6 Online Appendix (Not for Publication)

6.1 Existence of Optimal Deterministic Mechanism

In this appendix, we establish that an optimal deterministic mechanism exists.
Proposition 3 There exists an optimal deterministic mechanism.

Proof. It suffices to show that for any {r1,...,r.} C {1,..., T} there exists an optimal mechanism
in which the principal offers the stopping plan where the number of failures born by agents is described
by the set {rq,...,rp}. Notice that an incentive-compatible mechanism M leads to L mappings 6 —
(ai(0),b;(0)) for i € {1,..., L}, where q; (0) stands for for the firm’s lump-sum payment and b; (9) for
the success bonus of a type 7 = (0, ¢) who chooses a stopping plan with tolerance for r; failures. Let
7* be the supremum of all payoffs obtained by mechanisms in which the principal offers the action
plans {r1,...,r}. We will show that there exists a mechanism M* that yields the payoff 7* to the
principal. For each n € N, take a sequence of mechanisms M, yielding a payoff to the principal at
least as large as 7* —n~!. The mechanism M,, leads to the mappings (al(6),b(0)) for i € {1,..., L}
and to the threshold curves v (6) . Define 6% = inf {#' : v}’ (¢') > 0} for | € {1,...,L}. We will use
the mappings (a]'(0),b(0)) (i € {1,...,L},n € N) to construct our mechanism M*.

It is easy to show that we can restrict attention to mechanisms for which b7 (6) > 0 for all .
Next, we claim that for each m € N and i € {1, ..., L} we have

sup 66[0{11@)7’(1_1] bi'(0) < oo. (29)

Assume towards a contradiction that there is m € N and a subsequence for which

su max  0*(0) = oco.
npee[o,lfmfl] i(9)

Notice that the payoff of any type ¢’ € [1 — ﬁ, 1] from choosing an allocation designed for a type

9" € [0,1— %} is at least

T
ap (6") + b(6") - Dy(8') — (Z 5“) e
t=1

= t:ri—f—l
expression above is at least as large as

i T
where D;(0") = | S 87N+ (1 -1 -XN)")- 5t_1)\] -0'. Since a'(0") + b1'(0") - D;(0") > 0 the
=1

T
br(0") - (Di(e') — Di(8")) — (Z 6HA> X (30)

t=1
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Hence, we conclude that (30) diverges to oo. Consequently, so does the payoff of all types 6 €
[1 — ﬁ, 1] , which automatically implies that the principal obtains a negative payoff whenever n is
large enough.

We will construct a contract (a;(),;(0)) = {(ai(6),b;(9))}=, from the sequence of contracts
{(a(8), b?(ﬁ))}le. Notice that b7 : [0 ,1) — R is increasing, while af : [0;",1) — R is decreasing.
Notice that we may extend (a?(6),b7(6)) to [0,1) by letting (al'(9),b"(0)) = (a(0;2), b2(67)) for all
8 < 0;!" (notice that zero-measure sets have no impact on payoffs). Notice that (29) imply that b} (6)
is monotonic and uniformly bounded over the interval [O, 1-— mfl] (for each m) and, thus, Helly’s
First Theorem (Theorem 6.1.18 in Kannan and Krueger 1996) asserts that there exists a subsequence
b7 (6) which converges (a.e.) over [0,1 —m~!]. This property is also true for [O, 1—(m+ z)_l]
for all z € N, and hence we can find a subsequence of bl (6), call it b;™**(6), which converges over
[O, 1—(m+ 1)71]. Proceeding inductively (by a diagonal argument) we obtain a subsequence of
bl*(0), call it b(#), and an increasing function b;(#) such that b1(0) — b;(6) for almost all § € [0,1).
Since (a](#)) is decreasing the same argument implies that we may take a subsequence (a}(f)) of
(a"(0)) and a function a;(f) such that a](8) — a;(0) for almost all § € [0, 1).

Proceeding analogously for all i € {1,...L}, we obtain {(a1(0),b1(0)), ..., (ar(0),br(0))}. We must
show that

1
= /0 T1(a(6), b(0)) £ (6)d6. (31)

Let S = TA and notice that II(a(f),b(0)) — S <0 for all 6. Let 1j9<;_,,~1) be the indicator function
for # <1 —m~! and define ¢™ by

9™ (0) = (I(a(0),0(0)) = ) - f () - Ljg<1—n-17 (0) -

Notice that g,, is a decreasing sequence of nonpositive functions. Hence by the Lebesgue’s monotone

convergence theorem:
1 1
/ (I1(a(0),b(8)) — 5) f(0)do = lim/ gm(0)d6. (32)
0 mJo
We claim that fol (I1(a(0),b(8)) — S) f(0)df > —oo. Assume towards a contradiction that
1
/O (I(a(8), b(0)) — S) f(0)d6 = —oc.

In this case we can find m € N such that fol gm(0)df < —4S and hence

1
/0 T1(a(6),b(6)) - f (8) - Ljg<1_m-1] (6) df < —35.

Thus we can find n* € N such that n > n* implies
1
[T ©).70) - £ ) sy )0 < 25 (33)
0
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Since [; T(a™(0),6™(0)) - £ (0) - Ljgs1_m-1) (0) dO < S, (33) implies

1
AIwﬂmﬂw»fwmmw<—& (34)

which contradicts the assumption that [II(a™(6),b"(9)) - f(6) (0)do > =* — 1 > —1 whenever
n > S~'. Thus we have [ II(a(6),b())f(0)df > —oo.
Take € > 0. We must show that

/ 11(a(6), b(6)) £ (6)d6 > 1" — ¢ (35)
0

to establish (31). Since fol II(a(0),b(0))f(0)df > —oo, (32) implies that there is m; € N such that

n > my implies ,
/1_ , I1(a(6).b(6)) £ (9)d6 > —=.

Notice also that
1
/0 (" (6),0°(6)) - £ (6) - Loy (6)d6 < S - (1 — F(1—m™)).

Thus we take mo > mq such that S - (1 - F(1- m;l)) < £ and n* € N such that n*l < —£. Take

n** > n* such that

1-my! . . 1-my! c
[ e @) ensea - [ ), ue) o)) < 5.
0 0

We have

1-m, e

> [ na).ben s -5
oy e e

> [ m@T e o) -
1

> [ @ o). @) - 5
* sk—1 3e

> propl o=

- 4

> 71 —g,

which establishes (35) and completes the proof. =

6.2 Correlation

In this appendix, we show that the result on the irrelevance of expertise regarding project quality

(Proposition 1) does not rely on the independence between 6 and c. First, we construct and example
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where expertise is irrelevant even though 6 and ¢ are correlated. Second, we specialize the model to
T = 1, and derive sufficient conditions for expertise to be irrelevant (therefore extending Proposition 1
to environments with correlation). Third, we show that Proposition 1 is robust to small perturbations
away from independence (in the form of mixture distributions).

Consider the following example.

Example A 1 [Conditional Distribution is Mirrored Generalized Pareto] Let the distribu-
tion of the safe project payoff conditional on the quality of the risky project be

c—¢C

no
H(c|0) = <_ > , where n > 0.

c—¢

Notice that the conditional distribution H(-|0) increases in the sense of first-order stochastic domi-

nance as 0 increases, in which case 0 and ¢ are positively correlated. In this case, the conditional

reverse hazard rate is y(c|f) = 1;1((;:”99)) = %. Consider the action plan ¢¢ as described Lemma 3,

after replacing the unconditional reverse hazard rate y(c) by its conditional counterpart v(c|0), and
let P¢(T) be the expected payments induced by the expert-investor optimal mechanism (formula 9).

Following the same reasoning as in the proof of Proposition 1, it follows that the action plan ¢°©
s implementable by a menu of linear contracts with lump-sum payments and success bonuses:

_ (I)k*(T) (0)

. . A
a*(7) ] (c—noK) and b(T)-A-(l—i—) .

no

To understand the implementability claim, note that ICS is satisfied by construction, ICR1 holds as
b*(7) is increasing in 0, and ICRy holds by the same argument as in the proof of Proposition 1.
Because, by construction, expected payments under two-dimensional asymmetric information equal

Pe(7), it follows that expertise (about 0) is irrelevant for payoffs.

The example above presents a parametric case exhibiting correlation where the result and proof
technique of Proposition 1 readily apply. In what follows, we will derive sufficient conditions for

expertise to be irrelevant. For tractability, we will assume that 7" = 1. As in the example above,

let H(c|f) denote the conditional cumulative distribution of ¢ given 6, let h(c|f) = %—Ig (c|f) denote
its density, and let v(c|f) = g((jlg)) denote its associated reverse hazard rate. As in the case of

independence, we assume that H(c|f) is log-concave in ¢ for each 6, so that %(0\9) > 0.
From the same argument as in the text, when there is symmetric information about 6, the agent

experiments if ¢ < v(#), where v() is the implicit solution of:
O-X-A—K=uv(0)+~v(v(0)0). (36)

Differentiating (36), gives
14+ 2 (v()]0)

47



Notice that the log-concavity of H(c|d) guarantees that the denominator above is positive. When
there is correlation, in order to guarantee that v’ () > 0, we also need that % < A - A, which
we assume from now on. This condition limits by how much an increase in 6 shifts the conditional
reverse hazard rate of c¢. In intuitive terms, it requires that the correlation between 6 and c¢ is not
too negative.

As in the case of independence, the expert-investor optimal mechanism is incentive compatible
when 6 is private information if and only if v(0) is convex. When ¢ and 6 are independent, we have
% = 0 and, therefore, v is convex if and only if % is decreasing, i.e., the reverse hazard rate is weakly

concave (Condition C).

For the general case, differentiate (37) again to obtain:

53 (0(0)16) + o/ (6) [ 53 («(0)10) v (6) + 255 (v(9)10)

1)//((9) —

. . ol . . 2 2 2
Therefore, the following are sufficient conditions for expertise to be irrelevant: %, %, gagc < 0.

As such, in the case of correlation, expertise is irrelevant whenever ~y(c|f) is concave in each of its
arguments and submodular.
Next, we show that our main result is robust to small perturbations away from independence.
Let H (c) be a log-concave distribution with a strictly concave reverse hazard rate. Let Y(c, 6) be
a joint distribution with a smooth density that is bounded away from zero in its support [c, ¢] x [0, 1] .

Consider the mixture distribution
Q%(c,0) = aH(e) + (1 - a)T(c,0),

where 0 < o < 1. As « approaches 1, this distribution converges to H. For each 0, let ¢ — Q%(c | )

represent the marginal distribution associated with Y. Let g(c | 8) denote its density and v*(c, 6) :=

Q*(cl0)
q>(cl0)

For each a, let v(6, ) denote the implicit solution of (36), and let

denote its reverse hazard rate.

927 | M=27 [ 52,0 , AA-22 Yool
062 14922 c2 1429 860c
19 (0 CY) — dc dc
Y - 1 8’)104 Y
+ dc

where we omit the (v(f, @), ) from all functions on the right-hand side for notational simplicity. As
argued previously, expertise is irrelevant when 9 (6, ) > 0 for all 6 (for a fixed o). We claim that
there exists a* € (0,1) such that ¥ (6,«) > 0 for all @ > o*. Since (6,¢) — v(6, «) is smooth, so is
(0,a) — 9(0, ). Moreover, by our assumption on H, 9 (6,1) > 0 for all §. The result then follows

by uniform continuity.
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