
B Supplementary Appendix: Not for Publication

B.1 Additional Proofs

Proof of Example 1
For notational simplicity, let πeq,s ≡ f (q, s|e) denote the probability of state (q, s)

conditional on effort e, π̄eq ≡
∫
πeq,sds denote the marginal probability of output q, and

Π̄e
q denote the associated cumulative distribution function (“CDF”). Suppose that π1

q,s

and π0
q,s are both independent of s. As in Grossman and Hart (1983), it is convenient

to write the principal’s program in terms of “utils”. Ignoring intermediate effort levels,
the program is:

min
V

∫
h (V (q)) π̄1

qdq s.t.∫
V (q) π̄1

qdq ≥ U (29)∫
V (q)

(
π̄1
q − π̄0

q

)
dq ≥ 1, (30)

where h = V −1.
We wish to study conditions under which the solution to this relaxed program also

solves the original program – i.e. under which the following omitted ICs are satisfied:∫
S

∫
X

V (q)
(
π1
q,s − πeq,s

)
dqds ≥ 1− e, ∀e.

Using the marginal distributions, we can rewrite these constraints as

ξ(e) ≡
∫
X

V (q)
(
π̄1
q − π̄eq

)
dq − (1− e) ≥ 0.

Note that ξ(1) = 0 and, by the binding IC (30), ξ(0) = 0. Thus, it suffices to show
that ξ is concave.

Applying integration by parts to the solution of the relaxed program, we obtain∫
V (q)

(
π̄1
q − π̄eq

)
dq =

∫
V̇ (q)

(
Π̄e
q − Π̄1

q

)
dq,

where Π̄ is the CDF associated with π̄. Substituting back in the definition of ξ yields

ξ(e) =

∫
V̇ (q)

(
Π̄q
e − Π̄q

1

)
dq + e− 1.
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Since the likelihood ratio π̄1
q/π̄

0
q is non-decreasing in q, the solution of the relaxed

program is monotonic: V̇ ≥ 0. Then, since Π̄e
q is a concave function of e, ξ is concave.

Proof of Theorem 1, non-binding IR
This appendix completes the proof of Theorem 1, by considering the case where the

IR (17) does not bind. We can thus ignore the IR from the principal’s program. The
first-order condition with respect to uq,s is

−pe∗q,sh′ (uq,s)−µ1

(
K(1)p1

q,s −K (e∗) pe
∗

q,s

)
−µ2

(
K(2)p2

q,s −K (e∗) pe
∗

q,s

)
= 0 ∀q, s. (31)

For the wage to be independent of the signal, the system of equations (18) and (31)
must have as a solution uq,s = uq ∀ q, s. We can write this system of equations using
the function F : RX(1+3S)+5 → RXS+2, where

F

u1, ..., uX︸ ︷︷ ︸
X

, µ1, µ2︸ ︷︷ ︸
2

; Θ︸︷︷︸
3

, pe1,1, ..., p
e
X,S︸ ︷︷ ︸

3XS



=



p3
1,1h

′ (u1) + µ1(K(1)p1
1,1 −K(3)p3

1,1) + µ2(K(2)p2
1,1 −K(3)p3

1,1)
...

p3
1,Sh

′ (u1) + µ1(K(1)p1
1,S −K(3)p3

1,S) + µ2(K(2)p2
1,S −K(3)p3

1,S)
...

p3
X,1h

′ (uX) + µ1(K(1)p1
X,1 −K(3)p3

X,1) + µ2(K(2)p2
X,1 −K(3)p3

X,1)
...

p3
X,Sh

′ (uX) + µ1(K(1)p1
X,S −K(3)p3

X,S) + µ2(K(2)p2
X,S −K(3)p3

X,S)∑X
q=1 uq

(
K(2)

∑
s p

2
q,s −K(3)

∑
s p

3
q,s

)
+G(2)−G(3)∑X

q=1 uq
(
K(1)

∑
s p

1
q,s −K(3)

∑
s p

3
q,s

)
+G(1)−G(3)



.

To apply Corollary 1, we need to show that DF has full row rank. It is given by:

DF =

[
AXS×X CXS×2 DΘ H3

XS×XS H2
XS×XS H1

XS×XS

B2×X 02×2 EΘ J3
2×XS J2

2×XS J1
2×XS

]
.

Matrices AXS×X and B2×X are, respectively, the derivative of the first XS equations
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and the last 2 equations (ICs) with respect to u:

AXS×X =


h′′(u1)P3

1 0 ... 0

0 h′′(u2)P3
2 ... 0

...
...

...
0 0 ... h′′(uX)P3

X

 ,

B2×X =

[
K(2)P2

1 · 1S −K(3)P3
1 · 1S ... K(2)P2

S · 1S −K(3)P3
X · 1S

K(1)P1
1 · 1S −K(3)P3

1 · 1S ... K(1)P1
S · 1S −K(3)P3

X · 1S

]
.

The derivatives with respect to the multipliers µ1 and µ2 are, respectively,

CXS×2 =



K(1)p1
1,1 −K(3)p3

1,1 K(2)p2
1,1 −K(3)p3

1,1
...

K(1)p1
1,S −K(3)p3

1,S K(2)p2
1,S −K(3)p3

1,S
...

K(1)p1
X,1 −K(3)p3

X,1 K(2)p2
X,1 −K(3)p3

X,1
...

K(1)p1
X,S −K(3)p3

X,S K(2)p2
X,S −K(3)p3

X,S


(32)

and the null matrix 02×2. The derivatives with respect to {G(3), G(2), G(1)} are,
respectively, 0XS×3 and

EG =

[
−1 1 0

−1 0 1

]
.

Thus, if K is constant, Θ = G, and we have DΘ = DG = 0XS×3 and EΘ = EG.
The derivatives with respect to {K(3), K(2), K(1)} are, respectively:

DK =



−µ1p
3
1,1 − µ2p

3
1,1 µ2p

2
1,1 µ1p

1
1,1

...
−µ1p

3
1,S − µ2p

3
1,S µ2p

2
1,S µ1p

1
1,S

...
−µ1p

3
X,1 − µ2p

3
X,1 µ2p

2
X,1 µ1p

1
X,1

...
−µ1p

3
X,S − µ2p

3
X,S µ2p

2
X,S µ1p

1
X,S


,

EK =

[
−
∑X

q=1 uq
∑

s p
3
q,s

∑X
q=1 uq

∑
s p

2
q,s 0

−
∑X

q=1 uq
∑

s p
3
q,s 0

∑X
q=1 uq

∑
s p

1
q,s

]
.

Thus, if G is constant, Θ = K, and we have DΘ = DK, and EΘ = EK.
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The derivatives with respect to
(
p3
q,s

)
,
(
p2
q,s

)
, and

(
p1
q,s

)
are, respectively:

H3
XS×XS =


[h′ (u1)−K(3)(µ1 + µ2)] IS 0S×S ... 0S×S

0S×S
. . . ... 0S×S

...
... . . . ...

0S×S 0S×S ... [h′ (uX)−K(3)(µ1 + µ2)] IS


J3

2×XS =

[
−u1K(3)1S ... −uXK(3)1S

−u1K(3)1S ... −uXK(3)1S

]
,

H2
XS×XS =


µ2K(2)IS 0S×S ... 0S×S

0S×S µ2K(2)IS ... 0S×S
...

... . . . ...
0S×S 0S×S ... µ2K(2)IS

 = µ2IXS,

J2
2×XS =

[
u1K(2)1S ... uXK(2)1S

0S ... 0S

]
and

H1
XS×XS = µ1K(1)IXS

J1
2×XS =

[
0S ... 0S

u1K(1)1S ... uXK(1)1S

]
.

Note thatDFP =

[
H3
XS×XS H2

XS×XS H1
XS×XS

J3
2×XS J2

2×XS J1
2×XS

]
hasXS+2 rows and 3XS columns.

Since XS + 2 < 3XS, it suffices to show that DFP has full row rank to establish that
DF has full row rank. We thus need to show that for any vector y ∈ RXS+2,

y︸︷︷︸
1×(XS+2)

× DFP︸ ︷︷ ︸
(XS+2)×3XS

= 0︸︷︷︸
1×3XS

=⇒ y = 0︸︷︷︸
1×(XS+2)

.

Let DFPi
=

[
H i
XS×XS

J i2×XS

]
. First, expanding y ×DFP2 = 0 gives:

µ2K(2)y1 + u1K(2)yXS+1 = ... = µ2K(2)yS + u1K(2)yXS+1 = 0

µ2K(2)yS+1 + u2K(2)yXS+1 = ... = µ2K(2)y2S + u2K(2)yXS+1 = 0
...

µ2K(2)yS(X−1)+1 + uXK(2)yXS+1 = ... = µ2K(2)yXS + uXK(2)yXS+1 = 0.
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Dividing through by K(2) > 0 and rearranging gives:

µ2y1 = ... = µ2yS = −u1yXS+1 (33)

µ2yS+1 = ... = µ2y2S = −u2yXS+1

...

µ2yS(X−1)+1 = ... = µ2yXS = −uXyXS+1.

Similarly, expanding y ×DFP1 = 0 yields

µ1K(1)y1 = ... = µ1K(1)yS = −u1K(1)yXS+2 (34)

µ1K(1)yS+1 = ... = µ1K(1)y2S = −u2K(1)yXS+2

...

µ1K(1)yS(X−1)+1 = ... = µ1K(1)yXS = −uXK(1)yXS+2

with K(1) > 0. Recall that µ1 ≥ 0 and µ2 ≥ 0 and at least one of them is strict. Thus,

y1 = ... = yS =: ȳ1

yS+1 = ... = y2S =: ȳ2

...

yS(X−1)+1 = ... = yXS =: ȳX .

From equation (33), we have:

µ2ȳ
1 = −u1yXS+1

...
µ2ȳ

X = −uXyXS+1

(35)

Second, recall that DF(µ1,µ2) =

[
CXS×2

02×2

]
. Thus, y ×DF(µ1,µ2) = 0 gives

∑
q,s

ȳq
[
K(1)p1

q,s −K(3)p3
q,s

]
= 0,

∑
q,s

ȳq
[
K(2)p2

q,s −K(3)p3
q,s

]
= 0, ∀q. (36)

Multiplying both sides of the first equation in (36) by µ2 ≥ 0:

µ2

∑
q,s

ȳq
[
K(1)p1

q,s −K(3)p3
q,s

]
= K(1)

∑
q,s

(µ2ȳ
q) p1

q,s −K(3)
∑
q,s

(µ2ȳ
q) p3

q,s = 0. (37)
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However, from equation (35), we have

K(1)
∑
q,s

(µ2ȳ
q) p1

q,s −K(3)
∑
q,s

(µ2ȳ
q) p3

q,s

= −yXS+1

[
K(1)

∑
q,s

uqp
1
q,s −K(3)

∑
q,s

uqp
3
q,s

]
= −yXS+1(G(3)−G(1)), (38)

where the last equality follows from the binding IC for e = 1. Let G(3) 6= G(1) (the
set of parameters for which G(3) = G(1) have zero Lebesgue measure). Then, (37)
and (38) imply yXS+1 = 0. Applying this logic to the second equation in (36) yields
yXS+2 = 0.

Third, recall from equations (33) and (34) that, ∀ q,

µ2ȳ
q = −uqyXS+1 and µ1ȳ

q = −uqyXS+2.

Moreover, µ1 ≥ 0 and µ2 ≥ 0 with at least one of them strict. Since yXS+1 = yXS+2 = 0,
we have µ1ȳ

q = µ2ȳ
q = 0. Since either µ1 6= 0 or µ2 6= 0, this implies ȳq = 0 ∀ q. Thus,

y ×DFP = 0 =⇒ y = 0, i.e., DFP has full row rank.

B.2 Multiple Binding ICs

This appendix shows that the case in which multiple ICs simultaneously bind is not
knife-edge. The problem of implementing effort e at minimum cost is:

min
{uq,s}

qX∑
q=q1

S∑
s=1

peq,sb (uq,s)

subject to

qX∑
q=q1

S∑
s=1

peq,suq,s − ce ≥ Ū

qX∑
q=q1

S∑
s=1

(
peq,s − pẽq,s

)
uq,s ≥ ce − cẽ ∀ẽ.

We study the case of three effort levels and three states. This is the simplest
environment to study multiple binding ICs. With two effort levels, there is only one
IC; with two states, wages are two-dimensional and, since the IR and at least one IC
must bind for any effort except the least costly one, we generically can only have one
binding IC.

30



Let S = {1, 2, 3} and E = {1, 2, 3}, and take the utility function u (c) =
√
c+K,

where K > 0 allows for negative wages. The inverse utility function is then

h (u) = u2 −K.

Without loss of generality, let e = 2 denote the implemented effort. The program is:

min
{us}

∑
s=1,2,3

p2
su

2
s

subject to ∑
s=1,2,3

p2
sus ≥ c2∑

s=1,2,3

(
p2
s − p1

s

)
us ≥ c2 − c1∑

s=1,2,3

(
p2
s − p3

s

)
us ≥ c2 − c3

We know that IR binds. Substituting the binding IR into the two ICs, the IR and
two ICs now become: ∑

s=1,2,3

p2
sus = c2∑

s=1,2,3

p1
sus ≤ c1 (39)∑

s=1,2,3

p3
sus ≤ c3 (40)

An economy is parametrized by conditional distributions and costs: {pe1, pe2, ce}e=1,2,3

(pe3 is given by pe3 = 1 − pe2 − pe1). We claim that there exists an open neighborhood
of parameters in which both ICs (39) and (40) bind. To show this, we will study the
maximization program where we ignore one of them. If the ignored IC is satisfied at
the solution of this “relaxed program,” this solution solves the principal’s program. We
will show that, for some open set of parameter values, each of these two constraints
(39 and 40) fails to hold when it is ignored, so they both simultaneously bind.

First, consider the relaxed program where we omit (40). The Lagrangian is

L = −p2
1u

2
1 − p2

2u
2
2 − p2

3u
2
3 + λ

(
p2

1u1 + p2
2u2 + p2

3u3 − c2

)
+ µ

(
p1

1u1 + p1
2u2 + p1

3u3 − c1

)
,
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which has as first-order conditions the following linear system:

2u1 = λ+ µ
p1

1

p2
1

, 2u2 = λ+ µ
p1

2

p2
2

, 2u3 = λ+ µ
p1

3

p2
3

,

p2
1u1 + p2

2u2 + p2
3u3 = c2,

p1
1u1 + p1

2u2 + p1
3u3 = c1.

We will now combine the first three equations into one by eliminating λ. From the
first equation, we have 2u1 − µ

p11
p21

= λ. Substituting into the second and third and
combining yields the following linear system with three equations and three unknowns:

(
p12
p22
− p11

p21

) (
p11
p21
− p13

p23

) (
p13
p23
− p12

p22

)
p2

3 p2
2 p2

1

p1
3 p1

2 p1
1


 u3

u2

u1

 =

 0

c2

c1

 ,
which characterizes the solution of the relaxed program where we ignore (40).

Similarly, the solution of the relaxed program where we ignore (39) is given by:
(
p32
p22
− p31

p21

) (
p31
p21
− p33

p23

) (
p33
p23
− p32

p22

)
p2

3 p2
2 p2

1

p3
3 p3

2 p3
1


 u3

u2

u1

 =

 0

c2

c3

 .
It is easy to apply Cramer’s rule to obtain a closed-form solution.

Use the following vector notation: pe ≡ (pe1, p
e
2, p

e
3). Consider p1 = (0.1, 0.28, 0.62) ,

p2 = (0.2, 0.15, 0.65) , p3 = (0.3, 0.1, 0.6) , c1 = 0.75, c2 = 1, c3 = 0.5.
The matrix in the relaxed program where we omit (40) is:

A1 ≡


(
p12
p22
− p11

p21

) (
p11
p21
− p13

p23

) (
p13
p23
− p12

p22

)
p2

3 p2
2 p2

1

p1
3 p1

2 p1
1

 =

 1.3667 −0.4538 −0.9128

0.65 0.15 0.2

0.62 0.28 0.1

 .
The solution is  u3

u2

u1

 = (A1)−1

 0

c2

c1

 =

 1.0703

−0.3207

1.7620

 ,
where we used the fact that

(A1)−1 =

 0.2499 1.2813 −0.2813

−0.3596 −4.2829 5.2829

−0.5425 4.0478 −3.0478

 .
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Since A1 has full rank, the solution is continuous in its parameters (conditional prob-
abilities and costs) around these parameter values. Substituting in (40) gives

p3
3u3+p3

2u2+p3
1u1−c3 = 0.6×1.0703+0.1×(−0.3207)+0.3×1.7629−0.5 = 0.6387 > 0.

Thus, (40) fails to hold. Since the expression p3
3u3 + p3

2u2 + p3
1u1 − c3 is a continuous

function of conditional probabilities, utilities, and costs, and utility is itself a contin-
uous function of costs and probabilities, it follows that this expression is a continuous
function of probabilities and costs. Thus, for parameter values in a neighborhood of
the ones considered here, it is also the case that (40) fails to hold.

The matrix in the relaxed program where we omit (39) is:

A3 =


(
p32
p22
− p31

p21

) (
p31
p21
− p33

p23

) (
p33
p23
− p32

p22

)
p2

3 p2
2 p2

1

p3
3 p3

2 p3
1

 =

 −0.8333 0.5769 0.2564

0.65 0.15 0.2

0.6 0.1 0.3

 ,
which has inverse

(A3)−1 =

 −0.3545 2.0909 −1.0909

1.0626 5.7273 −4.7273

0.3545 −6.0909 7.0909

 .
The solution of the relaxed program is then u3

u2

u1

 = (A3)−1

 0

c2

c3

 =

 1.5455

3.3636

−2.5455

 .
Again, the solution is continuous in the parameters in a neighborhood of the parameters
selected here. Substituting in the omitted IC gives:

p1
3u3+p1

2u2+p1
1u1−c1 = 0.62×1.5455+0.28×3.3636+0.1×(−2.5455)−0.75 = 0.8955 > 0.

Thus, (39) fails to hold. As before, by continuity, this is true for all parameter values
in a neighborhood of the ones chosen here.

To summarize, for all parameter values in a neighborhood of the ones chosen here,
both ICs simultaneously hold. Thus it is not true that generically only one IC binds.
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