ () = 0. (7)
The next lemma describes the first-best action plan, which follows from Gittins (1979). For a parametric example, see
Fig. 1.
Lemma 1 (First best). The first-best action plan ¢ is a stopping plan. An innovative firm with type T = (0, c) tolerates k™ (t) €
{1, ..., T} failures if and only if
vi?B(-[)_;’_l (9) <cC S V;EEB(‘[) (9)5

B

where v,f (+) is the threshold function given by the Gittins Formula (7).
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Fig. 1. The first-best optimal action plan when [c, c] = [1, 2] under the following parameterization: T =3, A = % K=1, A=6and §=1. Areas 1, 2 and 3
refer to the set of types that play the risky arm at t =1 and tolerate, respectively, 1, 2 and 3 failures according to ¢®.

3.2. Symmetric information about the safe project

In this subsection, we study the problem of an investor who knows the payoff from the safe project ¢ but does not know
the probability that the risky project is good 6 (which is private information of the firm). In this case, the investor can
implement the first-best action plan and extract the firm's entire rents by compensating it for its forgone payoff from the
safe project. To understand how to achieve this, consider the mechanism consisting of the first-best action plan ¢ and the
payment rule

pshare (‘L’,XT) —a-TT (XT) + Z st—1 .c,
}

{t:x¢#0

where o € (0, 1), and

T
d ("T> - ;(SL] (Mp=s) - & = Txm - (K +0))

are the discounted profits generated by the risky project at the final history x’. The payment rule p$'@"e fully reimburses
the firm for its foregone rents from the safe project and offers a fraction « of the discounted net profit 7 (xT) generated by
the risky project. Note that the payment rule ps"® is invariant to the belief 6 reported by the firm.

We now verify that the mechanism (¢F B pSh““’) is incentive compatible. Because the payoff from the safe project ¢
is commonly known, the firm can only lie about 6. That is, a firm of type T = (6, c) can only send reports of the form
T = (é, c). We can therefore use formulas (1) and (2) to obtain

T
P(2:0) — ®(%;0) - c = o - EHIT(D)IE] [Z (5H PR (9} @)-A-A—K— C))} _

t=1

Notice that the firm's expected payoff from reporting 6 is proportional to the investor's payoff from following the action
™0, ) in the first-best benchmark when the true type is (9, ¢). Therefore, for any « > 0, the firm has a strict incentive
to pursue the action plan ¢8(6,c) (in which case we say that ¢f® is strictly implemented). Intuitively, the profit-sharing
agreement psh@ perfectly aligns the preferences of both parties, since the firm becomes the residual claimant of the risky
project’s proceeds.

By choosing « close to zero, the investor is able to strictly implement the first-best action plan while obtaining rents
arbitrarily close to those obtained under complete information.!® This discussion is summarized in the following lemma.

Lemma 2 (Symmetric information about the safe project). When there is symmetric information about the payoff from the safe project,
the investor is able to strictly implement the first-best action plan ¢8, while enjoying expected net profits arbitrarily close to first-best.

Similarly to Crémer and McLean (1988) and Riordan and Sappington (1988) (for short, CM and RS), the construction
above implements the first-best leaving no rents to the agent. The ideas behind their constructions are, however, signif-
icantly different from ours. In CM and RS, the principal uses a publicly observed signal to devise a lottery that has zero
expected value upon truthful reporting, but a negative expected value if the agent lies. In these papers, the possibility of
negative payoffs is crucial to discipline the agent to truthfully report his type. By contrast, in our model the principal gives

16 When the firm’s profit-share is exactly zero, the firm is indifferent between any two reports on the belief  or, equivalently, between following any two
action plans. In this case, full rent extraction is exact, but the first-best action plan is only weakly implemented.
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the agent (an arbitrarily small) share of the project’s profit. This guarantees that the agent has the correct incentives to take
the right action, while receiving monetary transfers that are close to zero with certainty (provided the agent’s share is low
enough).

The reason for why there exists a simpler mechanism that implements the first-best in our setting lies in how the
parameter of private information affects the agent’s payoff. In our model, the parameter 6 stands for the agent’s prior
belief about the quality of the risky project and only affects the agent’s expected payoffs indirectly through the expectation
of payments. By appropriately devising the payment rule p"@ (setting o ~ 0), the principal is able to make the impact
of 6 on the agent’s payoff arbitrarily small, thus capturing (approximately) all informational rents while generating strict
incentives for truth-telling. By contrast, in CM and RS, the agent’s parameter of private information describes his preferences
over allocations, and it directly enters the agent’s payoff. This feature creates the need for a more complex implementation
than the profit-sharing mechanism described above.

3.3. Symmetric information about the risky project

In this last benchmark, we assume that the investor is capable of evaluating the risky project as accurately as the firm
but is unable to determine the firm’s opportunity cost of experimentation c. For example, the investor may be a venture
capitalist who specializes in the same sector as the firm’s technology, but who is unsure about the firm’s best alternative
use of human and physical capital or its cost of raising funding.

As in the previous subsection, the firm’s incentive constraints are one-dimensional since they only require truthful reve-
lation of the payoff from the safe project. Accordingly, we say that a mechanism M = (¢, p) satisfies incentive compatibility
on the safe arm (ICS) if no type (4, ¢) benefits from reporting some other type (9, ¢):

P©,8;,0)— 0,8,0) - c<UETIM) (ICS)

forall T =(0,c) eI and ¢ € [, C].

A mechanism M is feasible for the expert investor (or e-feasible, for short) if it satisfies individual rationality (IR) and
incentive compatibility on the safe arm (ICS). A mechanism M is optimal for the expert investor (or e-optimal, for short) if it
maximizes the investor’s expected profit (4) within the class of e-feasible mechanisms. The next lemma characterizes the
e-optimal mechanism.

Lemma 3 (Symmetric information about the risky project). The e-optimal mechanism uses a stopping plan ¢¢ described by the thresh-
old functions v (9) that solve the following Virtual Gittins Formula:

Vi (6, vi©) + vy (vi(©))) =0. (8)
A firm with type T = (0, ¢) tolerates k¢ (t) € {1, ..., T} failures if and only if

Vier)41(0) <€ = Vie(r) (0)
and receives an expected payment of

ke (t)
Pé(t) = ®1(6) - v{(0) + Z (Pk(0) — P_1(0)) - vi(6), 9)
k=2
where @ (0) is the expected discounted duration of a project which is good with probability 0, for a type that tolerates k failures:
(Sk 1— 8T_k

+ 1ot .5"-9-(1 —a —A)") — (10)

1—
P(0) =
The investor must leave informational rents in order to induce the firm to report the payoff from the safe project
truthfully. These rents are captured by the reverse hazard rate y (c). The lemma above shows that the expert investor
optimum coincides with the first-best action plan, except that the payoff from the safe project c is replaced by its virtual
counterpart ¢ + y (¢), which incorporates the informational rents paid to the firm. The Virtual Gittins Formula (8) is the
virtual counterpart of the Gittins Formula (7): it equates the expected flow payoff from continuing the project at period k
to the expected option value from arriving at k + 1 with a good project after adjusting for the firm'’s informational rents.
For each 6, the tolerance for failure k®(6, c), which is decreasing in c, screens firms with different safe projects. Firms
with more valuable safe projects pick contracts with a lower tolerance for failure. Let c™ solve

LA —K=c"4y (). (11)

It follows from (8) that a firm with a payoff from the safe project greater than ¢™® will never play the risky arm, regardless
of 0. Because ¢ > A - A — K >, it follows that ¢™ ¢ [c, ¢). We refer to [c, c™%] as the relevant range.

Equation (9) determines the payments needed to implement the action plan ¢€. In order to prevent upward deviations
regarding the payoff from the safe project, a firm with type T = (6, c¢) has to receive the foregone rents that would arise from
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Fig. 2. The e-optimal action plan when ¢ ~ U[1, 2] under the following parameterization: T =3, A = % K=1, A=6 and § =1. Areas 1, 2 and 3 refer to
the set of types that play the risky arm at t =1 and tolerate, respectively, 1, 2 and 3 failures according to ¢°.

such an inflated report. These foregone rents take into account the different expected durations associated with different
reports (since firms reporting a higher c receive contracts that allow for less experimentation).

Notice that, in the case of an expert investor, optimality pins down the firm's expected payments P¢(7), but not the
actual payment rule p (r,xT) that induces P¢(t). Because there is commitment and the investor observes 6, P¢(t) can be
achieved by multiple payments rules. For instance, it can be achieved by a lump-sum transfer P¢(t) or by more complicated
output-contingent payment schemes (with transfers that depend on the realized output history of the risky project). As
we will see in the next section, asymmetric information about both the safe and the risky project introduces additional
constraints on optimal payment rules, as contingent payment schemes are needed to screen both dimensions of the firm’s
type.

Fig. 2 illustrates the e-optimal action plan when ¢ ~ U[1, 2] under the same parameterization of Fig. 1. Two patterns
emerge from comparing Figs. 1 and 2: (i) fewer types play the risky arm in the e-optimal mechanism than in the first best,
and (ii) the first-best mechanism tolerates more failure from all types. The next corollary shows that these properties hold
beyond the uniform case.

Corollary 1 (Distortions). Relative to the first-best, the e-optimal action plan features:

1. Under-experimentation: {7 : k™ (t) = 0} is a proper subset of {7 : k*(t) = 0}.
2. Early termination: k°(t) < k™ (t) for all T such that k®(t) > 1, with strict inequality for a set of types with positive measure.

Both under-experimentation and early termination are natural consequences of the information asymmetry between the
expert investor and the innovative firm: Since the investor needs to leave informational rents to the firm, she is less willing
to undertake the risky project than in the first-best benchmark and, when undertaking it, she has a lower the tolerance for
failure.

4. Investor-optimal financing mechanism

We now turn to the investor’s optimal mechanism when the innovative firm has private information about both the safe
and the risky project. The analysis of this more realistic case will help clarify the source of rents from innovation and flesh
out important features of the optimal financing contract between investors and innovative firms.

First, we examine how the mechanisms derived in the one-dimensional benchmarks from the previous section perform
under two-dimensional private information. Recall that when the investor observes the payoff from the safe project c, she is
able to implement the first-best action plan and extract all the firm’s rents. This is accomplished by reimbursing the firm’s
payoff from the safe project ¢, thus making it indifferent between both projects. This mechanism is no longer incentive
compatible when the firm has private information about c, since all firms would then claim to have higher payoffs from the
safe project.

More broadly, with two-dimensional private information, full rent extraction is not achievable by any mechanism. The
reason is that, when both 6 and c are private information, the principal cannot do better than in the expert investor
optimum (as the e-optimal problem is a relaxation of the two-dimensional screening problem studied below). Because the
e-optimal mechanism generates positive informational rents to the agent, it follows that full rent extraction is not achievable
(as it would lead to higher profits for the principal).!” Specifically, the mechanisms proposed by Crémer and McLean (1988)
and Riordan and Sappington (1988) do not work in our setting. The reason is that the principal does not have access to

17" Yet, echoing results in Mezzetti (2004), the first-best allocation is implementable. This is possible by making the agent the residual claimant of all
revenues accrued to the project and charging him K every time he chooses the risky arm. This construction is ruled out in Jehiel and Moldovanu (2001),
where payment rules cannot be output-contingent. While achieving the first best, this mechanism leaves large rents to the agent.
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any public signal correlated with the agent’s opportunity cost of exploration, what makes the construction of these papers
inapplicable.

Since full rent extraction is no longer achievable, it is natural to ask if the investor can still obtain the e-optimal profits
with two-dimensional private information. To fix ideas, consider the e-optimal mechanism M€ = (qbe, i)e) according to
which a firm of type t is paid the expected amount P¢(7) in a lump-sum fashion (that is, p® (r,xT) = P¢(7) for all final
output histories xT). This mechanism is not incentive compatible under two-dimensional asymmetric information: holding
fixed the tolerance for failure, the lump-sum payment P€(t) strictly increases with the reported belief . Firms will then
inflate their reported beliefs.

This observation does not preclude the possibility that the e-optimal action plan ¢¢ can be implemented by some output-
contingent payment rule that adjusts the firm’'s exposure to the project’s revenue as a function of the reported belief. We
explore this possibility in the next subsection.

4.1. Linear contracts and the irrelevance of expertise

We will show that, under appropriate conditions, the e-optimal stopping plan can be implemented by an important class
of payment rules: linear contracts.

Definition 2 (Linear contracts). A payment rule p takes the form of a menu of linear contracts {a(t), b(z)};r if for every type
T =(0,c) T, the payments received by the innovative firm are given by

p.xN=am+ Y &b

{t:x¢=s}

That is, payments to the firm are linear in the number of successes. We refer to a(t) as the lump-sum payment and to b(t)
as the success bonus.

The main result of this section identifies a necessary and sufficient condition for the e-optimal action plan to be im-
plementable with two-dimensional private information. Under this condition, the investor can elicit information about the
quality of the project at no additional cost (relative to the expert investor benchmark). To fix terminology, consider the
following definition:

Definition 3 (Irrelevance of expertise). We say that expertise (about the quality of the risky project) is irrelevant if the
action plan ¢° associated with the e-optimal mechanism is implementable under asymmetric information over the two-
dimensional type (6, c).

Before stating our main result, we introduce the following condition, which is satisfied by many standard distributions,
such as the uniform, the mirrored generalized Pareto, and the beta distributions (for a wide range of parameters):

Condition C. The reverse hazard rate y (c) is weakly concave on the relevant cost range [c, c™*].

The next proposition establishes that Condition C is both necessary and sufficient for expertise to be irrelevant. This is,
therefore, the “minimal” condition that makes screening information about the risky arm “compatible” with the e-optimal
solution. Moreover, under Condition C, the stopping plan ¢¢ can be implemented by a menu of linear contracts.

Proposition 1 (Optimal mechanism). Expertise is irrelevant if and only if Condition C holds. In this case, the optimal action plan
coincides with the e-optimal action plan: ¢* = ¢°. Moreover, ¢* is implementable by a menu of linear contracts p*, with lump-sum
payments and success bonuses given by

L Pe(D)]
LM @]

where A (0) is the expected discounted number of successes of a firm which tolerates exactly k failures with a project which is good
with probability 0:

a*(t) = P4(t) = b*(v) - Ake(ry(0) and  b*(r) = (12)

k 1 —8T_k

Tpog1 -804 (1—1 =) ———. 13

1

A(O)=6-Ar- ]
Before presenting its formal proof, it is useful to intuitively describe the main ideas behind Proposition 1.

Let us investigate if and how one can implement the e-optimal action plan ¢¢ by a menu of linear contracts p =

{a(t),b(t)};er. Lemma 3 implies that, whenever the mechanism (¢¢, p) is feasible, the expected payments received by a
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firm of type t have to equal P¢(t) + W, for some nonnegative constant W. Therefore, if the menu of linear contracts p
implements ¢¢, the expected payoff of type T = (0, ¢) is

Pe(T) + v — (bkE(f)(Q) -C= G(T) + b(T) . Ake(r)(e) — q>ke(-[)(9) - C, (14)

where the equality follows from the linearity of p.

Equation (14) shows that the firm's payoff under p satisfies two important monotonicity properties. First, there are
decreasing differences in the contract’s expected duration and the payoff from the safe arm, so that firms with higher
payoffs from the safe project are more tempted to pick contracts with shorter durations. This is why incentive compatibility
requires the number of failures tolerated by the stopping plan to be weakly decreasing in the safe project payoff. The fact
that the reverse hazard rate y(c) is weakly increasing in c, as usually assumed in mechanism design, guarantees that this
monotonicity requirement is slack at the e-optimal mechanism.

Second, there are increasing differences in the success bonus and the belief that the risky project is good: firms with
better risky projects 6 prefer contracts with more exposure to the revenue from the project. Thus, any linear contract p that
implements the e-optimal action plan ¢¢ must offer a higher bonus to projects that are more likely to be of good quality. As
we will see next, this second monotonicity requirement is slack at the optimum if and only if the reverse hazard rate y (c)
is weakly concave in c. Although not standard in one-dimensional screening environments, this condition is essential to the
two-dimensional screening problem studied in this paper, as it determines how informational rents change at the margin.'®

To understand why marginal information rents are important in our context, differentiate both sides of (14) with respect
to 6. Using the envelope theorem on the right-side of (14) and manipulating, we obtain:

0 - . N d
2 [P¢(D)] =b"(7)- a0 [Ake(r) ()] -

This equation shows how the success bonus b*(t) (i.e., the firm’'s exposure to the risky project’s revenue) varies with the
belief that the risky project is good. Solving for b*(t) gives the expression in the statement of Proposition 1. Because
Aje(r)(0) is piecewise linear in 6, the bonus b*(t) is weakly increasing in 6 if and only if the expected payment P¢(7) is
convex in 6.

The marginal informational rents determine whether expected payments P¢(t) are convex in 6. Holding fixed the max-
imal number of failures before termination, the marginal firm to be financed at each 6 is the one with the highest payoff
from the safe project ¢, which, by Condition C, is the one with the lowest marginal impact on informational rents among all
firms that are financed. Therefore, as 6 increases, the expert investor is willing to finance a positive and increasing number
of firms, resulting in expected payments P¢(t) that are convex in 6.

By the same reasoning it follows that, if Condition C does not hold, it is possible to find a type T = (6, ¢) where P¢(7) is
locally strictly concave in 6. In this case, the success bonus in (12) is strictly decreasing in 6 in a neighborhood of T, making
the e-optimal stopping plan not implementable by a menu of linear contracts. That is, Condition C is not only sufficient but
also necessary for the success bonus in (12) to be weakly increasing in 6.

This heuristic argument considers only a subset of the incentive constraints that need to be satisfied for the e-optimal
action plan to be implementable under two-dimensional asymmetric information. Namely, it only considers deviations along
each dimension, where the innovative firm misreports either 6 or ¢ but not both. The proof of Proposition 1 formalizes this
heuristic argument and verifies that the remaining incentive constraints are satisfied, ruling out two-dimensional deviations
where the firm simultaneously misreports both 6 and c. It also establishes that the investor cannot gain by using non-linear
payment rules.

Notice that, even when the e-optimal mechanism can be implemented, private information about the quality of the risky
project places additional constraints on the optimal mechanism. Recall that with symmetric information about the quality
of the risky project, the optimal mechanism could be implemented with lump-sum transfers. With two-dimensional private
information, however, because the expected payment P¢(t) must be increasing and convex in 6, payments must depend on
the revenue from the project. Therefore, although under Condition C the entrepreneur’s expertise is irrelevant for payoffs,
the interaction of both dimensions of private information is a key determinant of the optimal contractual form.

Before presenting the proof, we consider an example illustrating the results of Proposition 1 in closed form. The example
also illustrates a remarkable robustness property of the optimum: the menu (a*(t), b*(t)) is invariant to the distribution of
beliefs, G(9).

18 A similar condition plays an important role in the work of Beaudry et al. (2009). Their paper studies optimal redistribution in an environment in which

workers divide their time between working on the formal and informal sectors. The government observes the worker’s productivity and the time allocated
to the formal sector. Each worker can imitate those with lower productivities by shirking, but they cannot fake being more productive. A reverse hazard
rate condition similar to Condition C is used to control for the effect of correlation between the productivities in the two sectors. This condition is not
needed in the model of Beaudry et al. when the productivities are independently distributed. Because we cannot rule out both upward and downward
deviations, incentive compatibility requires tighter conditions in our model (even under independence).



R. Gomes et al. / Games and Economic Behavior 96 (2016) 145-169 157

Example 1 (Optimal mechanisms with mirrored generalized Pareto distributions). Let the payoff from the safe project be dis-
tributed according to

c—c\"
Ho=|—]) , where n>0.
For this distribution, y (c) = %, Condition C holds, and the firm’s expertise is irrelevant. The optimal action plan is imple-
mentable by a menu of linear contracts with lump-sum payments and success bonuses:

M.(g_n.m and  b*(r)=A. 1

n+1 n+1
The optimal payment rule then features a menu of linear contracts with identical success bonuses and lump-sum payments
that increase as the innovative firm agrees to tolerate more failures before terminating the project.

Notice that parameter 7 orders the distributions of the safe project payoff in terms of first-order stochastic dominance
(that is, larger values of n are associated with higher safe project payoffs). The optimal success bonus offered to all types
is increasing in 1. As n — 0, the distribution H approaches a mass-point distribution at the lower limit c. In this case, the
investor gets the entire cash flow from the risky project and reimburses the firm for the foregone rents from the safe project.
When costs are uniformly distributed (7 = 1), the optimal contract features an equal sharing rule: g*(7) = %. Finally, as
1n — o0, the distribution H approaches a mass-point distribution at the upper limit c. In this case, the firm gets the entire
cash flow from the project and compensates the investor for the per-period outlay K.

a*(t) =

Remark 1 (Limited liability and equity-based contracts). Although in reality firms are protected by limited liability, we ab-
stracted from it in the analysis above. When the firm has no pledgeable income, limited liability requires that payments
cannot fall below zero for any output history:

p(t,x")>0 Vrel and vx' eX'. (LL)

Whenever this condition is satisfied, we can construct equity-based contracts specifying (i) a lump-sum transfer (golden
handshake) «(t) > 0 paid by the investor to the innovative firm; and (ii) a revenue (or equity) share B(t) € (0,1) that
determines how the investor and the firm share revenues accrued from the risky project. Equity-based contracts are re-
markably simple and bear close resemblance to the actual practice of venture capital financing (see, for example, Kaplan
and Stromberg, 2003).

In the working paper version of this article, we show that the optimal menu (a*(t), b*(tr)) from Proposition 1 satisfies
(LL) if and only if % is weakly decreasing in 6 for every c in the relevant range [c, c™®]. Although not directly expressed
in terms of primitives, this monotonicity condition can be easily verified. For instance, in the setting of Example 1, it holds
if and only if ¢ > n - K. In this case, the optimal action plan is implementable by a menu of equity-based contracts with
equity shares g*(t) = n_L and golden handshake a*(t) = a*(7).

4.2. Proof of Proposition 1

We now prove Proposition 1, formalizing the ideas from the heuristic derivation above. Readers interested in the less
technical aspects of our analysis may prefer to skip this subsection and proceed to Subsection 4.3, where we investigate
optimal financing mechanisms when Condition C does not hold.

Proof of Proposition 1. First note that the expert investor problem is a relaxation of the investor problem when there is
two-dimensional asymmetric information. As a consequence, the optimal action plan ¢* coincides with the e-optimal action
plan ¢° provided that the latter is implementable.

We structure this proof in two steps. In the first step, we will show that there exists a menu of linear contracts that
implements ¢°¢ if and only if Condition C holds. In the second step, we will show that if there is no menu of linear contracts
that implements ¢°, then ¢¢ is not implementable.

Step 1. There exists a menu of linear contracts that implements ¢° if and only if Condition C holds. Moreover, under this
condition, there exists a unique such menu that leads to expected payments P¢(t).

By (ICS), any payment rule that implements ¢¢ leads to expected payments P¢(t) + ¥, where W is a weakly positive
constant. By defining the lump-sum payment a*(t) according to a*(t) = P®(t) —b*(T) - Ake(r)(0), we assure by construction
that

P*(1)

= EMe O] [a*(f) + L= 87 'b*(r)]
= P(1) = b*(7) - Ape(r)(0) +b*(T) - Age(r)(0) = P*(1),

where the equality in the second line follows from ¢* = ¢°.
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We will now derive the unique success bonus b*(7) that, together with a*(t), implements the action plan ¢¢. To this end,
consider a mechanism M = (¢, p) such that ¢ is a stopping plan. Consider the following incentive constraints regarding
non-truthful reporting about the risky arm (denoting 7 = (9, c) and T = (6, ¢)):

P(2;0) — Dy (@) -c <U(TIM) Vr,tel with 0#£6 and k(£) =k(r), (ICR;)
and
P(t;0) — Q)@ -c<U(TIM) Vr,Tel with 6 #6 and k(%) #k(7). (ICRy)

(ICRy) rules out non-truthful reports on 6 (and potentially on ¢ as well) such that k() = k(t) (i.e., non-truthful reports
that retain the same tolerance to failure as in the truthful report). In turn, (ICR;) rules out non-truthful reports on 6 (and
potentially on ¢ as well) such that k(%) # k(t) (i.e., non-truthful reports that change the tolerance to failure). Clearly, for
a stopping plan ¢, the mechanism M = (¢, p) satisfies condition (IC) if and only if it satisfies conditions (ICS), (ICRy) and
(ICRy).

By construction, ¢* = ¢¢, and, by the choice of a*(t), P*(t) = P¢(t). Lemma 3 then implies that the optimal mechanism
M* = (¢*, p*) satisfies condition (ICS), in which case the firm's payoff is U (6, c|M*) = P*(t) — Py+r)(0) - c = P*(1) —
Dpe(r)(0) - c. Note that k®(t) has zero partial derivative with respect to 6 almost everywhere (and is not differentiable along
the path (6, viem(e))). Therefore,

*
% = % [P¢(D)] — % {®rer) @)} - ¢ almost everywhere. (15)

We will now turn to condition (ICR;). Observe that the firm’s payoff satisfies strict increasing differences in the success
bonus and the reported belief. Building on this observation, we can use standard techniques to characterize the set of
mechanisms that satisfy (ICR). In particular, the next lemma delivers an alternative envelope formula that depends explicitly
on the schedule of bonuses b(t). Coupled with (15), this new envelope formula pins down the unique candidate schedule
of bonuses that implement ¢* = ¢°.

Lemma 4. Consider a mechanism M = (¢, p), where ¢ is a stopping plan and p = {a(t), b(t)};cr is a menu of linear contracts. The
mechanism M satisfies condition (ICRq ) if and only if the following conditions jointly hold:

1. For every ke {1, ..., T}, the success bonus b(t) restricted to support {t : k(t) = IAc} is weakly increasing in 6,
2. The envelope formula holds almost everywhere:
au @, c|M) d d
—————==b(1)- — [A )| —— 1P 0)t-c. 16
0 @) 25 [Akey O] = 5 {Prw )} (16)

Proof of Lemma 4. See appendix. O

Setting the envelope formula (16) evaluated at M™* equal to equation (15) pins down the optimal bonus b*(7) described
in the statement of the current proposition. To conclude that the optimal mechanism M* satisfies condition (ICR;), it only
remains to be shown that the bonus b*(t) satisfies the monotonicity condition 1 from Lemma 4. The next lemma establishes
that Condition C is both a necessary and sufficient condition for the latter property to hold.

Lemma 5. The following statements are equivalent:

1. For any ke {1, ..., T}, the bonus b*(t) restricted to the support {t : k(1) = IA<} is weakly increasing in 6.
2. Forany k e {1, ..., T}, P(t) restricted to the support {t : k®(t) =k} is weakly convex in 6.
3. Condition C holds.

Proof of Lemma 5. Formula (13) determines the expected discounted number of successes of a firm that tolerates exactly k
failures with a project that is good with probability 6, A(0). Note that, for any k, A,(@) is a linear function of 6, in which
case % [Ak(0)] is a constant. Therefore, by the definition of b*(7) in equation (12), it follows that conditions 1 and 2 are
equivalent.

We will now establish the equivalence between conditions 2 and 3. To clarify ideas, let us start with the simpler case
where T = 1. By equation (9), the payments received by an active type (i.e., k*(7) = 1) equal P*(7) = P¢(1) = v§(0). As a
consequence, P¢(t) is weakly convex in 6 if and only if v§(#) is weakly convex. In turn, the Virtual Gittins Formula (8)
implies that v§(6) is given by

0-1-A—K=v{@+y (vi®). (17)
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Because the left-hand side of the equation above is linear, it follows that v§(6) is weakly convex if and only if y (c) is
weakly concave in every c € [c, c™*].1

Now consider T > 1 and fix some k € {1,..., T}. Analogously to the case where T = 1, weak concavity of y (c) in
every c € [c,c™] is both a necessary and sufficient condition for P¢(t) to be weakly convex in 6. To establish this claim,
differentiate P€(t) with respect to & and employ the Virtual Gittins Formula (8). The details of this computation can be
found in the appendix. O

In light of Lemmas 4 and 5, it follows that that mechanism M™* = (¢*, p*) satisfies condition (ICRy) if and only if
Condition C holds. In order to complete Step 1, it only remains to be shown that M* satisfies condition (ICR;). To see
why this is true, fix some type T = (0, ¢) that tolerates k*(t) failures, and consider his payoff from misreporting some type
£ = (,¢) that tolerates a different number of failures k*(%) # k*(t). It follows from the thresholds in the Virtual Gittins
Formula (8) that for any type T = (8, ¢) either (i) there exists some ¢ such that k*(£) = k*(6, &), or (ii) there exists some
such that k*(£) =k*(8, ¢) (or both). Assume for a moment that (i) is true. Then

U0, c|M*) > P*(0,80) — pesy(0) - €
P*(0,C) — @3 (0) - C

> P*(6,E0) — Ope(2)(0) - C
= P*(T;0) — Dps(3)(0) - c,

where the inequality in the first line follows from (ICS), the equality from the first to the second line follows from the
invariance of P*(-) with respect to ¢ within the support {7 : k*(T) = k*(7)}, the inequality from the second to the third line
follows from (ICR;), and the equality from the third to the fourth line follows from the invariance of P*(-) with respect to
¢ within the support {7 : k*(T) = k*(7)}. The case where (ii) is true is analogous (we just invoke (ICS) and (ICR;) in the
opposite order). This completes Step 1.

Step 2. If there is no menu of linear contracts that implements ¢°¢, then ¢¢ is not implementable.

The proof of this claim establishes that for any payment rule p, there exists a menu of linear contracts that lead to the
same expected payments as p. The details appear in the appendix. O

4.3. Pooling when expertise is relevant

On theoretical grounds, Proposition 1 helps assessing the robustness of payment schemes that lead to full rent extraction
to environments with multi-dimensional private information. In these environments, full rent extraction in one dimension
of private information (in our case, the belief #) is only possible if the informational rents of the other dimension (in our
case, the payoff c) have the “right” behavior at the margin. Here, because the firm’s payoff has increasing differences in
(b, ), expected payments P€(0,c) have to be convex in 6. Whether this requirement is slack depends on the curvature
(rather than on the slope) of the reverse hazard rate, as described by Condition C.

When Condition C fails, the e-optimal mechanism is no longer feasible, and the interaction of both dimensions of private
information impacts the investor’s payoff (relative to the expert investor benchmark, where private information is one-
dimensional). In this case, obtaining a complete characterization of the optimal mechanism becomes a very complex task.
First, it is hard to rule out the optimality of stochastic mechanisms.?° It is also difficult to rule out complex action plans in
which experimentation stops for some periods and restarts later.

We take a more modest approach and focus on optimal deterministic stopping-plan mechanisms. Beyond tractability, we
restrict attention to deterministic mechanisms because stochastic mechanisms are rarely seen in practice. In turn, stopping
plans arise naturally when it is too costly to restart the experimentation process after it has been stopped. Indeed, for most
firms, shutting down is a very expensive - if not entirely irreversible - decision.

To simplify matters, we consider strictly convex reverse hazard rates, which are the “polar-opposite” of Condition C.
Then, pooling is a general property in the sense that, in every optimal deterministic mechanism, there is a positive measure
of innovative firms which choose the same contract®!:

Proposition 2 (Pooling). Let the reverse hazard rate y (c) be strictly convex. Then, in every optimal deterministic mechanism, there is
a positive measure of firms which choose the same contract.

19 Indeed, because y (c) is weakly increasing, it follows that v§ ) = o~1(0- 1A —K) where the function o (c) is defined by o (c) =c + y(c). Note that
o (c) is strictly increasing, and is weakly concave if and only if Condition C holds. This implies that Condition C is necessary and sufficient for v{ () to be
convex.

20 On this point, see Strausz (2006).

21 In the online appendix we show that an optimal mechanism exists.
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For simplicity, we illustrate the result from Proposition 2 with an example where A =1, so that one period of experimen-
tation is enough to determine the quality of the risky project. The proof of the general case is presented in the appendix.

Example 2 (Full pooling). Suppose the reverse hazard rate y(c) is strictly convex and let A = 1. Since one round of ex-
perimentation perfectly distinguishes good a bad projects in this case, a risky project that succeeds in the first period is
undertaken in every future period; a project that fails is abandoned forever.

For a given 0, the expert investor lets all types with payoffs from the safe project ¢ < v¢(0) experiment. When 6 is not
observable, the investor offers a menu of contracts to elicit the quality of the risky project. Without loss of generality, we
can focus on a menu of linear contracts. When a firm with type t = (0, ¢) accepts the linear contract (a(t), b (1)), it gets
payoff

a(@)+0b(r)—c+6|> 8 (b(x)—0

t>1

Let v(0) denote the frontier of types that experiment, so that (0, c) tries the risky project whenever ¢ < v(0). Then, for
¢ < v(#) <c, the frontier is given by the indifference condition:

a(r)+6b(x)—v@O) +6 D 8- (b(x)—v(®) | =0.

t>1

Because experimentation lasts for at most one period, the investor cannot use the length of experimentation to screen
the payoff from the safe project c among firms that experiment. Therefore, we abuse notation and write (a(@,c), b(0,c)) =
(@), b(0)) for the contract offered to all firms with belief 6 who engage in experimentation.

Following a standard argument from mechanism design (used, for example, in the proof of the revenue equivalence result
in auction theory), the investor’s payoff depends only on the payoff of types with the lowest beliefs (which is determined
by the participation constraint) and the experimentation cutoff v(#). Since the investor’s payoff is a quasi-concave function
of the experimentation cutoff v(9) for a given 6, the investor would like to choose a contract that sets v(0) as close to
veé(0) as possible.

By the envelope theorem,

d (vO) +6% .8 -v(H)
b®)=— — .
@ < Yz )”:e

for almost all 6 for which v(0) € (g, E). Moreover incentive compatibility requires b(6) to be increasing. Thus, the mechanism

L.
will satisfy incentive compatibility if £ (8) = <W) is a convex function of 6.
t>0

(18)

When the reverse hazard rate is strictly convex, the experimentation curve for an expert investor 5"6 () is a strictly
concave function of 6. Therefore, the solution of the relaxed program (which ignores the convexity constraint) is strictly
concave, whereas incentive compatibility requires it to be convex. Then, as in Guesnerie and Laffont (1984), the optimal
contract is “non-responsive” (i.e., it has complete pooling).

To understand the intuition for this non-responsiveness result, first notice that, by equation (16), intervals of pool-
ing correspond to intervals where £V is affine. Assume towards a contradiction that there is an interval (61, 6) in which
£V (61) =&Y (07) and £V (62) = £¥° (6;) and assume that the restriction of £V to this interval is not affine. As the left-side
panel of Fig. 3 shows, the slope of £V is lower than the slope of 5"8 for 6 close to 61 and higher for 6 close to 6,. Therefore,
the investor could obtain higher profits by offering types 6 € (61, 6,) the experimentation curve £ defined by the line seg-
ment passing through (91, gy (61)) and (92, gv (92)). In fact, the investor could induce this curve by offering to every type

6 € (61, 6>) the same contract (Ez, 15), making types (6;, v(6;)) indifferent between (a (6;), b (6;)) and (ﬁ, 5), where i =1, 2.

Therefore, there must be pooling in the interval (0, 6,). Applying a similar argument to the intervals (0,67) and (6;,1)
shows that all types are pooled, as illustrated in the right-side panel of Fig. 3.

The right-side panel of Fig. 3 plots the expected payments (as a function of 6) of all types that play the risky arm in
the example above. Firms with projects of either low or high qualities get positive informational rents from their private
information about 6. More precisely, they obtain higher rents when 6 is their private information than when it is also
observed by the investor. However, firms with medium-quality projects (i.e., those in the interval (61, 6,)) obtain negative
informational rents from their private information about 6, since their payoffs are higher in the expert investor solution.
These firms would benefit if they were able to provide hard evidence regarding the quality of their project. Thus, unlike
in one-dimensional screening models, private information can make the agent strictly worse (even when the dimensions
of private information are uncorrelated, as ¢ and 6 are here). This is due to the multidimensionality of types - with one
dimensional types, agents are always weakly better off when information is asymmetric.
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Fig. 3. The left-side panel illustrates why pooling occurs when the reverse hazard rate y(c) is strictly convex. It plots the experimentation curve of the
expert investor problem, E"E (dotted), and a candidate experimentation curve under two-dimensional asymmetric information, £ (full). The right-side
panel plots the expected payments (as a function of ) on the expert investor optimum, P¢ (dotted), and on the optimal deterministic mechanism, P*
(full).

When experimentation lasts for more than one period, it is more complex to verify the monotonicity constraint, as it
would require the bonus of each stopping plan to be increasing. One can construct examples in which a continuum of
different contracts are offered. Nevertheless, as established in Proposition 2, when the reverse hazard rate y(c) is strictly
convex, there is always some pooling.

5. Conclusion

In this paper, we study optimal contracting between an investor and an innovative firm. Our model embeds a geometric
two-arm bandit problem into a principal-agent framework. The agent has private information about his expected payoff
from exploitation, as well as about the value of exploration. We construct a two-step procedure to solve for the investor’s
profit-maximizing mechanism: In the first stage, we consider a relaxed (one-dimensional screening) problem in which
private information is confined to the firm’s exploitation payoff. Having solved this relaxed program, we derive a necessary
and sufficient condition for the solution of this program to be implementable in the setting with two-dimensional private
information.

Our analysis delivers four main insights. First, we identify the contractual features that optimally screen the firm’s private
information. The payoffs from exploitation are screened by financing contracts of different durations. In turn, the prospects
from exploration are screened by different exposures to the risky project’s proceeds (e.g., in the form of revenue shares or
equity).

Second, we show that asymmetric information causes fewer firms to experiment and, the ones who do, experiment for
fewer periods than they would under symmetric information.

Third, we derive a necessary and sufficient condition under which the firm’'s expertise about its exploration prospects
generates no informational rents. This condition controls for how the informational rents from exploitation vary at the
margin, implying restrictions on the curvature of the appropriate reverse hazard rate (rather than on its slope, as usual in
one-dimensional screening problems).

Fourth, we show that when this condition fails, screening the firm’s payoff from exploitation is incompatible with screen-
ing its explorations prospects. As a result, the investor has to offer the same contract to a positive-measure set of firms. In
some cases, the incompatibility of screening each dimension of private information is so extreme that the optimal mecha-
nism offers the same contract to all types. In those cases, global incentive constraints imply that some firms obtain negative
informational rents from their expertise on the quality of risky project. These firms would be better off if the investor knew
the prospect of the risky project, or if they could provide hard evidence about it.

Our results have the following implications regarding the firms’ incentives to invest in R&D. When expertise on explo-
ration is irrelevant for payoffs, only firms with pockets deep enough to self-finance their experimentation would invest in
R&D, since the rents from their expertise are easily appropriable by investors. Moreover, if experimentation is too costly to
be self-financed, firms might gain from reducing the informational asymmetries on the quality of their projects. This can be
accomplished by R&D partnerships or early-stage (small-scale) market experiments monitored by potential investors.>?

Finally, notice that our results rely on the investor’s ability to observe whether the entrepreneur is experimenting. To
see this, consider the case in which limited liability does not bind. In this case, the entrepreneur with the highest cost who
experiments obtains a zero payoff. Hence, he would prefer to take the fixed payment and choose the safe arm, obtaining a
positive payoff. Extending our model to the case in which the entrepreneur’s action is unobservable (in the spirit of Manso,
2011) is an interesting and challenging extension, which we leave for future work.

22 The management literature has long recognized the detrimental effects of informational asymmetries for the financing of innovation. See, for example,
Ries (2011).
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Appendix A. Omitted proofs

The proofs omitted in the main text are presented below.

Proof of Lemma 3. The expert investor chooses a mechanism M = (¢, p) to maximize expected profits (4) subject to
incentive compatibility on the safe arm (ICS). Note that the firm’s payoff (3) satisfies strictly decreasing differences in (&, c),
where @ is the expected duration of the action plan. Therefore, we can use standard arguments to prove that:

Lemma 6. (ICS) A mechanism M = (¢, p) satisfies incentive compatibility on the safe arm (ICS) if and only if the following conditions
jointly hold:

1. For every 6 € [0, 1], the expected discounted duration of the project, ® (6, c), is weakly decreasing in c,
2. Forevery 0 € [0, 1], the expected payment of type T = (0, ¢), P(7), satisfies the envelope formula:

P(1) = ®(1) -C+/d>(0,6)d€. (19)

Plugging the envelope formula above into the objective function (4) leads to:

T
o {E“W’)'o] [Z (sH LT, B (9} A—K—c—y (c))):| } : (20)

t=1

For now, ignore the monotonicity constraint on ®(7) and consider the relaxed problem P¢ of choosing an action plan ¢ to
maximize (20) point-wise in c:

T

PE. max EMPOI [Z (5“1 (T, B (9} A-K—c—y (c)))} .
¢ t=1

The objective function above is similar to the first-best objective function; the only difference being that the safe project

payoff c is replaced by its virtual counterpart, ¢ + y (c). We can therefore apply Lemma 1 to conclude that the solution

of problem P¢ is the stopping plan ¢¢ according to which an innovative firm with type t = (6, c) tolerates exactly k €

{1,..., T} failures if and only if v;zJrl (6) < c < vi(0), where the functions v{(f) are determined by equation (8).

Consider now the types T = (8,¢) and T = (9,¢) such that ¢ > c. Because H is log concave, y (¢) is increasing in c.
Therefore, under ¢¢, an innovative firm of type t tolerates a weakly greater number of failures than a firm of type 7. This
implies that the expected discounted duration ®(7) is weakly decreasing in c for every 6 € [0, 1]. We can therefore conclude
that the solution of the expert investor's problem employs the action plan ¢¢. Evaluating the envelope formula (19) at the
action plan ¢€ leads to (9). O

Proof of Corollary 1. The function V (6, ¢), defined in (6), is strictly decreasing in c for every k € {1, ..., K}. Therefore
0=V (0,vi0) + v (vi©®)) < Vi (6, v{©®),

what implies that va(Q) > v,‘é(@) for all k € {1, ..., K}. The result then follows from the characterization of Lemma 1 and
Lemma 3. O

Proof of Lemma 4. Condition (ICR) is equivalent to saying that for every ke {1,..., T}

(a(t),b(r)) € argmax [a—i—B-Ak(Q) — <I>k(9)~c} st. (a,b) e {(a(r),b(r)) 1 k(T) =IA<}.
(@.b)

Notice that, because Ay(9) is strictly increasing in 6, the objective above satisfy strict increasing differences in (B, 6). Mil-
grom’s Constraint Simplification theorem (Milgrom, 2004, pp. 105) then implies that (a(t), b(t)) is a maximizing schedule if
and only if the envelope condition (16) holds and b(t) restricted to the support {7 : k(t) =k} is weakly increasing in 6. O

The proof of the Lemma 5 uses the following convenient mathematical fact.

Lemma 7. Consider an interval (01, 6,) € Ry and let A1, Az, B1, and By be scalars such that B1 + B, - 6 > 0 for all 6 € (01, 62). Let
the function ¢ : Ry — R4 be twice continuously differentiable with ¢’ (x) > 0 for all x. Let x (9) be implicitly defined by
A1+ Az-0=(B1+B2-0) - (x(0) +¢ (x(8)))- (21)

Then % [(B1+ B20)x(0)] Z 0 if and only if ¢ (x (0)) = 0.
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Proof of Lemma 7. Let us first compute the following derivatives:
d
a0 [(B1 4 B2-0)x(0)]=(B1+ B2-0)-X (0) + B2 -x(0)

%[(31 +B3-0)-¢(x(0))]=(B1+B2-0)- &' (x(®))-X (6) + B2 - ¢ (x(8))
2
702 |
d? 2
(MTZ[(Bl +B-0) ¢ (x(0)]=(B1+B2-0)-¢"(x(0)) - [¥ (0)]
+(B1+B2-0)-¢"(x(0)-X"(0)+2-B2-¢' (x(9)- X (0).

From the third and fourth equalities above it follows that

(B1+B2-0)-x(0)]=(B1+B2-0)-x"(0)+2-B2-x ()

d? d?

102 [(B1+B2-6)-¢(x(0)]=(B1+B2-6)-7" (x(0)) - [¥ (0)]2 +¢'(x©)) - 102 [(B1+B2-0)-x(9)]. (22)
In turn, because of (21), we know that

d2

(172[(31+Bz~9)-(X(9)+§(X(9)))]=0. (23)

Putting (22) and (23) together leads to

o _ [BitBe) [ @F
(MTZ[(B]—{_BZQ)X(Q)]__[ (1—}—{/()((9)))

:| " (x(0)),
proving the result. O

Proof of Lemma 5. With a slight abuse of notation, we write ®y(6#) = 0. Therefore, from equation (9), it follows that the

expected payments P¢(t) restricted to the support {r : k°(t) = IAc} is weakly convex in 6 for every k provided that for all
ke{1,...,T}

d2
157 {(20) = Pr () - vi(©)} = 0. o)

Consider the Virtual Gittins formula (8) at some k € {1, ..., T}. Multiplying both sides by 8 - (1 — 1)~ 4+ (1 — ) leads to

0- (1= (- A=—K—vi@ -y (vi®)) — 1 —6)- (K+vE©O) +y (vi©®))
1—8Tk

=1[k<T]'9-(1—)»)k_1-)»'5-[ﬁ

(AA=K—vi©®) -y (vﬁ(@))):| .

Rearranging the equation above leads to

T—k

k—1 1-
6-(1—21) . )\.'A_I<_1[]<<T]')\"6'

ﬁ~(A-A—I<):|>—(1—0)-K

_ sT—k

k-1 1
:<9'(1_)\.) '|:1+1[k<T]')\'5'

ﬁ} +(1— 0)) (Vk®) +v (vi®))

= (P (®) — Px-1(9)) - (Vi (@) + ¥ (vi(®)), (25)

where the last equality follows from (10).

The first line of (25) in affine in 6. Moreover, the expression for ®;(0) — ®,_1(0) is also affine in 6 and strictly positive
for every 6. From Lemma 7 it then follows that Condition C, which guarantees the concavity of y in the relevant range,
implies that (24) holds for all k € {1, ..., T}. Therefore, Condition C implies that statement 2 holds.

Finally, it follows from the argument in the text for T =1 that if Condition C fails for some c € [c, c™%], then P¢(1)
restricted to the support {7 : k®(t) = 1} is not weakly convex in 6. This establishes the equivalence between statements 2
and 3. O

Proof of Step 2 of Proposition 1. The result follows from the following lemma.
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Lemma 8. For any deterministic mechanism (¢, p), where ¢ is a stopping plan, there exists a menu of linear contracts p; : I' x XT — R
such that P(T;0) = Pi(T;0) forany T € T and any 6 € [0, 1].

Proof. Define the subset of terminal nodes B = {xT : x, £ sVt € {1,...,T}}. Take a payment rule p:T' x XT — R and,
without any loss of generality, set p(f,xT) =0 to all terminal nodes xT that are not reachable with positive probability
under the mechanism (¢, p). It follows by definition that

PE:0) =03 {pE.x")- (35D A= nFD) -0 3 {pct )

X7 xTeB
=6- Z{p(f,xT) . (AS(XT) NG| —A)F(xr))] _ Z [p(f,xT)] n Z [p(f,xT)]
X7 xTeB xTeB
S {p@ D) (186D = PN = ¥ (P2 AT} )
~ R a [Aky ©)] +xTZe;3 [P(Tv XT)] 7
Akt (0)

where the last equality follows from the fact that

described by k(-)).
Now consider the menu of linear contracts p;: I' x XT — R with lump-sum payments a(%) and success bonuses b(%).
By definition,

Pi(T;0) =a(®) + Az (0) - b(?).

- —+—— =0 for any stopping plan ¢ (with tolerance for failures
a7 (M) 0]

Now set
a(t) = Z [p(f,xT)}
xTeB
and
b(2) = DT {P(f,xT) . (AS(XT) -(1- A)F(xr))} Y e {p(f,xT)}'

a5 [Ake)©)]

Note from equation (13) that % [Ak(f)(e)], for each tolerance level k(7), is a constant that does not depend on 6. This
implies that the payment rule p; is well-defined. By construction, P(%;6) = P;(£;6) for any £ € I" and any 6 € [0, 1], as we
wanted to show.

By Lemma 8, a deterministic mechanism (¢, p), where ¢ is a stopping plan, is feasible if and only if there exists a
deterministic mechanism (¢, p;), where p; is a menu of linear contracts, that is also feasible. This concludes the proof of
Step 2. O

Proof of Proposition 2. In the proof below, we assume that there exists an optimal deterministic mechanism. We relegate
the proof of this claim to the online appendix. Consider a stopping plan where the number of failures born by agents is
described by the set {rq,...,r } C{1,..., T}, where r; < < ... <r. This mechanism leads to L threshold curves v, : ® —
[c,cl, le{1,...,L}). Let us follow the convention that vy, () = c. Hence, for a fixed 6, the set of types (6, c) who choose
a stopping plan with tolerance for r; failures are the ones with ¢ € [vy,(0), vy (9)) if vy, () < vy(©0) (if vr,, () =v,(0)
then this set has at most one type).23

Now, for [ € {1,..., L}, consider the threshold curve ¢’ — vﬁl (9/) as the curve of the expert investor who is restricted
to offer the stopping plan where the number of failures born by agents is described by the set {ry,...,r.}. Define Gfl by

of Einf{e’ SVE @) > g} forle{l,...,L}.
We say that pooling is a generic property of the optimum if in every optimal mechanism there is a positive measure of

firms choosing the same contract. Suppose towards a contradiction that there exists an optimal stopping plan mechanism
(henceforth mechanism) M in which pooling is not generic. For [ € {1, ..., L} let

6, =inf{0": vy, (0') — vy, (¢') > O},

and let @ = minje(q, 1) 06y,. For concreteness we assume that § =6,,. As we will see, the modification of our mechanism
will impact types arbitrarily close to 0. Hence, if we had § =6, and 6 < 6, for all k <! then the same analysis could be
performed with the stopping plans {/,..., L}. We have to deal with 3 cases.

23 We ignore the choices at the zero measure sets given by the curves (0, v;(0)).
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Case 1: Gfl > O,
In this case, the principal obtains a negative expected payoff from the experimentation of every type (6,c) €
(er, 3 (08 + 0,1)) x [c, C]. Let k* be the largest k for which 6y, € [Orl, (08 + Gﬁ)). First assume that k* > 1. Recall that all

types in
l e
B=1{0.0):0¢ erk*,i(eﬁwﬁ) ,C < Vp, (0)

choose a stopping plan with tolerance for ry« failures. Let (a+ (T), by« (t)) be the linear contract offered to types © € B,
where ay (7) stands for the firm’s lump-sum payment and by« (t) for the success bonus.>* The contradiction assumption
asserts that whenever (8, ¢), (6,c’) € B, 8’ > 6 implies by (6', c’) > by=(8, ¢).

For each ¢ e (0“(*, % (05, +49r1)> we propose a new mechanism M¢?. For ¢ € (O, % (68 +6r,) — 9r,<*> let C¢ be the set
of contracts chosen by the types (6,c) € B for which 6 € (Qrk*,Qrk* +8). Consider a new mechanism M¢ which differs
from the putative optimal mechanism M only in that it suppresses the contracts C¢.>> We focus on the case in which
Vi+1(0) < vy (0) for all (6,]) € (Grk* s O + 8) x {1,...,k*} (the argument for other cases requires minor changes and heavier
notation; we omit it for brevity). It is easy to verify that for £ small enough the mechanism M¢ satisfies the following
properties.

a) Almost every type (0, c) € B¢ chooses the same allocation in M and M.

b) A positive measure of types of B choose a stopping plan with a tolerance for ry«_; failures in M¢.

We claim that reducing the tolerance for failures for a type t € B improves the principal’s profit. The principal’s payoff

conditional on types with prior 6 € <6rk*, % («9;?1 + 0”)) can be written as:

m T
H(ve, @) [ Y 87T (A=K —vi, 0)+6(1—1=20)") > 87T (aa =K —vi, )
t=1 t=r1+1

]

> 8 (A0 41 (O) A — K — v, ()
t=r1+1
+H(vi, @) [1-0)+6-(1-1"]

T
O ) (1= (1 =1)2") 3> 1 (AA =K — v, (0))

t=rpy+1

+...

T

Y 8 (M1 () A=K — vy, (6)
i |: H (Vrk* (9)) :| =T _1+1 ( bt ‘ ) (26)

— (1 = W)TkE—1 T ’
X [(1 0) +0 (1 )\-) k ] QT’(*—1+] (9) (1 _ (1 _ }L)r,(*_rk*_l) Z 5t7‘1 ()\.A —K— Vrk* (9))
(=T 11

Notice that the first k* — 1 terms in (26) are independent of v, (9) and hence the principal’s payoff as a function of
Vi« (0) is proportional to

Tex
t > N ST (MO, +1 () A — K — v, (0))
=% _
H (ka* (9)) ) o T
b1 0) - (1= (1= nle-tet) 57 87T (A~ K vy, 6))

[=Tjx 11

The expression above can be written as:
81 H (A 41 (0) A — K — vr,, 0))
H (vr. 0)) - 6 (@) i 5T (A — K — vy, (0))
t=rpr_1+1
8192 (A 112 (0) A — K — vp 0))
+H (Vi ) (1= Orpe_y+1 0) - 1) -

T
O 42@)2 X 8T (AA =K —vp. (0))
t=rpx_1+2

24 Recall from Lemma 8 that it is without loss to restrict attention to linear contracts.
25 There is a multiplicity of such mechanisms. However, all of them lead almost surely to the same allocation.
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+...
- 8" (M (0) A — K — Ve ()
. _ ). T
—+ H (Vrk* (9)) g (1 0rl<*—1+k (9) }h) +0rk* (9))\ Z atfl (}»A — K- vrk* (9))

=T

Notice that, since 6 ¢ (Hrk*, % (19;?1 + 0r1)> and H is log-concave, each one of the terms above is strictly decreasing in vy, ().

Therefore a) and b) imply that M? is preferred to M, which proves the result for the case that k* > 1.
Next, assume that k* = 1. Notice that all types in

D= {(0,6):0 IS (0“, % ((9f1 +9r1)> ,C < Vp, (0)}

choose the stopping plan with tolerance for rq failures. Take ¢ € (0, % (Gfl +9r1) - er) and let C¢ be the set of contracts

chosen by types (@, c) € B for which 6 € (9r1,9r1 +s). Consider a new mechanism M¢ which differs from the putative
optimal mechanism M only in that it suppresses the contracts C¢.?° It is easy to verify that for & small enough the
mechanism M¢ satisfies the following properties.

a) Almost every type (0, c) € B¢ chooses the same allocation in M and M?.

b) A positive measure of types of B choose no action plan.

The principal payoff from a (fixed) type 6 € (9“, % (Gf1 + 9r])) can be written as:

m T
He @) [ Y 687 (h-0A—K—vi, @) +60-(1-(1=2")- > TRA-K—vy, ©) |. (27)
t=1 t=r1+1

The payoff in (27) is strictly decreasing in v, (8) since 6 < Ore]. Therefore a) and b) imply that M¢? is preferred to M, which
proves this case.
Case 2: 07 =6,.

First assume that 6, € [9" 1

N (s +0f2)) for some k > 1. In this case, the analysis is almost identical to the one from

the first part of Case 1: We propose a new mechanism in which a positive measure of types T with 6 € (G‘r).(, % (Gf1 + Qrez))

migrate from a contract with a tolerance for ry+ failures to another with a tolerance for ry«_; failures (for some [ > 1). The
calculation above implies that this change increases the principal’s payoff. Thus we assume that k* =1 for the remainder of
this case.

Before continuing with the proof, we set up some notation that will be used for remainder of this proof. Recall that

for a fixed 6 € (efl, % (9;?1 +0f2)> all types (0, ¢) such that ¢ < v, (9) receive the same contract and hence we may abuse

notation and write (a(6), b(#)) for this contract. The curve v,, (9) is determined (a.e.) by:
a(®) +D(®) -b(®) —(E+F(0)) v (6) =0
D'(6) -b(®) — (E+F(©))-v;, (6) —F (6)-vr, (6) =0,

where

m T
b= | S8t (- -0r) 3 800

t=1 t=r1+1

"
E = ZSt_1
t=1

T
FO)=6-(1-1-1")- Z st1

t=r1+1
The power of the contract b(9) satisfies (a.e.)

(E+F©) vy, (0)+F (0)-vn (9)]
D'(6)

b(6) = [

26 There is a multiplicity of such mechanisms. However, all of them lead almost surely to the same allocation.
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_|dg E+F®) v, ©)
- D'(6)

Incentive compatibility implies that b(@) is increasing. It is convenient to change variables and define & () = (E+ F (9)) -
v, (0) and thus incentive compatibility requires that £’ (9) is increasing.
Notice that the curve vﬁl (0) satisfies:

vy, (0) = argmcaxH(c) [D@)A — (E+ F(0))-c].

Hence v{ (9) must satisfy
H(v¢, (0))
DA =|| —1—— v (@) |- (E+F ().
s (Fazmy) 0] @ rro
Defining &€ (9) = (E + F (9)) - vfl (0), and recalling that y is the reverse hazard rate, we have:
£°(0)
E+F ()

Since we are assuming that y(c) is strictly convex, the function &€ (9) is concave, while monotonicity implies that & (9) is
convex. Furthermore, our contradiction assumption implies that & (9) is strictly convex. Recall also that we have & (Of1 ) =

£°(67). We must deal with two cases. First assume that we can find ¢ € (0, 1 (6r, +6r,) — 9r1> such that & (9) < &°(¢")
for all 0" € (6r,,6;, +¢€). Let & satisfy
§ (Qﬁ + 8) —§ (9T1)

c .

D(O)A:y( )-(E+F(9))+£e(0).

Sl

And define a new curve & by

E(6r)+E-(6—6r,) if0 € (6r),6r, +)

§6)= & (9) otherwise.

By construction, we have OXS (§ 0),&°¢ (0)) for all 6 € (9r1 ,0r + 8). Therefore, a new mechanism M which implements
the curve & leads to a strictly higher profit than the original mechanism M, contradicting the optimality of M. This is
because that the experimentation region is approaching (one can take the Hausdorff topology to measure the distance
between two sets) the experimentation region given by &€ (9).>” The argument follows because the profit function is strictly
quasi-concave.

Next, assume that & (¢') > &° (¢’) for all 6’ € (6r,, 6y, + €). Notice that, since & is convex, the sub-differentials 9& (6,) and
d& (0r, + &) are compact and nonempty. Let & = maxd¢ (6,) and & = maxd& (6, +¢). The strict convexity of & implies
that & < &. Next, consider the following lines: Ly (0) =& (6r,) + & - (0 —6,,) and L (0) =& (6, +€) + & - (0 — 6, +¢).
Notice that & < & implies that there is a unique fe (Gh,en +8) such that Lq (é) =1L, (é) Therefore, we define a new

(convex) curve é by:
L1 0) if6 e (erl , é)
EO)=1 1,0 ifo e (6.6, +¢)
& (0) otherwise.

Notice that, by construction, & (9) € (£°(9),£ (9)) for all 6 € (6,6, +¢). Thus, as above, we can construct a new mecha-

nism M which leads to a strictly higher payoff to the principal.
Case 3: 67 <0,.
Define 6 — £ (9) by £ (§) = c (E + D(6)). In this case, take & > 0 such that for all ¢’ € (6y,, 6, + &) we have £ (9) > £ (9).

Consider the line passing through the points <9fl £ (9f1)> and (0r, +€.& (6, +¢€)):

En+e)-(8))
L(G)E%__(ef])_'_( Olrl _’_8_5;31 -(9—9“).

27 For i € {1,2, 3} take 3 functions 6 — v (). We say that 2 is closer to ¥> than y! of for all # such that ¥ (8) < v3 (0) (resp. ¥2(9) > v (8)) we
have y! (0) <2 () (resp. ¥ (§) > ¥2 (0)). The construction above guarantees that the function & is closer to £¢ than &.
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Define the convex curve £ by:

L(®) if6 € (65.6r, +¢)

§6):= & (0) otherwise.

Consider the mechanism M in which the curve vy, (0) is defined by é Notice that this mechanism may in addition
change the curves vy, (0) for (I,0) € {2, ..., L} x (6, 6, +¢€). This new mechanism M clearly increases the principal’s payoff
for all 6 € (6f,.6r, ), while it may decrease the principal’s payoff in a subset of (6r,,6;, + ¢). Finally, the mechanism M does
not change the principal’s payoff for 6 ¢ (67 .6y, +¢). Let g =ming(f), g = maxg(6), h = minh(p) and h = maxh(9).
Notice that, for ¢ sufficiently small, there exists a constant A > 0 such that the principal’s payoff increase by at least A

for every type from {(6, c):0¢ (% ((9;“’1 +0r1) , eh) ,c<§ (9)} who plays the risky arm (below we will integrate over this
set). Notice also that there exists a constant B > 0 such that the absolute value of the payoff obtained by the principal in
the mechanism M from the experimentation of any type {(0, 0):0¢ (9;31 ,0r + 8) c<E (9)} is at most B (below we will

integrate over this set). Therefore, a lower bound to the difference of the principal’s payoff from M and M is:

0,1 0r1+£
(agr) [ (E@-:@)do-(s80) [ (Eo-c0)d. (28)
% (Qrel +9’1 ) Grl

Notice that for ¢ small we have é ©)—£©0) > (W) for all 0 € (951 ,0r + 8). Hence, (28) is at least:

(& (6 +) —& (0 +2)] [(AT‘gh> (%) e (b |.

S . o Agh Or, =0, . ~ . .
which is strictly positive whenever ¢ < (%) (%) Therefore the mechanism M leads to a strictly higher profit, a

contradiction. O
Appendix B. Supplementary material
Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.geb.2016.02.001.
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