
6 Online Appendix (Not for Publication)

6.1 Existence of Optimal Deterministic Mechanism

In this appendix, we establish that an optimal deterministic mechanism exists.

Proposition 3 There exists an optimal deterministic mechanism.

Proof. It suffices to show that for any {r1, ..., rL} ⊂ {1, ..., T} there exists an optimal mechanism

in which the principal offers the stopping plan where the number of failures born by agents is described

by the set {r1, ..., rL}. Notice that an incentive-compatible mechanism M leads to L mappings θ →
(ai(θ), bi(θ)) for i ∈ {1, ..., L} , where al (θ) stands for for the firm’s lump-sum payment and bl (θ) for

the success bonus of a type τ = (θ, c) who chooses a stopping plan with tolerance for rl failures. Let

π∗ be the supremum of all payoffs obtained by mechanisms in which the principal offers the action

plans {r1, ..., rL}. We will show that there exists a mechanism M∗ that yields the payoff π∗ to the

principal. For each n ∈ N, take a sequence of mechanisms Mn yielding a payoff to the principal at

least as large as π∗ − n−1. The mechanism Mn leads to the mappings (ani (θ), b
n
i (θ)) for i ∈ {1, ..., L}

and to the threshold curves vnrl (θ) . Define θnrl ≡ inf
{
θ′ : vnrl (θ

′) > 0
}

for l ∈ {1, ..., L} . We will use

the mappings (ani (θ), b
n
i (θ)) (i ∈ {1, ..., L} , n ∈ N) to construct our mechanism M∗.

It is easy to show that we can restrict attention to mechanisms for which bni (θ) ≥ 0 for all θ.

Next, we claim that for each m ∈ N and i ∈ {1, ..., L} we have

sup
n

max
θ∈[0,1−m−1]

bni (θ) < ∞. (29)

Assume towards a contradiction that there is m ∈ N and a subsequence for which

sup
n

max
θ∈[0,1−m−1]

bni (θ) = ∞.

Notice that the payoff of any type θ′ ∈ [
1− 1

2m , 1
]

from choosing an allocation designed for a type

θ′′ ∈ [0, 1− 1
m

]
is at least

ani (θ
′′) + bni (θ

′′) ·Di(θ
′)−

(
T∑
t=1

δt−1

)
· c̄,

where Di(θ
′) ≡

[
ri∑
t=1

δt−1λ+ (1− (1− λ)ri) ·
T∑

t=ri+1
δt−1λ

]
· θ′. Since ani (θ

′′) + bni (θ
′′) ·Di(θ

′′) ≥ 0 the

expression above is at least as large as

bni (θ
′′) · (Di(θ

′)−Di(θ
′′)
)−

(
T∑
t=1

δt−1λ

)
· c̄ (30)
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Hence, we conclude that (30) diverges to ∞. Consequently, so does the payoff of all types θ′ ∈[
1− 1

2m , 1
]
, which automatically implies that the principal obtains a negative payoff whenever n is

large enough.

We will construct a contract (ai(θ), bi(θ)) = {(ai(θ), bi(θ))}Li=1 from the sequence of contracts

{(ani (θ), bni (θ))}Li=1 . Notice that bni : [θnri , 1) → R is increasing, while ani : [θnri , 1) → R is decreasing.

Notice that we may extend (ani (θ), b
n
i (θ)) to [0, 1) by letting (ani (θ), b

n
i (θ)) =

(
ani (́θ

n
rí), b

n
i (́θ

n
rí)
)

for all

θ ≤ θnrí (notice that zero-measure sets have no impact on payoffs). Notice that (29) imply that bni (θ)

is monotonic and uniformly bounded over the interval
[
0, 1−m−1

]
(for each m) and, thus, Helly’s

First Theorem (Theorem 6.1.18 in Kannan and Krueger 1996) asserts that there exists a subsequence

bnm
i (θ) which converges (a.e.) over

[
0, 1−m−1

]
. This property is also true for

[
0, 1− (m+ z)−1

]
for all z ∈ N, and hence we can find a subsequence of bnm

i (θ), call it b
nm+1

i (θ), which converges over[
0, 1− (m+ 1)−1

]
. Proceeding inductively (by a diagonal argument) we obtain a subsequence of

bni (θ), call it bni (́θ), and an increasing function bi(θ) such that bni (́θ) → bi(θ) for almost all θ ∈ [0, 1).

Since (ani (́θ)) is decreasing the same argument implies that we may take a subsequence (ani´́(θ)) of

(ani (́θ)) and a function ai(θ) such that ani´́(θ) → ai(θ) for almost all θ ∈ [0, 1).

Proceeding analogously for all i ∈ {1, ...L}, we obtain {(a1(θ), b1(θ)), ..., (aL(θ), bL(θ))}. We must

show that

π∗ =
ˆ 1

0
Π(a(θ), b(θ))f(θ)dθ. (31)

Let S ≡ TΔ and notice that Π(a(θ), b(θ))− S ≤ 0 for all θ. Let 1[θ≤1−m−1] be the indicator function

for θ ≤ 1−m−1 and define gm by

gm (θ) ≡ (Π(a(θ), b(θ))− S) · f (θ) · 1[θ≤1−m−1] (θ) .

Notice that gm is a decreasing sequence of nonpositive functions. Hence by the Lebesgue’s monotone

convergence theorem:
ˆ 1

0
(Π(a(θ), b(θ))− S) f(θ)dθ = lim

m

ˆ 1

0
gm(θ)dθ. (32)

We claim that
´ 1
0 (Π(a(θ), b(θ))− S) f(θ)dθ > −∞. Assume towards a contradiction that

ˆ 1

0
(Π(a(θ), b(θ))− S) f(θ)dθ = −∞.

In this case we can find m̄ ∈ N such that
´ 1
0 gm̄(θ)dθ < −4S and hence

ˆ 1

0
Π(a(θ), b(θ)) · f (θ) · 1[θ≤1−m̄−1] (θ) dθ < −3S.

Thus we can find n∗ ∈ N such that n > n∗ implies
ˆ 1

0
Π(an(θ), bn(θ)) · f (θ) · 1[θ≤1−m̄−1] (θ) dθ < −2S (33)

45



Since
´ 1
0 Π(an(θ), bn(θ)) · f (θ) · 1[θ>1−m̄−1] (θ) dθ < S, (33) implies

ˆ 1

0
Π(an(θ), bn(θ)) · f (θ) (θ) dθ < −S, (34)

which contradicts the assumption that
´
Π(an(θ), bn(θ)) · f (θ) (θ) dθ > π∗ − 1

n ≥ − 1
n whenever

n > S−1. Thus we have
´ 1
0 Π(a(θ), b(θ))f(θ)dθ > −∞.

Take ε > 0. We must show that
ˆ 1

0
Π(a(θ), b(θ))f(θ)dθ ≥ π∗ − ε (35)

to establish (31). Since
´ 1
0 Π(a(θ), b(θ))f(θ)dθ > −∞, (32) implies that there is m1 ∈ N such that

n > m1 implies ˆ 1

1−m−1
1

Π(a(θ), b(θ))f(θ)dθ > −ε

4
.

Notice also that
ˆ 1

0
Π(an(θ), bn(θ)) · f (θ) · 1[θ>1−m−1] (θ) dθ < S · (1− F (1−m−1)

)
.

Thus we take m2 ≥ m1 such that S · (1− F (1−m−1
2 )

)
< ε

4 and n∗ ∈ N such that n∗−1 < − ε
4 . Take

n∗∗ > n∗ such that∣∣∣∣∣
ˆ 1−m−1

2

0
Π(an

∗∗
(θ), bn

∗∗
(θ))f(θ)dθ −

ˆ 1−m−1
2

0
Π(a(θ), b(θ))f(θ)dθ

∣∣∣∣∣ < ε

4
.

We have
ˆ 1

0
Π(a(θ), b(θ))f(θ)dθ

≥
ˆ 1−m−1

2

0
Π(a(θ), b(θ))f(θ)dθ − ε

4

≥
ˆ 1−m−1

2

0
Π(an

∗∗
(θ), bn

∗∗
(θ))f(θ)dθ − ε

2

≥
ˆ 1

0
Π(an

∗∗
(θ), bn

∗∗
(θ))f(θ)dθ − 3ε

4

≥ π∗ − n∗∗−1 − 3ε

4
> π∗ − ε,

which establishes (35) and completes the proof.

6.2 Correlation

In this appendix, we show that the result on the irrelevance of expertise regarding project quality

(Proposition 1) does not rely on the independence between θ and c. First, we construct and example
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where expertise is irrelevant even though θ and c are correlated. Second, we specialize the model to

T = 1, and derive sufficient conditions for expertise to be irrelevant (therefore extending Proposition 1

to environments with correlation). Third, we show that Proposition 1 is robust to small perturbations

away from independence (in the form of mixture distributions).

Consider the following example.

Example A 1 [Conditional Distribution is Mirrored Generalized Pareto] Let the distribu-

tion of the safe project payoff conditional on the quality of the risky project be

H(c|θ) =
(
c− c

c̄− c

)ηθ

, where η > 0.

Notice that the conditional distribution H(·|θ) increases in the sense of first-order stochastic domi-

nance as θ increases, in which case θ and c are positively correlated. In this case, the conditional

reverse hazard rate is γ(c|θ) ≡ H(c|θ)
h(c|θ) = c−c

ηθ . Consider the action plan φe as described Lemma 3,

after replacing the unconditional reverse hazard rate γ(c) by its conditional counterpart γ(c|θ), and

let P e(τ) be the expected payments induced by the expert-investor optimal mechanism (formula 9).

Following the same reasoning as in the proof of Proposition 1, it follows that the action plan φe

is implementable by a menu of linear contracts with lump-sum payments and success bonuses:

a∗(τ) =
Φk∗(τ)(θ)

η + 1
· (c− ηθK) and b∗(τ) = � ·

(
1 +

1

ηθ

)−1

.

To understand the implementability claim, note that ICS is satisfied by construction, ICR1 holds as

b∗(τ) is increasing in θ, and ICR2 holds by the same argument as in the proof of Proposition 1.

Because, by construction, expected payments under two-dimensional asymmetric information equal

P e(τ), it follows that expertise (about θ) is irrelevant for payoffs.

The example above presents a parametric case exhibiting correlation where the result and proof

technique of Proposition 1 readily apply. In what follows, we will derive sufficient conditions for

expertise to be irrelevant. For tractability, we will assume that T = 1. As in the example above,

let H(c|θ) denote the conditional cumulative distribution of c given θ, let h(c|θ) = ∂H
∂c (c|θ) denote

its density, and let γ(c|θ) ≡ H(c|θ)
h(c|θ) denote its associated reverse hazard rate. As in the case of

independence, we assume that H(c|θ) is log-concave in c for each θ, so that ∂γ
∂c (c|θ) ≥ 0.

From the same argument as in the text, when there is symmetric information about θ, the agent

experiments if c ≤ v(θ), where v(θ) is the implicit solution of:

θ · λ · � −K = v(θ) + γ (v(θ)|θ) . (36)

Differentiating (36), gives

v′ (θ) =
λ · � − ∂γ

∂θ (v(θ)|θ)
1 + ∂γ

∂c (v(θ)|θ)
. (37)
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Notice that the log-concavity of H(c|θ) guarantees that the denominator above is positive. When

there is correlation, in order to guarantee that v′ (θ) ≥ 0, we also need that ∂γ
∂θ ≤ λ · �, which

we assume from now on. This condition limits by how much an increase in θ shifts the conditional

reverse hazard rate of c. In intuitive terms, it requires that the correlation between θ and c is not

too negative.

As in the case of independence, the expert-investor optimal mechanism is incentive compatible

when θ is private information if and only if v(θ) is convex. When c and θ are independent, we have
∂γ
∂θ = 0 and, therefore, v is convex if and only if ∂γ

∂c is decreasing, i.e., the reverse hazard rate is weakly

concave (Condition C).

For the general case, differentiate (37) again to obtain:

v′′(θ) = −
∂2γ
∂θ2

(v(θ)|θ) + v′ (θ)
[
∂2γ
∂c2

(v(θ)|θ) v′ (θ) + 2 ∂2γ
∂c∂θ (v(θ)|θ)

]
1 + ∂γ

∂c (v(θ)|θ)
.

Therefore, the following are sufficient conditions for expertise to be irrelevant: ∂2γ
∂c2

, ∂
2γ

∂θ2
, ∂2γ
∂θ∂c ≤ 0.

As such, in the case of correlation, expertise is irrelevant whenever γ(c|θ) is concave in each of its

arguments and submodular.

Next, we show that our main result is robust to small perturbations away from independence.

Let H (c) be a log-concave distribution with a strictly concave reverse hazard rate. Let Υ(c, θ) be

a joint distribution with a smooth density that is bounded away from zero in its support [c, c̄]× [0, 1] .

Consider the mixture distribution

Qα(c, θ) := αH(c) + (1− α)Υ(c, θ),

where 0 ≤ α ≤ 1. As α approaches 1, this distribution converges to H. For each θ, let c → Qα(c | θ)
represent the marginal distribution associated with Υ. Let q(c | θ) denote its density and γα(c, θ) :=
Qα(c|θ)
qα(c|θ) denote its reverse hazard rate.

For each α, let v(θ, α) denote the implicit solution of (36), and let

ϑ (θ, α) ≡ −
∂2γα

∂θ2
+

λΔ− ∂γα

∂θ

1+ ∂γα

∂c

[
∂2γα

∂c2
· λΔ− ∂γα

∂θ

1+ ∂γα

∂c

+ 2∂2γα

∂θ∂c

]
1 + ∂γα

∂c

,

where we omit the (v(θ, α), θ) from all functions on the right-hand side for notational simplicity. As

argued previously, expertise is irrelevant when ϑ (θ, α) ≥ 0 for all θ (for a fixed α). We claim that

there exists α∗ ∈ (0, 1) such that ϑ (θ, α) > 0 for all α > α∗. Since (θ, c) → v(θ, α) is smooth, so is

(θ, α) → ϑ(θ, α). Moreover, by our assumption on H, ϑ (θ, 1) > 0 for all θ. The result then follows

by uniform continuity.
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