6 Online Appendix (Not for Publication)

6.1 Existence of Optimal Deterministic Mechanism

In this appendix, we establish that an optimal deterministic mechanism exists.

Proposition 3 There exists an optimal deterministic mechanism.

Proof. It suffices to show that for any $\{r_1, ..., r_L\} \subset \{1, ..., T\}$ there exists an optimal mechanism in which the principal offers the stopping plan where the number of failures born by agents is described by the set $\{r_1, ..., r_L\}$. Notice that an incentive-compatible mechanism \mathcal{M} leads to L mappings $\theta \to (a_i(\theta), b_i(\theta))$ for $i \in \{1, ..., L\}$, where $a_l(\theta)$ stands for for the firm's lump-sum payment and $b_l(\theta)$ for the success bonus of a type $\tau = (\theta, c)$ who chooses a stopping plan with tolerance for r_l failures. Let π^* be the supremum of all payoffs obtained by mechanisms in which the principal offers the action plans $\{r_1, ..., r_L\}$. We will show that there exists a mechanism \mathcal{M}^* that yields the payoff π^* to the principal. For each $n \in \mathbb{N}$, take a sequence of mechanisms \mathcal{M}_n yielding a payoff to the principal at least as large as $\pi^* - n^{-1}$. The mechanism \mathcal{M}_n leads to the mappings $(a_i^n(\theta), b_i^n(\theta))$ for $i \in \{1, ..., L\}$ and to the threshold curves $v_{r_l}^n(\theta)$. Define $\theta_{r_l}^n \equiv \inf \{\theta' : v_{r_l}^n(\theta') > 0\}$ for $l \in \{1, ..., L\}$. We will use the mappings $(a_i^n(\theta), b_i^n(\theta))$ ($i \in \{1, ..., L\}, n \in \mathbb{N}$) to construct our mechanism \mathcal{M}^* .

It is easy to show that we can restrict attention to mechanisms for which $b_i^n(\theta) \ge 0$ for all θ . Next, we claim that for each $m \in \mathbb{N}$ and $i \in \{1, ..., L\}$ we have

$$\sup_{n} \max_{\theta \in [0, 1-m^{-1}]} b_i^n(\theta) < \infty.$$
⁽²⁹⁾

Assume towards a contradiction that there is $m \in \mathbb{N}$ and a subsequence for which

$$\sup_{n} \max_{\theta \in [0, 1-m^{-1}]} b_i^n(\theta) = \infty.$$

Notice that the payoff of any type $\theta' \in \left[1 - \frac{1}{2m}, 1\right]$ from choosing an allocation designed for a type $\theta'' \in \left[0, 1 - \frac{1}{m}\right]$ is at least

$$a_i^n(\theta'') + b_i^n(\theta'') \cdot D_i(\theta') - \left(\sum_{t=1}^T \delta^{t-1}\right) \cdot \bar{c},$$

where $D_i(\theta') \equiv \left[\sum_{t=1}^{r_i} \delta^{t-1} \lambda + (1 - (1 - \lambda)^{r_i}) \cdot \sum_{t=r_i+1}^T \delta^{t-1} \lambda\right] \cdot \theta'$. Since $a_i^n(\theta'') + b_i^n(\theta'') \cdot D_i(\theta'') \ge 0$ the expression above is at least as large as

$$b_i^n(\theta'') \cdot \left(D_i(\theta') - D_i(\theta'')\right) - \left(\sum_{t=1}^T \delta^{t-1}\lambda\right) \cdot \bar{c}$$
(30)

Hence, we conclude that (30) diverges to ∞ . Consequently, so does the payoff of all types $\theta' \in [1 - \frac{1}{2m}, 1]$, which automatically implies that the principal obtains a negative payoff whenever n is large enough.

We will construct a contract $(a_i(\theta), b_i(\theta)) = \{(a_i(\theta), b_i(\theta))\}_{i=1}^L$ from the sequence of contracts $\{(a_i^n(\theta), b_i^n(\theta))\}_{i=1}^L$. Notice that $b_i^n : [\theta_{r_i}^n, 1) \to \mathbb{R}$ is increasing, while $a_i^n : [\theta_{r_i}^n, 1) \to \mathbb{R}$ is decreasing. Notice that we may extend $(a_i^n(\theta), b_i^n(\theta))$ to [0, 1) by letting $(a_i^n(\theta), b_i^n(\theta)) = (a_i^n(\theta_{r_i}^n), b_i^n(\theta_{r_i}^n))$ for all $\theta \leq \theta_{r_i}^n$ (notice that zero-measure sets have no impact on payoffs). Notice that (29) imply that $b_i^n(\theta)$ is monotonic and uniformly bounded over the interval $[0, 1 - m^{-1}]$ (for each m) and, thus, Helly's First Theorem (Theorem 6.1.18 in Kannan and Krueger 1996) asserts that there exists a subsequence $b_i^{n_m}(\theta)$ which converges (a.e.) over $[0, 1 - m^{-1}]$. This property is also true for $[0, 1 - (m + z)^{-1}]$ for all $z \in \mathbb{N}$, and hence we can find a subsequence of $b_i^{n_m}(\theta)$, call it $b_i^{n_{m+1}}(\theta)$, which converges over $[0, 1 - (m + 1)^{-1}]$. Proceeding inductively (by a diagonal argument) we obtain a subsequence of $b_i^n(\theta)$, call it $b_i^n(\theta)$, and an increasing function $b_i(\theta)$ such that $b_i^n(\theta) \to b_i(\theta)$ for almost all $\theta \in [0, 1)$. Since $(a_i^n(\theta))$ is decreasing the same argument implies that we may take a subsequence $(a_i^n(\theta))$ of $(a_i^n(\theta))$ and a function $a_i(\theta)$ such that $a_i^n(\theta) \to a_i(\theta)$ for almost all $\theta \in [0, 1)$.

Proceeding analogously for all $i \in \{1, ..., L\}$, we obtain $\{(a_1(\theta), b_1(\theta)), ..., (a_L(\theta), b_L(\theta))\}$. We must show that

$$\pi^* = \int_0^1 \Pi(a(\theta), b(\theta)) f(\theta) d\theta.$$
(31)

Let $S \equiv T\Delta$ and notice that $\Pi(a(\theta), b(\theta)) - S \leq 0$ for all θ . Let $\mathbf{1}_{[\theta \leq 1-m^{-1}]}$ be the indicator function for $\theta \leq 1 - m^{-1}$ and define g^m by

$$g^{m}(\theta) \equiv \left(\Pi(a(\theta), b(\theta)) - S\right) \cdot f(\theta) \cdot \mathbf{1}_{[\theta \le 1 - m^{-1}]}(\theta).$$

Notice that g_m is a decreasing sequence of nonpositive functions. Hence by the Lebesgue's monotone convergence theorem:

$$\int_0^1 \left(\Pi(a(\theta), b(\theta)) - S \right) f(\theta) d\theta = \lim_m \int_0^1 g_m(\theta) d\theta.$$
(32)

We claim that $\int_0^1 (\Pi(a(\theta), b(\theta)) - S) f(\theta) d\theta > -\infty$. Assume towards a contradiction that

$$\int_0^1 \left(\Pi(a(\theta), b(\theta)) - S \right) f(\theta) d\theta = -\infty.$$

In this case we can find $\bar{m} \in \mathbb{N}$ such that $\int_0^1 g_{\bar{m}}(\theta) d\theta < -4S$ and hence

$$\int_{0}^{1} \Pi(a(\theta), b(\theta)) \cdot f(\theta) \cdot \mathbf{1}_{[\theta \le 1 - \bar{m}^{-1}]}(\theta) \, d\theta < -3S$$

Thus we can find $n^* \in \mathbb{N}$ such that $n > n^*$ implies

$$\int_{0}^{1} \Pi(a^{n}(\theta), b^{n}(\theta)) \cdot f(\theta) \cdot \mathbf{1}_{[\theta \le 1 - \bar{m}^{-1}]}(\theta) \, d\theta < -2S$$
(33)

Since $\int_0^1 \Pi(a^n(\theta), b^n(\theta)) \cdot f(\theta) \cdot \mathbf{1}_{[\theta > 1 - \bar{m}^{-1}]}(\theta) \, d\theta < S$, (33) implies

$$\int_{0}^{1} \Pi(a^{n}(\theta), b^{n}(\theta)) \cdot f(\theta)(\theta) \, d\theta < -S, \tag{34}$$

which contradicts the assumption that $\int \Pi(a^n(\theta), b^n(\theta)) \cdot f(\theta)(\theta) d\theta > \pi^* - \frac{1}{n} \geq -\frac{1}{n}$ whenever $n > S^{-1}$. Thus we have $\int_0^1 \Pi(a(\theta), b(\theta)) f(\theta) d\theta > -\infty$.

Take $\varepsilon > 0$. We must show that

$$\int_{0}^{1} \Pi(a(\theta), b(\theta)) f(\theta) d\theta \ge \pi^* - \varepsilon$$
(35)

to establish (31). Since $\int_0^1 \Pi(a(\theta), b(\theta)) f(\theta) d\theta > -\infty$, (32) implies that there is $m_1 \in \mathbb{N}$ such that $n > m_1$ implies

$$\int_{1-m_1^{-1}}^{1} \Pi(a(\theta), b(\theta)) f(\theta) d\theta > -\frac{\varepsilon}{4}.$$

Notice also that

$$\int_0^1 \Pi(a^n(\theta), b^n(\theta)) \cdot f(\theta) \cdot \mathbf{1}_{[\theta > 1 - m^{-1}]}(\theta) \, d\theta < S \cdot \left(1 - F(1 - m^{-1})\right)$$

Thus we take $m_2 \ge m_1$ such that $S \cdot (1 - F(1 - m_2^{-1})) < \frac{\varepsilon}{4}$ and $n^* \in \mathbb{N}$ such that $n^{*-1} < -\frac{\varepsilon}{4}$. Take $n^{**} > n^*$ such that

$$\left| \int_{0}^{1-m_{2}^{-1}} \Pi(a^{n^{**}}(\theta), b^{n^{**}}(\theta)) f(\theta) d\theta - \int_{0}^{1-m_{2}^{-1}} \Pi(a(\theta), b(\theta)) f(\theta) d\theta \right| < \frac{\varepsilon}{4}.$$

We have

$$\begin{split} & \int_0^1 \Pi(a(\theta), b(\theta)) f(\theta) d\theta \\ \geq & \int_0^{1-m_2^{-1}} \Pi(a(\theta), b(\theta)) f(\theta) d\theta - \frac{\varepsilon}{4} \\ \geq & \int_0^{1-m_2^{-1}} \Pi(a^{n^{**}}(\theta), b^{n^{**}}(\theta)) f(\theta) d\theta - \frac{\varepsilon}{2} \\ \geq & \int_0^1 \Pi(a^{n^{**}}(\theta), b^{n^{**}}(\theta)) f(\theta) d\theta - \frac{3\varepsilon}{4} \\ \geq & \pi^* - n^{**-1} - \frac{3\varepsilon}{4} \\ > & \pi^* - \varepsilon, \end{split}$$

which establishes (35) and completes the proof.

6.2 Correlation

In this appendix, we show that the result on the irrelevance of expertise regarding project quality (Proposition 1) does not rely on the independence between θ and c. First, we construct and example

where expertise is irrelevant even though θ and c are correlated. Second, we specialize the model to T = 1, and derive sufficient conditions for expertise to be irrelevant (therefore extending Proposition 1 to environments with correlation). Third, we show that Proposition 1 is robust to small perturbations away from independence (in the form of mixture distributions).

Consider the following example.

Example A 1 [Conditional Distribution is Mirrored Generalized Pareto] Let the distribution of the safe project payoff conditional on the quality of the risky project be

$$H(c|\theta) = \left(\frac{c-\underline{c}}{\overline{c}-\underline{c}}\right)^{\eta\theta}, \quad where \quad \eta > 0.$$

Notice that the conditional distribution $H(\cdot|\theta)$ increases in the sense of first-order stochastic dominance as θ increases, in which case θ and c are positively correlated. In this case, the conditional reverse hazard rate is $\gamma(c|\theta) \equiv \frac{H(c|\theta)}{h(c|\theta)} = \frac{c-c}{\eta\theta}$. Consider the action plan ϕ^e as described Lemma 3, after replacing the unconditional reverse hazard rate $\gamma(c)$ by its conditional counterpart $\gamma(c|\theta)$, and let $P^e(\tau)$ be the expected payments induced by the expert-investor optimal mechanism (formula 9).

Following the same reasoning as in the proof of Proposition 1, it follows that the action plan ϕ^e is implementable by a menu of linear contracts with lump-sum payments and success bonuses:

$$a^*(\tau) = \frac{\Phi_{k^*(\tau)}(\theta)}{\eta + 1} \cdot (\underline{c} - \eta \theta K) \quad and \quad b^*(\tau) = \triangle \cdot \left(1 + \frac{1}{\eta \theta}\right)^{-1}.$$

To understand the implementability claim, note that ICS is satisfied by construction, ICR₁ holds as $b^*(\tau)$ is increasing in θ , and ICR₂ holds by the same argument as in the proof of Proposition 1. Because, by construction, expected payments under two-dimensional asymmetric information equal $P^e(\tau)$, it follows that expertise (about θ) is irrelevant for payoffs.

The example above presents a parametric case exhibiting correlation where the result and proof technique of Proposition 1 readily apply. In what follows, we will derive sufficient conditions for expertise to be irrelevant. For tractability, we will assume that T = 1. As in the example above, let $H(c|\theta)$ denote the conditional cumulative distribution of c given θ , let $h(c|\theta) = \frac{\partial H}{\partial c}(c|\theta)$ denote its density, and let $\gamma(c|\theta) \equiv \frac{H(c|\theta)}{h(c|\theta)}$ denote its associated reverse hazard rate. As in the case of independence, we assume that $H(c|\theta)$ is log-concave in c for each θ , so that $\frac{\partial \gamma}{\partial c}(c|\theta) \ge 0$.

From the same argument as in the text, when there is symmetric information about θ , the agent experiments if $c \leq v(\theta)$, where $v(\theta)$ is the implicit solution of:

$$\theta \cdot \lambda \cdot \triangle - K = v(\theta) + \gamma \left(v(\theta) | \theta \right). \tag{36}$$

Differentiating (36), gives

$$v'(\theta) = \frac{\lambda \cdot \triangle - \frac{\partial \gamma}{\partial \theta} \left(v(\theta) | \theta \right)}{1 + \frac{\partial \gamma}{\partial c} \left(v(\theta) | \theta \right)}.$$
(37)

Notice that the log-concavity of $H(c|\theta)$ guarantees that the denominator above is positive. When there is correlation, in order to guarantee that $v'(\theta) \ge 0$, we also need that $\frac{\partial \gamma}{\partial \theta} \le \lambda \cdot \Delta$, which we assume from now on. This condition limits by how much an increase in θ shifts the conditional reverse hazard rate of c. In intuitive terms, it requires that the correlation between θ and c is not too negative.

As in the case of independence, the expert-investor optimal mechanism is incentive compatible when θ is private information if and only if $v(\theta)$ is convex. When c and θ are independent, we have $\frac{\partial \gamma}{\partial \theta} = 0$ and, therefore, v is convex if and only if $\frac{\partial \gamma}{\partial c}$ is decreasing, i.e., the reverse hazard rate is weakly concave (Condition C).

For the general case, differentiate (37) again to obtain:

$$v''(\theta) = -\frac{\frac{\partial^2 \gamma}{\partial \theta^2} \left(v(\theta) | \theta \right) + v'(\theta) \left[\frac{\partial^2 \gamma}{\partial c^2} \left(v(\theta) | \theta \right) v'(\theta) + 2 \frac{\partial^2 \gamma}{\partial c \partial \theta} \left(v(\theta) | \theta \right) \right]}{1 + \frac{\partial \gamma}{\partial c} \left(v(\theta) | \theta \right)}$$

Therefore, the following are sufficient conditions for expertise to be irrelevant: $\frac{\partial^2 \gamma}{\partial c^2}, \frac{\partial^2 \gamma}{\partial \theta^2}, \frac{\partial^2 \gamma}{\partial \theta \partial c} \leq 0$. As such, in the case of correlation, expertise is irrelevant whenever $\gamma(c|\theta)$ is concave in each of its arguments and submodular.

Next, we show that our main result is robust to small perturbations away from independence.

Let H(c) be a log-concave distribution with a strictly concave reverse hazard rate. Let $\Upsilon(c, \theta)$ be a joint distribution with a smooth density that is bounded away from zero in its support $[\underline{c}, \overline{c}] \times [0, 1]$.

Consider the mixture distribution

$$Q^{\alpha}(c,\theta) := \alpha H(c) + (1-\alpha)\Upsilon(c,\theta),$$

where $0 \leq \alpha \leq 1$. As α approaches 1, this distribution converges to H. For each θ , let $c \to Q^{\alpha}(c \mid \theta)$ represent the marginal distribution associated with Υ . Let $q(c \mid \theta)$ denote its density and $\gamma^{\alpha}(c, \theta) := \frac{Q^{\alpha}(c \mid \theta)}{q^{\alpha}(c \mid \theta)}$ denote its reverse hazard rate.

For each α , let $v(\theta, \alpha)$ denote the implicit solution of (36), and let

$$\vartheta\left(\theta,\alpha\right) \equiv -\frac{\frac{\partial^{2}\gamma^{\alpha}}{\partial\theta^{2}} + \frac{\lambda\Delta - \frac{\partial\gamma^{\alpha}}{\partial\theta}}{1 + \frac{\partial\gamma^{\alpha}}{\partial c}} \left[\frac{\partial^{2}\gamma^{\alpha}}{\partial c^{2}} \cdot \frac{\lambda\Delta - \frac{\partial\gamma^{\alpha}}{\partial\theta}}{1 + \frac{\partial\gamma^{\alpha}}{\partial c}} + 2\frac{\partial^{2}\gamma^{\alpha}}{\partial\theta\partial c}\right]}{1 + \frac{\partial\gamma^{\alpha}}{\partial c}},$$

where we omit the $(v(\theta, \alpha), \theta)$ from all functions on the right-hand side for notational simplicity. As argued previously, expertise is irrelevant when $\vartheta(\theta, \alpha) \ge 0$ for all θ (for a fixed α). We claim that there exists $\alpha^* \in (0, 1)$ such that $\vartheta(\theta, \alpha) > 0$ for all $\alpha > \alpha^*$. Since $(\theta, c) \to v(\theta, \alpha)$ is smooth, so is $(\theta, \alpha) \to \vartheta(\theta, \alpha)$. Moreover, by our assumption on H, $\vartheta(\theta, 1) > 0$ for all θ . The result then follows by uniform continuity.

References

 Kannan, R. and Krueger, C. K. (1996): Advanced Analysis on the Real Line, Springer, New York.