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Abstract

Most individual life insurance policies lapse, with lapsers cross-subsidizing non-lapsers. We show

that policies and lapse patterns predicted by standard rational expectations models are the opposite

of those observed empirically. We propose two behavioral models consistent with the evidence: (i)

consumers who forget to pay premiums and (ii) consumers who understate future liquidity needs. We

conduct two surveys with a large insurer. New buyers believe that their own lapse probabilities are

small compared to the insurer’s actual experience. For recent lapsers, forgetfulness accounts for 37.8

percent of lapses while unexpected liquidity accounts for 15.4 percent.

JEL No. D03, G22, G02

*London School of Economics and Wharton School, University of Pennsylvania. Daniel Gottlieb: D.Gottlieb@lse.ac.uk.
Kent Smetters: smetters@wharton.upenn.edu. This paper was previously titled “Narrow Framing and Life Insurance.” We
thank four anonymous referees, Nicholas Barberis, Daniel Bauer, Roland Bénabou, Pedro Bordalo, Sylvain Chassang, Keith
Crocker, Kfir Eliaz, Erik Eyster, Hanming Fang, Xavier Gabaix, Nicola Gennaioli, Quentin Graham, Michael Grubb, Paul
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1 Introduction

Life insurance is the most valuable method for individuals to financially protect their loved ones upon
death. It is also an enormous industry. Over 70 percent of U.S. families own life insurance (LIMRA
2016), and annual premiums exceed $110 billion (IIC 2018). Between 1990 and 2017, $42.3 trillion
in coverage was issued in the individual life insurance market.1 The average face value of policy sold
in 2017 was $165,460 (ACLI 2018, Table 7.2), double the median household net worth including home
equity and retirement accounts (Eggleston and Munk, 2018).

However, most individual policies are terminated by the policyholder—known as “lapsing”—before
the policies expire or pay a death benefit. Specifically, most term policies, which offer coverage for a
fixed number of years, lapse before death or the end of the term. Term policies generally lapse after
the policyholder stops making scheduled premium payments. At that point, the policyholder pays no
future premiums and no death benefit or related value is paid back to the policyholder. Similarly, most
permanent policies are terminated before death or their expiration at age 100 or older. Permanent policies
generally lapse after the policyholder stops making scheduled premium payments or by explicitly electing
to lapse. At that point, the policyholder pays no future premiums and no death benefit is paid back to
the policyholder but a “cash value” might be paid.2 For permanent policies with cash value, lapsing
is called “surrendering.” For both types of policies, because initial premiums exceed actuarially-fair
prices early into the policy term and are surpassed by actuarially-fair prices later on, lapsing is costly to
policyholders.3 About $24 trillion of in-force coverage was dropped in the U.S. between 1990 and 2010,
equal to almost 78 percent of all coverage issued during that period.4

Starting as far back as Linton (1932), a vast empirical literature has documented the relationship
between policy terminations and other variables. But three puzzles remain (Section 2). First, the conven-
tional view is that insurers should use front loads to reduce lapses (Hendel and Lizzeri, 2003). Without
income shocks, the optimal load will be large enough to prevent any lapses, thereby enforcing continued

1Life insurance is also provided as an employer-based voluntary group benefit. Group policies are generally not portable
across employers and, therefore, are priced differently. This paper focuses on individual (non-group) policies. 44 percent of
American households have individual life policies and 49 percent have group policies. Individual policies are over twice in
size than group policies, which have an average face value of $74,935 for policies sold in 2017.

2With many permanent policies, premiums are often collected only for part of a person’s life. As a result, for the same death
benefit, permanent policies are more expensive than term policies. This premium difference adds savings to a policyholder’s
“cash value,” after front loads are deducted. The cash value typically increases for a while and eventually declines as the
payment of the death benefit approaches. Upon lapsing or “surrendering,” the cash value is returned, but because of the front
load, the cash value is smaller than the premiums paid in excess of mortality risk. If the permanent policy is not surrendered,
the death benefit is paid upon death or when the policyholder reaches age 100, 105, 110, 120, or 121.

3Front loads take on many forms, including level premiums, single premiums, limited-pay whole life, and decreasing term
insurance policies. We could not find any insurer that offers back-loaded policies, and no major trade organization tracks sales
information regarding back-loaded policies.

4Drops include coverage issued before 1990. In some cases, policies were dropped based on factors other than failure to
pay (lapses)—for example, if the insurer believes that the policy terms were not satisfied.
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participation in the insurance pool as policyholders learn more about their mortality over time (“risk re-
classification”).5 With income shocks, lapses may occur in equilibrium after large shocks. Quantitatively,
Hambel et al. (2017) simulate life insurance demand in a calibrated rational-expectations lifecycle model
with idiosyncratic income shocks, health shocks, liquidity constraints, reclassification risk, and industry-
average markups. They find that little to no lapses across a wide wealth and income distribution. Lapsing
forfeits the front load, so many rational households would buy little insurance, or lapses require large
swings in income.6 This finding is also consistent with the results in Krebs, Kuhn, and Wright (2015),
who model endogenously binding borrowing constraints in the context of life insurance purchases and
macroeconomic shocks. Second, a related puzzle is the identity of the lapsers themselves: they are not
more likely to lapse after a positive health shock, as predicted by reclassification risk. Third, it is com-
mon for policyholders to take loans against permanent policies, which, despite being fully collateralized
by the life insurance policy itself, are typically more expensive than equivalent forms of secured credit.
Outstanding loans totaled $135 billion in 2016.

As we show, life insurance companies make positive earnings on clients who lapse and negative
earnings on those who keep their policies. However, insurers do not seem to make extraordinary profits.
Rather, policyholders who lapse cross-subsidize those who do not. Making a profit from policies that
lapse is a taboo topic in the life insurance industry. As one of their main trade groups recently put it,
“[t]he life insurance business vigorously seeks to minimize the lapsing of policies” (ACLI 2017: 64).
Still, as we show herein, insurers seem to compete on this margin. This result is the opposite of the
conventional (“rational”) view that insurers use front loads to reduce lapses.

We propose two behavioral mechanisms that can account for both the structure of life insurance
policies and the pattern of lapses. First, many policyholders forget to pay their premiums.7 Presumably,
as a way to mitigate the effect of forgetfulness, most U.S. states impose a grace period of 30 or 31
days during which a life insurance policy does not lapse even though the payment is past due. However,
despite mandating a grace period, most states do not require companies to notify customers who miss their
payments. We show that, when faced with consumers who may forget to pay their premiums, equilibrium
policies endogenously lapse after a policyholder misses a payment, and lapsers cross-subsidize non-
lapsers.

In the second mechanism, individuals do not fully account for future liquidity needs when purchas-

5More precisely, with health shocks only, front loads will be large enough to prevent any lapses if the initial wealth is large
enough. If the initial wealth is not large enough, individuals will only purchase annual policies at actuarially-fair prices in
each period.

6In particular, younger households will often not purchase life insurance unless they have enough income. Middle-aged
households will never lapse unless their income swings to very low or high amounts. Since the authors focus on individual
insurance demand, they do not calculate a measure of households at different income and wealth combinations to aggregate
their results. But their income and wealth bands are wide, and they conclude: “Our results show that in a neoclassical model,
households have a low surrender rate since they rationally anticipate their future liquidity demands.” (P. 1173)

7Previous work has documented the prevalence of forgetfulness in other settings, including consumption and saving de-
cisions (Ericson, 2011; Sussman and Alter, 2012; Karlan, McConnell, Mullainathan, and Zinman, 2016). More generally,
there is an emerging literature that studies individuals with imperfect memory (c.f., Bénabou and Tirole, 2016 and references
therein).
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ing life insurance. This mechanism can be a manifestation of either narrow framing or biased beliefs
(such as overconfidence or optimism). Narrow framing states that when an individual evaluates a risky
prospect, “she does not fully merge it with her preexisting risk but, rather, thinks about it in isolation,
to some extent; in other words, she frames the gamble narrowly” (Barberis, Huang, and Thaler, 2006).8

Alternatively, individuals may underweight their future liquidity needs because of overconfidence or op-
timism, a behavior that is prevalent in other markets.9 In our model, consumers face two sources of
risk: mortality risk that motivates the purchase of life insurance, and a possible “background” shock that
produces a subsequent demand for liquidity. Examples of background shocks include unemployment,
medical expenses, stock market fluctuations, real estate prices, new consumption opportunities, and the
needs of dependents. Consumers correctly account for mortality risk when buying life insurance but fail
to sufficiently account for background risks. Indeed, a large empirical literature reviewed later documents
the strong effect that income and unemployment shocks have on life insurance lapses. Consistent with
actual life insurance policies, consumers in our models are allowed to drop their policy and replace it with
a new one. This lack of commitment introduces a pure state constraint that makes the optimal control
problem non-standard. Our solution can be useful to other researchers interested in solving mechanism
design problems with both incentive constraints and renegotiation proofness. We show that, when indi-
viduals underweight future liquidity needs when purchasing life insurance, policies offer expensive loans,
endogenously lapse after large income shocks, and provide cross-subsidies from lapsers to non-lapsers.

To test these two mechanisms and other potential explanations directly, we implemented two surveys
with customers of a large U.S. life insurer (abbreviated as “LLI” herein). LLI regularly receives an A.M.
Best Company rating of A++ and its life insurance is widely marketed to the general U.S. population.
The first survey (LLI, 2018) considers all people who purchased life insurance between October 2013 and
November 2017 and were still active premium payers. This survey focuses on beliefs about lapsing. Over
94% of respondents indicated that they either did not anticipate stopping their policy before its expiration
(80.4%) or had not thought about it before (12.0%). Only 2.4% of all respondents reported a 50% or
greater chance of stopping their policy. In sharp contrast, based on this insurer’s historical experience
with these same policies, approximately 60% will likely lapse, similar to the industry average. The survey
also elicits policyholders’ beliefs about specific reasons for lapsing and their beliefs that others will lapse.

In the second survey (LLI, 2018), we probe the lapsing motivation of LLI policyholders who lapsed
their policies between January 2012 and November 2017. Forgetfulness accounts for 37.8% of lapses

8See Read, Loewenstein, and Rabin (1999) for a survey on narrow framing, and Rabin and Weizsäcker (2009) for theo-
retical and empirical results on how narrow framing causes violations of stochastic dominance. Relatedly, in the context of
health insurance, there is evidence that people weigh different contract features unevenly (Abaluck and Gruber, 2011; Ericson
and Starc, 2012; Handel and Kosltad, 2015; and Bhargava, Loewenstein, and Sydnor, 2015). See also Baicker, Mullainathan,
and Schwartzstein (2015) for an insurance model where buyers make behavioral mistakes.

9In the context of unemployment insurance, Spinnewijn (2015) finds that the unemployed vastly overestimate how quickly
they will find work. Grubb (2009) shows that overconfidence accounts for the prevalence of three-part tariffs in cellular phone
plans, Malmendier and Tate (2005) show that managerial overconfidence can account for investment distortions, and Ortoleva
and Snowberg (2015) find that overconfidence can explain ideology and voter turnout. Bénabou and Tirole (2002) study
endogenously optimistic beliefs. And, more recently, Conlon, Pilossoph, Wiswall, and Zafar (2018) and Mueller, Spinnewijn,
and Topa (2019) find evidence of miscalibrated beliefs in the labor market.
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while liquidity shocks account for 15.4%.
In addition to the literature noted above, our paper is related to an emerging literature that studies how

firms respond to consumer biases.10 See Ellison (2005), Kőszegi (2014), and Grubb (2015) for surveys
of the behavioral industrial organization and behavioral contract theory literatures.

The rest of the paper is organized as follows. Section 2 describes key features of the life insurance
industry, with a focus on those stylized facts that challenge rational models. Section 3 presents evi-
dence on the mechanisms for lapsing based on the surveys we conducted with LLI. Section 4 presents
models of a competitive life insurance market in which consumers either forget to make payments or
underweight income shocks. Section 5 discusses other models, including present bias, and explains why
they are unable to explain the structure of life insurance policies. Section 6 concludes. The Appendix
contains an outline to Theorem 1 that requires solving a non-standard optimal control problem with in-
centive constraints and renegotiation proofness, as mentioned above. All proofs are contained in Online
Appendix A. Online Appendix B contains more detailed information about the LLI surveys, including
each question, responses tallied by question, as well as a comparison of responders and non-responders
attributes using matched administrative data. Online Appendix C contains derivations corresponding to
competing models referenced in the text. Online Appendix D collects data analysis related to the stylized
facts discussed in Section 2, including premium information from two national insurers, which can be
used to indirectly distinguish between the comparative static predictions across different models.

2 Key Stylized Facts

This section describes some important features of the life insurance industry. Rational expectations
models of reclassification risk face several challenges for being the primary explanation for life insurance
contracts and the patterns of lapsing observed in practice. This contrasts with health insurance markets,
where there is evidence for the importance of reclassification risk (Handel, Hendel, and Whinston 2015;
Diamond et al. 2018).

2.1 Substantial Lapsing

LIMRA, a large life insurer trade association, and the Society of Actuaries define an insurance policy
lapse as “termination for nonpayment of premium, insufficient cash value or full surrender of a policy,
transfer to reduced paid-up or extended term status, and in most cases, terminations for unknown reason”
(LIMRA 2011A, P. 7).

As Figure 1(a) shows, 29% of permanent insurance policyholders lapse within just three years of
first purchasing the policies; within 10 years, 57% have lapsed. In particular, nearly 88% of universal

10For example, Squintani and Sandroni (2007), Eliaz and Spiegler (2008), and Grubb (2009) study firms that face overcon-
fident consumers. DellaVigna and Malmendier (2004), Eliaz and Spiegler (2006), and Heidhues and Kőszegi (2010) consider
consumers who underestimate their time inconsistency. Eliaz and Spiegler (2011) and Bordalo, Gennaioli, and Shleifer (2016)
study competition in markets where consumer attention is endogenously determined.
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Figure 1: Annual Policy Lapse Rates by Different Characteristics
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Notes: Figure (a) shows annual lapses of permanent insurance policies by policy year (the number of years since
policy was purchased). Lapse rates are shown as a simple (unweighted) rate as well as weighted by face value.
Figure (b) shows annual lapse rates of permanent policies by size and policy year. Source: LIMRA (2012).

life policies, a popular type of permanent insurance, do not terminate with a death benefit claim. While
the majority of policies issued are permanent, the majority of face value now takes the term form (ACLI
2018, Table 7.2), which contractually expire after a fixed number of years if death does not occur. Term

policies lapse at an even higher annual rate, at about 6.4% lapse each year. In fact, for policies sold to
seniors at age 65, 74% of term and 76% of permanent (universal life policies) never pay a claim (Millian
USA 2004). As noted in Section 1, these lapse rates are substantially larger than predicted by realistic
calibrations of rational models.

2.2 Who Lapses

Using the comparatively old population in the Health and Retirement Study (HRS), where health shocks
are likely to be more prevalent, Fang and Kung (2012, P.11) find that lapses are uncorrelated with health
shocks. In fact, while not statistically significant at conventional levels, people who lapse after a health
shock tend to be less healthy than those who keep their policies.11 This result is more consistent with the
need for liquidity to cover medical expenses than with reclassification risk, according to which healthier
people would drop their coverage to buy a cheaper policy. Online Appendix D updates their analysis for
more recent waves in the HRS and, quite consistently, shows that lapsing tends to increase (not decrease)
after an increase in the number of health conditions, although this relationship is again not statistically
significant. Similarly, also using data from the HRS, three recent papers find that lapses of long-term

care policies are not driven by reclassification risk, but are correlated with other factors such as the need

11See, in particular, their Table 6 (p. 11), which shows the determinants of lapses in a multinomial logit regression. As they
argue, “individuals who have experienced an increase in the number of health conditions are somewhat more likely to lapse
all coverage, though the effect is not statistically significant.” In their structural model, which assumes that individuals choose
coverage rationally, they find that younger individuals (among the relatively old population in the HRS) mostly lapse due to
i.i.d. shocks. As individuals age, however, the importance of health shocks grows.
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Figure 2: Annual Lapse Rates by Age of Buyer
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Note: Annual lapse rate per policy year for whole life policies by the number of years since policy was purchased.
Each line represents an average of lapse rates within the shown age range. Source: LIMRA (2012).

for resources or cognitive ability (Konetzka and Luo 2011, Basu 2016, and Friedberg et al. 2017).
Additional evidence points to the role of liquidity needs. Figure 1(b) shows that lapses are more preva-

lent for smaller policies, which are typically purchased by lower-income households who are more ex-
posed to liquidity shocks. Similarly, Figure 2 shows that younger policyholders lapse almost three times
more often than older policyholders, presumably reflecting less precautionary savings when young. Con-
sistent with liquidity needs, lapse rates also vary with the business cycle, increasing during recessions.12

While this evidence is indirect, Section 3 directly tests the mechanisms behind lapses using LLI survey
data.

2.3 Lapsed-Supported Pricing

There is substantial evidence that insurers take profits from lapses into account when setting their pre-
miums. Dominique LeBel, actuary at Towers Perrin Tillinghast, defines a lapse-supported product as a

12See Outreville (1990) and Kuo, Tsai, and Chen (2003) for studies using aggregate data from the U.S. and Dar and Dodds
(1989) for British data. Lapse rates spike during times of recessions, high unemployment, and increased poverty. For example,
while $600B of coverage was dropped in 1993, almost $1 trillion was dropped in 1994 (a year with record poverty) before
returning to around $600B per year through the remainder of the decade. After the 2000 stock market bubble burst, over $1.5
trillion in coverage was forfeited, more than double the previous year (ACLI 2011). Similarly, Hoyt (1994) and Kim (2005)
document the importance of unemployment for surrendering decisions using firm-level data. Jiang (2010) finds that both
lapsing and policy loans are more likely after policyholders become unemployed. Liebenberg, Carson, and Dumm (2012)
find that households are twice more likely to surrender their policy after a spouse becomes unemployed. Fier and Liebenberg
(2013) find that the probability of voluntarily lapsing a policy increases after large negative income shocks, especially for
those with higher debt. Using detailed socio-demographic data from Germany, Inderst and Sirak (2014) find that income and
unemployment shocks are leading causes of lapses. They also find that the correlation between age and lapses disappears once
one controls for income shocks and wealth.
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“product where there would be a material decrease in profitability if, in the pricing calculation, the ulti-
mate lapse rates were set to zero (assuming all other pricing parameters remain the same).” (LeBel, 2006)
Precisely measuring the extent to which life insurance policies are lapse-supported is challenging since
insurers do not report the underlying numbers. One reason is regulatory: for determining the insurer’s
reserve requirements, the historic NAIC “Model Regulation XXX” discouraged reliance on significant
income from lapses for those policies surviving a certain threshold of time.13 A second motivation is
competitive: insurers are naturally tight-lipped about their pricing strategies.

Nonetheless, numerous pieces of evidence confirm the widespread use of lapse-supported pricing.
We start with some anecdotal evidence. Like economists, actuaries employed by major insurers write
papers and give seminars to their peers. The Society of Actuaries 2006 Annual Meetings held a session on
lapse-supported pricing that included presentations from actuaries employed by several leading insurance
companies and consultants. Kevin Howard, Vice President of Protective Life Insurance Company, for
example, demonstrated the impact of lapses on profit margins for a representative male client who bought
a level-premium secondary guarantee universal life policy, with the premium set equal to the average
amount paid by such males in August 2006 in the company’s sample. Assuming a zero lapse rate,
the insurer projected a substantial negative profit margin, equal to -12.8%. However, at a typical four
percent lapse rate, the insurer’s projected profit margin was +13.6%, or a 26.4 percentage point increase
relative to no lapsing.14 Similarly, at the 1998 Society of Actuaries meeting, Mark Mahony, marketing
actuary at Transamerica Reinsurance, presented calculations for a large 30-year term insurance policy
often sold by the company. The insurer stood to gain $103,000 in present value using historical standard
lapse rate patterns over time. But, if there were no lapses, the insurer was projected to lose $942,000 in
present value. He noted: “I would highly recommend that in pricing this type of product, you do a lot of
sensitivity testing.” (Society of Actuaries 1998, p. 11)15

In Canada, life insurance policies are also supported by lapsing.16 As A. David Pelletier, Executive
Vice President of RGA Life Reinsurance Company, argues:

What companies were doing to get a competitive advantage was taking into account these
higher projected future lapses to essentially discount the premiums to arrive at a much more
competitive premium initially because of all the profits that would occur later when people
lapsed. (Society of Actuaries 1998, P. 12)

Other anecdotal evidence comes from bankruptcy proceedings, which often force a public disclosure
13Most recently, principles-based regulations (PBR) have emerged, which are widely regarded to allow for more consider-

ation of policy lapses for purposes of reserve calculations. European insurers are generally allowed to consider lapse income
under Solvency II requirements (Society of Actuaries, 2015, p. 31).

14For less popular single-premium policies, the swing was lower, from -6.5% to +8.7%.
15In explaining the rise in secondary life insurance markets, where primary policies can be resold other firms, the National

Underwriter Company writes: “Policy lapse arbitrage results because of assumptions made by life insurance companies.
Policies were priced lower by insurance companies on the assumption that a given number of policies would lapse.” (NUC
2008, P.88)

16See, for example, Canadian Institute of Actuaries (2007).
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Figure 3: Actuarial Profits by Policy Year
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Notes: Figure (a): Each black line corresponds to a 20-year term policy with $500k coverage across 56 insurers
operating in the State of California. The expected actuarial profit in each period corresponds to the difference
between the present value of premiums and the expected death benefit up to and including that period. The calcu-
lations above assume a nominal interest rate of 6.5%. Results for different interest rates are qualitatively similar
and are presented in the Online Appendix D. Source: Compulife (2013) quotation system, retrieved July, 2013.
Figure (b): Each point represents the realized actuarial profit, calculated under the same assumptions, for 2,854
term policies of varying policy terms (10-year, 15-year, 20-year and 30-year) that lapsed between January 2012
and November 2017. Policy year represents the number of years before the policy lapsed for the shown point. Data
provider is discussed in Section 3. Online Appendix D further decomposes the results based on the length of the
policy terms.

of pricing strategies in order to determine the fair distribution of remaining assets between permanent life
policyholders with cash values and other claimants. For example, the insurer Conseco relied extensively
on lapse-based income for their pricing; they also bet that interest rates earned by their reserves would
persist throughout their projected period. Prior to filing for bankruptcy, they tried to increase required
premiums—in fact, tripling the amounts on many existing customers—in an attempt to effectively reduce
the cash values for their universal life policies (and, hence, reduce their liabilities). In bankruptcy court,
they rationalized their price spikes based on two large blocks of policies that experienced lower-than-
expected lapse rates (InvestmentNews 2011).17 Bankruptcy proceedings have also revealed substantial
lapse-based pricing in the long-term care insurance market (Wall Street Journal 2000); most recently,
several large U.S. long-term care insurers dropped their coverage without declaring bankruptcy, citing
lower-than-expected lapse rates, which they originally estimated from the life insurance market (Invest-
mentNews 2012).

To more formally evaluate the importance of lapse-supported pricing, we gathered data from Com-
pulife (2013) in 2013, a quotation system for American life insurance companies. In calculating in-

17Premiums for universal life permanent policies can be adjusted under conditions outlined in the insurance contract, usually
pertaining to changes in mortality projections. However, in this case, the bankruptcy court ruled that the Conseco contract did
not include provisions for adjusting prices based on lower interest rates or lapse rates. Conseco, therefore, was forced into
bankruptcy.
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surance profits, we used the most recent Society of Actuaries (2008) mortality table that existed before
2013. These tables are based on the actual mortality experience of insured pools to correct for selection;
they are also used by insurers for regulatory reporting purposes. Our calculations are discussed in more
detail in Online Appendix D. The results confirm an enormous reliance on lapse income. Consider, for
example, a standard 20-year term policy with $500,000 in coverage for a 35-year old male in good health
(“preferred plus” category). Figure 3(a) shows the projected actuarial profits for 56 such policies avail-
able in February 2013 in the state of California.18 All 56 insurers are projected to earn between $177
and $1,486 in present value if the consumer lapses between the fifth and the tenth years of purchasing
insurance while losing between $304 and $2,464 if the consumer never lapses. Figure 3(b) reports similar
calculations with the universe of term policies from LLI that lapsed between January 2012 and November
2017 (see Section 3). Out of the 2,854 policies that lapsed in this period, only 121 (about 4.2%) lapsed
with negative actuarial profits.

2.4 Expensive Borrowing

Instead of lapsing, permanent policies often allow policyholders to borrow against a cash value. Policy
loan balances totaled $135 billion in 2016 (ACLI, 2017, Table 2.1 and P. 10). Despite being fully col-
lateralized by the policy, these loans are usually more expensive than other forms of secured credit. For
example, during the first quarter of 2018, many cash-value plans offered fixed annual borrowing rates
around 8% (Gigante 2018). In contrast, a 30-year fixed-rate U.S. mortgage averaged around 4.25% at
the time, while a 10-year Treasury constant maturity rate was around 2.75%. As we show in Section
4.2.5, a model with rational expectations and liquidity shocks predicts that consumers with small enough
shocks lapse, while those with large shocks borrow from their policies. Moreover, policies offer loans
at subsidized rates to promote consumption smoothing. In contrast, empirically, loans are offered at
above-market rates up to a cap.

3 Survey Evidence

To elicit policyholder ex-ante beliefs about the probability of lapses and the ex-post reasons for lapsing,
we developed and implemented two surveys with customers from a large life insurer that wished to remain
anonymous (“LLI”). LLI is a large U.S. life insurer that regularly receives an A.M. Best Company rating
of A++. LLI life insurance is widely marketed to the general U.S. population. Over the years, LLI
has developed considerable expertise in surveying its clients, including how to word questions to avoid
confusion. The first survey (LLI, 2018) was delivered to all customers from LLI who purchased term life

18We chose California because it is the state with the largest number of available policies. The coverage level was set to the
Compulife software’s default level ($500,000). The extent of lapse-based pricing, however, is extremely robust to different
terms, ages, coverage levels, and states.
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insurance between October 2013 and November 2017.19 The second survey (LLI, 2018) was delivered to
all customers from LLI who lapsed on their life insurance policies between January 2012 and November
2017. Online Appendix B presents each survey in detail, including comparing key characteristics of
responders and non-responders using LLI matched administrative data.

3.1 New Buyers Survey

Our first survey examines the attitudes of recent buyers of term life insurance. The survey asked cus-
tomers up to eight questions regarding their beliefs about their chances of lapsing, potential reasons for
lapsing, beliefs about future income shocks, and their beliefs about other people lapsing. We also have
detailed matched administrative data about customers and their policies, including gender, age, risk class,
marital status, education, employment sector, job tenure, and policy type and size. The survey was ac-
cessible through an e-mail sent to all customers who purchased life insurance between October 2013
and November 2017 and were still active premium payers. Those who did not respond were sent two
reminders, the first one a week after the original email was sent and the second one a day before the
survey deadline.20 The response rate was around 13% (1,689 responders), in line with LLI’s typical rate.

For our purposes, survey Question 1 is the most important, which asks:

1. Your term life insurance policy has about N years left on it. What is the chance that you

might stop your policy (sometimes called lapsing) before then?

The value N was set equal to the actual value for that customer. As options, participants could choose
(with allocated percent of answers indicated along with number of responders):

1.1. I have not given it much thought (12.0%, 202 responders)

1.2. I do not currently anticipate stopping my policy (80.4%, 1357)

1.3. I currently anticipate stopping my policy with a 10 percent or lower chance (1.4%, 24)

1.4. I currently anticipate stopping my policy with a chance of 10 – 25 percent (1.7%, 28)

1.5. I currently anticipate stopping my policy with a chance of 25 – 50 percent (2.1%, 35)

1.6. I anticipate stopping my policy with a chance greater than 50 percent (2.4%, 41)

Notice that 94.2% of respondents21 indicated that they did not anticipate stopping their policy (80.4%)
or had not thought about it before (12.0%). Only 6.2% of responders believed that they had a 10% or
greater chance of lapsing, and only 2.4% indicated having a 50% or greater chance of stopping their

19We only survey those who purchased term policies because LLI permanent policies include a unique type of universal life
policy that is being used by LLI’s wealth management group as a tax-efficient investment vehicle for people who have maxed
out their tax preferred (e.g., 401(k), 403(b), or IRA) contributions. Officials at LLI pointed out that their unique investment-
focused permanent policies are substantially different from their other permanent policies. In contrast, all LLI’s term policies
provide a pure form of life insurance, allowing us to test our models more directly.

20Ideally, one would want to elicit beliefs at the moment of buying insurance. However, concerns about how asking these
questions might affect their purchasing decision prevented us from being able to implement this approach. We, therefore,
focused on customers who bought insurance recently.

21The 95% confidence interval is (93.1%, 95.3%).
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policy.22 In contrast, LLI’s historical experience with these policies suggests that lapses are similar to
the industry as a whole, averaging 5.2% per year during the past 15 years on these types of policies, with
an average face value of $516,585 (median $500,000). As a back-of-the-envelope calculation, suppose
policyholders face a constant lapse rate of 5.2% per year. Since policies in our sample have, on average,
16.2 years left, approximately 60% of these policies will lapse.23

Question 3, shown in more detail in Online Appendix B, asks a similar question but about the re-
spondent’s beliefs about the chance of other people people lapsing. Interestingly, while only 6.2% of
responders believed that they had a 10% or greater chance of themselves lapsing (Question 1), this value
increases to 18.6% for their beliefs of other insured people lapsing (Question 3). Moreover, the portion
indicating that they have not “given it much thought” increases from 12.0% for their own policies (Ques-
tion 1) to 67.1% for policies of other people (Question 3). Therefore, while most respondents appear to
be aware of the possibility of lapses, most do not believe that it is very relevant for their own situation.

We also asked the respondent’s beliefs that they would lapse broken down by three particular reasons:
(i) “because [they] will need the money, maybe due to lower income or increased expenses”; (ii) “due to
divorce or death of a spouse”; and (iii) “because [they] feel healthier than expected and would prefer to
purchase a different policy.” 81.9% of respondents indicated a 5% chance or less of stopping their policy
due to a need for money (63.6%) or had not thought about it before (18.3%). 89.7% of respondents
reported a 5% chance or less of stopping their policy due to divorce of death of a spouse (55.0%) or had
not thought about it before (34.7%). And 94.3% reported a 5% chance or less of stopping their policy
because they felt healthier than expected and would prefer to purchase a different policy (70.2%) or had
not thought about it before (24.1%).

We also asked customers about their income fluctuations. Out of the 1,689 survey respondents, 32.5%
reported an income loss in the last 5 years, whereas 42.8% estimated a 5% or greater chance “that at
some point in the next 5 years, your total household income would decrease substantially” and 27.4%
estimated a 10% or greater chance. The prevalence of income losses and their expectation, however,
did not translate into significant beliefs about lapsing. For those individuals indicating a 10% or greater
chance of a substantial income loss during the next 5 years, 90.4% indicated that they did not plan on
stopping their policy (80.3%) or had not thought about it before (10.1%). In fact, beliefs about future
income losses are not only uncorrelated with one’s beliefs about lapsing in general but also with beliefs
about lapsing due to income losses. These results suggest that individuals were not overconfident or
optimistic about future income shocks. Instead, they appeared not to take their beliefs about future
income shocks into account when evaluating their chances of future lapses, a finding that is consistent
with a narrow framing mechanism.

22These beliefs were consistent across types of policies, including 30-year terms, where a 94.7% of respondents indicated
that they did not anticipate stopping their policy (78.9%) or had not thought about it before (15.8%). Only 1.2% of those
holding a 30-year term policy indicated having a 50 percent or greater chance of stopping their policy.

23Taking into account the entire distribution of years left (rather than using the average) while keeping the assumption of a
constant annual 5.2% chance of lapsing, we find that approximately 57% of these policies would lapse.
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3.2 Recent Lapsers Survey

Our second survey was sent to 3,229 former LLI policyholders who lapsed their policies between January
2012 and November 2017. Maybe not surprisingly, the response rate was at lower than with active
customers (4.9 percent, or 157 responders), given the separation in relationship. For our purposes, survey
Question 1 is the most important, which asks:

1. You have recently canceled (or let “lapse”) your life insurance policy. Many people

cancel / lapse their policies for one or more of the reasons listed below. Which choice best

reflects your reason?

As options, participants could choose (with allocated percent of answers indicated):

1.1. My income decreased (7.6%, 12 responders)

1.2. I needed the money (1.3%, 2)

1.3. My family situation changed due to divorce (4.5%, 7)

1.4. My family situation changed due to death of spouse (0.6%, 1)

1.5. I recently retired (12.7%, 20)

1.6. I was healthier than expected and bought another policy (1.3%, 2)

1.7. I forgot to make my insurance premium payments (12.1%, 19)

1.8. I believe that I didn’t cancel my policy (12.7%, 20)

1.9. Other (please explain) (47.1%, 74)

Income or cost shocks (1.1 and 1.2) and forgetfulness (1.7 and 1.8) directly accounts for about 33.7%
of answers. Divorce or death of a spouse (1.3 and 1.4) accounts for 5.1% of the answers, while health
risk reclassification (1.6) accounts for 1.3%. Notice that the open-ended answer “Other” accounts for
almost half of answers at 47.1%. While somewhat subjective, many of the explanations for 1.9 can
be bucketed into one of the 1.1 - 1.8 answers including, in some cases, policyholders who accidentally
lapsed and wanted a chance to explain the details. Based on the answers, we also added a new answer:
“1.10. Family situation changed for reasons other than divorce or death of spouse.” So, we did our best to
recode the written explanations given for 1.9 to answers 1.1 - 1.9 and 1.10. The online data store presents
the original data file we were given by LLI, which includes the raw answers reported above, the written
explanations provided under “1.9 Other” and our subjective recoding, added as a separate column. Our
new mapping is as follows (with allocated percent of answers indicated):

1.1. My income decreased (8.3%, 13 responders)

1.2. I needed the money (7.1%, 11)

1.3. My family situation changed due to divorce (4.5%, 7)

1.4. My family situation changed due to death of spouse (0.6%, 1)

1.5. I recently retired (13.5%, 21)

1.6. I was healthier than expected and bought another policy (6.4%, 10)
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1.7. I forgot to make my insurance premium payments (23.1%, 36)

1.8. I believe that I didn’t cancel my policy (14.7%, 23)

1.9. Other (please explain) (12.8%, 20)

1.10 Family situation changed for reasons other than divorce or death of spouse (9.0%, 14)

Under the recoding map, income or cost shocks (1.1 and 1.2) account for 15.4 percent of lapses and
forgetfulness (1.7 and 1.8) accounts for 37.8 percent of lapses, thereby suggesting that most lapses are not
consistent with the rational model which predicts very little lapsing even in the presence of realistically
calibrated shocks (Section 1). While the sample size is small, the margin of error is still just 7.8%,
suggesting a large role for shocks and forgetfulness. Moreover, 82.5% (130 out of 157) responders
indicated that they did not purchase a new policy after their previous policy lapsed. Of those 17.5% (27
responders) that did, 9.1% (14) purchased a smaller policy while 8.4% (13) purchased a larger one.

4 Theory

The results from the surveys described in Section 3 indicate that two behavioral mechanisms—forgetting
to pay and unanticipated income shocks—play important roles in explaining empirical lapses. In this
section, we present competitive life insurance models in which policyholders display each of these two
behavioral mechanisms. Both models predict endogenous lapsing, with lapsers cross-subsidizing non-
lapsers. The models differ in terms of the possibility of borrowing from a policy. With forgetfulness,
equilibrium policies always lapse if the benefit is not paid. With income shocks, policies also allow for
loans. As noted in Section 2.4, policy loans total $135 billion in 2016.

4.1 Forgetting to Make a Payment

We first consider a market in which consumers may forget to make future payments. Our focus is on con-
sumers who do not anticipate that they may forget to pay the premium (i.e., they are “naive”). We discuss
the case of consumers who are aware that they may forget to make a payment (they are “sophisticated”)
in Subsection 4.1.4.

There are N ≥ 2 insurance firms indexed by j = 1, ...,N and a continuum of households.24 Each
household consists of one head (the “consumer”) who makes all the decisions and at least one heir. We
do not impose exogenous restrictions on the space of contracts. Since we are interested in explaining the
pattern of life insurance contracts observed in practice, it is important that policy lapses and lapse-based
pricing emerge endogenously in equilibrium, rather than through exogenous restrictions on the contract
space. The only constraints that firms in our model face when designing their contracts are due to legal

24We assume that firms maximize profit. In practice, some life insurance firms are “mutuals” that, in theory, operate in the
best interests of their customers. In a previous version of this paper (Gottlieb and Smetters, 2012), we show that, with perfect
competition, the equilibrium of our model remains unchanged even if some firms are fully paternalistic. With market power,
paternalistic firms may be able to sell different contracts than the ones offered by for-profits.
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or economic realism: consumers are allowed drop their policies (“one-sided commitment”)25 and can
forget, maybe strategically, to make a payment (asymmetric information).26

4.1.1 Timing

There are three periods. In period 1, consumers purchase an insurance policy. In period 2, each consumer
forgets to make the required payment with probability l ∈ (0,1). Then, each consumer chooses whether
to replace the old insurance policy by a new one. In period 3, each consumer dies with probability
α ∈ (0,1). To simplify notation, we assume that there is no discounting and normalize the net interest
rate to zero.

An insurance contract is a vector of (possibly negative) state-contingent payments

T j ≡
(

t1, j, tR
2, j, t

R,A
3, j , t

R,D
3, j , t

F,A
3, j , t

F,D
3, j

)
∈ R6,

where t1, j is the first-period payment; tR
2, j is the second-period payment for consumers who remember

(R) to pay (those who forget pay zero); and tR,A
3, j , tR,D

3, j , tF,A
3, j , and tF,D

3, j are the last-period payments for
consumers who are alive (A) or dead (D) conditional on whether they remembered (R) or forgot (F)

to make a payment in period 2. These state-contingent payments can be interpreted as follows. The
insurance contract specifies an immediate premium of t1, j and a future premium of tR

2, j. Consumers who
remember to pay the premium in period 2 receive −tR,A

3, j if they survive and −tR,D
3, j if they die in period

3. Those who forget to pay in period 2 receive −tF,A
3, j and −tF,D

3, j in period 3 instead. The difference
between payments in period 3 corresponds to a penalty for forgetting to pay the premium in period 2. A
firm’s expected profits from an insurance policy is the expected state-contingent payments it gets from
the consumer.

The timing of the game is as follows:

t=1: Each firm j = 1, ...,N offers a policy Tj. Consumers start with an initial wealth I1 > 0 and decide
which policy (if any) to accept. After they consume, firms offer new policies and consumers decide
whether to switch to a new policy.
t=2: Consumers earn an income I2 > 0 and, if they purchased a policy in period 1, forget to make the
required second payment with probability l ∈ (0,1). Forgetting to make an insurance payment means
that consumers pay zero in that case (tF

2, j = 0). Since we are assuming for simplicity that other assets are

25Whereas creditors owed repayment typically have legal authority to force two-sided commitment subject to bankruptcy
law, life insurers are generally unable to do so under standard legal doctrines pertaining to individual consumers (Keeton,
1970). Lack of commitment on the policyholder side is precisely why lapses can occur, both in the models considered here
and in the existing literature on reclassification risk.

26One could expand the model, allowing firms send messages reminding consumers to pay. This possibility would not
affect the equilibrium of our model, as firms would never choose to use such reminders. Since naive consumers do not think
that they will forget to pay, they would not accept worse contract terms in exchange for being reminded to make a payment. If
instead consumers were sophisticated, they would prefer contracts with reminders, which insure against the risk of forgetting
to pay.
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illiquid, this means that they consume their entire period-2 income cF
2, j = I2.27 Firms observe whether

the consumer made the payment but cannot tell whether a failure to pay was strategic or because the
consumer forgot.28 After consumption happens, firms offer new policies and consumers decide whether
to switch to a new policy.
t=3: Each consumer dies with probability α ∈ (0,1). Consumers who survive have income IA

3 > 0, and
those who die have income ID

3 ≥ 0, so that their expected income equals I3 ≡ αID
3 +(1−α)IA

3 .

4.1.2 Consumer Utility

Let uA(c) denote the utility of household consumption when the consumer is alive, and let uD(c) denote
the utility of bequests (the “joy of giving” resources to survivors). As usual, uA(c) and uD(c) are strictly
increasing, strictly concave, twice differentiable, and satisfy the Inada conditions: limc↘0 u′A(c) = +∞

and limc↘0 u′D(c) = +∞.
Since other assets are illiquid, there is a one-to-one mapping between state-contingent payments and

state-contingent consumption C j ≡
(

c1, j,cR
2, j,c

R,A
3, j ,c

R,D
3, j ,c

F,A
3, j ,c

F,D
3, j

)
, and there is no loss of generality in

assuming that a contract specifies a vector of state-contingent consumption rather than state-contingent
payments.29 Note that a contract could specify that consumers pay a fee and remain with their old
policy after missing a payment. However, as we will see, the equilibrium policy will endogenously
lapse after the consumer forgets to pay. Therefore, the model endogenously explains why policies do
not allow consumers to keep their policies after missing a payment. Because no payments are made
after a consumer lapses, the first-period premium, t1, j, corresponds to the lapse fee or, analogously, the
cross-subsidy from lapsers to non-lapsers.

4.1.3 Equilibrium

An equilibrium of the game is a vector of policies offered by each firm in periods 1 and 2, a consumer
acceptance decision in periods 1 and 2, and a consumer payment decision conditional on the policy and
on remembering to pay in period 2 with the following properties:

1. Each firm’s policy maximizes the firm’s expected profits in each period;

27The assumption of full illiquidity greatly simplifies the exposition and is consistent with previous work. Daily, Lizzeri
and Hendel (2008) and Fang and Kung (2010) also assume that no credit markets exist in order to generate lapses. Our results
remain valid if some (but not all) assets could be reallocated.

28The assumption that individuals are not subject to mortality risk in periods 1 and 2 is only made to simplify notation.
Our results would remain unchanged if individuals could die in all periods. Similarly, the assumption that individuals can
strategically forget to pay is made for realism only. Since the equilibrium policies with naive consumers will punish those
who forget to pay as harshly as possible, they cannot benefit from strategically missing a payment (this incentive constraint
does not bind).

29Specifically, t1, j = I1− c1, j is the premium paid in period 1, tR
2, j = I2− cR

2, j is the premium in period 2 if the consumer

remembers to make a payment. Similarly, −ts
D,J = cs,D

3, j − ID
3 is the death payment and −ts

A,J = cs,A
3, j − IA

3 is the payment in case

the consumer outlives the policy, where cs,D
3, j corresponds to the consumer’s bequest. Note that since the period-2 payment of

someone who forgets is zero, tR
2, j = I2.
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2. Each consumer chooses a policy that maximizes his/her perceived utility, randomizing with strictly
positive probabilities when multiple policies give the same perceived utility;

3. If a consumer remembers to pay, he/she chooses whether or not to pay to maximize his/her period-2
continuation utility.

Competition between firms forces at least two of them to offer policies that maximize the consumer’s
perceived utility subject to three types of constraints.

First, because firms do not know which consumers remembered to make the payment in period 2,
policies have to induce consumers to pay if they remember:

uA(cR
2, j)+αuD(c

R,D
3, j )+(1−α)uA(c

R,A
3, j )≥ uA(I2)+αuD(c

F,D
3, j )+(1−α)uA(c

F,A
3, j ). (IC)

This incentive compatibility constraint states that consumers must get a higher utility from paying than
from forgetting to pay, which entails consuming their entire income in period 2 and getting the same
consumption as those who forgot to pay in period 3.

Second, because of one-sided commitment, consumers cannot have a lower utility than what they
would get if they dropped their policy and recontracted with a new firm. The resulting (“renegotiation
proofness”) constraints will be described in detail below. Third, by a standard Bertrand argument, any
contract accepted with positive probability must give zero expected profits to the company offering it:

c1, j +(1− l)
[
cR

2, j +αcR,D
3, j +(1−α)cR,A

3, j

]
+ l
[
I2 +αcF,D

3, j +(1−α)cF,A
3, j

]
= I1 + I2 +(1−α) I3.

(Zero profits)
The renegotiation proofness constraints are specified recursively. We start with period 2, after the

consumer has either remembered (R) or forgotten (F) to pay. Let

U(w)≡max
cD,cA

αuD(cD)+(1−α)uA(cA) s.t. αcD +(1−α)cA = w (1)

denote the highest expected utility in period 3 given expected continuation income w. Renegotiation
proofness in period 2 requires that the consumer does not obtain a lower expected utility than his outside
option:

αuD(c
R,D
3, j )+(1−α)uA(c

R,A
3, j )≥U (I3) ( RPR)

and
αuD(c

F,D
3, j )+(1−α)uA(c

F,A
3, j )≥U (I3) . ( RPF )

We now move to period 1. Since the consumer believes that he will remember to make the payment
in period 2, the renegotiation proofness constraint in period 1 is

uA(cR
2, j)+αuD(c

R,D
3, j )+(1−α)uA(c

R,A
3, j )≥V, (RP1)
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where V is his outside option at the end of period 1, that is,

V ≡ max
c̃R

2 ,c̃
3,R
D ,c̃3,R

A

uA(c̃R
2 )+αuD(c̃

R,D
3 )+(1−α)uA(c̃

R,A
3 )

subject to

(1− l)
[
c̃R

2 +α c̃R,D
3 +(1−α) c̃R,A

3

]
+ l
[
I2 +α c̃F,A

3 +(1−α) c̃F,A
3

]
= I2 + I3 (Zero profitsR)

αuD(c̃
R,D
3 )+(1−α)uA(c̃

R,A
3 )≥U (I3) ( RPR)

αuD(c̃
F,D
3 )+(1−α)uA(c̃

F,A
3 )≥U (I3) ( RPF )

As usual, equilibrium pins down the consumption along the equilibrium path but not the consumer’s
strategy. Whenever a renegotiation proofness constraint binds in some state, there are both equilibria in
which the consumer lapses in that state and buys a new policy and equilibria in which the policy leaves
the consumer indifferent between lapsing or not (who may or may not lapse). For concreteness, we say
that the policy lapses in a state if the renegotiation proofness constraint binds in that state.

To summarize, any policy accepted by the consumer must solve the following equilibrium program:

max
(c1, j,cR

2, j,c
R,D
3, j ,c

R,A
3, j ,c

F,D
3, j ,c

F,A
3, j )

uA(c1, j)+uA(cR
2, j)+αuD(c

R,D
3, j )+(1−α)uA(c

R,A
3, j ) (2)

subject to (IC), (RP1), (RPR), (RPF ), and (Zero Profits).
In Online Appendix A, we formally show the equivalence between the equilibrium consumption and

the solution of program (2). When there are more than two firms, there exist equilibria in which some
firms offer contracts that are never accepted. However, because the equilibrium program has a unique
solution, the set of contracts accepted with positive probability in any equilibrium is unique. We therefore
omit the index j from contracts that are accepted with positive probability and refer to the solution of (2)
as the equilibrium consumption.

Before presenting the main result, it is helpful to consider the following auxiliary program to help
guide intuition:

max
c1,cR

2 ,c
R
3

uA(c1)+uA(cR
2 )+U(cR

3 )

subject to
c1

1− l
+ cR

2 + cR
3 =

I1

1− l
+ I2 + I3 (BC)

c1 ≤ I1 ( LC1)

cR
3 ≥ I3 ( LC2)

This auxiliary program corresponds to a standard consumption-savings problem, where (BC) is the bud-
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get constraint, 1− l is the interest rate between periods 1 and 2, (LC1) and (LC2) are liquidity constraints
that prevent the consumer from borrowing in periods 1 and 2, and U(·) is the expected last-period utility
as defined in equation (1).

The following lemma relates the auxiliary program to the equilibrium program:

Lemma 1. Let (c1,cR
2 ,c

R,A
3 ,cR,D

3 ,cF,A
3 ,cF,D

3 ) be the equilibrium consumption and let cR
3 ≡ αcR,A

3 +(1−
α)cR,D

3 denote the expected last-period consumption conditionally on remembering to pay. Then, (c1,cR
2 ,c

R
3 )

solves the auxiliary program. Moreover, u′A(c
F,A
3 ) = u′D(c

F,D
3 ) and cF,A

3 + cF,D
3 = I3.

Because a consumer would walk away from any contract that promised less future consumption than
the consumer’s future income, renegotiation proofness implies that the liquidity constraints (LC1) and
(LC2) must be satisfied. The previous lemma shows that individuals who remember to make the payment
get the smoothest consumption path consistent with the the ability to drop a policy.

If an individual forgets to make the payment, the policy endogenously lapses and the policyholder
loses the front load I1− c1 ≥ 0. The probability of remembering to pay, (1− l), plays the role of an
interest rate because the policyholder loses the entire front load if the policy lapses, which happens with
probability l. Therefore, firms are willing to trade a dollar of first-period consumption for 1

1−l dollars of
future consumption. If the front load is strictly positive, the equilibrium policy is lapse-based, meaning
that the insurance company makes money on those who lapse and loses money on those who do not lapse.
If the front load is zero, the equilibrium policy can be interpreted as a sequence of annual policies, since
the individual pays the actuarially-fair premium in each period. Since the front load is positive whenever
the first-period liquidity constraint does not bind, the equilibrium policy is lapse-based if the individual
has enough initial income or if the probability of remembering to pay (the “interest rate”), 1− l, is high
enough:

Proposition 1. The cross-subsidy between consumers who lapse and those who do not lapse is always

weakly positive (t1 ≡ I1− c1 ≥ 0). It is strictly positive if (1− l)u′(I1)< u′(I2).

Therefore, when consumers have enough initial income and the probability of forgetting to pay is high
enough, the equilibrium features a long-term policy that endogenously lapses whenever the individual
forgets to make a payment. The policy makes a positive profit from those who forget to pay and a
negative profit from those who make the payment. Otherwise, the equilibrium is analogous to purchasing
a sequence of annual policies, which are actuarially fair in each period.30

4.1.4 Sophistication

What would happen in this model if consumers were aware that they may forget to pay their premiums?
In Online Appendix A, we consider the same model as before, except that we assume that consumers have

30In Online Appendix A, we present comparative statics results involving the lapse fee. In particular, we show that the lapse
fee is increasing (decreasing) in the probability of forgetting to pay if the elasticity of intertemporal substitution of savings is
greater (smaller) than 1. Empirically, in Online Appendix D, we find suggestive evidence that lapse fees tend to increase in
the lapse probability.
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correct expectations about the probability that they forget to make the payment in period 2. We show that
there are either no lapses in equilibrium, or that firms make money on consumers who remember to pay
their premiums and lose money on those who forget. Moreover, if firms could commit to reminding
consumers to pay their bill, they would choose to do so.

The intuition for these counterfactual results is that sophisticated individuals value consumption after
they forget to pay the premium just as much as in states after they pay the premium. If we ignored
the incentive constraint, individuals would want to strategically forget to pay the premium in period
2, allowing them to consume their entire income in that period while getting the same consumption in
period 3. The equilibrium policy will then pay the smoothest consumption profile that is consistent with
incentive compatibility, which insures the consumer against the risk of a lower consumption after to
forgetting to pay. This means that the equilibrium policy transfers resources in the opposite direction
than when consumers are naive (and what is observed in practice). That is, the cross subsidy goes from
consumers who remember to pay to those who forget to pay the premium. Reminding consumers to pay
their bill entirely removes this risk, leading to a smooth consumption path.

To summarize, the assumption that consumers may forget to pay their premiums can only account for
the structure of life insurance policies observed in practice if they are not fully aware of this possibility.

4.2 Income Shocks

We now consider a model in which consumers underestimate some other “background” (or “income”)
shocks when purchasing life insurance. To highlight the underlying mechanism in a transparent way,
we focus on the simple case where consumers entirely disregard these shocks, and we contrast it with
the other polar (rational expectations) case where background shocks are perfectly taken into account.
To build intuition, we initially assume a single possible loss, which we relax later by allowing for a
continuum of (possibly heterogeneous) losses. As before, there are N ≥ 2 insurance firms indexed by
j = 1, ...,N and a continuum of consumers.

4.2.1 Timing

There are three periods: 0, 1, and 2. Period 0 is a pure contracting stage (no consumption) in which
each firm offers an insurance policy and consumers decide which one, if any, to purchase. Consumption
occurs in periods 1 and 2. In period 1, consumers suffer a loss with probability l that is not observable to
firms. In period 2, each consumer dies with probability α ∈ (0,1).31 To examine the role that lapses play
in providing liquidity, we assume, as before, that the consumer’s other assets are fully illiquid, so they
cannot be rebalanced after a loss.

31None of our results would change if we allowed for consumption in period 0. Similarly, the assumption that individuals
are not subject to mortality risk in period 1 is only made to simplify notation. Ruling out income shocks in period 2 also helps
the analysis, but can be substantially generalized.
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An insurance contract is a vector of (possibly negative) state-contingent payments

T j ≡
(

tS
1, j, t

NS
1, j , t

S
A, j, t

S
D, j, t

NS
A, j, t

NS
D, j

)
∈ R6,

where tS
1, j and tNS

1, j are payments in period 1 when the consumer does and does not suffer the income
shock, respectively. The variables tS

A, j, tS
D, j, tNS

A, j, and tNS
D, j denote the payments in period 2 when the

consumer is alive (A) or dead (D) conditional on whether he suffered an income shock (S) or not (NS)

in period 1. A natural interpretation of these state-contingent payments is as follows. Consumers pay
a premium tNS

1, j for insurance when they buy a policy in period 0. In period 1, they choose whether or
not to borrow from their policy. If they do not borrow, the insurance company pays −tNS

A, j if they survive
and −tNS

D, j if they die at t = 2. If they borrow from their policy, the insurance company pays −tS
A, j if they

survive and −tS
D, j if they die.

To be more concrete, the timing of the game is as follows:

t=0: Each firm j = 1, ...,N offers an insurance contract Tj. Consumers start with initial wealth W > 0 and
decide which contract, if any, to accept, randomizing with strictly positive probabilities between contracts
when indifferent.
t=1: Firms offer new contracts. Consumers make income I1 > 0, lose L dollars with probability l and
decide whether to switch to a new contract. If they do not switch, they choose whether to report an
income shock to the insurance company (i.e., they “borrow from the policy”). Consumers pay tNS

1, j if they
do not report a shock and tS

1, j if they do.
t=2: Each consumer dies with probability α ∈ (0,1). Households of consumers who survive have income
IA
2 > 0, and households of those who die have income ID

2 ≥ 0. Therefore, their expected income is
I2 ≡ αID

2 +(1−α)IA
2 . Households of consumers who reported a loss t = 1 are paid either −tS

A, j or −tS
D, j,

depending on whether the head of the household is alive (A) or dead (D). Those who did not report a
loss at t = 1 are paid either −tNS

A, j and −tNS
D, j.

As before, we do not impose any exogenous restrictions on the space of contracts. Our goal is
to understand when the equilibrium policies generate the patterns observed in practice, such as being
lapse-based and allowing for policy loans. It is therefore important that lapses and policy loans emerge
endogenously in equilibrium, rather than through exogenous restrictions on the contract space. We follow
the mechanism design terminology and say that a consumer “reports a loss to the insurance firm” with
the understanding that such a direct mechanism is equivalent to more realistic indirect mechanisms, in
which consumers borrow from their policies after an unobserved need for money. As in the model of
Subsection 4.1, we say that the policy lapses in a state if the renegotiation proofness constraint binds in
that state.

The utility of household consumption is uA(c) when the consumer is alive and uD(c) when the con-
sumer is dead (i.e., utility from bequests). It is convenient to work with state-contingent consumption
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C j ≡
(

cS
1, j,c

NS
1, j,c

S
A, j,c

S
D, j,c

NS
A, j,c

S
D, j

)
instead of state-contingent payments T j.32 Our key assumption is

that consumers do not take background risk into account when buying life insurance in period 0, so they
attribute probability zero to suffering an income shock at the contracting stage. Consumers, therefore,
only consider states in which background shocks do not occur when they evaluate contracts in period 0:

uA(cNS
1, j)+αuD

(
cNS

D, j

)
+(1−α)uA

(
cNS

A, j

)
.

We refer to this expression as the consumer’s “perceived utility.”33

4.2.2 Equilibrium

As in the model of Subsection 4.1, an equilibrium of the game is a vector of policies offered by each
firm in periods 0 and 1, a consumer acceptance decision in periods 0 and 1, and a report by the consumer
conditional on the policy and on the liquidity shock with the following properties:

1. Each firm’s policy maximizes the firm’s expected profits in each period;

2. Each consumer chooses a policy that maximizes his/her perceived utility, randomizing with strictly
positive probabilities when multiple policies give the same perceived utility;

3. Each consumer chooses whether or not to report an income shock to maximize his/her period-1
continuation utility.

As before, price competition forces firms to offer policies that maximize the consumer’s perceived utility
subject to zero profits, incentive compatibility, and renegotiation proofness constraints.

The zero profits condition is:

l
[
cS

1, j +αcS
D, j +(1−α)cS

A, j

]
+(1− l)

[
cNS

1, j +αcNS
D, j +(1−α)cNS

A, j

]
=W + I1 + I2− lL. (Zero Profits)

The incentive compatibility constraints require consumers to report the income shocks truthfully in
period 1. Those who experience the shock report it truthfully if the following constraint holds:

uA(cS
1, j)+αuD(cS

D, j)+(1−α)uA(cS
A, j)≥ uA(cNS

1, j−L)+αuD(cNS
D, j)+(1−α)uA(cNS

A, j). (ICS)

In words: borrowing must give consumers a higher utility than absorbing the loss. Similarly, those who

32The vector of state-contingent consumption is determined by cNS
1, j ≡W − tNS

1, j , cNS
A, j ≡ I− tNS

A, j, cNS
D, j ≡−tNS

A, j, cS
1, j ≡W −L−

tS
1, j, cS

A, j ≡ I− tS
A, j, and cS

D, j ≡−tS
D, j.

33Our results would not change if we had both positive and negative shocks as long as we assume that companies cannot
prevent consumers from buying additional coverage. Thus, our assumption is also consistent with consumers who decide how
much life insurance to buy according to their expected future incomes, rather than taking the whole distribution into account
(c.f., Eyster and Weizsäcker, 2011).
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do not experience the income shock do not report one if the following constraint holds:

uA(cNS
1, j)+αuD(cNS

D, j)+(1−α)uA(cNS
A, j)≥ uA(cS

1, j +L)+αuD(cS
D, j)+(1−α)uA(cS

A, j). (ICNS)

Let

V (w)≡ max
c1,cD,cA

{
uA(c1)+αuD(cD)+(1−α)uA(cA)

subject to c1 +αcD +(1−α)cA = w

}
(3)

denote the highest period-1 continuation utility that can be obtained with an expected continuation income
of w. The renegotiation proofness constraints state that consumers cannot obtain a utility below what they
could obtain by lapsing and buying another policy:

uA(cNS
1, j)+αuD(cNS

D, j)+(1−α)uA(cNS
A, j)≥ V (I1 + I2) (RPNS)

uA(cS
1, j)+αuD(cS

D, j)+(1−α)uA(cS
A, j)≥ V (I1 + I2−L) (RPS)

Any equilibrium policy accepted by the consumer must maximize the consumer’s perceived utility
subject to the constraints described above:

max(
cNS

1, j,c
NS
D, j,c

NS
A, j,c

S
1, j,c

S
D, j,c

S
A, j

)uA(cNS
1, j)+αuD

(
cNS

D, j

)
+(1−α)uA

(
cNS

A, j

)

subject to (Zero Profits), (RPNS), (RPS), and (ICS) and (ICNS). We refer to this program as the equilibrium

program.34 As in Subsection 4.1, the equilibrium program has a unique solution, so we can drop the
subscript j from the unique contract accepted in any equilibrium.

Let (c∗A,c
∗
D) denote the consumption vector that provides full insurance and costs the household’s

expected lifetime wealth:35

u′A(c
∗
A) = u′D(c

∗
D),

(2−α)c∗A +αc∗D =
W

1− l
+ I1 + I2.

As we will show below, a policy lapses after an income shock if the following inequality holds:

uA(c∗A)−uA(c∗A−L)≥ V

(
W

1− l
+ I1 + I2

)
−V (I1 + I2−L) , (4)

where V was defined in (3). If it does not hold, the individual borrows from the policy after an income
shock. Since consumption while alive is a normal good (dc∗A

dW > 0) and utility is concave, the expression on
the left is decreasing in wealth. The expression on the right is increasing in wealth. Therefore, wealthier
individuals are less likely to lapse after an income shock.

34See the online appendix for a formal discussion of the equivalence between the equilibrium consumption and the solution
of the equilibrium program.

35By the strict concavity of the utility function and the Inada conditions, (c∗A,c
∗
D) exists and is unique. Note also that (c∗A,c

∗
D)

only depends on exogenous variables.
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To understand condition (4), suppose the consumer has a state-independent utility uA = uD = u, so
that the condition becomes:

u
(

I1 + I2−L
2

)
≥

u
(

W
1−l+I1+I2

2

)
+u
(

W
1−l+I1+I2

2 −L
)

2
.

This condition holds if W
1−l is small enough and, for W

1−l < L, when u is concave enough. It always fails
if W

1−l is large enough. This is because lapsing allows the individual to smooth consumption at the cost
losing the front load (which, as we will show, equals W

1−l ). When the consumer does not have enough
initial income W or has a sufficiently concave utility function, his front-load payments are not enough to
prevent him from lapsing after an income shock.

Given an equilibrium consumption, let

π
NS ≡W + I1 + I2−

[
cNS

1 +αcNS
D +(1−α)cNS

A

]
denote the insurer’s expected profits from a consumer who does not experience a shock, and let

π
S ≡W + I1−L+ I2−

[
cS

1 +αcS
D +(1−α)cS

A

]
denote the insurer’s expected profits from a consumer who experiences a shock.

The following proposition presents the main properties of the equilibrium contract:

Proposition 2. In the essentially unique equilibrium, policyholders never lapse if they do not have an

income shock – i.e., (RPNS) does not bind. Moreover, if equation (4) holds, then

1. Policyholders lapse after an income shock: (RPS) binds;

2. Perfect smoothing conditional on each shock: u′A(c
s
1) = u′D(c

s
D) = u′A(c

s
A) for s = S,NS;

3. Lapse-supported pricing: πS =W > 0 and πNS =− l
1−lW < 0.

If equation (4) does not hold, then:

4. Policyholders do not lapse: (RPS) does not bind;

5. Perfect smoothing after a loss: u′A(c
S
1) = u′D(c

S
D) = u′A(c

S
A);

6. Insufficient saving if no loss: u′D(c
NS
D ) = u′A(c

NS
A )< u′A(c

NS
1 ); and

7. Policy loans after an income shock: cNS
1 − cS

1 < L, cNS
D > cS

D, and cNS
A > cS

A; and

8. Policy loans at above-market rates: πS > 0 > πNS.
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We first interpret Proposition 2 and then present a sketch of its proof. Recall that consumers lapse
after an income shock if (4) holds and borrow from their policies if (4) fails.

Consider the case in which consumers lapse after an income shock first, so that (RPS) binds. Property
2 states that the equilibrium features full insurance with respect to mortality and perfect smoothing be-
tween periods (but not with respect to the income shock). Property 3 states that the insurer gets a positive
profit of W on consumers who get an income shock (and therefore lapse), and a negative profit of− l

1−lW

on those who do not get an income shock (and therefore do not lapse). That is, not only does the policy
fail to insure against the income loss, it exacerbates the loss since consumers also lose the front load W

when they lapse. This amount is used to cross subsidize those who do not have an income shock.
Now, consider the case in which (RPS) does not bind, so that policyholders do not lapse. Property

7 states that individuals who suffer a loss borrow from the policy. That is, consumption in period 1
falls by less than the income lost in exchange for a reduction in future consumption. Conditionally on
the loss, they are fully insured (property 5). The equality in property 6 states that consumers are fully
insured against mortality risk conditional on not suffering an income shock, whereas the inequality states
that policy loans charge an interest rate higher than the market rate (normalized to zero). As a result,
the insurance policy discourages borrowing relative to efficient consumption smoothing, which would
equate the marginal utility of consumption across periods. Property 8 states that firms obtain positive
profits on consumers that borrow from their policies and negative profits from those that do not. Since,
in expectation, insurance companies break even, all profits from policy loans are competed away by
charging a lower price from policyholders who do not experience an income shock and, therefore, do not
borrow from their policies. Therefore, the policy allows consumers to borrow at above-market interest
rates.

4.2.3 Sketch of Proof to Proposition 2

We now provide a sketch of the proof to Proposition 2 (see Online Appendix A for a formal proof).
Since the equilibrium policy maximizes the consumer’s perceived utility, which assigns probability zero
to an income shock, it will transfer as much resources from states after a shock occurs to states in which
the shock does not occur. Therefore, the relevant incentive problem consists of inducing consumers to
report a shock truthfully, not preventing those who did not suffer a shock from misreporting one. We
will, therefore, ignore constraint (ICNS) for now and verify that it holds later. That is, we consider the
following relaxed program:

max
(cNS

1 ,cNS
D ,cNS

A ,cS
1,c

S
D,c

S
A)

uA

(
cNS

1

)
+αuD(cNS

D )+(1−α)uA(cNS
A )

subject to

uA(cS
1)+αuD(cS

D)+(1−α)uA(cS
A)≥ uA(cNS

1 −L)+αuD(cNS
D )+(1−α)uA(cNS

A ) (ICS)
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uA(cS
1)+αuD(cS

D)+(1−α)uA(cS
A)≥ V (I1 + I2−L) (RPS)

uA(cNS
1 )+αuD(cNS

D )+(1−α)uA(cNS
A )≥ V (I1 + I2) (RPNS)

l
[
cS

1 +αcS
D +(1−α)cS

A

]
+(1− l)

[
cNS

1 +αcNS
D +(1−α)cNS

A

]
≤W + I1 + I2− lL. (Zero Profits)

Note that, generically, either (ICS) or (RPS) do not bind, depending on whether absorbing a loss while
keeping the contract or signing a new contract is more attractive:

uA(cNS
1 −L)+αuD(cNS

D )+(1−α)uA(cNS
A )

{
>

<

}
V (I1 + I2−L).

We start with the case where (ICS) does not bind, so that there is full insurance conditional on each
realization of the shock:

u′A(c
s
1) = u′D(c

s
D) = u′A(c

s
A)

for s = S,NS. If this were not the case, it would be possible to save resources by smoothing consumption
between these states, allowing us to raise consumption in the first period, thereby increasing the con-
sumer’s perceived utility. Since there is also full insurance after the consumer lapses, we can rewrite the
renegotiation proofness constraints as:

cS
1 +αcS

D +(1−α)cS
A ≥ I1 + I2−L. (RPS)

and
cNS

1 +αcNS
D +(1−α)cNS

A ≥ I1 + I2 (RPNS)

We claim that (RPS) must bind, so consumers lapse after experiencing an income loss. If this were
not the case, we would be able to increase the agent’s perceived utility by shifting consumption from a
state after the shock to a state in which the shock does not occur. Substituting (RPS) into the zero profits
constraint, we obtain:

cNS
1 +αcNS

D +(1−α)cNS
A =

W
1− l

+ I1 + I2. (5)

Substituting (5) into (RPNS) verifies that consumers who do not experience a loss do not lapse:

cNS
1 +αcNS

D +(1−α)cNS
A =

W
1− l

+ I1 + I2 > I1 + I2.

We now verify that the omitted constraint (ICNS) is satisfied. Notice that because there is full insur-
ance conditional on the realization of the shock, (ICNS) becomes:

V
(

cNS
1 +αcNS

D +(1−α)cNS
A

)
≥ uA(cS

1 +L)−uA(cS
1)+V

(
cS

1 +αcS
D +(1−α)cS

A

)
.
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Substituting (5) and the binding renegotiation proofness constraint (RPS), we obtain:

V

(
W

1− l
+ I1 + I2

)
≥ uA(cS

1 +L)−uA(cS
1)+V (I1 + I2−L) . (6)

Since (RPS) binds and cS
1, cS

A, and cS
D maximize the agent’s expected utility conditional on the loss, we

must have
V (I1 + I2−L) = αuD(cS

D)+(2−α)uA(cS
1),

where we used the fact that cS
1 = cS

A. Use this expression to rewrite the terms on the RHS of (6) as

uA(cS
1 +L)+V (I1 + I2−L)−uA(cS

1) = uA(cS
1 +L)+αuD(cS

D)+(1−α)uA(cS
1). (7)

Since cS
1 +L+αcS

D +(1−α)cS
1 = I1 + I2, it follows that

uA(cS
1 +L)+αuD(cS

D)+(1−α)uA(cS
1)≤ V (I1 + I2)< V

(
W

1− l
+ I1 + I2

)
,

where the last inequality uses the fact that V is strictly increasing. Using (7) again verifies that the (6)
holds.

We now move to the case where (RPS) does not bind and, for the moment, ignore (RPNS), which can
be verified afterwards. The relaxed program becomes:

max
(cNS

1 ,cNS
D ,cNS

A ,cS
1,c

S
D,c

S
A)

uA

(
cNS

1

)
+αuD(cNS

D )+(1−α)uA(cNS
A )

subject to

uA(cS
1)+αuD(cS

D)+(1−α)uA(cS
A)≥ uA(cNS

1 −L)+αuD(cNS
D )+(1−α)uA(cNS

A ) (ICS)

l
[
cS

1 +αcS
D +(1−α)cS

A

]
+(1− l)

[
cNS

1 +αcNS
D +(1−α)cNS

A

]
≤W + I1 + I2− lL. (Zero Profits)

The results then follow from the FOCs of this program. To understand why the equilibrium policy
induces excessive saving relative to full insurance (property 6), start from an allocation that provides full
insurance for consumers who do not experience a shock, u′A(c

NS
1 ) = u′A(c

NS
A ) = u′D(c

NS
D ), and consider the

effect of shifting consumption from period 1 to period 2 by a small amount δ > 0. This perturbation does
not affect the total consumption, leaving (Zero Profits) unchanged. Moreover, it has second-order effects
on the objective. However, this perturbation relaxes (ICS) by[

−u′A(c
NS
1 −L)+αu′D(c

NS
D )+(1−α)u′A(c

NS
A )
]

δ =
[
u′A(c

NS
A )−u′A(c

NS
1 −L)

]
δ ,

which is positive since cNS
A = cNS

1 > cNS
1 −L. Intuitively, shifting consumption away from period 1 in-

creases the cost not to borrowing after an income shock. Consumers are fully aware of the intertemporal
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wedge induced by the equilibrium policy. Nevertheless, without this wedge, it is costlier to induce them
to borrow after an income shock, so any firm that attempts to offer a contract that smooths inter-temporal
consumption would be unable to price it competitively.

To conclude, Proposition 2 established that when all consumers are subject a single loss L, the equi-
librium either involves policy loans at above market rates or the policy lapses after the loss. We now
turn to the more realistic case where consumers are subject to a continuum of (possibly heterogeneous)
losses and show that, not only do the insights from the single-loss model generalize, but the equilibrium
contract becomes more realistic, providing policy loans up to a cap at above-market rates. Consumers
with small losses borrow from their policies, whereas those with large enough losses lapse.

4.2.4 Continuum of Losses

We now consider the more realistic case in which consumers are subject to multiple losses. Losses are
continuously distributed according to a CDF F with full support in the interval [0, L̄] where 0< L̄< I1+I2.
To simplify notation, we assume that consumers have a state-independent utility function: u(c) = uA(c) =

uD(c). As before, we assume that consumers believe they will not lapse, meaning that their beliefs assign
full mass to L = 0. Since all consumers have the same beliefs in period 0, the model allows them to have
heterogeneous loss distributions (not observed by firms). In that case, F denotes the distribution of losses
in the population.

Let c1(L) denote the consumption in period 1 conditional on loss L ∈ [0, L̄]. Similarly, let cA(L)

and cD(L) denote the consumption in period 2 if the individual is alive and the bequests upon death,
conditional on loss L. The following theorem shows the main properties of the equilibrium:

Theorem 1. There exits τ ∈ [0, L̄] such that the consumer does not lapse if L < τ and lapses if L > τ .

Moreover:

1. c1(L) = cD(L) = cA(L) =
I1+I2−L

2 for all L > τ .

2. c1(L)< cD(L) = cA(L) for all L < τ .

3. c1(L)−L is non-decreasing.

4. Profits are non-decreasing in L.

5. When the lapse region is non-empty (τ < L), insurance companies make a profit of W on each

consumer who lapses and lose an average of W
1−F(τ) among those who do not lapse.

Theorem 1 shows how the properties from the model with a single loss generalize to the case of a
continuum of possible losses. Consumers who suffer large losses lapse and buy a new policy, obtaining
full insurance (property 1). Those with small losses borrow from their policies, so their period-1 con-
sumption c1(L) falls by less than the loss itself L (property 3). Policy loans are provided at above-market
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rates, generating insufficient savings among those who do not lapse (property 2) and causing profits to be
increasing in the size of the loan (property 4). Moreover, insurance is lapse-based (property 5).

The proof of Theorem 1 is interesting in itself, since renegotiation proofness introduces a pure state
constraint, which makes the resulting optimal control problem non-standard. We provide a formal treat-
ment and proof in Online Appendix A along a sketch in the Appendix. Our approach can be useful to
other researchers interested in solving mechanism design problems with both incentive and renegotiation
proofness constraints, even without behavioral components (as in our analysis of the rational expectations
case below).

In general, the equilibrium policy does not not have a closed-form solution. However, in the special
case of log utility and a uniform distribution, the equilibrium is remarkably simple:

Proposition 3. Let L∼U [0, L̄] and let u(c) = lnc. There exists τ ∈ [0, L̄] such that

c1(L) =

{
I−τ

2 if L < τ

I−L
2 if L > τ

,

and

cA(L) = cD(L) =

{
I−τ

2 exp
(
2 τ−L

I−τ

)
if L < τ

I−L
2 if L > τ

.

In this case, the equilibrium policy allows consumers to borrow up to an amount τ , which fully
compensates the income shock, keeping current consumption constant in exchange for a reduction in
future consumption. Loans are offered at above-market interest rates (which have been normalized to
zero), so that future consumption falls by more than the loss itself: c′A(L) = c′D(L)<−1 for L < τ . The
loan is capped at τ , and policyholders with losses greater than τ lapse, losing the front load W .

4.2.5 Rational Expectations

We conclude our analysis of the model of income shocks with the case of consumers with rational expec-
tations. The model is the same as in Subsection 4.2.2, except that, in period 1, consumers anticipate that
they will incur a loss L according to the continuous distribution with a CDF F described previously.36

The following proposition establishes the main properties of the equilibrium contract:

Proposition 4. When consumers have rational expectations, there exits τ ∈ [0, L̄] such that the consumer

lapses if L < τ and does not lapse if L > τ . Moreover:

1. c1(L) = cD(L) = cA(L) =
I1+I2−L

2 for all L < τ;

2. c1(L)> cD(L) = cA(L) for all L > τ;

3. c1(L)−L is non-decreasing;

36In the rational expectations case, heterogeneity in losses could lead to adverse selection. We rule out this channel by
assuming that consumers are homogeneous (or, analogously, that firms know each consumer’s loss distribution).
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4. When the lapse region is non-empty (τ > 0), insurance companies make a profit of W for each

consumer that lapses and lose an average of W
F(L) among consumers who do not lapse.

The proposition shows that lapses and policy loans have the opposite pattern when consumers have
rational expectations. The equilibrium policy sets a floor---rather than a cap---on the amount that can be
borrowed from the policy, so that individuals with small losses lapse, whereas those with larger losses
borrow from their policies. Policy loans are subsidized, so that individuals have excessive consumption in
period 1 relative to efficient consumption smoothing. These predictions are inconsistent with the pattern
of life insurance policies observed in practice.

To understand the intuition behind Proposition 4, suppose losses are observable and consumers can
commit not to drop their policies, so that the equilibrium program does not have to satisfy incentive com-
patibility and renegotiation proofness constraints. With rational expectations, the equilibrium contract
provides full insurance against all shocks---i.e., consumers are fully compensated for each loss without
having to repay in the future. Of course, these policies are not incentive compatible when losses are
not observed since consumers would pretend to have incurred a large loss so as to increase their current
consumption. It also violates renegotiation proofness for consumers with small enough losses, who have
to cross subsidize those with large losses. Thus, when we incorporate these two constraints, equilibrium
policies offer subsidized loans: consumers have to repay part of it to maintain incentive compatibility
but are given below-market interest rates to insure against losses. With below-market interest rates, con-
sumers who take up smaller loans subsidize those with large loans, causing renegotiation proofness to
bind at the bottom.

To summarize, the key incentive aspect in the rational expectation model is the provision of insurance
against unobservable liquidity shocks, which causes policies to offer loans against large shocks at subsi-
dized rates and causes those with the lowest shocks to lapse. In contrast, in the naive model considered
earlier, consumers believe that they will not have any losses. So, the insurer would like to charge as much
as possible from everyone who gets a positive loss (since consumers think that such states would not
happen). This would correspond to charging an infinitely high interest rate for everyone who experiences
a loss. But an infinitely high interest rate would induce consumers to pretend that they did not experience
a loss. Thus, to restore incentive compatibility, the firm charges an above market, but still finite, inter-
est rate. This disproportionately hurts consumers with larger losses, who now cross subsidize others by
paying above-market interest rates. Thus, renegotiation proofness binds at the top (i.e., those with large
enough losses).37

37Assuming that some consumers are aware of possible losses and some are not does not affect our previous results. In this
case, firms screen consumers by offering two policies: consumers who are unaware of their income shocks would pick the
policies characterized in Subsection 4.2.4, while consumers with rational expectations would take the policies characterized
in this subsection (the incentive compatibility constraints between rational and behavioral consumers would not bind).
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4.3 Inefficiency and Secondary Markets

We believe that the appropriate efficiency criterion in the models considered previously takes into account
the true probability of forgetting to pay a premium and of getting an income shock. Therefore, we say that
an allocation is efficient if there is no other allocation that increases the expected utility of consumers---
evaluated according to the true distributions---without decreasing the expected profit of any firm.

Because consumers are risk averse and insurance companies are risk neutral, any efficient allocation
equalizes the marginal utility of consumption across all states. In the forgetfulness model (Section 4.1),
firms do not observe whether a consumer remembered to pay, only if he/she paid. Therefore, allocations
must incentivize consumers to pay when they remember to do so. Similarly, in the model of differential
attention with income shocks (Section 4.2), firms do not observe the loss of each household, so allocations
must induce consumers not to misrepresent their losses. An allocation is constrained efficient if there is no
other incentive compatible allocation that increases the expected utility of consumers without decreasing
the expected profit of any firm.

The equilibrium in the (empirically-relevant) naive version of the forgetfulness model is inefficient
since consumption falls after the consumer fails to pay. Similarly, the equilibrium in the (empirically-
relevant) naive version of the model with income shocks is inefficient, since consumption is decreasing in
the loss. While the inefficiency in these models is not surprising given the presence of private information,
the equilibria are also constrained inefficient.38

It is natural to ask which regulation could improve efficiency in these markets. In a previous version
of this paper (Gottlieb and Smetters, 2012), we describe the effects from introducing a secondary market
for life insurance policies. In a secondary market, individuals may resell their policies to risk-neutral
firms, who then become the beneficiaries of such policies. In the rational model with reclassification
risk, a secondary market reduces efficiency by undermining dynamic risk pooling (Daily, Hendel, and
Lizzeri, 2008). With unanticipated income shocks, however, consumers are able to obtain a smoother
consumption stream by renegotiating on the secondary market. In the long run, firms anticipate that
lapse-based profits will be arbitraged away in the secondary market.39 As a result, they offer policies that
are neither front-loaded nor lapse-based. Nevertheless, because consumers do not anticipate background
shocks, there is still imperfect consumption smoothing as consumption falls after the shock. Still, in the

38The sophisticated versions of these models (Subsections 4.1.4 and 4.2.5) obtain the point on the Pareto frontier associated
with zero profits. As discussed in Subsection 4.1.4, the constrained efficient allocation in the forgetfulness model insures
consumers against the risk of forgetting to pay. In contrast, the equilibrium with naive consumer maximally exacerbates the
loss after forgetting to pay, inducing consumers to lapse. Similarly, as discussed in Subsection 4.2.5, the equilibrium of the
rational expectations model of income shocks provides subsidized loans to reduce the risk of income shocks. In contrast, in
the differential attention model, the equilibrium exacerbates the effect of of income shocks by providing above-market rates,
effectively transferring consumption from the states with large losses (where marginal utility is high) to those with small losses
(where marginal utility is low).

39On February 2, 2010, the American Council of Life Insurance, representing 300 large life insurance companies, released a
statement asking policymakers to ban the securitization of life settlement contracts. Life insurance industry organizations have
also organized media campaigns warning the public and investors about life settlements. The opposition to life settlements
contrasts with some other markets, where firms encourage the development of secondary markets. The market for initial
public offerings, for example, would be substantially smaller without the ability to resell securities.
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long run, firms earn zero profits in both primary and secondary markets, while consumers are better off.
However, in the short run, the introduction of a secondary market makes consumers better off and primary
market insurers worse off. It is, therefore, not surprising that the life insurance industry has waged an
intense lobbying effort aimed at state legislatures, where life insurance is regulated in the United States,
to try to ban life settlement contracts. Of course, when lapses are due to forgetting to pay, a secondary
market does not help. Instead, to deal with forgetfulness, regulators could impose other rules on lapses,
including mandatory reminders and a penalty for policies with “excessive” lapses.

A potential political-economy issue with interventions in these markets is that consumers who do
not think they will not lapse may not favor regulations that appear to undermine cross-subsidies that
are favorable to these consumers. Therefore, the same behavioral trait that introduces inefficiency in
the competitive equilibrium also prevents consumers from supporting the implementation of efficiency-
enhancing regulations.40 More specifically, whether consumers would support such a regulation depends
on why they think firms offer these contracts. Consumers who are overconfident about their rationality,
thinking that others will lapse but they will not, would be against these regulations. Consumers who
do not update their beliefs based on the policies they are offered will also not see a benefit from these
regulations. If consumers can be fully educated about their lapse probabilities, there is a scope for
stronger efficiency-enhancing regulations. However, if it is easier to educate consumers who are less
likely to lapse then, again, there might be limited support for such policies.

5 Other Potential Explanations

Our goal in this paper is to study mechanisms that can simultaneously explain both the demand and the
supply side of the life insurance market. There are several possible reasons for a consumer to prefer
a lapse-based life insurance policy, holding the design of policies fixed, or for a life insurer to offer a
lapse-based policy, taking consumers’ decisions as fixed. It is considerably harder to provide a unified
account of both consumers’ and the life insurers’ decisions. Section 2 already discussed shortcomings of
rational models in detail. This section discusses other potential explanations.

5.1 Present Bias

A large literature in behavioral economics has established that illiquid assets may be valuable to time-
inconsistent individuals because they serve as commitment devices (c.f., DellaVigna and Malmendier,
2004, and Heidhues and Kőszegi, 2010). Since front-loaded premiums reduce the incentive to drop the
policy, time inconsistency may, at first glance, explain why insurance policies are front loaded. Moreover,
one might think that consumer naiveté could explain why individuals lapse on their policies.

40See, for example, Warren and Wood (2014) and Bisin, Lizzeri, and Yariv (2015) for interesting analyses of political
economy based on behavioral economics models.
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Gottlieb and Zhang (2019) study a very general contracting model with partially naive present-biased
individuals and show that the equilibrium consumption converges to the one that maximizes their long-
term preferences.41 As they show, equilibrium contracts offer two repayment options in each period to
exploit consumer naiveté. Consumers think they will make most of the payments in the immediate future,
but end up delaying until the last period, when they consume less than the efficient amount. Since periods
in quasi-hyperbolic models are thought to be very short, typically no more than a day (O’Donoghue and
Rabin, 2015), and life-insurance contracts usually last for many years, their model predicts essentially
the same consumption path as in the model with no present bias. Therefore, present bias by itself cannot
generate more lapses than with time-consistent consumers.

Moreover, controlling for impatience, lapses happen more often for time-consistent agents than for
naive time-inconsistent agents. The reason is that a naive time-inconsistent agent mispredicts his future
choices, overestimating the value from keeping the contract. As a result, that agent is actually less
tempted to lapse.42 In sum, present-biased preferences by themselves cannot explain why life insurance
policies are front loaded or why individuals lapse.

5.2 Fixed Costs

Insurance companies may also charge surrender fees in order to recover sales commissions paid to bro-
kers. But there are two problems with this explanation for the life insurance pricing observed in practice.

First, commissions are endogenous. An explanation for front-loaded premiums that is based on the
fact that sales commissions are front loaded needs to justify why commissions are front loaded in the
first place. For example, commissions paid to wealth managers are fairly proportional to the actual fee
revenue collected from clients.43 With life insurance, the bulk of the commission payment is typically
made in the first couple years of the policy, except if the policy is surrendered in the first year.44 In fact,
consistently with our model, paying front-loaded commissions may be an effective way to encourage
insurance brokers to sell to consumers with short-term horizons.

Second, since the bulk of commissions are paid early into the policy, lapse fees paid by consumers
should be constant after the first few years, when commissions are no longer paid. That is, according

41With sophisticated consumers and a delay between signing the contract and consuming (as with the contracting periods in
the models above), the equilibrium maximizes the individual’s long-term preferences (see DellaVigna and Malmendier, 2004
and Heidhues and Kőszegi, 2010).

42Controlling for impatience, sophisticated agents are also less likely to lapse than time-consistent agents because they
value commitment.

43With broker-dealers, the client typically pays an initial fee along with a trailer fee that is proportional to ongoing assets
under management. With fiduciary financial advisors, clients typically pay just a fee that is proportional to their assets being
managed. In both cases, the wealth advisor collects a proportion of the revenue collected from clients, and so the product
provider does not actually lose money if the client leaves. Moreover, all wealth managers are incentivized to keep clients
active because of the potential to collect ongoing fees.

44For example, Genworth Life’s (2011) commission schedule reads: “In the event a withdrawal or partial surrender (above
any applicable penalty-free amount) is granted or a policy or contract is surrendered or canceled within the first twelve (12)
months after the date specified in paragraph (c) of this Section 2, compensations will be charged back to you as follows: 100%
of compensations paid during that twelve (12) month period.”
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to the commissions explanation, insurance firms should not obtain different actuarial profits if rational
consumers lapse after 5, 10, or 20 years since they do not have to pay any additional commissions after
the first few years. Empirically, however, actuarial profits are substantially different if policies lapse after
5, 10, or 20 years (see Figure 3).

Another potential reason for insurance companies to charge large surrender fees is to compensate
for the cost of liquidating their investments. An insurer with more predictable lapses can obtain higher
returns on its portfolio by making more illiquid investments. However, consumers with rational expecta-
tions about their liquidity needs value the flexibility of being able to recover some of their front-loaded
payments when needed. Therefore, the optimal surrender fee should balance the gain to the insurance
company’s portfolio against the cost of preventing policyholders from adjusting their consumption after
liquidity shocks.45

To test this prediction, we collected detailed whole life insurance policy data from two national insur-
ance companies, MetLife and SBLI.46 It is widely documented that younger individuals are more likely
to be liquidity constrained, and age is a frequently-used proxy for the presence of liquidity constraints.47

Online Appendix D outlines the data collection and results in detail. The results are inconsistent with
the rational model with the cost of liquidating investments. Younger individuals face higher surrender
fees (Online Appendix D, Figure 6). The differences by age are statistically significant and economically
large. While a 20-year-old policyholder who surrenders after 5 years would not collect any cash value, a
70-year-old who surrenders after 5 years collects about 30% of the amount paid in excess of actuarially-
fair prices. Moreover, because larger policies require more liquid assets to be held by insurers in order to
repay those who surrender, and because larger policies are typically purchased by wealthier individuals
with lower liquidity needs, we should expect surrender fees to increase with policy size. In practice,
surrender fees weakly decrease with policy size (Online Appendix D, Figure 7).48

45A similar argument can be made about rational models based on reclassification risk. As Online Appendix C documents,
younger people are quite likely to remain healthy; health shocks only become material at older ages. Because younger
individuals tend to be more liquidity constrained, the cost of preventing them from adjusting their consumption after a liquidity
shock is relatively high. In Online Appendix C, we extend the models of Hendel and Lizzeri (2003), Daily, Hendel, and Lizzeri
(2008), and Fang and Kung (2010) by adding an initial period in which consumers are subject to an unobservable liquidity
shock. Consumers are then subject to liquidity shocks in the first period, health shocks in the second period, and mortality
risk in the third period—a stylized representation of the fact that health shocks are more important later in life. We show that
the reclassification risk model predicts that policies should not charge a positive lapse fee if the individual decides to lapse
early on. The reason is that lapse fees exist to penalize agents who lapse due to favorable health shocks, thereby ensuring that
the pool remains balanced. Charging a lapse fee for non-health related shocks is inefficient, as it exacerbates the consumer’s
demand for money and undermines the amount of insurance provision. So, consumers who are more likely to suffer liquidity
shocks—e.g., younger consumers and those who buy smaller policies—should face lower surrender fees.

46The choice of these two firms was dictated by data availability.
47See, for example, Jappelli (1990), Jappelli, Pischke, and Souleles (1998), Besley, Meads, and Surico (2010), and Zhang

(2017).
48The decreasing relationship between surrender fees and coverage can be explained if costs are constant rather than pro-

portional to the size of the policy. This explanation, however, cannot account for the strong decreasing relationship between
age and surrender fees.
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6 Conclusion

This paper documents that there is substantial lapsing in the life insurance market and lapse-supported
pricing. We argued, both empirically and theoretically, that the rational model cannot explain key observ-
able features of the life insurance market: direct survey evidence of anticipated lapse rates by new buyers
as well as reasons for lapses by recent lapsers; the lack of positive correlation between lapses and health;
the sheer amount of lapses relative to a realistically calibrated rational models; and, the counterfactual
predictions about the life insurance policy structure including the pattern of surrender fees, the structure
of policy loans, and the direction of cross-subsidies between consumers. We study several mechanisms
that can potentially account for these salient features. Two mechanisms jointly account for a small ma-
jority of lapses: (i) consumers forgetting to pay their premiums or (ii) underestimating the likelihood of
needing money during the policy period. They can also account for the structure of policies, theoretically.

References

Abaluck, Jason, and Jonathan Gruber. 2011. “Choice Inconsistencies among the Elderly: Evidence
from Plan Choice in the Medicare Part D Program.” American Economic Review, 101(4): 1180-1210.
American Council of Life Insurers, 2011, 2012, 2015, 2017, 2018. Life Insurers Fact Book. Washing-
ton, DC.
Baicker, Katherine, Sendhil Mullainathan, and Joshua Schwartzstein, 2015. “Behavioral Hazard in
Health Insurance,” Quarterly Journal of Economics, 130 (4): 1623-1667.
Barberis, Nicholas, Ming Huang, and Richard Thaler, 2006. “Individual Preferences, Monetary Gam-
bles, and Stock Market Participation: A Case for Narrow Framing,” American Economic Review 96:
1069-1090.
Basu, Rashmita, 2016. “Lapse of Long-Term Care Insurance Coverage in the US.” Working Paper,
Texas A&M Health Science Center.
Bénabou, Roland and Jean Tirole, 2002. “Self-Confidence and Personal Motivation.” Quarterly Jour-
nal of Economics, 117(3): 871-915.
Bénabou, Roland and Jean Tirole, 2016. “Mindful Economics: The Production, Consumption, and
Value of Beliefs,” Journal of Economic Perspectives, 30 (3), 141-163.
Besley, Timothy, Neil Meads, and Paolo Surico, 2008. “Household external finance and consumption.”
Working Paper, London School of Economics, Bank of England, and London Business School.
Bhargava, Saurabh, George Loewenstein, and Justin Sydnor, 2015. “Do Individuals Make Sensible
Health Insurance Decisions? Evidence from a Menu with Dominated Options,” NBER Working Paper
No. 21160.
Bisin, Alberto, Alessandro Lizzeri and Leeat Yariv, 2015. “Government Policy with Time Inconsistent
Voters,” American Economic Review, 105(6): 1711–1737

34



Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer, 2016. “Competition for Attention.” Review of
Economic Studies, 83(2): 481-513.
Compulife, 2013. Individual Agent Version. https://compulife.com/product-pricing/individual-agent-
version/ [URL last checked: 2021/01/09].
Conlon, John J., Laura Pilossoph, Matthew Wiswall, and Basit Zafar, 2018. “Labor Market Search
With Imperfect Information and Learning,” Working Paper.
Canadian Institute of Actuaries, 2007. “Lapse Experience under Universal Life Level Cost of Insur-
ance Policies.” Research Committee Individual Life Subcommittee Report.
Conning Research & Consulting, 2009. “Life Settlements, It’s A Buyer’s Market for Now.” Report.
Daily, Glen, Igal Hendel, and Alessandro Lizzeri, 2008. “Does the Secondary Life Insurance Market
Threaten Dynamic Insurance?” American Economic Review Papers and Proceedings, 98: 2, 151-156.
DellaVigna, Stefano, and Ulrike Malmendier, 2004. “Contract Design and Self-Control: Theory and
Evidence,” Quarterly Journal of Economics 119: 353-402.
Diamond, Rebecca, Michael J. Dickstein, Timothy McQuade and Petra Persson, 2018. “Take-Up,
Drop-Out, and Spending in ACA Marketplaces.” NBER Working Paper 24668.
Doherty, Neil and Georges Dionne, 1994. “Adverse Selection, Commitment, and Renegotiation: Ex-
tension to and Evidence from Insurance Markets,” Journal of Political Economy, 102(2): 209-235.
Doherty, Neil and Hal J. Singer, 2002. “The Benefits of a Secondary Market For Life Insurance Poli-
cies.” The Wharton School, Financial Institutions Center, WP 02-41.
Eggleston, Jonathan and Robert Munk. “New Worth of Households: 2014.” Census Department,
2018.
Ellison, Glenn, 2005. “Bounded Rationality in Industrial Organization,” in Whitney Newey, Torsten
Persson, and Richard Blundell eds., Advances in Economics and Econometrics: Theory and Applications,
Ninth World Congress (Cambridge, UK: Cambridge University Press, 2005).
Eliaz, Kfir and Ran Spiegler, 2006. “Contracting with Diversely Naive Agents,” Review of Economic
Studies, 73(3): 689-714.
—–, 2008. “Consumer Optimism and Price Discrimination,” Theoretical Economics, 3: 459-497.
—–, 2011. “On the strategic use of attention grabbers,” Theoretical Economics, 6: 127–155.
Ellison, Glenn, 2005. “A Model of Add-On Pricing.” Quarterly Journal of Economics, 120(2): 585 -
637.
Ericson, Keith M. 2011. “Forgetting We Forget: Overconfidence and Prospective Memory.” Journal of
the European Economic Association, 9(1), 43-60.
Ericson, Keith M. and Amanda Starc, 2012. “Heuristics and Heterogeneity in Health Insurance Ex-
changes: Evidence from the Massachusetts Connector,” American Economic Review, 102(3): 493-97.
Eyster, Erik and Georg Weizsäcker, 2011. “Correlation Neglect in Financial Decision-Making.” Work-
ing Paper, London School of Economics and University College London.
Fang, Hanming and Edward Kung, 2010. “The Welfare Effect of Life Settlement Market: The Case
of Income Shocks,” NBER Working Paper 15761.

35



—–, 2012. “Why Do Life Insurance Policyholders Lapse? The Roles of Income, Health and Bequest
Motive Shocks,” NBER Working Paper 17899.
Fier, Stephen G. and Andre P. Liebenberg, 2013. “Life Insurance Lapse Behavior,” North American
Actuarial Journal, 17(2): 153-167.
Friedberg, Leora, Wenliang Hou, Wei Sun and Anthony Webb. “Lapses in Long-Term Care Insur-
ance.” Working Paper # 2017-08, Schwartz Center for Economic Policy Analysis (SCEPA), The New
School.
Gabaix, Xavier and David Laibson, 2006. “Shrouded Attributes, Consumer Myopia, and Information
Suppression in Competitive Markets,” Quarterly Journal of Economics 121: 505-540.
Genworth Life Insurance Company, 2011. “Commission Schedule.” Dated May 19, 2011.
Gigante, Shelly, 2018. “Life insurance: Treat cash value with care.” MassMutual, Blog.
https://blog.massmutual.com/post/life-insurance-treat-cash-value-with-care. [Last checked: 9/22/2018]
Grubb, Michael, 2009. “Selling to Overconfident Consumers,” American Economic Review, 99(5):
1770-1807.
—–, 2015. “Overconfident Consumers in the Marketplace,” Journal of Economic Perspectives, 29(4):
9-36.
Hambel, Christopher, Holger Kraft, Lorenz Schendel, and Mogens Steffensen, 2016. “Life Insur-
ance Demand under Health Shock Risk.” Journal of Risk and Insurance, 84 (4): 1171 - 1202.
Handel, Benjamin R. and Jonathan T. Kolstad, 2015. “Health Insurance for ‘Humans’: Information
Frictions, Plan Choice, and Consumer Welfare,” American Economic Review, vol. 105(8): 2449-2500.
Handel, Benjamin, Igal Hendel, and Michael D. Whinston, 2015. “Equilibria in Health Exchanges:
Adverse Selection vs. Reclassification Risk” Econometrica, 83(4): 1261-1313.
Health and Retirement Study (various years), RAND Biennial Data for years 1994, 1996, 1998, 2000,
2002, 2004, 2006, 2008, 2010 and 2012, [https://hrsdata.isr.umich.edu/data-products/rand], RAND HRS
Family Data 2014 [https://hrsdata.isr.umich.edu/data-products/rand-hrs-family-data-2014], and RAND
HRS Detailed Imputations File 2016 [https://hrsdata.isr.umich.edu/data-products/rand-hrs-detailed-imputations-
file-2016]. Produced and distributed by the University of Michigan with funding from the National Insti-
tute on Aging (grant number NIA U01AG009740). [last checked: 01/09/2021]
Hendel, Igal and Alessandro Lizzeri, 2003. “The Role of Commitment in Dynamic Contracts: Evi-
dence from Life Insurance.” Quarterly Journal of Economics, 118(1): 299-327.
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Appendix: Outline of Proof to Theorem 1

Let I ≡ I1 + I2 denote the individual’s total future income at the time of contracting. To keep the nota-
tion close to the optimal control literature, we associate each possible loss with a “type” t. Types are
distributed according to a differentiable PDF f with full support in the interval of possible losses [0,T ],
where 0 < T < I. For each possible loss t ∈ [0,T ], let c(t) denote the consumption in period 1, let cA(t)

denote the consumption in period 2 if the individual is alive, and let cD(t) denote the bequests in period
2 (i.e., the resources repaid if the consumer dies). Let V (t) ≡ αu(cD (t))+ (1−α)u(cA (t)) denote the
continuation payoff of a consumer who gets a loss of t.

Since firms do not observe the loss, contracts must satisfy the incentive-compatibility (IC) constraint:

u(c(t))+V (t)≥ u(c(t̂)− t + t̂)+V (t̂) ∀t, t̂.

It is helpful to work with each type’s indirect utility U (t) ≡ u(c(t)) +V (t) . As usual in mechanism
design, we can characterize the consumer’s incentive compatibility constraint in terms of an envelope
condition and a monotonicity condition. Formally, IC holds if and only if

U̇ (t) =−u′ (c(t)) and c(t)+ t is non-decreasing in t.

Therefore, incentive compatibility alone has the following implications. The amount paid in period 1
(I1− c(t)− t) is decreasing in the loss, meaning that people with larger income shocks pay less in period
1. This lower payment is associated with a lower future consumption: V̇ (t) = −u′ (c(t)) [1+ ċ(t)] ≤ 0.
Intuitively, since types with larger shocks borrow more in period 1, they have to repay what they borrowed
in period 2.

To obtain the renegotiation proofness constraint, note that the best contract that an individual can
obtain if he lapses perfectly smooths his remaining income: cA = cD = I−t

2 . Therefore, the renegotiation
proofness constraint is:

U (t)≥ 2u
(

I− t
2

)
∀t.

The equilibrium contract must provide full insurance in the second period: cD(t) = cA (t) =: c2(t)

(otherwise, it is possible be possible to keep the same promised continuation utility at a lower cost).
Using the definition of the indirect utility, we can write the zero profits constraint as:∫ [

c(t)+u−1 (U (t)−u(c(t)))+ t
]

f (t)dt ≤W + I.

As in Lemma 2, the equilibrium must maximize the utility conditional on no loss subject to the
constraints above:

max
c,U

U (0)
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subject to
U̇ (t) =−u′ (c(t)) , (IC)

U (t)≥ 2u
(

I− t
2

)
, (RP)

∫ [
c(t)+u−1 (U (t)−u(c(t)))+ t

]
f (t)dt ≤W + I, (Zero Profits)

and c(t)+ t non-decreasing.
We follow the standard approach of ignoring the monotonicity constraint, which can be verified ex-

post. It is convenient to work with the dual program that minimizes the cost of providing perceived utility
U (0):

min
c,U

∫ T

0

[
c(t)+u−1 (U (t)−u(c(t)))+ t

]
subject to

U̇ (t) =−u′ (c(t)) , (IC)

U (t)≥ 2u
(

I− t
2

)
, (RP)

U (0)≥ ū. (8)

This is an optimal control problem with state variable U and control variable c. Equation (RP) is a
pure state inequality constraint, since it involves the state variable U and “time” t but not the control vari-
able c. Pure state constraints pose some challenges to the analysis of the solution, because they impose
indirect constraints to the path of the control. Here, in any interval in which (RP) binds, the individual
lapses and consumes half his future income in each period. Intuitively, at any point immediately before
(RP) binds, the individual’s period-1 consumption must be less than half his income (his utility must be
growing at a lower rate than his outside option). Similarly, at any point immediately after (RP) binds, his
period-1 consumption must exceed half his income.

In the Online Appendix A, we solve this program in detail. The first key result shows that period-1
consumption never exceeds the consumption that perfectly smooths income:

u(c(t))≤ U (t)
2

. (9)

Second, we show that if (RP) binds for one type, it must also bind for all higher types. Along with
the characterization of incentive compatibility, this means that policy loans are provided up to a cap.
Individuals with small losses borrow from their policies whereas those with large losses lapse. The third
key result shows that (9) holds with equality if and only if (RP) binds. That is, policy loans are provided
at above-market rates so that individuals under-consume in period 1 relative to perfect smoothing.
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ONLINE APPENDICES

Appendix A: Proofs

Characterization of Equilibrium

In Subsections 4.1.3 and 4.2.2, we stated and informally described the equivalence between the equilib-
rium consumption and the solution of the equilibrium program.

Lemma 2. Consider either the model of forgetting to repay (Subsection 4.1.3) or the model of income

shocks (Subsection 4.2.2). A set of state-dependent consumption
{

C j
}

j=1,...,N and a set of acceptance

and payment decisions is an equilibrium of the game if and only if:

1. At least two offers are accepted with positive probability,

2. All offers accepted with positive probability solve the equilibrium program, and

3. All offers that are not accepted give consumers a perceived utility lower than the solutions of the

equilibrium program.

Since firms get zero profits in equilibrium, when there are more than two firms, there exist equilibria
in which some firms offer contracts that are never accepted. An equilibrium of the game is essentially

unique if consumption in any contract accepted with positive probability is the same in all equilibria. An
equilibrium of the game is symmetric if consumption in all contracts accepted with positive probability is
the same: if C j and C′j′ are accepted with positive probability, then C j = C′j′ . The next lemma establishes
existence, uniqueness, and symmetry of the equilibrium:

Lemma 3. Consider either the model of forgetting to repay (Subsection 4.1.3) or the model of income

shocks (Subsection 4.2.2). There exists an equilibrium. Moreover, the equilibrium is essentially unique

and symmetric.

Lemma 3 justifies the approach in the paper of omitting the index j from contracts that are accepted
with positive probability.

Proof of Lemma 2

We establish the result for the model in which individuals forget to repay. The proof for the model with
income shocks is analogous and therefore omitted.

The proof follows a standard Bertrand argument. Necessity:
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1. First, suppose no offer is accepted in equilibrium. Then, a firm can get positive profits by offering full
insurance conditional on remembering to pay and no insurance if the individual forgets to pay at
a price slightly above actuarially fair. Since the perceived utility function is concave (consumers
are risk averse), we can ensure that consumers buy the policy by taking prices to be close enough
to actuarially fair. Next, suppose only one offer is accepted. If this offer yields strictly positive
profits, another firm can profit by offering a policy with a slightly higher consumption, thereby
attracting all customers. If the only offer that is accepted in equilibrium yields zero profits, there
are two possibilities. If the policy gives a strictly positive perceived utility to consumers, the firm
offering it can obtain strictly positive profits by charging a slightly higher price (say, at period
1). If, instead, the policy gives a zero perceived utility to consumers, because consumers are risk
averse, the firm offering it can obtain strictly positive profits by shifting to a policy that offers full
insurance conditional for those who remember to pay and no insurance for those that forget to pay.
Therefore, at least two offers must be accepted with positive probability in equilibrium.

2. Because consumers put zero weight on forgetting to pay when they are choosing which policy to buy,
they do not take into account any states that happen after they forget to pay. Therefore, policies
must maximize the consumers’ perceived utility (which attributes probability zero to forgetting to
pay) subject to the incentive constraint.

Firms are willing to provide insurance policies as long as they obtain non-negative profits. If an
offer with strictly positive profits is accepted in equilibrium, another firm can obtain a discrete gain
by slightly undercutting the price of this policy. Moreover, if the policy does not maximize the
consumer’s perceived utility subject to the zero-profits constraint, another firm can offer a policy
that yields a higher perceived utility and extract a positive profit.

3. If a consumer is accepting an offer with a lower perceived utility, either a policy that solves Program
(2) is being rejected (which is not optimal for the consumer) or it is not being offered (which is not
optimal for the firms).

To establish sufficiency, note that whenever these conditions are satisfied, any other offer by another firm
must either not be accepted or yield non-positive profits.

Proof of Lemma 3

We establish the result for the model in which individuals forget to repay. The proof for the model with
income shocks is analogous and therefore omitted.

From Lemma 2, the equilibrium must solve the following program:

max
(c1, j,cR

2, j,c
R,D
3, j ,c

R,A
3, j ,c

F,D
3, j ,c

F,A
3, j )

uA(c1, j)+uA(cR
2, j)+αuD(c

R,D
3, j )+(1−α)uA(c

R,A
3, j ) (10)
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subject to:

c1, j +(1− l)
[
cR

2, j +αcR,D
3, j +(1−α)cR,A

3, j

]
+ l
[
I2 +αcF,D

3, j +(1−α)cF,A
3, j

]
≤ I1 + I2 +(1−α) I3.

(Zero profits)
uA(cR

2, j)+αuD(c
R,D
3, j )+(1−α)uA(c

R,A
3, j )≥ uA(I2)+αuD(c

F,D
3, j )+(1−α)uA(c

F,A
3, j ). (IC)

uA(cR
2, j)+αuD(c

R,D
3, j )+(1−α)uA(c

R,A
3, j )≥V, (RP1)

αuD(c
R,D
3, j )+(1−α)uA(c

R,A
3, j )≥U (I3) ( RPR)

and
αuD(c

F,D
3, j )+(1−α)uA(c

F,A
3, j )≥U (I3) . ( RPF )

By a duality argument, the solution of this program solves:

min
(c1, j,cR

2, j,c
R,D
3, j ,c

R,A
3, j ,c

F,D
3, j ,c

F,A
3, j )

c1, j +(1− l)
[
cR

2, j +αcR,D
3, j +(1−α)cR,A

3, j

]
+ l
[
I2 +αcF,D

3, j +(1−α)cF,A
3, j

]
subject to

uA(c1, j)+uA(cR
2, j)+αuD(c

R,D
3, j )+(1−α)uA(c

R,A
3, j )≥ ū,

uA(cR
2, j)+αuD(c

R,D
3, j )+(1−α)uA(c

R,A
3, j )≥ uA(I2)+αuD(c

F,D
3, j )+(1−α)uA(c

F,A
3, j ), (IC)

uA(cR
2, j)+αuD(c

R,D
3, j )+(1−α)uA(c

R,A
3, j )≥V, (RP1)

αuD(c
R,D
3, j )+(1−α)uA(c

R,A
3, j )≥U (I3) ( RPR)

and
αuD(c

F,D
3, j )+(1−α)uA(c

F,A
3, j )≥U (I3) . ( RPF )

for some ū ∈R. Letting vA ≡ u−1
A and vD ≡ u−1

D , we can rewrite this program in terms of utils rather than
consumption:

min
(u1, j,uR

2, j,u
R,D
3, j ,u

R,A
3, j ,u

F,D
3, j ,u

F,A
3, j )

vA
(
u1, j
)
+(1− l)

[
vA

(
uR

2, j

)
+αvD

(
uR,D

3, j

)
+(1−α)vA

(
uR,A

3, j

)]
+l
[
I2 +αvD

(
uF

D, j

)
+(1−α)vA

(
uF

A, j

)]
subject to

u1, j +uR
2, j +αuR,D

3, j +(1−α)uR,A
3, j ≥ ū,

uR
2, j +αuR,D

3, j +(1−α)uR,A
3, j ≥ uA(I2)+αuF,D

3, j +(1−α)uF,A
3, j , (IC)

uR
2, j +αuR,D

3, j +(1−α)uR,A
3, j ≥V, (RP1)

αuR,D
3, j +(1−α)uR,A

3, j ≥U (I3) ( RPR)
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and
αuF,D

3, j +(1−α)uF,A
3, j ≥U (I3) . ( RPF )

It is straightforward to verify that the set of vectors satisfying the linear constraints is non-empty (in
fact, we will construct one such vector below). Therefore, this program corresponds to the minimization
of a continuous function in a non-empty and compact set, so a solution exists. Moreover, because the
objective function is strictly convex and the feasibility set is convex, the solution is unique.

Proof of Lemma 1

We start with the renegotiation proofness constraint in period 1:

uA(cR
2 )+αuD(c

3,R
D )+(1−α)uA(c

3,R
A )≥V, (RP1)

where the outside option V solves the subprogram:

V ≡ max
c̃R

2 ,c̃
3,R
D ,c̃3,R

A

uA(c̃R
2 )+αuD(c̃

R,D
3 )+(1−α)uA(c̃

R,A
3 )

subject to

(1− l)
[
c̃R

2 +α c̃R,D
3 +(1−α) c̃R,A

3

]
+ l
[
I2 +α c̃F,D

3 +(1−α) c̃F,A
3

]
≤ I2 + I3 (Zero profits)

αuD(c̃
R,D
3 )+(1−α)uA(c̃

R,A
3 )≥U (I3) ( RPR)

αuD(c̃
F,D
3 )+(1−α)uA(c̃

F,A
3 )≥U (I3) ( RPF )

Note that (RPF ) must bind in the program above (otherwise, it would be possible to increase the objective
by transferring consumption from c̃F,D

3 or c̃F,A
3 to c̃R,D

3 or c̃R,A
3 ).

There must be perfect consumption smoothing after forgetting to pay—i.e., u′D(c̃
F,D
3 ) = u′A(c̃

F,A
3 )—

, which minimizes the cost of providing utility U(I3) in constraint (RPF ). There must also be perfect
consumption smoothing after remembering to pay, which, not only minimizes the cost of providing utility
U(I3) in (RPS) but also maximizes the objective function.

Let cR
3 ≡ αcR,D

3 +(1−α)cR,A
3 denote the average consumption in period 3 when the individual re-

members to pay (which he believes will happens with probability 1). Using the previous observations,
we can rewrite the outside option as

V ≡max
c̃R

2 ,c̃
R
3

uA(c̃R
2 )+U(c̃R

3 ) (11)

subject to
c̃R

2 + c̃R
3 ≤ I2 + I3 (12)
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c̃R
3 ≥ I3 (13)

where (12) is the zero profits condition and (13) is the renegotiation proofness constraint (RPR).
Recall that the equilibrium program is:

max
(c1,cR

2 ,c
R,D
3 ,cR,A

3 ,cF,D
3 ,cF,A

3 )

uA(c1)+uA(cR
2 )+αuD(c

R,D
3 )+(1−α)uA(c

R,A
3 )

subject to (Zero Profits), (RPR), (RPF ), (RP1), and (IC).
As in the renegotiation program considered above, (RPF ) must bind. Otherwise, it would be possible

to relax both (IC) and (Zero Profits) by reducing cF,D
3 or cF,A

3 , while not affecting any other constraint or
the objective.

Note also that solution must provide full insurance against mortality conditional on forgetting to
pay: u′D(c

F,D
3 ) = u′A(c

F,A
3 ) with αcF,D

3 +(1−α)cF,A
3 = I3. This follows from the fact that the solution

must minimize the cost of providing utility U (I3) in case of forgetting (so as to satisfy RPF ), and this
is obtained by providing full insurance. Substituting these conditions in the equilibrium program, we
obtain:

max
c

uA(c1)+uA(cR
2 )+αuD(c

R,D
3 )+(1−α)uA(c

R,A
3 )

subject to
c1

1− l
+ cR

2 +αcR,D
3 +(1−α)cR,A

3 ≤ I1

1− l
+ I2 + I3 (Zero profits)

αuD(c
R,D
3 )+(1−α)uA(c

R,A
3 )≥U (I3) ( RPR)

uA(cR
2 )+αuD(c

R,D
3 )+(1−α)uA(c

R,A
3 )≥V (RP1)

uA(cR
2 )+αuD(c

R,D
3 )+(1−α)uA(c

R,A
3 )≥ uA(I2)+U (I3) (IC)

By the same argument as in the renegotiation program, there must be full insurance against mortality
conditionally on remembering to pay:

u′D(c
R,D
3 ) = u′A(c

R,A
3 ).

Then, (RPR) becomes
αcR,D

3 +(1−α)cR,A
3 ≥ I3.

Letting, cR
3 ≡ αcR,D

3 +(1−α)cR,A
3 , we can rewrite the program as

max
c1,cR

2 ,c
R
3

uA(c1)+uA(cR
2 )+U(cR

3 ) (14)

subject to
c1

1− l
+ cR

2 + cR
3 ≤

I1

1− l
+ I2 + I3 (Zero profits)
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cR
3 ≥ I3 ( RPR)

uA(cR
2 )+U(cR

3 )≥V (RP1)

uA(cR
2 )+U(cR

3 )≥ uA(I2)+U (I3) (IC)

We claim that any allocation satisfying (RP1) also satisfies (IC), so that (IC) can be omitted from this
program. To see this, recall that V solves Program (11)-(13). But, since c̃R

2 = I2 and c̃R
3 = I3 satisfies the

constraints (12) and (13), revealed preference gives

V ≥ uA(I2)+U (I3) ,

showing that (RP1) is tighter than (IC).
Let
{

ĉ1, ĉR
2 , ĉ

R
3
}

be a solution of the program above. We claim that we must have

(
ĉR

2 , ĉ
R
3
)
= argmax

cR
2 ,c

R
3

uA(cR
2 )+U(cR

3 )

subject to
cR

3 ≥ I3 ( RPR)

and
cR

2 + cR
3 = ĉR

2 + ĉR
3 .

First note that this program corresponds to the maximization of a strictly concave function in a convex
set, so the solution must be unique. Suppose

(
ĉR

2 , ĉ
R
3
)

is not the solution, so there exists (cR
2 ,c

R
3 ) satisfying

the constraints which has
uA(cR

2 )+U(cR
3 )> uA(ĉR

2 )+U(ĉR
3 ).

But this implies that
{

ĉ1,cR
2 ,c

R
3
}

is also feasible---i.e., it satisfies the (Zero Profits), (RPR), (RP1), and
(IC)---and attains a higher objective, contradicting the optimality of

{
ĉ1, ĉR

2 , ĉ
R
3
}

.
Let the indirect utility of future consumption be:

W (C)≡maxuA(cR
2 )+U(cR

3 )

subject to
cR

3 ≥ I3 ( RPR)

and
cR

2 + cR
3 =C.

Note that V =W (I2 + I3), so RP2 can be rewritten as

W (C)≥W (I2 + I3) ,
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which, by the monotonicity of W, is equivalent to

C ≥ I2 + I3. ( RP1)

By zero profits (which must bind at the optimum), we can rewrite this constraint as

c1 ≤ I1. ( RP2)

Therefore, the equilibrium program can be rewritten as

max
c1,C

uA(c1)+W (C)

subject to
c1

1− l
+C =

I1

1− l
+ I2 + I3 (Zero profits)

c1 ≤ I1. ( RP1)

Proof of Proposition 1

The equilibrium contract solves:

max
c1,cR

2 ,c
R
3

uA(c1)+uA(cR
2 )+U(cR

3 )

subject to
c1

1− l
+ cR

2 + cR
3 ≤

I1

1− l
+ I2 + I3 (Zero profits)

c1 ≤ I1 ( RP1)

cR
3 ≥ I3 ( RPR)

The necessary FOCs for the solution to entail c1 = I1 are:

(1− l)u′A(I1)≥ u′A(c
R
2 )≥U ′(cR

3 ), (15)

with u′A(c
R
2 ) =U ′(cR

3 ) if cR
3 > I3, as well as the zero profits condition (which must bind):

cR
2 + cR

3 = I2 + I3. (16)

By zero profits, we have:

cR
3 ≥ I3 ⇐⇒ cR

2 ≤ I2 ⇐⇒ u′A(c
R
2 )≥ u′A(I2).
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Substituting in (15), we find that the following inequality is necessary for the solution to entail c1 = I1:

(1− l)u′A(I1)≥ u′A(I2).

Proof of Claim made in Footnote 30

Let W (s) ≡U (s+ I2 + I3) denote the utility from saving s dollars (in future value) to period 3. By the
auxiliary program, the following liquidity constraint must hold: s ≥ 0. The corollary below determines
how the equilibrium consumption in the first period changes with the probability of forgetting to pay l:

Corollary 1. c1 is weakly decreasing (increasing) in the probability of forgetting to pay l if the elasticity

of W is greater (smaller) than 1: − W ′(s)
sW ′′(s) ≥ (≤)1.

Proof. There are two possible cases. If (RP1) does not bind, c1 is implicitly determined by the following
Euler equation:

u′A(c1) =
1

1− l
W ′
(

I1− c1

1− l
+ I2 +(1−α) I3

)
.

Using the Implicit Function Theorem, we find that dc1
dl < 0 if and only if

−

(
I1−c1
1−l

)
W ′′
(

I1−c1
1−l + I2 +(1−α) I3

)
W ′
(

I1−c1
1−l + I2 +(1−α) I3

) < 1.

If (RP1) binds, we must have c1 = I1, which is constant in l.

Recall that the lapse fee equals I1− c1. Therefore, the previous corollary implies that the lapse fee is
weakly increasing (decreasing) in the probability of forgetting to pay l if the elasticity of W is greater
(smaller) than 1. Since, in equilibrium, a lapse happens whenever a consumer forgets to pay, if individuals
only differ with respect to their probability of forgetting to pay, the model predicts a positive (negative)
relationship between lapses and lapse fees if if the elasticity of W is greater (smaller) than 1.

Forgetfulness Model with Sophistication (Subsection 4.1.4)

We now formally consider the model described in Subsection 4.1.4, in which consumers have rational
expectations about their likelihood of forgetting to pay the fee. As before, forgetting to pay the fee
corresponds to consuming the entire income in period 2: cF

2 = I2.
We start by specifying the renegotiation proofness constraints, which, as before, arise from the fact

that the consumer is allowed to drop the policy at the end of periods 1 and 2.
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Renegotiation Proofness Constraints at t = 2

At the end period 2, the individual either remembered (R) or forgot (F) to make the payment. At that
point, beliefs are the same as in the model consider previously, so the renegotiation proofness constraints
remain the same:

αuD(c
R,D
3 )+(1−α)uA(c

R,A
3 )≥U (I3) ( RPR)

αuD(c
F,D
3 )+(1−α)uA(c

F,A
3 )≥U (I3) ( RPF )

Renegotiation Proofness Constraints at t = 1

The renegotiation proofness constraints in period 1 are different from before because the consumer now
has rational expectations about the probability of forgetting to pay, and therefore takes the correct proba-
bility of forgetting to pay into account. The consumer’s outside option at the end of period 1 is:

V ≡max
c

(1− l)
[
uA(cR

2 )+αuD(c
R,D
3 )+(1−α)uA(c

R,A
3 )
]
+l
[
uA (I2)+αuD

(
cF,D

3

)
+(1−α)uA

(
cF,A

3

)]
subject to

(1− l)
[
cR

2 +αcR,D
3 +(1−α)cR,A

3

]
+ l
[
I2 +αcF,D

3 +(1−α)cF,A
3

]
≤ I2 + I3 (Zero profits)

αuD(c
R,D
3 )+(1−α)uA(c

R,A
3 )≥U (I3) ( RPR)

αuD(c
F,D
3 )+(1−α)uA(c

F,A
3 )≥U (I3) ( RPF )

uA(cR
2 )+αuD(c

R,D
3 )+(1−α)uA(c

R,A
3 )≥ uA(I2)+αuD(c

F,D
3 )+(1−α)uA(c

F,A
3 ) (IC)

It is straightforward to see that the solution of this program must provide full insurance in period 3:

u′D(c
j,D
3 ) = u′A(c

j,A
3 ) j = R,F.

Therefore, the outside option can be rewritten as

V ≡max
c

(1− l)
[
uA(cR

2 )+U
(
CR

3
)]

+ l
[
uA (I2)+U

(
cF

3
)]

subject to
(1− l)

(
cR

2 + cR
3
)
+ l
(
I2 + cF

3
)
≤ I2 + I3 (Zero profits)

uA(cR
2 )+U

(
CR

3
)
≥ uA(I2)+U

(
cF

3
)

(IC)

c j
3 ≥ I3 j = R,F (RPj)
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Equilibrium Program

The equilibrium program is:

max
c

uA(c1)+(1− l)
[
uA(cR

2 )+αuD(c
R,D
3 )+(1−α)uA(c

R,A
3 )
]
+l
[
uA (I2)+αuD

(
cF,D

3

)
+(1−α)uA

(
cF,A

3

)]
subject to

c1 +(1− l)
[
cR

2 +αcR,D
3 +(1−α)cR,A

3

]
+ l
[
I2 +αcF,D

3 +(1−α)cF,A
3

]
≤ I1 + I2 + I3 (Zero profits)

αuD(c
R,D
3 )+(1−α)uA(c

R,A
3 )≥U (I3) ( RPR)

αuD(c
F,D
3 )+(1−α)uA(c

F,A
3 )≥U (I3) ( RPF )

(1− l)
[
uA(cR

2 )+αuD(c
3,R
D )+(1−α)uA(c

3,R
A )
]
+ l
[
uA (I2)+αuD

(
cF,D

3

)
+(1−α)uA

(
cF,A

3

)]
≥V

(RP1)
uA(cR

2 )+αuD(c
R,D
3 )+(1−α)uA(c

R,A
3 )≥ uA(I2)+αuD(c

F,D
3 )+(1−α)uA(c

F,A
3 ) (IC)

As before, it is straightforward to show that the period-1 renegotiation proofness constraints (RPj, j =

R,F) can be substituted by liquidity constraints:

αc j,D
3 +(1−α)c j,A

3 ≥ I3, j = R,F.

Using the function U , we can rewrite the equilibrium program as

max
c

uA(c1)+(1− l)
[
uA(cR

2 )+U
(
cR

3
)]

+ l
[
uA (I2)+U

(
cD

3
)]

subject to
c1 +(1− l)

(
cR

2 + cR
3
)
+ l
(
I2 + cF

3
)
≤ I1 + I2 + I3 (Zero profits)

cR
3 ≥ I3 ( RPR)

cF
3 ≥ I3 ( RPF )

uA(cR
2 )+U

(
cR

3
)
≥ uA(I2)+U

(
cF

3
)

(IC)

(1− l)
[
uA(cR

2 )+U
(
cR

3
)]

+ l
[
uA (I2)+U

(
cF

3
)]
≥V (RP1)

Let V (C) denote the highest continuation utility that can be obtained at period 2 with a total expected
consumption of C:

V (C)≡max
c

(1− l)
[
uA(cR

2 )+U
(
CR

3
)]

+ l
[
uA (I2)+U

(
cF

3
)]
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subject to
(1− l)

(
cR

2 + cR
3
)
+ l
(
I2 + cF

3
)
≤C

c j
3 ≥ I3 j = R,F

uA(cR
2 )+U

(
cR

3
)
≥ uA(I2)+U

(
cF

3
)

(IC)

Note that V = V (I2+ I3). It is straightforward to show that the solution of the equilibrium program must
solve this continuation program for C = (1− l)

(
cR

2 + cR
3
)
+ l
(
I2 + cF

3
)
. Thus, (RP1) can be written as

V
(
(1− l)

(
cR

2 + cR
3
)
+ l
(
I2 + cF

3
))
≥ V (I2 + I3) ,

which, since V is strictly increasing, can be further simplified to:

(1− l)
(
cR

2 + cR
3
)
+ l
(
I2 + cF

3
)
≥ I2 + I3.

Then, using the zero profit constraint, which must bind at the solution, it follows that RP2 is equivalent to
the following liquidity constraint:

c1 ≤ I1.

The equilibrium program can thus be written as:

max
c

uA(c1)+(1− l)
[
uA(cR

2 )+U
(
cR

3
)]

+ l
[
uA (I2)+U

(
cF

3
)]

subject to
c1 +(1− l)

(
cR

2 + cR
3
)
+ l
(
I2 + cF

3
)
≤ I1 + I2 + I3 (Zero profits)

uA(cR
2 )+U

(
cR

3
)
≥ uA(I2)+U

(
cF

3
)

(IC)

cR
3 ≥ I3 ( RPR)

cF
3 ≥ I3 ( RPF )

c1 ≤ I1 (RP1)

There are two possibilities depending on whether IC binds.

Case 1: IC does not bind

If the IC does not bind, the solution must have full insurance against the risk of forgetting to make the
payment cR

3 = cD
3 . Substituting back in the IC, we find that it holds if and only if the equilibrium contract

has a negative premium at period 2, so the individual does not have an incentive to forget to “pay”:
cR

2 ≥ I2. Then, the consumer collects a payment from the insurance company in period 2, and forgetting
to do so does not affect future consumption.
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This is not realistic for three reasons. First, because the premium is negative, “forgetting to pay”
actually corresponds to forgetting to collect a benefit. Insurance policies do not typically make payments
before they expire. Second, forgetting to pay does not cause the policyholder to lapse (the consumer
either always lapses or he never lapses). Third, because either everyone lapses or no one lapses, policies
are not lapse-based, meaning that there are no cross-subsidies between lapsers and non-lapsers.

Case 2: IC binds

Now, consider the case where the IC binds. The necessary FOCs are:

u′A(c1) = λ +µRP2

u′A(c
R
2 )

(
1+

µIC

1− l

)
= λ

U ′(cR
3 )

(
1+

µIC

1− l

)
+

µRPR

1− l
= λ

U ′(cF
3 )
(

1− µIC

l

)
+

µRPF

l
= λ

We claim that the solution must entail cF
3 ≤ cR

3 . Suppose cF
3 > cR

3 . Then, we must have µRPF = 0, so that
the previous conditions give:

U ′(cF
3 )
(

1− µIC

l

)
=U ′(cR

3 )

(
1+

µIC

1− l

)
+

µRPR

1− l
.

Rearranging, we obtain

U ′(cF
3 )≥U ′(cF

3 )
(

1− µIC

l

)
≥U ′(cR

3 )

(
1+

µIC

1− l

)
≥U ′(cR

3 ),

which, by the concavity of U , gives cF
3 ≤ cR

3 , a contradiction.
Since cF

3 ≤ cR
3 , we can omit (RPR) from the program (i.e., policies cannot lapse only for individuals

who remember to pay the premium). Removing RPR from the program, we find that there must be perfect
smoothing between periods 2 and 3 for those that remember to pay:

u′A(c
R
2 ) =U ′

(
cR

3
)
. (17)

By the binding IC constraint, we must have

uA(cR
2 )+U

(
cR

3
)
= uA(I2)+U

(
cF

3
)
. (18)

Then, since cF
3 ≤ cR

3 , it must be the case that cR
2 ≤ I2.

By 18, cR
2 and cR

3 provide the same utility as I2 and cF
3 more efficiently---since, by 17 there is perfect

A-12



smoothing between cR
2 and cR

3 . Therefore, cR
2 and cR

3 must be cheaper than I2 and cF
3 :

cR
2 + cR

3 ≤ I2 + cF
3 .

Substituting this inequality in the (binding) zero profits condition, we obtain:

c1 + I2 + cF
3 ≥ I1 + I2 + I3 ≥ c1 + cR

2 + cR
3 , (19)

and both inequalities are strict if cF
3 < cR

3 . In words: firms make (weakly) positive profits on consumers
who remember to pay and lose money on those who forget. That is, cross-subsidies go in the opposite
direction from the one observed in practice.

Suppose there are lapses in period 2. Since cF
3 ≤ cR

3 , the policyholder must lapse after forgetting to
pay:

cF
3 = I3.

Substituting in (19), we obtain
c1 ≥ I1,

which, by (RP1), gives c1 = I1. Therefore, the firm makes zero profits on those who forget to pay, so (by
zero profits) it must also make zero profits on those who remember to pay.

To summarize, either there are no lapses after forgetting to pay, or there is no cross-subsidy from
lapsers to non-lapsers. And, when there are no lapses, cross-subsidies go in the opposite direction from
the one observed in practice.

Proof of Proposition 2

The equilibrium contract maximizes

uA(cNS
1 )+αuD

(
cNS

D

)
+(1−α)uA

(
cNS

A

)
(20)

subject to

l
[
cS

1 +αcS
D +(1−α)cS

A

]
+(1− l)

[
cNS

1 +αcNS
D +(1−α)cNS

A

]
=W + I1 + I2− lL (Zero Profits)

uA(cS
1)+αuD(cS

D)+(1−α)uA(cS
A)≥ uA(cNS

1 −L)+αuD(cNS
D )+(1−α)uA(cNS

A ) (ICS)

uA(cNS
1 )+αuD(cNS

D )+(1−α)uA(cNS
A )≥ uA(cS

1 +L)+αuD(cS
D)+(1−α)uA(cS

A) (ICNS)

uA(cNS
1 )+αuD(cNS

D )+(1−α)uA(cNS
A )≥ V (I1 + I2) (RPNS)

uA(cS
1)+αuD(cS

D)+(1−α)uA(cS
A)≥ V (I1 + I2−L) (RPS)

Ignore (ICNS) and (RPNS) for the moment (we will verify that these constraints hold later). Note that
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(ICS) does not bind if the solution satisfies

V (I1 + I2−L)> uA(cNS
1 −L)+αuD(cNS

D )+(1−α)uA(cNS
A ),

and (RPS) does not bind if the reverse inequality holds.

Case 1. (ICS) does not bind.

Since (ICS) does not bind, the equilibrium contract maximizes (20) subject to (Zero Profits) and (RPS).

By the same duality argument as in the proof of Lemma 3 this program has a a unique solution, and there
is full insurance conditional on the income shock:

u′A(c
S
1) = u′D(c

S
D) = u′A(c

S
A) and u′A(c

NS
1 ) = u′D(c

NS
D ) = u′A(c

NS
A ).

Substituting in (RPS), which must bind, we find that the total expected consumption after the shock equals
the expected income after the shock:

cS
1 +αcS

D +(1−α)cS
A = I1 + I2−L. (21)

This means that the insurance company makes a profit of the initial income W if the individual has an
income shock. By (Zero Profits), the individual’s expected consumption when there is no shock equals

cNS
1 +αcNS

D +(1−α)cNS
A =

W
1− l

+ I1 + I2, (22)

so the insurance company loses − l
1−lW if there is no income shock.

Since there is perfect smoothing conditional on both S and NS, we can use the definition of V to
rewrite (ICS) as:

uA(cNS
1 )−uA(cNS

1 −L)≥ V

(
W

1− l
+ I1 + I2

)
−V (I1 + I2−L) .

We now verify that the omitted constraints (RPNS) and (ICNS) are satisfied. Because there is perfect
smoothing conditional on NS, (RPNS) becomes

cNS
1 +αcNS

D +(1−α)cNS
A ≥ I1 + I2.

Substituting (22), verifies that this inequality holds. To verify that (ICNS) holds, note that

uA(cNS
1 )+αuD(cNS

D )+(1−α)uA(cNS
A ) = V

( W
1−l + I1 + I2

)
≥ V

( W
1−l + I1 + I2−L

)
≥ uA(cNS

1 −L)+αuD(cNS
D )+(1−α)uA(cNS

A )

,
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where the first line uses full insurance conditional on NS and (22), the second line uses the fact that V is
increasing, and the third line uses (22) and revealed preference.

Case 2. (RPS) does not bind.

Since (RPS) does not bind, the equilibrium contract maximizes (20) subject to (Zero Profits) and (ICS).
Again, we can use a duality argument to rewrite the program as the minimization of a continuous and
strictly convex function subject to linear constraints, establishing existence and uniqueness of the solu-
tion. Calculating the first-order conditions, we find that there is full insurance conditional on the shock:

u′A(c
S
1) = u′D(c

S
D) = u′A(c

S
A), (23)

and imperfect intertemporal smoothing:

u′A(c
NS
1 )> u′A(c

NS
A ) = u′D(c

NS
D ). (24)

We now verify that the omitted constraint (ICNS) is satisfied. Use the binding (ICS) to rewrite (ICNS)
as

uA(cNS
1 )−uA(cNS

1 −L)≥ uA(cS
1 +L)−uA(cS

1),

which, by the concavity of uA, holds if and only if cS
1 ≥ cNS

1 −L. That is, (ICNS) holds as long as reporting
a loss would increase period-1 consumption relative to absorbing the income loss. In fact, this inequality
is strict in the solution.

Suppose for the sake of contradiction that cS
1 ≤ cNS

1 − L. Recall that there is full insurance against
mortality conditional on both S and NS:

u′A(c
S
A) = u′D(c

S
D) and u′A(c

NS
A ) = u′D(c

NS
D ).

Since (ICS) holds with equality, it then follows that cS
A ≥ cNS

A and cS
D ≥ cNS

D . Then, because uA is concave,
we have

u′A(c
NS
1 )≤ u′A(c

NS
1 −L)≤ u′A(c

S
1)

and
u′A(c

S
A)≤ u′A(c

NS
A ).

Moreover, perfect smoothing conditional on the shock (23) gives

u′A(c
NS
1 )≤ u′A(c

S
1) = u′A(c

S
A)≤ u′A(c

NS
A ),

which contradicts (24). Thus, cS
1 > cNS

1 −L, cS
A < cNS

A , cS
D < cNS

D , and (ICNS) holds.
To conclude the proof, we need to show that πS > 0 > πNS and verify that (RPNS) does not bind. Let
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c̄NS
1 , c̄NS

A , and c̄NS
D solve

maxuA(cNS
1 )+αuD

(
cNS

D

)
+(1−α)uA

(
cNS

A

)
subject to

cNS
1 +αcNS

D +(1−α)cNS
A ≤W + I1 + I2.

Note that the profile
(
cNS

1 ,cNS
D ,cNS

A ,cS
1,c

S
D,c

S
A

)
=
(
c̄NS

1 , c̄NS
A , c̄NS

D , c̄NS
1 −L, c̄NS

A , c̄NS
D
)

is feasible in the max-
imization of (20) subject to (Zero Profits) and (ICS). By revealed preference, it cannot attain a higher
objective:

uA(cNS
1 )+αuD

(
cNS

D
)
+(1−α)uA

(
cNS

A

)
≥ uA(c̄NS

1 )+αuD
(
c̄NS

D
)
+(1−α)uA

(
c̄NS

A

)
= V (W + I1 + I2)

,

showing that (RPNS) holds. Moreover, since V (W + I1 + I2) is the highest utility that can be provided at
cost W + I1 + I2, it follows that:

cNS
1 +αcNS

D +(1−α)cNS
A ≥W + I1 + I2. (25)

In fact, because there is imperfect smoothing (24), this inequality must be strict. Hence, the insurance
company makes negative profits if there is no shock, so, by zero expected profits, it must make positive
profits if there is a shock:

π
S > 0 > π

NS.

Model with a Continuum of Losses (Theorem 1)

Formulation of the Program

To keep the notation close to the optimal control literature, we associate each possible loss with a “type” t.
Types are distributed according to a differentiable PDF f with full support in the interval of possible losses
[0,T ], where 0 < T < I1 + I2. For each possible loss t ∈ [0,T ], let c(t) denote the consumption in period
1, let cA(t) denote the consumption in period 2 if the individual is alive, and let cD(t) denote the bequests
in period 2 (i.e., the resources repaid if the consumer dies). Let V (t) ≡ αu(cD (t))+ (1−α)u(cA (t))

denote the continuation payoff of a consumer who gets a loss of t.
Since firms do not observe the loss, contracts must be incentive compatible. The incentive-compatibility

(IC) constraints are:
u(c(t))+V (t)≥ u(c(t̂)− t + t̂)+V (t̂) ∀t, t̂.

Following standard nomenclature from mechanism design, let

U (t)≡ u(c(t))+V (t)
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denote the indirect utility of type t. The following lemma provides a standard characterization of incentive
compatibility.

Lemma 4. IC is satisfied if and only if U̇ (t) =−u′ (c(t)) and c(t)+ t is non-decreasing in t.

Proof. Let X ≡ c+ t. Using the taxation principle, IC can be written as

(X(t),V (t)) ∈ argmax
X ,V

u(X− t)+V.

Note that the objective function satisfies single crossing:

d2

dXdt
[u(X− t)+V ] =−u′′(X− t)> 0.

Therefore, X(t) must be non-decreasing, meaning that c(t)+ t is non-decreasing in t. By the Envelope
Theorem, U̇ (t) = −u′ (c1 (t)) < 0. The argument for sufficiency is standard given the validity of the
single-crossing condition.

The previous lemma shows that incentive compatibility alone has the following implications:

• The amount paid in period 1, I1− c(t)− t is decreasing in the size of the shock: people with
larger shocks pay a lower premium at period 1 if they do not lapse (that is, they borrow from their
policies).

• Conversely, V̇ =−u′ (c(t)) [1+ ċ(t)]≤ 0, meaning that a lower premium at period 1 is associated
with less consumption in the future. Since types with larger shocks borrow more in period 1, they
have to repay what they borrowed in period 2.

We now turn to constraints imposed by the possibility of lapsing. The best contract that an individual can
obtain if he lapses solves:

max
c,cA,cD

u(c)+αu(cD)+(1−α)u(cA)

subject to
c+αcD +(1−α)cA ≤ I1 + I2− t.

The solution features perfect smoothing conditional on the income shock: c = cA = cD = I1+I2−t
2 . There-

fore, the renegotiation proofness constraints are:

U (t)≥ 2u
(

I1 + I2− t
2

)
∀t.

The zero profits constraint is∫
[c(t)+αcD (t)+(1−α)cA (t)+ t] f (t)dt ≤W + I1 + I2.
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The solution of the program must entail full insurance in the second period: cD(t) = cA (t) =: c2(t)

(otherwise, it would be possible to keep the same promised continuation utility at a lower cost). As
before, it is helpful to rewrite the zero profits constraint in terms of the indirect utility U instead of
period-2 consumption c2:

U (t) = u(c(t))+u(c2(t)) ∴ c2(t) = u−1 (U (t)−u(c(t))) .

Substituting in the zero profits constraint, we obtain∫ [
c(t)+u−1 (U (t)−u(c(t)))+ t

]
f (t)dt ≤W + I1 + I2.

By the exact argument as in Lemma 2, the equilibrium must solve:

max
c,U

U (0)

subject to
U̇ (t) =−u′ (c(t)) , (IC)

U (t)≥ 2u
(

I1 + I2− t
2

)
, (RP)

∫ [
c(t)+u−1 (U (t)−u(c(t)))+ t

]
f (t)dt ≤W + I1 + I2,

and c(t) + t non-decreasing. In what follows, we will follow the standard approach of ignoring the
monotonicity constraint, which can be verified ex-post.

To simplify notation, let I ≡ I1 + I2. It is convenient to work with the dual program:

min
c,U

∫ T

0

[
c(t)+u−1 (U (t)−u(c(t)))+ t

]
subject to

U̇ (t) =−u′ (c(t)) , (IC)

U (t)≥ 2u
(

I1 + I2− t
2

)
, (RP)

U (0)≥ ū, (26)

where ū > 2u
( I

2

)
so the feasible set is non-empty.49

This is an optimal control problem, where U is a state variable and c is a control variable. Equation
(26), which must hold as an equality in any solution, gives the initial condition for U . The terminal
condition U (T ) is free. Equation (IC) is a standard constraint, which gives the law of motion for the

49To see that ū > 2u
( I

2

)
implies that the set of functions (c,U ) that satisfy the constraints is non-empty, note that U (t) =

2u
(
u−1

( ū
2

)
− t

2

)
and c(t) = u−1

( ū
2

)
− t

2 satisfies all the constraints.
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state variable as a function of the control variable c.
Equation (RP) is a first-order pure state inequality constraint — see Hartl, Sethi, and Vickson (1995,

Section 5) and Grass et al. (2008, Section 3.6). It is a pure state inequality constraint because it involves
the state variable U and “time” t but not the control variable c. To see why it has order one, rewrite it in
its canonical form

h(U , t)≡U −2u
(

I− t
2

)
,

so (RP) becomes
h(U (t), t)≥ 0.

Total differentiation, gives:

d
dt

[h(U (t), t)] = U̇ (t)+u′
(

I− t
2

)
= u′

(
I− t

2

)
−u′ (c(t)) ,

where the last equality used the law of motion (IC). Therefore, differentiating h once allows us to express
h as a constraint involving the control variable.

Notation

Let V (ūa,a) denote the “continuation cost” at time a with initial state ūa:

V (ūa,a) := min
c,U

∫ T

a

[
c(t)+u−1 (U (t)−u(c(t)))

]
f (t)dt

subject to
U̇ (t) =−u′ (c(t)) ∀t, (IC)

U (t)≥ 2u
(

I− t
2

)
∀t, (RP)

U (a) = ūa,

where ūa ≥ 2u
( I−a

2

)
so the feasible set is non-empty. It is straightforward to verify that V (·,a) is a

non-decreasing function of ūa.
Below, we will use the fact that, by the Principle of Optimality, if (U ,c) solves the original program

then, for any tL, tH ∈ (0,T ) with 0≤ tL ≤ tH < T , the restriction of (U ,c) to [tL, tH ] must solve:

min
c̃,Ũ

∫ tH

tL

[
c̃(t)+u−1 (Ũ (t)−u(c̃(t))

)]
f (t)dt +V (Ũ (tH), tH)

subject to
˙̃U (t) =−u′ (c̃(t)) ∀t, (IC)
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Ũ (t)≥ 2u
(

I− t
2

)
∀t, (RP)

Ũ (tL) = U (tL). (B)

As usual, for a given U , we say that RP binds at t if (RP) holds with equality at t. It is helpful to
introduce some standard notation from optimal control:

Definition 1. The point τ is called an entry point if there exists ε > 0 such that RP binds for t ∈ (τ,τ +ε)

but not for t ∈ (τ−ε,τ); τ is called an exit point if there exists ε > 0 such that RP binds for t ∈ (τ−ε,τ)

but not for t ∈ (τ,τ + ε); and τ is called a contact point if there exists ε > 0 such that RP binds for t = τ

but not for t ∈ (τ − ε,τ + ε)\{τ}. A point is called a junction point if it either an entry point, an exit
point, or a contact point.

Let S ⊂ [0,T ] denote the subset of points where RP binds. A contact point is an isolated point of S.
Therefore, if all junction points in [0,T ] are contact points, then S must be a countable set, which has
Lesbegue measure zero (i.e., RP does not bind for almost all t).

In the proofs below, we will use the following result:

Lemma 5. Let φ(·) be a Lipschitz continuous function. Suppose f ′(t) < φ( f (t)), g′(t) ≥ φ(g(t)), and

f (a) = g(a) = α . Then, f (t)< g(t) for all t > a.

Proof. Suppose not. Then, there is b > a such that f (b)≥ g(b). Let

c≡ inf{x > a : f (x)≥ g(x)}.

If c > a, we must have f ′(c)≥ g′(c), which contradicts the fact that

f ′(c)< φ( f (c)) = φ(g(c))≤ g′(c).

If c = a, then we must have f ′(a) = g′(a), contradicting the fact that

f ′(a)< φ( f (a)) = φ(α) = φ(g(a))≤ g′(a).

Results

As a benchmark, consider a version of the original program without the IC constraint:

min
c,U

∫ T

0

[
c(t)+u−1 (U (t)−u(c(t)))

]
f (t)dt

subject to

U (t)≥ 2u
(

I− t
2

)
∀t, (RP)
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U (0) = ū. (B)

The solution can be obtained by minimizing the objective pointwise, which gives:

1− u′ (c(t))
u′ (u−1 (U (t)−u(c(t))))

= 0 ∴ U (t) = 2u(c(t))

for almost all t.
We are now ready to present the proof of Theorem 1 using a series of lemmas. The first lemma shows

that introducing the IC constraint can only distort the control c(t) downwards relative to the benchmark:

Lemma 6. Suppose (U ,c) solves the program. Then, 2u(c(t))≤U (t) for all t.

The proof will be given in four separate claims.

Claim 1. Let (U ,c) satisfy IC and RP and suppose 2u(c(t))> U (t) for t ∈ (tL, tH). Then, RP does not
bind for any t ∈ (tL, tH).

Proof. Suppose, for the sake of contradiction, that RP binds for some t ∈ (tL, tH). Let

t− = inf{t ∈ (tL, tH) : U (t)−2u
(

I− t
2

)
= 0}.

There are two cases: t− > tL and t− = tL. If t− > tL, then we must have

d
dt

[
U (t−)−2u

(
I− t−

2

)]
≤ 0.

Use IC to rewrite this condition as

U̇ (t−)+u′
(

I− t−
2

)
≤ 0 ∴

I− t−
2
≥ c(t−) . (27)

Therefore, we have

U (t−)< 2u(c(t−))≤ 2u
(

I− tL
2

)
,

where the first inequality follows from t− > tL and the second condition follows from 27. But this
contradicts the hypothesis that (U ,c) satisfies RP.

If t− = t∗L, then there must exist ε > 0 such that, for all t ∈ (t∗L, t
∗
L + ε),

U (t)−2u
(

I− t
2

)
= 0.

Differentiate this condition and use IC to write

d
dt

[
U (t)−2u

(
I− t

2

)]
= U̇ (t)+u′

(
I− t

2

)
=−u′ (c(t))+u′

(
I− t

2

)
= 0
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∴ c(t) =
I− t

2
for t ∈ (t∗L, t

∗
L + ε), so that 2u(c∗ (t)) = U ∗ (t) in this interval, a contradiction, since 2u(c∗ (t))> U ∗ (t)

for all t ∈ (t∗L, t
∗
H).

Claim 1 shows that tH cannot be an exit point. There are three possibilities: (i) RP does not bind at
tH , (ii) tH is an entry point, or (iii) tH is a contact point. We address each of them separately:

Claim 2. Let (U ,c) satisfy IC and RP and suppose 2u(c(t))>U (t) for t ∈ (tL, tH). If RP does not bind
at tH , then (U ,c) is not optimal.

Proof. Let (U ,c) satisfy IC and RP. Suppose 2u(c(t))> U (t) for t ∈ (tL, tH) and U (tH)> 2u
(

I−tH
2

)
.

Then, the restriction of (U ,c) to [tL, tH ] must solve the following continuation program:

min
c,U

∫ tH

tL

[
c(t)+u−1 (U (t)−u(c(t)))

]
f (t)dt +V (U (tH), tH)

subject to
U̇ (t) =−u′ (c(t)) ∀t, (IC)

U (tL) = ūL,

where U ∗(tL) = ūL. The optimality conditions are:

λ (t) =−
[

1− u′ (c(t))
u′ (u−1 (U (t)−u(c(t))))

]
f (t)

u′′ (c(t))
, (28)

λ̇ (t) =
f (t)

u′ (u−1 (U (t)−u(c(t))))
> 0, (29)

and the transversality condition

λ (tH) =−
∂V
∂U

(U (tH), tH)≤ 0.

Transversality and (29) imply λ (t)< 0 for t < tH , which, by (28), implies

U (t)> 2u(c(t)) ,

contradicting the fact that 2u(c(t))> U (t) for all t ∈ (tL, tH).

Claim 3. Let (U ,c) satisfy IC and RP and suppose 2u(c(t)) > U (t) for t ∈ (tL, tH). If tH is an entry
point, then (U ,c) is not optimal.

Proof. Let (U ∗,c∗) be a solution. Suppose first that RP binds for all t ∈ [t∗H ,L), that is 2u(c∗ (t))=U ∗ (t)
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for (t∗H ,T ). Construct (U ,c) as follows. Let U (t) = U ∗(t) and c(t) = c∗(t) for t < t∗L. For t ≥ t∗L, let

U̇ (t) =−u′
(

u−1
(

U (t)
2

))
,

with U (t∗L) =U ∗ (t∗L) and let c(t) = u−1
(

U (t)
2

)
. Note that c(t) = u−1

(
U (t)

2

)
and c∗ (t)> u−1

(
U ∗(t)

2

)
.

Then, since −u′ (c) is a strictly increasing function of c, IC and the initial conditions give:

U̇ (t)<−u′
(

u−1
(

U (t)
2

))
,

U̇ ∗(t)>−u′
(

u−1
(

U ∗ (t)
2

))
,

and
U (t∗L) = U ∗(t∗L).

It then follows from Lemma 5 that U (t)< U ∗(t) for all t ∈ (t∗L, t
∗
H ]. Moreover, for t ≥ t∗H , we have

U̇ (t) =−u′
(

u−1
(

U (t)
2

))
and U̇ ∗(t) =−u′

(
u−1

(
U ∗ (t)

2

))
,

with
U (t∗H)< U ∗(t∗H),

which implies U (t)< U ∗(t) for all t > t∗H . Therefore, we have shown that U (t)< U ∗(t) for all t > t∗L
and 2u(c(t)) = U (t). But this implies that

c(t)+u−1 (U (t)−u(c(t))) = u−1
(

U (t)
2

)
< u−1

(
U ∗ (t)

2

)
≤ c∗ (t)+u−1 (U ∗(t)−u(c∗(t)))

for all t > t∗L, contradicting the optimality of (U ∗,c∗).
Next, suppose that RP binds for t ∈ [t∗H ,τ) but RP does not bind on τ < L. Construct the restriction of

(U ,c) to [0,τ) as in the previous case, and let the restriction of (U ,c) to [τ,L] be given by the solution
to the continuation program

min
c,U

∫ L

τ

[
c(t)+u−1 (U (t)−u(c(t)))

]
f (t)dt

subject to
U̇ (t) =−u′ (c(t)) ∀t, (IC)

U (t)≥ 2u
(

I− t
2

)
∀t, (RP)

U (τ) = U (τ−), (B)
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where U (τ−)≡ limt↗τ U (t). By the same argument as in the previous case, we find that (U ,c) yields
the same cost for all t < t∗L, has a strictly lower cost for all points in (t∗L,τ). Moreover, U (τ) < U ∗(τ),
which implies that the cost that solves the continuation program above is weakly lower than the cost
under (U ∗,c∗). Therefore, the total cost under (U ,c) is strictly lower than under (U ∗,c∗), contradicting
the optimality of (U ∗,c∗).

Claim 4. Let (U ,c) satisfy IC and RP and suppose 2u(c(t)) > U (t) for t ∈ (tL, tH). If tH is a contact
point, then (U ,c) is not optimal.

Proof. Since τ is a contact point, we must have

lim
t↗τ

d
dt

[
U (t)−2u

(
I− t

2

)]
≤ 0.

Use IC to rewrite this as
c(τ−)≤ I− τ

2
. (30)

Therefore,

U (τ)< 2u
(
c
(
τ
−))≤ 2u

(
I− τ

2

)
= U (τ) ,

where the first inequality follows from the fact that U (t)< 2u(c(t)) for all t < τ and U is continuous,
the second inequality uses (30), and the equality at the end uses the fact that τ is a contact point. But this
is a contradiction.

We follow the indirect adjoining approach and refer the reader to Hartl, Sethi, and Vickson (1995) for
a description of the method. The Hamiltonian and Lagrangian functions are defined as follows:

H(c,U ,λ , t) =−
[
c+u−1 (U −u(c))+ t

]
f (t)−λu′ (c)

L(c,U ,λ ,η , t) = H(c,U ,λ , t)+ν

[
u′
(

I− t
2

)
−u′ (c)

]
.

The necessary optimality conditions are:50

λ (t)+ν(t) =−
[

1− u′ (c(t))
u′ (u−1 (U (t)−u(c(t))))

]
f (t)

u′′(c(t))
, (31)

λ̇ (t) =
f (t)

u′ (u−1 (U (t)−u(c(t))))
, (32)

ν(t)≥ 0 with = if either c(t)>
I− t

2
or U (t)> 2u

(
I− t

2

)
, (33)

ν̇(t)≤ 0, (34)
50In terms of the conditions in Grass et al. (2008), it is easy to verify that the problem is normal (i.e., λ0 = 1 using their

notation).
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and
λ (T−)≥ 0 with = if U (T−)> 2u

(
I−T

2

)
. (35)

If τ is an entry or contact point, then

λ (τ−) = λ (τ+)+η(τ), (36)[
c(τ−)+u−1 (U (τ)−u(c(τ−)))

]
f (t)+λ (τ−)u′(c(τ−)) =

=
[
c(τ+)+u−1 (U (τ)−u(c(τ+)))

]
f (t)+λ (τ+)u′(c(τ+))+η(τ)u′

( I−t
2

) , (37)

and
η(τ)≥ 0 with = if U (t)> 2u

(
I− t

2

)
. (38)

Moreover, at any entry point τ1,
η(τ1)≥ ν(τ+1 ), (39)

and λ (τ2) is continuous at any exit point τ2.
We first show that there is “no distortion at the top”:

Lemma 7. U (T ) = 2u
( I−T

2

)
and λ (T−) = ν(T−) = 0.

Proof. From (35), there are two possible cases. If RP does not bind in a neighborhood of T , then λ (T−)=

ν(T−) = 0 and the result follows from (31). If RP binds in a neighborhood of T , then

U (T ) = 2u
(

I−T
2

)
.

Differentiate of RP and use IC to establish that c(T−) = I−T
2 . Substituting in (31), gives

λ (T−)+ν(T−) = 0,

and, since λ (T−)≥ 0 (35) and ν(t)≥ 0 for all t (33), we find λ (T−) = ν(T−) = 0.

Lemma 8. Let τ2 be an exit point. Then c(·) is continuous at τ2.

Proof. Let τ2 be an exit point, so that RP binds in (τ2− ε,τ2] and does not bind in (τ2,τ2 + ε). Differen-
tiate RP at t ∈ (τ2− ε,τ2] and use IC to find that 2u(c(t)) = U (t) for all t ∈ (τ2− ε,τ2). In particular,
2u
(
c
(
τ
−
2
))

= U (τ2).
Recall that λ must be continuous at any exit point. Since RP does not bind at t > τ2 but binds at

t < τ2, condition (33) gives:
ν(τ−2 )≥ 0 = ν(τ+2 ).
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From (31), we have

λ (τ2)+ν(τ−2 ) =−

[
1−

u′
(
c
(
τ
−
2
))

u′
(
u−1

(
U (τ2)−u

(
c
(
τ
−
2
))))] f (τ2)

u′′
(
c
(
τ
−
2
)) = 0,

so λ (τ2)≤ 0, and

λ (τ2) =−

[
1−

u′
(
c
(
τ
+
2
))

u′
(
u−1

(
U (τ2)−u

(
c
(
τ
+
2
))))] f (τ2)

u′′
(
c
(
τ
+
2
)) .

Combining both, we find that

−

[
1−

u′
(
c
(
τ
+
2
))

u′
(
u−1

(
U (τ2)−u

(
c
(
τ
+
2
))))] f (τ2)

u′′
(
c
(
τ
+
2
)) ≤ 0.

But this condition is equivalent to U (τ2)≥ 2u
(
c
(
τ
+
2
))

. Substituting U (τ2) = 2u
(

I−τ2
2

)
and using the

monotonicity of u, we obtain
I− τ2

2
≥ c
(
τ
+
2
)
.

Therefore, if c(·) is discontinuous at the exit point τ2, it must jump downwards. But jumping downwards
is not possible at an exit point since, to make RP no longer bind at a neighborhood to the right of τ2, we
must have

0≤ d
dt

[
U (t)−2u

(
I− t

2

)]
t↘τ2

=−u′(c(τ+2 ))+u′
(

I− τ2

2

)
,

∴
I− τ2

2
≤ c(τ+2 ).

So c(·) must be continuous at any exit point.

We now show that there are no exit points, so that if τ is an entry point, RP must bind for all t > τ

(i.e., there can be at most one entry point).

Lemma 9. There are no exit points.

Proof. Suppose τ2 is an exit point, so RP binds in (τ2−ε,τ2] but not in (τ2,τ2+ε). From condition (31),
for t ∈ (τ2,τ2 + ε), we must have

λ (t) =−
[

1− u′ (c(t))
u′ (u−1 (U (t)−u(c(t))))

]
f (t)

u′′(c)
.

Since c(t) is continuous at τ2 (by the previous lemma) and U (τ2) = 2u
(

I−τ2
2

)
(since τ2 is a junction

point), this condition yields λ
(
τ
+
2
)
= 0. Then, because λ̇ (t)> 0 for all t ∈ (τ2,τ2+ε) by condition (32),
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it follows that λ (t)> 0 for t ∈ (τ2,τ2 + ε), implying that

2u(c(t))> U (t)

in this interval, a contradiction by Lemma 6.

Lemma 10. Let τ be an entry point. Then, c(·) is continuous at τ .

Proof. From the previous lemma, there are no exit points. Therefore, if τ is an entry point, RP must bind
for all t ∈ [τ,T ]. From (35), λ (T−) = 0. Moreover, from (32), λ̇ (t) = f (t)

u′( I−t
2 )

for all t > τ . Therefore, we
must have

λ (τ+)< 0. (40)

As shown in Grass et al. (2008, pp. 151), the following condition must hold at any junction point, so
it must also hold at the entry point τ:

η(τ)

[
u′
(

I− τ

2

)
−u′

(
c
(
τ
−))]= 0. (41)

By (39), we must have
η(τ)≥ ν(τ+). (42)

As in the proof of Lemma 8, differentiate RP and use IC to find that 2u(c(t)) = U (t) for t > τ . Then,
by (31), we must have

λ (t)+ν(t) = 0 ∴ ν(t) =−λ (t)

for all t > τ .
Taking the limit as t↘ τ and using the fact that λ (τ+)< 0 (equation 40), we obtain:

ν(τ+) =−λ (τ+)> 0. (43)

Substituting in (42), we find that η(τ)≥ ν(τ+)> 0. Therefore, (41) implies that

u′
(

I− τ

2

)
−u′

(
c
(
τ
−))= 0 ∴ c

(
τ
−)= I− τ

2
,

showing that c is continuous at τ .

Lemma 11. Let τ be an entry point. Then, 2u(c(t))< U (t) for all t < τ and 2u(c(t)) = U (t) for t > τ .

The proof will use the following claim:

Claim 5. Let τ̂ be a contact point. Then, λ (·) is continuous at τ̂ and c(·) jumps upwards at τ̂ (c(τ̂−) <
c(τ̂+)).
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Proof. This proof uses results Grass et al. (2008, page 151). Let τ̂ be a contact point, so that

lim
t↗τ

d
dt

[
U (t)−2u

(
I− t

2

)]
≤ 0≤ lim

t↘τ

d
dt

[
U (t)−2u

(
I− t

2

)]
.

Use IC to rewrite this as
c(τ−)≤ I− τ

2
≤ c(τ+). (44)

At any contact time, we must have
λ (τ̂−) = λ (τ̂+)+η(τ̂),

where η(τ̂)≥ 0 and

η(τ̂)

[
u′
(

I− τ̂

2

)
−u′

(
c
(
τ̂
−))]= 0.

Suppose, in order to obtain a contradiction, that η(τ̂)> 0, so that c(τ̂−) = I−τ̂

2 . Since the Hamiltonian
evaluated at contact times must be continuous, we must have:

{[
c(τ+)+u−1 (U −u

(
c(τ+)

))
+ t
]
− (I− τ̂ + t)

}
f (t)= λ

+

[
u′
(

I− τ̂

2

)
−u′

(
c(τ+)

)]
+η(τ̂)u′

(
I− τ̂

2

)
.

Note that if c(·) were continuous at τ , so that c(τ+) = c(τ−) = I−τ̂

2 , this condition would become:

η(τ̂)u′
(

I− τ̂

2

)
= 0,

contradicting our assumption that η(τ̂) > 0. Thus, c(·) must be discontinuous at τ̂ , which, by (44),
requires

c(τ−) =
I− τ

2
< c(τ+)

∴ U (τ̂) = 2u
(

I− τ̂

2

)
< 2u

(
c
(
τ
+
))

,

where the second line uses the fact that τ̂ is a contact point. But this contradicts Lemma 6. Thus, the
solution entails η(τ̂) = 0, so λ (·) is continuous at τ̂ .

We are now ready to present the proof of the lemma:

Proof of Lemma 11. Let τ be an entry point. Because RP binds at t > τ , we have:

U (τ) = 2u
(

I− τ

2

)
and

U̇ (τ) =−u′(c(τ+)) =−u′
(

I− τ

2

)
∴ c(τ+) =

I− τ

2
.

Then, by the continuity of c(·) at τ (Lemma 10), we have c(τ−) = I−τ

2 . By Lemma 9, any t < τ is either
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a point in which RP does not bind or a contact point, so ν(t) = 0 for t ∈ (τ− ε,τ). It then follows from
(31) that

λ (τ−) =−

[
1−

u′
( I−τ

2

)
u′
(
u−1

(
2u
( I−τ

2

)
−u
( I−τ

2

)))] f (τ)
u′′
( I−τ

2

) = 0.

By our previous claim, λ (·) is continuous at [0,τ). Since λ̇ (t) > 0 at all points of differentiability of
λ (·) and λ (τ−) = 0, it follows that λ (t) < 0 for all t < τ . But this implies that 2u(c(t)) < U (t) for all
t < τ .

Interpretation of Results

The equilibrium must be such that insurance is lapse based. That is, if the lapsing region is non-empty
(τ < T ), insurance companies must make a profit of W when individuals lapse and lose W∫ T

τ
f (t)dt

when
individuals do not lapse.

The fact that insurance is lapse based is not surprising since consumers put zero weight on the chance
they will get any shock t > 0, so they do not think they will ever lapse. The distortion effect is more
interesting. If there were no ICs (i.e., if shocks were observable), the most profitable way to exploit
different beliefs would be to extract the entire surplus when there is a loss while always providing full
insurance. With unobservable losses, the contract must ensure that consumers report losses truthfully.
Then, distorting their consumption profile by shifting consumption to the future reduces their incentives
to misreport losses. This is equivalent to offering policy loans at above market rates. So, the high interest
rates on policy loans are a consequence of the unobservability of income shocks.

We conclude by showing that profits increase with types. Let π denote the firm’s profits:

π(t)≡W + I1 + I2− t− c(t)−u−1 (U (t)−u(c(t))) .

Differentiation gives, at all points of differentiability,

π̇(t) =− [1+ ċ(t)]− U̇ (t)−u′ (c(t)) ċ(t)
u′ (u−1 (U (t)−u(c(t))))

.

Using IC, we obtain

π̇(t) =− [1+ ċ(t)]+
u′ (c(t))

u′ (u−1 (U (t)−u(c(t))))
[1+ ċ(t)]

=− [1+ ċ(t)]
[

1− u′ (c(t))
u′ (u−1 (U (t)−u(c(t))))

]
.

By monotonicity, 1+ ċ(t)≥ 0. Moreover,

1− u′ (c(t))
u′ (u−1 (U (t)−u(c(t))))

≤ 0 ⇐⇒ U (t)≥ 2u(c(t)) .
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Then, using Lemma 6, we find that π̇(t)≥ 0. Note also that π(t) =W for all t > τ .

Log Utility and Uniform Distribution (Proposition 3)

Let u(c) = lnc, and suppose losses are uniformly distributed in [0, L̄], so that f (t) = 1
L̄ . Let τ denote the

entry point. Consider the relaxed program in which we ignore RP for t < τ , so we can ignore contact
points for now. We will verify that RP does not bind in this interval later.

The optimality conditions (31) and (32) become:

λ (t) =
c(t)2− expU (t)

L̄
for all t < τ (45)

where we used the fact that ν(t) = 0 if (RP) does not bind, and

λ̇ (t) =
1
L̄

expU (t)
c(t)

for all t. (46)

Differentiate (45) to obtain:

λ̇ (t) =
2c(t) · ċ(t)− expU (t) · U̇ (t)

L̄
.

Recall that, from IC, we have U̇ (t) =− 1
c(t) . Therefore, the previous condition becomes:

λ̇ (t) =
2c(t) · ċ(t)

L̄
+

1
L̄

expU (t)
c(t)

.

Substituting in (46), gives ċ(t) = 0. Therefore, c(t) = c̄ constant for t < τ . Moreover, since c(·) is
continuous at the entry point τ (Lemma 10) and c(t) = I−t

2 for all t > τ , we must have c̄ = I−τ

2 .

We now verify that RP does not bind at t < τ , so there are no contact points. Using the logarithmic
utility, (RP) becomes:

U (t)−2ln
(

I− t
2

)
≥ 0.

Since, by construction, this inequality binds at the entry point τ , to show that it does not bind at any t < τ,

it suffices to verify that
d
dt
{U (t)−2 [ln(I− t)− ln2]} ≤ 0.

Differentiate and use IC to rewrite this inequality as:

−1
c̄
≤− 2

I− t
⇐⇒ I− t

2
≥ c̄.

Using c̄ = I−τ

2 , this condition becomes:

I− t
2
≥ I− τ

2
⇐⇒ t ≤ τ.
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Therefore, RP does not bind at any t < τ .
We now obtain the expressions for the equilibrium consumption. As shown previously, first-period

consumption equals

c1(t) =

{
I−τ

2 if t < τ

I−t
2 if t ≥ τ

.

Since U (0) = ū and, by IC, U̇ (t) =− 1
c(t) , we can recover the indirect utility:

U (t) = ū−
∫ t

0

1
c(s)

ds =

{
ū− 2t

I−τ
for t ≤ τ

ū− 2τ

I−τ
+2ln

( I−t
I−τ

)
for t > τ

.

Since RP binds at all t ≥ τ, we must have

U (t) = 2ln
(

I− t
2

)
for all t ≥ τ

Thus,

ū− 2τ

I− τ
+2ln

(
I− t
I− τ

)
= 2ln

(
I− t

2

)
∴ ū = 2

[
τ

I− τ
+ ln

(
I− τ

2

)]
.

Substituting back in the indirect utility, gives

U (t) =

{
2
[
ln
( I−τ

2

)
+ τ−t

I−τ

]
for t ≤ τ

2ln
( I−t

2

)
for t > τ

.

Using the definition of the indirect utility, U (t)≡ ln(c(t))+ ln(c2(t)), we can recover the second-period
consumption for t < τ:

c2(t) =
I− τ

2
exp
(

2
τ− t
I− τ

)
.

For t ≥ τ , the individual lapses and gets perfect smoothing c1(t) = c2(t) = I−t
2 . Finally, note that c(t)+ t

is non-decreasing in t, so the omitted monotonicity constraint does not bind.

Rational Expectations (Subsection 4.2.5)

We now show that the equilibrium contract has the opposite pattern when consumers have rational ex-
pectations about the distribution of losses. Formally:

Proposition 5. With rational expectations about the income shock, there exists τ ∈ [0,T ] such that RP

binds for t ∈ [0,τ) and does not bind for almost all t ∈ (τ,T ]. Moreover, U (t)< 2u(c(t)) for almost all

t ∈ (τ,T ].

The intuition for why the conclusions flip when consumers have rational expectations is as follows:

• Without IC and RP, the optimal contract when consumers have rational expectations provides full
insurance (they are fully compensated for a loss without having to repay at all). This violates IC
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because consumers would always report a large loss, consuming the additional reimbursement.
If RP fails, it fails for consumers with small losses who have to subsidize those with large losses.
Thus, in equilibrium, policies offer subsidized loans (individuals have to repay part of it to maintain
IC, but they are given below-market interest rates to smooth consumption), causing RP to bind at
the bottom (with below-market interest rates, those with small loans subsidize those with large
loans). That is, the key incentive issue with rational expectations is to provide insurance against
unobservable liquidity shocks while ensuring that individuals do not inflate their losses.

• In contrast, when consumers think that they will not have any losses, the insurance company would
like to charge as much as possible from those with positive losses, since consumers think that those
states would not happen. This corresponds to charging an infinitely high interest rate for everyone
with a loss, which gives consumers an incentive to pretend that they not have any income loss. To
restore IC, the company cannot charge infinite rates, so it charges an above market but still finite
interest rate. This disproportionately hurts consumers with larger losses, who now cross subsidize
others by paying above-market interest rates. Thus, RP binds at for those with large enough losses.

The equilibrium program is:

max
c,U

∫
U (t) f (t)dt

subject to
U̇ (t) =−u′ (c(t)) ∀t, (IC)

U (t)≥ 2u
(

I− t
2

)
∀t, (RP)

∫ T

0

[
c(t)+u−1 (U (t)−u(c(t)))− t

]
f (t)dt ≤W

As a benchmark, ignore RP:
max
c,U

∫
U (t) f (t)dt

subject to
U̇ (t) =−u′ (c(t)) ∀t, (IC)

W −
∫ T

0

[
c(t)+u−1 (U (t)−u(c(t)))− t

]
f (t)dt ≥ 0

Note that without IC, we have
max
c,U

∫
U (t) f (t)dt

subject to

W −
∫ T

0

[
c(t)+u−1 (U (t)−u(c(t)))− t

]
f (t)dt ≥ 0.
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Pointwise maximization gives:

f (t)− λ

u′ (u−1 (U (t)−u(c(t))))
f (t) = 0 ∴ U (t)−u(c(t)) = constant

1 =
u′(c)

u′ (u−1 (U (t)−u(c(t))))
∴ U (t) = 2u(c(t)) .

Thus, the solution entails c(t) = c̄ constant and U (t) = 2u(c̄) (also constant) for all t. But this violates
IC, which requires U̇ (t) =−u′ (c̄)> 0.

We now incorporate IC. Introduce the auxiliary variable:

X(s)≡−
∫ s

0

[
c(t)+u−1 (U (t)−u(c(t)))− t

]
f (t)dt,

so zero profits can be written as:

Ẋ(t) =−
[
c(t)+u−1 (U (t)−u(c(t)))− t

]
f (t),

with X(0) = 0, X(T ) =W.

The equilibrium program becomes:

max
c,U

∫
U (t) f (t)dt

subject to
U̇ (t) =−u′ (c(t)) ∀t, (IC)

Ẋ(t) =−
[
c(t)+u−1 (U (t)−u(c(t)))− t

]
f (t),

X(0) = 0, X(T ) =W, U (0) and U (T ) free.
Set up the Hamiltonian:

H(U ,c,λ ,µ, t) = U f (t)−λu′(c)−µ
[
c(t)+u−1 (U (t)−u(c(t)))− t

]
f (t).

The optimality conditions are:

λ (t) =−µ

[
1− u′(c(t))

u′ (u−1 (U (t)−u(c(t))))

]
f (t)

u′′(c(t))

λ̇ (t) =
[

µ

u′ (u−1 (U (t)−u(c(t))))
−1
]

f (t)

λ (0) = λ (T ) = 0, µ(t) = µ constant

From the transversality condition, it follows that U (c(0)) = 2u(c(0)) and U (c(T )) = 2u(c(T )). This

A-33



implies that µ > 0 (otherwise, we would have λ̇ < 0 for all t, which would violate transversality). This
is consistent with the fact that, by the envelope theorem, µ is the shadow cost of wealth W , which has to
be positive.

We now verify that we cannot have λ (t) = 0 for all t. For this to be the case, we would need
U (t) = 2u(c(t)) for all t, so that

U (t)−u(c(t)) = u(c(t)) ∀t

Moreover, since λ̇ (t) = 0 for all t, we would have

u′
(
u−1 (U (t)−u(c(t)))

)
= µ ∀t ∴ U (t)−u(c(t)) is constant.

Therefore, this is only possible if c(t) = c̄ constant in t, which implies U (t) = 2u(c̄) constant in t. But
this would give U̇ (t) = 0, which violates IC.

Thus, we must have λ (t) 6= 0 in some interval of types (the interval requirement comes from the
continuity of λ ), which requires that the sign of λ̇ (t) cannot be constant. Let

ξ (t)≡ µ−u′
(
u−1 (U (t)−u(c(t)))

)
,

and note that
λ̇ (t)> 0 ⇐⇒ µ > u′

(
u−1 (U (t)−u(c(t)))

)
⇐⇒ ξ (t)> 0.

Differentiation gives

ξ̇ (t) =−u′′
(
u−1 (U (t)−u(c(t)))

)
× d

dt

[(
u−1 (U (t)−u(c(t)))

)]
=−u′′

(
u−1 (U (t)−u(c(t)))

)
× U̇ (t)−u′ (c(t))c′(t)

u′ (u−1 (U (t)−u(c(t))))

=−u′′
(
u−1 (U (t)−u(c(t)))

)
× −u′ (c(t))−u′ (c(t))c′(t)

u′ (u−1 (U (t)−u(c(t))))

=
u′′
(
u−1 (U (t)−u(c(t)))

)
u′ (c(t))

u′ (u−1 (U (t)−u(c(t))))

[
1+ c′(t)

]
.

By monotonicity, we must have 1+c′(t)≥ 0. Thus, we have ξ̇ (t)< 0, so that there exists τ ∈ (0,L) such
that

λ̇ (t)

{
>

<

}
0 ⇐⇒ t

{
<

>

}
τ.

It then follows that λ (t)> 0 for all t ∈ (0,L):

λ (t) =−µ

[
1− u′(c(t))

u′ (u−1 (U (t)−u(c(t))))

]
f (t)

u′′(c(t))
> 0 ⇐⇒ u′

(
u−1 (U (t)−u(c(t)))

)
> u′(c(t))
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⇐⇒ u−1 (U (t)−u(c(t)))< c(t) ⇐⇒ U (t)< 2u(c(t))

for all t ∈ (0,L). That is, with rational liquidity shocks, loans are subsidized (below-market interest). This
is because the IC binds in the opposite direction (absent IC, we would want to fully insure against losses,
but then everyone would like to pretend to have had a higher shock).

To understand where RP may bind once we introduce it into the model, note that:

h(U (t), t) = U (t)−2u
(

I− t
2

)
,

so that

d
dt

[h(U (t), t)] = U̇ (t)+u′
(

I− t
2

)
= u′

(
I− t

2

)
−u′(c(t))≤ 0 ⇐⇒ I− t

2
≥ c(t).

We have seen that the solution of the relaxed program where we ignore RP entails U (t) < 2u(c(t)) for
all t ∈ (0,T ). Thus, u−1

(
U (t)

2

)
< c(t).

Suppose d
dt [h(U (t), t)]≤ 0 for some t so that I−t

2 ≥ c(t). Then, we must have

u−1
(

U (t)
2

)
< c(t)≤ I− t

2
∴ U (t)< 2u

(
I− t

2

)
,

meaning that RP fails. Thus, if RP holds, we must have d
dt [h(U (t), t)]> 0. But this means that RP holds

if and only if it holds at t = 0. More generally, this shows that if the solution entails U (t) < 2u(c(t)) ,

then any junction point must be an exit point. This is intuitive because the incentive issue here is to give
insurance against large shocks so the type most willing to leave the mechanism is the one with the lowest
shock.

We now formally introduce the RP constraint. Define the Hamiltonian and Lagrangian functions as:

H(U ,c,λ ,µ, t) = U f (t)−λu′(c)−µ
[
c(t)+u−1 (U (t)−u(c(t)))− t

]
f (t)

L(c,U ,λ ,µ,η , t) = H(c,U ,λ , t)+ν

[
u′
(

I− t
2

)
−u′ (c)

]
.

The optimality conditions are:

• λ (t)+ν(t) =−µ

[
1− u′(c(t))

u′(u−1(U (t)−u(c(t))))

]
f (t)

u′′(c(t)) ,

• λ̇ (t) =
[

µ

u′(u−1(U (t)−u(c(t))))
−1
]

f (t),

• µ(t) = µ constant,

• ν(t)≥ 0 with = if either c(t)> I−t
2 or U (t)> 2u

( I−t
2

)
,
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• ν̇(t)≤ 0,

• λ (T−)≥ 0, with = if U (T−)> 2u
( I−T

2

)
,

• λ (0+)≥ 0, with = if U (0+)> 2u
( I

2

)
.

Moreover, at entry or contact points,

• λ (τ−) = λ (τ+)+η(τ)

•
[
c(τ−)+u−1 (U (τ)−u(c(τ−)))

]
f (t)+λ (τ−)u′(c(τ−)) =

=
[
c(τ+)+u−1 (U (τ)−u

(
c(τ+)

))]
f (t)+λ (τ+)u′(c(τ+))+η(τ)u′

(
I− t

2

)

• η(τ)≥ 0 with = if U (t)> 2u
( I−t

2

)
.

In addition, η(τ1)≥ ν(τ+1 ) at any entry time τ1 and λ (τ2) is continuous at any exit time τ2.
We now show that there cannot be an entry point.

Lemma 12. There are no entry points.

Proof. Let τ be the first entry point. Then, we must have:

lim
t↗τ

d
dt

[
U (t)−2u

(
I− t

2

)]
= lim

t↗τ

[
U̇ (t)+u′

(
I− t

2

)]
≤ 0

⇐⇒ u′
(

I− τ

2

)
≤ u′(c(τ−) ⇐⇒ c(τ−)≤ I− τ

2
. (47)

Moreover, since RP binds at (τ,τ + ε), we have c(τ+) = I−τ

2 . That is, if c jumps, it must jump upwards.
By the first optimality condition for t < τ (where RP doesn’t bind), we have

λ (τ−) =−µ

[
1− u′(c(τ−))

u′
(
u−1

(
2u
( I−τ

2

)
−u(c(τ−))

))] f (τ)
u′′(c(τ−))

,

and, because c(τ−)≤ I−τ

2 , we must have
λ (τ−)≤ 0. (48)

By the first optimality condition for t > τ (where RP binds), we have λ (τ+)+ν(τ+) = 0 for all such
t. Recall that η(τ)≥ ν(τ+) at any entry time. Thus,

λ (τ+)+η(τ)≥ λ (τ+)+ν(τ+) = 0.

Then, using λ (τ−) = λ (τ+)+η(τ), we obtain:

λ (τ−)≥ 0. (49)
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Combining (48) and (49), we find that
λ (τ−) = 0,

so that c(τ−) = I−τ

2 . Therefore, c(·) is continuous at τ .
There are two possible cases. Suppose first that there are no contact points between 0 and τ so that λ

is continuous at [0,τ]. Then, we have:

λ (0) = λ (τ−) = 0,

and
λ̇ (t) =

[
µ

u′ (u−1 (U (t)−u(c(t))))
−1
]

f (t).

Let
ξ (t)≡ µ−u′

(
u−1 (U (t)−u(c(t)))

)
,

and note that
λ̇ (t)> 0 ⇐⇒ µ > u′

(
u−1 (U (t)−u(c(t)))

)
⇐⇒ ξ (t)> 0.

Differentiation gives

ξ̇ (t) =−u′′
(
u−1 (U (t)−u(c(t)))

)
× d

dt

[(
u−1 (U (t)−u(c(t)))

)]
=−u′′

(
u−1 (U (t)−u(c(t)))

)
× U̇ (t)−u′ (c(t))c′(t)

u′ (u−1 (U (t)−u(c(t))))

=−u′′
(
u−1 (U (t)−u(c(t)))

)
× −u′ (c(t))−u′ (c(t))c′(t)

u′ (u−1 (U (t)−u(c(t))))

=
u′′
(
u−1 (U (t)−u(c(t)))

)
u′ (c(t))

u′ (u−1 (U (t)−u(c(t))))

[
1+ c′(t)

]
.

By monotonicity, we must have 1+ ċ(t) ≥ 0. Thus, we have ξ̇ (t) < 0. Therefore, there exists t̄ ∈ (0,τ)
such that λ̇ (t) > 0 if and only if t < t̄. Because λ (0) = λ (τ) = 0, this implies that λ (t) > 0 for all
t ∈ (0,τ), so that

c(τ−)>
I− τ

2
for all t ∈ (0,τ), a contradiction to (47).

Turning to the second possible case, suppose there exists a contact point τ̂ between 0 and τ . Since
λ (τ−) = λ (τ+)+η(τ)≥ λ (τ+), it follows that λ can only jump downwards. In principle, we could then
have an intermediate region with λ (t) < 0 (immediately after a contact point). This would not happen
if either λ (τ+) ≥ 0 or if λ (τ−) ≤ 0 (so both sides of the contact point are either positive or negative).

A-37



Thus, the only possible case is when51

λ (τ−)≥ 0≥ λ (τ+)

with at least one strict inequality, which happens if and only if

c(τ+)≤ I− τ

2
≤ c(τ−) (50)

with at least one strict inequality.
But any contact point τ must satisfy

lim
t↗τ

d
dt

[
U (t)−2u

(
I− t

2

)]
≤ 0≤ lim

t↘τ

d
dt

[
U (t)−2u

(
I− t

2

)]
.

Use IC to rewrite this as
c(τ−)≤ I− τ

2
≤ c(τ+), (51)

contradicting (50).

To conclude the proof, note that λ (·) is continuous at any exit point, so that λ (τ) = 0. Then, by
the same argument as in the model without RP, it follows from λ (0) = λ (τ) = 0 that λ (τ) > 0 for all
intermediate points.

Appendix B: LLI Survey Questions

This Appendix describes the LLI (2018) survey methodology, lists all questions and along with the re-
sponses to each of them. Using administrative data provided by LLI, it also compares responders (“Com-
plete”) and non-responders (“Incomplete”) by observable characteristics. The input files (survey results)
and processing files can be found in the online repository. Both surveys were emailed on February 7,
2018, specifically, at 11:28 AM EST for the New Buyers survey and at 10:52 AM EST for the Lapsers

51Recall that

λ (t)> 0 ⇐⇒ U (t)< 2u(c(t)).

Since RP binds at τ, we have U (τ) = 2u
( I−τ

2

)
. Thus,

λ (τ+)< 0 ⇐⇒ I− τ

2
> c(τ+)

λ (τ−)> 0 ⇐⇒ I− τ

2
< c(τ−)

Thus, the possible case is when:

λ (τ−)> 0 > λ (τ+) ⇐⇒ c(τ+)<
I− τ

2
< c(τ−).
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Survey. A reminder email message was sent to people in both surveys who had not completed the survey
(both non-responders and people who started but did not complete) on February 14th at 12:00 PM EST.
A second reminder email was sent on February 21st at 12:00 PM EST. Both surveys were closed at 9AM
EST on March 9, 2018. Following standard IRB protocols, the first page of each survey informed sub-
jects of the purpose of the survey and gave them our contact information in case they had any concerns.
Neither author received any emails.

New Buyers Survey

Below are the questions for the New Buyers Survey along with percent responses for each question shown
in parentheses. This survey was sent to all LLI customers who purchased life insurance between October
2013 and end of November 2017. Subjects were asked either 7 or 8 questions. The response rate was
13.0%, producing 1,689 respondents.

1. Your term life insurance policy has about N years left on it. What is the chance that you
might stop your policy (sometimes called lapsing) before then?
1.1. I have not given it much thought (12.0%, 202 responders)
1.2. I do not currently anticipate stopping my policy (80.4%. 1357)
1.3. I currently anticipate stopping my policy with a 10 percent or lower chance (1.4%, 24)
1.4. I currently anticipate stopping my policy with a chance of 10 – 25 percent (1.7%, 28)
1.5. I currently anticipate stopping my policy with a chance of 25 – 50 percent (2.1%, 35)
1.6. I anticipate stopping my policy with a chance greater than 50 percent (2.4%, 41)

2. If 1.3, 1.4, 1.5 or 1.6: In how many years do you anticipate potentially stopping your policy?
2.1. Unsure (20.3%, 26)
2.2. Likely in between 1-5 years (28.9%, 37)
2.3. Likely in between 6-10 years (27.3%, 35)
2.4. Likely in between 11-15 years (9.4%, 12)
2.5. More than 15 years (14.1%, 18)

3. What do estimate is the chance that other people with your type of life insurance policy might
stop their policy (or lapse) before it expires?
3.1. I have not given it much thought (67.1%, 1131)
3.2. Between 0 – 5 percent (7.7%, 129)
3.3. Between 5 – 10 percent (6.6%, 112)
3.4. Between 10 – 25 percent (10.7%, 181)
3.5. Between 25 – 50 percent (5.8%, 97)
3.6. Over 50 percent (2.1%, 35)

4. What do estimate is the chance that you might someday stop your policy due to divorce or
death of a spouse?
4.1. I have not given it much thought (34.7%, 584)
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4.2. Between 0 – 5 percent (55.0%, 927)
4.3. Between 5 – 10 percent (4.9%, 83)
4.4. Between 10 – 25 percent (2.6%, 43)
4.5. Between 25 – 50 percent (1.0%, 17)
4.6. Over 50 percent (1.8%, 31)

5. What do estimate is the chance that you might someday stop your policy because you will
need the money, maybe due to lower income or increased expenses?
5.1. I have not given it much thought (18.3%, 308)
5.2. Between 0 – 5 percent (63.6%, 1073)
5.3. Between 5 – 10 percent (9.0%, 151)
5.4. Between 10 – 25 percent (4.2%, 71)
5.5. Between 25 – 50 percent (3.0%, 51)
5.6. Over 50 percent (1.9%, 32)

6. What do estimate is the chance that you might someday stop your policy because you feel
healthier than expected and would prefer to purchase a different policy?
6.1. I have not given it much thought (24.1%, 406)
6.2. Between 0 – 5 percent (70.2%, 1183)
6.3. Between 5 – 10 percent (0%, 0)
6.4. Between 10 – 25 percent (2.5%, 42)
6.5. Between 25 – 50 percent (1.4%, 23)
6.6. Over 50 percent (0.9%, 15)

7. At some point in the last 5 years, has your total household income decreased? This might be
due to a salary cut, a job separation by you or your spouse, or because part of your total household
income is partly tied to commissions or bonuses that tend to fluctuate.
7.1. Yes (32.5%, 545)
7.2. No (67.5%, 1132)

8. What are the chances that at some point in the next 5 years, your total household income
would decrease substantially? This might due to a salary cut, a layoff of you or a spouse, retirement,
or because part of your total household income is partly tied to commissions or bonuses that tend
to fluctuate?
8.1. There is little chance that my income could fluctuate downward by a lot (43.6%, 730)
8.2. My income could fluctuate downward a lot with a chance less than 5% (13.7%, 229)
8.3. My income could fluctuate downward a lot with a chance between 5 – 10% (15.4%, 257)
8.4. My income could fluctuate downward a lot with a chance between 10 – 25% (13.7%, 229)
8.5. My income could fluctuate downward a lot with a chance between 25 – 50% (7.2%, 120)
8.6. My income could fluctuate downward a lot with a chance greater than 50% (6.5%, 108)

Responders who answered Question 1 indicating a 10% chance or more of lapsing (1.4, 1.5, or 1.6)
completed the survey in 6.2 days on average in comparison to 6.7 days for responders who indicated
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a 10 percent or less chance (1.1, 1.2, or 1.3). The t-value for a test of equal means between the two
independent samples is 0.78, thereby failing to reject a difference at conventional levels of significance.

Notice that subjects were asked to report both the total probability of lapsing (Question 1) and the
probability of lapsing broken down by possible reasons (Questions 4, 5, and 6). In both cases, we
find that they severely underestimate the chance of lapsing. Consistently with the Conjunction Fallacy
(Tversky and Kahneman, 1983), we find that lapse probabilities broken down by each reason add up
to more than the total probability of lapsing. For example, 6.2% of responders indicated a 10% or
higher chance of lapsing in general (Question 1), whereas 9.1% of responders indicate a 10% or higher
chance of lapsing because they might someday need money (Question 5). Overall, 13.0% of responders
indicated a 10% or less chance of lapsing in Question 1 while simultaneously indicating a 10% or more
chance of lapsing for any one or more specific reason when subsequently prompted in Questions 4, 5
and 6. The relevant probability for our purposes depends on whether, when purchasing life insurance,
individuals think about the probability of lapsing as a whole, or if they think about each possible reason
for lapsing in isolation. In either case, however, these numbers support the view that individuals severely
underestimate the probability of lapsing.52

Figure 4 shows the average characteristics of responders (“Complete”) and non-responders (“Incom-
plete”), with 95% confidence intervals shown with the black line. At the time of the survey, responders
have had held their policy for about 26 days less than non-responders. The expected default rate of
responders (55.8%) is slightly larger than non-responders (57.5%). Most other characteristics are very
similar, including marital status, gender, length of policy, occupation, age at policy issuance and ultimate
face value. A slightly higher proportion of college employees responded to our survey, perhaps because
we identified ourselves in the opening page and stated that the survey would be used for academic re-
search. This small difference of occupations might also explain why responders are slightly older and
have slightly smaller policies, as many college employees get supplemental life insurance through their
college as a voluntary group benefit, outside of the individual insurance market that we consider.

Lapsers Survey

A link to this survey was sent by email to the universe of 3,229 former LLI policyholders who lapsed
their policies between 2012 and 2017, generating a response rate of 4.9 percent. Subjects were asked
either 6 or 7 questions. Below are the questions for the Lapsers Survey along with percent responses for
each question shown in parentheses. For Question 1, there are two percent responses shown: the first one
corresponds to the raw responses and the second one corresponds to our subjective recoding for those
who selected 1.9 in the raw data.

1. You have recently cancelled (or let “lapse”) your life insurance policy. Many people cancel
/ lapse their policies for one or more of the reasons listed below. Which choice best reflects your

52Alternatively, subjects may infer from Question 1 that lapse probabilities are higher than expected, revising their answers
to subsequent questions about lapsing upwards.
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Figure 4: Descriptive statistics for respondents (blue) and non-respondents (red). Black lines represent
95% confidence intervals. Starting from the top, the figures represent days that policy has been active at
point of survey; expected default rate of policies based on LLI’s historical annual default rate of 5.2%;
marital status; gender; term of policy; occupation; age and ultimate face amount.A-42



reason?
1.1. My income decreased (7.6%, 12; 8.3%, 13)
1.2. I needed the money (1.3%, 2; 7.1%, 11)
1.3. My family situation changed due to divorce (4.5%, 7; 4.5%, 7)
1.4. My family situation changed due to death of spouse (0.6%, 1; 0.6%, 1)
1.5. I recently retired (12.7%, 20; 13.5%, 21)
1.6. I was healthier than expected and bought another policy (1.3%, 2; 6.4%, 10)
1.7. I forgot to make my insurance premium payments (12.1%, 19; 23.1%, 36)
1.8. I believe that I didn’t cancel my policy (12.7%, 20; 14.7%, 23)
1.9. Other (please explain) (47.1%, 74; 12.8%, 20)
1.10. Family situation changed for reasons other than divorce or death of spouse (N/A%, N/A; 9.0%, 14)

2. If 1.8: Our records indicate that you cancelled your [type] insurance with a death benefit of
[$$$$$$] on [DATE]. Do you recall that cancellation?
2.1. Yes (5.0%, 1)
2.2. No (95.0%, 19)

3. At some point in the last 5 years, has your total household income decreased? This might be
due to a salary cut, a job separation by you or your spouse, or because part of your total household
income is partly tied to commissions or bonuses that tend to fluctuate.
3.1. Yes (44.2%, 69)
3.2. No (55.8%, 87)

4. IF 3.1: By how much did your total household income decrease in the last five years?
4.1. Less than 5% (0.0%, 0)
4.2. Between 5 and 15% (23.5%, 16)
4.3. Between 15 and 25% (26.5%, 18)
4.4. Between 25 and 50% (23.5%, 16)
4.5. More than 50% (26.5%, 18)

5. Have you experienced one of the following options in the last 5 years? Check all options that
apply:
5.1. A divorce (18.6%, 13)
5.2. Retirement by you or your spouse (61.4%, 43)
5.3. Hospitalization by you or your spouse (37.1%, 26)

6. Since you cancelled your policy, have you purchased a new one?
6.1. No. (82.5%, 127)
6.2. Yes. I purchased a smaller policy (9.1%, 14).
6.3. Yes. I purchased a larger policy (8.4%, 13).

7. What is your annual household income?
7.1. Less than $50,000 per year (12.2%, 19)
7.2. Between $50,000 - $125,000 per year (39.7%, 62)
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7.3. Between $125,000 - $250,000 per year (25.6%, 40)
7.4. Over $250,000 per year (5.1%, 8)
7.5. I prefer to not answer (17.3%, 27)

Figure 5 shows the average characteristics of responders (“Complete”) and non-responders (“Incom-
plete”), with 95% confidence intervals shown with the black line. Notice that responders tend to be
slightly older (mean age of 49) relative to non-responders (mean age of 45), have smaller policies, and
have lapsed a bit more recently. The mean number of days that policies were active before lapsing nearly
are identical for responders and non-responders. Both groups are similar in terms of gender and marital
status.

Appendix C: Competing Models

Model of Risk Reclassification

This section considers reclassification risk model based on Hendel and Lizzeri (2003), Daily, Hendel, and
Lizzeri (2008), and Fang and Kung (2010). We demonstrate that a reasonably calibrated rational model
with liquidity shocks produces back-loaded policies, the opposite loading of observable contracts.

The main distinction between the model considered here and the other ones in the literature is in the
timing of shocks. Hendel and Lizzeri (2003) study a model in which consumers are subject to health
shocks only. Lack of commitment on the side of the consumer motivates lapsing following positive
health shocks. Preventing lapses is then welfare improving and front-loaded fees (i.e., payments before
the realization of the health shock that cannot be recuperated if the consumer drops the policy) are an
effective way to do so. Daily, Hendel, and Lizzeri (2008) and Fang and Kung (2010) introduce bequest
shocks in this framework. In their model, there is one period in which both bequest and health shocks
may happen. Lapsing is efficient if it is due to a loss of the bequest motive and is inefficient if motivated
by a positive health shock. The solution then entails some amount of front loading as a way to discourage
lapses.

Markov Transition Matrix (25 year old Male; 5 years)
1 2 3 4 5 6 7 8

1 .989 .001 .000 .000 .000 .000 .000 .011
2 .932 .028 .000 .000 .000 .000 .000 .039
3 .927 .030 .000 .000 .000 .000 .000 .042
4 .918 .034 .000 .000 .000 .000 .000 .046
5 .860 .056 .000 .000 .000 .000 .000 .082
6 .914 .038 .000 .000 .000 .000 .000 .048
7 .850 .060 .000 .000 .001 .000 .000 .088

Table 1: Probability of five-year ahead changes in health states at age 25.
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Figure 5: Descriptive statistics for respondents (blue) and non-respondents (red). Black lines represent
95% confidence intervals. Starting from the top, the figures represent age at issuance; number days
before policy lapsed; number of days between lapse and survey; ultimate face amount; gender; and
marital status. Differences between other variables not shown were typically not statistically significant,
likely due to low response rate.
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Markov Transition Matrix (50 year old Male; 5 years)
1 2 3 4 5 6 7 8

1 .942 .014 .001 .000 .001 .001 .000 .041
2 .544 .252 .009 .004 .011 .006 .002 .172
3 .515 .259 .010 .005 .012 .006 .002 .190
4 .446 .285 .012 .007 .020 .007 .003 .219
5 .257 .273 .020 .020 .065 .007 .005 .353
6 .430 .296 .014 .009 .027 .008 .004 .212
7 .229 .267 .021 .022 .074 .007 .006 .374

Table 2: Probability of five-year ahead changes in health states at age 50.

Markov Transition Matrix (75 year old Male; 5 years)
1 2 3 4 5 6 7 8

1 .645 .103 .014 .005 .014 .016 .008 .195
2 .129 .235 .038 .016 .040 .036 .024 .482
3 .094 .198 .035 .017 .048 .032 .025 .551
4 .046 .136 .031 .023 .078 .025 .033 .629
5 .011 .046 .016 .019 .095 .011 .032 .771
6 .052 .150 .035 .021 .079 .052 .048 .562
7 .009 .036 .013 .015 .087 .013 .039 .787

Table 3: Probability of five-year ahead changes in health states at age 75.

The composition of shocks changes significantly along the life cycle. The tables above show “snap
shots” across different ages of five-year ahead Markov health transition matrices based on hazard rates
provided by Robinson (1996). State 1 represents the healthiest state while State 8 represents the worst
(death). As the matrices show, younger individuals are unlikely to suffer negative health shocks and the
ones who do experience such shocks typically recover within the next 5 years (with the obvious exception
of death, which is). Older individuals are more likely to suffer negative heath shocks, and those shocks
are substantially more persistent. Consistently, policyholders younger than about 65 rarely surrender due
to health shocks whereas health shocks are considerably more important for older policyholders (c.f.,
Fang and Kung 2012).

Consistently with these observations, we consider a stylized model in which the period of shocks is
broken down in two periods. In the first period, consumers are subject to non-health shocks only. In the
second period, they are only subject to health shocks. As a result, optimal contracts are back loaded:
they do not discourage lapses in the first period but discourage lapses in the second period. Because only
health-related lapsing is inefficient, lapse fees should be high only in periods in which health shocks are
relatively prevalent. Empirically, these periods occur much later in life.
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Formally, there are 4 periods: t = 0,1,2,3. Period 0 is the contracting stage. Consumers are subject
to a liquidity shock L > 0 (with probability l > 0) in period 1. They are subject to a health shock in
period 2. The health shock is modeled as follows. With probability π > 0, the consumer finds out that he
has a high risk of dying (type H). With complementary probability, he finds out that he has a low risk of
death (type L). Then, in period 3, a high-risk consumer dies with probability αH and a low-risk consumer
dies with probability αL, where 0 < αL < αH < 1. We model lapses as motivated by liquidity/income
shocks rather than bequest shocks because, as shown by First, Fang and Kung (2012), bequest shocks
are responsible for a rather small proportion of lapses, whereas other (i.e. non-health and non-bequest
shocks) are responsible for most of it, especially for individuals below a certain age. The assumption that
mortality shocks only happen in the last period is for simplicity only. Our result remains if we assume
that there is a positive probability of death in each period.

The timing of the model is as follows:

• Period 0: The consumer makes a take-it-or-leave-it offer of a contract to a non-empty set of firms.
A contract is a vector of state-contingent payments to the firm{

t0, ts
1, t

s,h
2 , td,s,h

3

}
s=S,NS h=H,L d=D,A

,

where: t0 is paid in period 0 before any information is learned; ts
1 is paid conditional on the liquidity

shocks in period 1, s = S,NS; ts,h
2 is paid conditional on the health shock h∈ {H,L} in period 2 and

liquidity shock s in period 1; td,s,h
3 is paid conditional on being either dead d = D or alive d = A in

period 3 conditional on previous shocks s and h.

• Period 1: The consumer observes the realization of the liquidity shock s. He then decides whether
to keep the original contract, thereby paying ts

1, or obtaining a new contract in a competitive sec-
ondary market. The competitive secondary market is again modeled by having the consumer make
a take-it-or-leave-it offer a (non-empty) set of firms.

• Period 2: The realization of the health shock is publicly observed. The consumer decides to keep
the contract, thereby paying ts,h

2 , or substitute by a new one, obtained again in a competitive envi-
ronment (in which the consumer makes a take-it-or-leave it offer to firms).

• Period 3: The mortality shock is realized. The consumer receives a payment of −td,s,h
3 .

As before, we assume that consumers and firms discount the future at the same rate and normalize the dis-
count rate to zero. Consumers get utility uA (c) of consuming c units (while alive). Consumers get utility
uD(c) from bequeathing c units. The functions uA and uD satisfy the Inada condition: limc↘0 ud (c)=−∞,
d = A,D.

With no loss of generality, we can focus on period-0 contracts that the consumer never finds it optimal
to drop. That is, we may focus on contracts that satisfy “non-reneging constraints.” Of course, this is not
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to say that the equilibrium contracts will never be dropped in the same way that the revelation principle
does not say that in the real world people should be “announcing their types.” To wit, any allocation
implemented by a non-reneging contract can also be implemented by a mechanism in which the consumer
is given resources equal to the expected amount of future consumption and gets a new contract (from
possibly a different firm) in each period. In particular, the model cannot distinguish between lapsing an
old contract and substituting it by a new (state-contingent) contract and having an initial contract that is
never lapsed and features state-dependent payments that satisfy the non-reneging constraint. However,
the model determines payments in each state.

Consistently with actual (whole) life insurance policies, one can interpret the change of terms fol-
lowing a liquidity shock in period 1 as the lapsing of a policy at some predetermined cash value and
the purchase of a new policy, presumably with a smaller coverage. We ask the following question: Is
it possible for a firm to profit from lapses motivated by a liquidity shock? In other words, it is possible
for the firm to get higher expected profits conditional on the consumer experiencing a liquidity shock in
period 1 than conditional on the consumer not experiencing a liquidity shock? As we have seen in the
evidence described in Section 2, firms do profit from such lapses, which are the most common source of
lapses for policyholders below a certain age. However, as we show below, this is incompatible with the
reclassification risk model described here.

The intuition for the result is straightforward. The reason why individuals prefer to purchase in-
surance at 0 rather than 1 is the risk of needing liquidity and therefore facing a lower wealth. If the
insurance company were to profit from the consumers who suffer the liquidity shock, it would need to
charge a higher premium if the consumer suffers the shock. However, this would exacerbate the liquidity
shock. In that case, the consumer would be better off by waiting to buy insurance after the realization of
the shock.

As in the text, there is no loss of generality in working with the space of state-contingent consumption
rather than transfers. The consumer’s expected utility is

uA (c0)+ l

 uA
(
cS

1
)
+π

[
uA

(
cS,H

2

)
+(1−αH)uA

(
cS,H,A

3

)
+αHuD

(
cS,H,D

3

)]
+(1−π)

[
uA

(
cS,L

2

)
+(1−αL)uA

(
cS,L,A

3

)
+αLuD

(
cS,L,D

3

)] 

+(1− l)

 uA
(
cNS

1
)
+π

[
uA

(
cNS,H

2

)
+(1−αH)uA

(
cNS,H,A

3

)
+αHuD

(
cNS,H,D

3

)]
+(1−π)

[
uA

(
cNS,L

2

)
+(1−αL)uA

(
cNS,L,A

3

)
+αLuD

(
cNS,L,D

3

)]  .

The equilibrium contract maximizes this expression subject to the following constraints. First, the
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firm cannot be left with negative profits:

c0 + l

 cS
1 +π

[
cS,H

2 +(1−αH)cS,H,A
3 +αHcS,H,D

3

]
+(1−π)

[
cS,L

2 +(1−αL)cS,L,A
3 +αLcS,L,D

3

] 
+(1− l)

 cNS
1 +π

[
cNS,H

2 +(1−αH)cNS,H,A
3 +αHcNS,H,D

3

]
+(1−π)

[
cNS,L

2 +(1−αL)cNS,L,A
3 +αLcNS,L,D

3

] 
≤W + I [2−παH− (1−π)αL]− lL

Second, allocation has to satisfy the incentive-compatibility constraints (which state that the consumer
prefers the report of the liquidity shock honestly):

uA

(
cS

1

)
+π

[
uA

(
cS,H

2

)
+(1−αH)uA

(
cS,H,A

3

)
+αHuD

(
cS,H,D

3

)]
+(1−π)

[
uA

(
cS,L

2

)
+(1−αL)uA

(
cS,L,A

3

)
+αLuD

(
cS,L,D

3

)]
≥

uA

(
cNS

1 −L
)
+π

[
uA

(
cNS,H

2

)
+(1−αH)uA

(
cNS,H,A

3

)
+αHuD

(
cNS,H,D

3

)]
+(1−π)

[
uA

(
cNS,L

2

)
+(1−αL)uA

(
cNS,L,A

3

)
+αLuD

(
cNS,L,D

3

)]
,

and
uA

(
cNS

1

)
+π

[
uA

(
cNS,H

2

)
+(1−αH)uA

(
cNS,H,A

3

)
+αHuD

(
cNS,H,D

3

)]
+(1−π)

[
uA

(
cNS,L

2

)
+(1−αL)uA

(
cNS,L,A

3

)
+αLuD

(
cNS,L,D

3

)]
≥

uA

(
cS

1 +L
)
+π

[
uA

(
cS,H

2

)
+(1−αH)uA

(
cS,H,A

3

)
+αHuD

(
cS,H,D

3

)]
+(1−π)

[
uA

(
cS,L

2

)
+(1−αL)uA

(
cS,L,A

3

)
+αLuD

(
cS,L,D

3

)]
.

The third set of constraints requires contracts to be non-reneging after it has been agreed upon (that
is, in periods 1 and 2). The period-2 non-reneging constraints are

uA

(
cs,h

2

)
+(1−αh)uA

(
cA,NS,h

3

)
+αhuD

(
cD,s,h

3

)
≥max
{ĉ}

{
uA (ĉ2)+(1−αh)uA (ĉ3)+αhuD (ĉ3)

s.t. ĉ2 +(1−αh) ĉ3 +αhĉ3 = (2−αh) I

}
,

(52)
for h = H,L and s = S,NS. The period-1 non-reneging constraints are

uA (cs
1)+π

[
uA

(
cs,H

2

)
+(1−αH)uA

(
cs,H,A

3

)
+αHuD

(
cs,H,D

3

)]
+(1−π)

[
uA

(
cs,L

2

)
+(1−αL)uA

(
cs,L,A

3

)
+αLuD

(
cs,L,D

3

)]
≥
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max
{ĉ}

uA
(
ĉs

1
)
+π

[
uA

(
ĉs,H

2

)
+(1−αH)uA

(
ĉs,H,A

3

)
+αHuD

(
ĉs,H,D

3

)]
+(1−π)

[
uA

(
ĉs,L

2

)
+(1−αL)uA

(
ĉs,L,A

3

)
+αLuD

(
ĉs,L,D

3

)]
subject to

ĉs
1 +π

[
ĉs,H

2 +(1−αH) ĉs,H,A
3 +αH ĉs,H,D

3

]
+(1−π)

[
ĉs,L

2 +(1−αL) ĉs,L,A
3 +αLĉs,L,D

3

]
≤ I [2−παH− (1−π)αL]−χs=SL,

and

uA

(
ĉs,h

2

)
+(1−αh)uA

(
ĉA,NS,h

3

)
+αhuD

(
ĉD,s,h

3

)
≥ max

c2,cA
3 ,c

D
3

{
uA (c2)+(1−αh)uA

(
cA

3
)
+αhuD

(
cD

3
)

s.t. c2 +(1−αh)cA
3 +αhcD

3 = (2−αh) I

}
,

for s = S,NS, where χx denotes the indicator function.
We will define a couple of “indirect utility” functions that will be useful in the proof by simplifying

the non-reneging constraints. First, for h = H,L we introduce the function Uh : R+→ R defined as

Uh (W )≡max
cA,cD

{
(2−αh)uA

(
cA)+αhuD

(
cD)

s.t. (2−αh)cA +αhcD ≤W

}
.

It is straightforward to show that Uh is strictly increasing and strictly concave. Next, we introduce the
function U : R+→ R defined as

U (W )≡ max
c,CL,CH


uA (c)+πU(CH)+(1−π)U(CL)

s.t. c+πCH +(1−π)CL ≤W

(2−αH) I ≤CH

(2−αL) I ≤CL

 . (53)

It is again immediate to see that U is strictly increasing. The following lemma establishes that it is also
strictly concave:

Lemma 13. U is a strictly concave function.

Proof. Let

U0(W )≡ max
CL,CH

{
uA
(
W −πCH− (1−π)CL)+πU(Cs,H)+(1−π)U(Cs,L)

}
,

U1(W )≡ max
CL,CH

{
uA
(
W −πCH− (1−π)CL)+πU(Cs,H)+(1−π)U(Cs,L)

subject to (2−αL) I =CH

}
, and
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U2(W )≡ max
CL,CH


uA
(
W −πCH− (1−π)CL)+πU(Cs,H)+(1−π)U(Cs,L)

subject to (2−αH) I =CH

(2−αL) I =CL

 .

Notice that U0(W )≥U1(W )≥U2(W ), and U0, U1, and U2 are strictly concave. It is straightforward to
show that there exist WL and WH >WL such that:
• U (W ) = U0(W ) for W ≥WH ,
• U (W ) = U1(W ) for W ∈ [WL,WH ], and
• U (W ) = U2(W ) for W ≤WL.

Moreover, by the envelope theorem, U ′
0 (WH) = U ′

1 (WH) and U ′
1 (WL) = U ′

2 (WL). Therefore,

U ′(W ) =


U ′

0 (W ) for W ≥WH

U ′
1 (W ) for WL <W ≤WH

U ′
2 (W ) for W <WL

.

Because U ′ is strictly decreasing in each of these regions and is continuous, it then follows that U is
strictly concave.

Let X s be the sum of the insurance company’s expected expenditure at time t=1 conditional on s in
the original contract:

X s ≡ cs
1 +π

[
cs,H

2 +(1−αH)cs,H,A
3 +αHcs,H,D

3

]
+(1−π)

[
cs,L

2 +(1−αL)cs,L,A
3 +αLcs,L,D

3

]
+χs=SL.

Our main result establishes that in any optimal mechanism the insurance company gets negative profits
from consumers who suffer a liquidity shock and positive profits from those who do not suffer a liquidity
shock. Expected profits conditional on the liquidity shock s = S,NS equal

Π
s ≡W + I [2−παH− (1−π)αL]− (c0 +X s) .

By zero profits, we must have lΠS +(1− l)ΠNS = 0. We can now prove our main result:

Proposition 6. In any equilibrium contract, the insurance company gets negative profits from consumers

who suffer a liquidity shock and positive profits from those who do not suffer a liquidity shock:

Π
S ≤ 0≤Π

NS. (54)

Proof. Suppose we have an initial contract in which the firm profits from the liquidity shock in period
1 (that is, inequality 54 does not hold). Then, by the definition of Πs, we must have that the total
expenditure conditional on s = NS exceeds the one conditional on s = S: XNS > XS.
Consider the alternative contract that allocates the same consumption at t = 0 as the original one but
implements the best possible renegotiated contract at t = 1 conditional on the liquidity shock. More

A-51



precisely, consumption in subsequent periods is defined by the solution to

max(
cs

1,c
s,h
2 ,cs,h,d

3

)
h=H,L, d=A,D

uA (cs
1)+π

[
uA

(
cs,H

2

)
+(1−αH)uA

(
cs,H,A

3

)
+αHuD

(
cs,H,D

3

)]
(55)

+(1−π)
[
uA

(
cs,L

2

)
+(1−αL)uA

(
cs,L,A

3

)
+αLuD

(
cs,L,D

3

)]
subject to cs

1 +π

[
cs,H

2 +(1−αH)cs,H,A
3 +αHcs,H,D

3

]
+(1−π)

[
cs,L

2 +(1−αL)cs,L,A
3 +αLcs,L,D

3

] ≤ I [2−παH− (1−π)αL]−χs=SL,

uA

(
cs,h

2

)
+(1−αh)uA

(
cA,s,h

3

)
+αhuD

(
cD,s,h

3

)
≥ (56)

max
{ĉ}

{
uA (ĉ2)+(1−αh)uA (ĉ3)+αhuD (ĉ3)

s.t. ĉ2 +(1−αh) ĉ3 +αhĉ3 = (2−αh) I

}
, h = L,H.

By construction, this new contract satisfies the non-reneging and incentive-compatibility constraints.
We claim that the solution entails full insurance conditional on the shock: u′A

(
cs,h

2

)
= u′A

(
cA,NS,h

3

)
=

u′D
(

cD,s,h
3

)
for all s,h (starting from any point in which this is not satisfied, we can always increase the

objective function while still satisfying both the zero-profit condition and the non-reneging constraints
by moving towards full insurance). Let Cs,h ≡ cs,h

2 +(1−αh)cA,s,h
3 +αhcD,s,h

3 denote the total expected
consumption at periods 2 and 3. Then, cs,h

2 and cd,s,h
3 maximize expected utility in period 2 conditional

on the shocks s,h given the total expected resources:

uA

(
cs,h

2

)
+(1−αh)uA

(
cA,s,h

3

)
+αhuD

(
cD,s,h

3

)
= max

c,cA,cD

{
u(c)+(1−αh)uA

(
cA)+αhuD

(
cD)

s.t. c+(1−αh)cA +αhcD ≤Cs,h

}

= max
cA,cD

{
(2−αh)uA

(
cA)+αhuD

(
cD)

s.t. (2−αh)cA +αhcD ≤Cs,h

}
=Uh

(
Cs,h

)
.

The non-reneging constraints (56) can be written as

Uh

(
Cs,h

)
≥Uh ((2−αh) I) , h = L,H.

Using the fact that Uh is strictly increasing, they can be further simplified to

(2−αh)cA,s,h
3 +αhcD,s,h

3 ≥ (2−αh) I, h = L,H.

With these simplifications, we can rewrite Program (55) as
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max
cs

1,C
s,H ,Cs,L

uA (cs
1)+πU(Cs,H)+(1−π)U(Cs,L)

subject to
cs

1 +πCs,H +(1−π)Cs,L ≤ I [2−παH− (1−π)αL]−χs=SL,

(2−αH) I ≤Cs,H ,

(2−αL) I ≤Cs,L.

By equation (53), this expression corresponds to U (I [2−παH− (1−π)αL]−χs=SL).
The consumer’s expected utility from this new contract (at time 0) equals

u(c0)+ lU (I [2−παH− (1−π)αL]−L)+(1− l)U (I [2−παH− (1−π)αL]) . (57)

The utility that the consumer attains with the original contract is bounded above by the contract that
provides full insurance conditional on the amount of resources that the firm gets at each state in period
1: XS and XNS (note that this is an upper bound since we do not check for incentive-compatibility or
non-reneging constraints). That is, the utility under the original contract is bounded above by

u(c0)+ lU
(

XS−L
)
+(1− l)U

(
XNS

)
. (58)

By zero profits, the expected expenditure in the original and the new contracts are the same. Moreover, be-
cause XS < I [2−παH− (1−π)αL], it follows that the lottery {XS−L, l;XNS,1− l} is a mean-preserving
spread of the lottery

{I [2−παH− (1−π)αL]−L, l; I [2−παH− (1−π)αL] ,1− l}.

Thus, strict concavity of U yields:

lU
(

XS−L
)
+(1− l)U

(
XNS

)
<

lU (I [2−παH− (1−π)αL]−L)+(1− l)U (I [2−παH− (1−π)αL]) .

Adding u(c0) to both sides and comparing with expressions (57) and (58), it follows that the consumer’s
expected utility under the new contract exceed his expected utility under the original contract, thereby
contradicting the optimality of the original contract.

Therefore, in any equilibrium, firms cannot profit from consumers who suffer a liquidity shock and
cannot lose money from those that do not.
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Appendix D: Additional Empirical Evidence

HRS Data

This appendix reports the relationship between lapsing and health shocks using the data from the Health
and Retirement Study (HRS) (various years). The construction of Table 4 follows the steps outlined in
Fang and Kung (2012, Table 6) for the 1994 and 1996 longitudinal waves. We also included respondents
in the more recent 2012 wave. As in Fang and Kung, Table 4 shows that there is a positive and statistically
insignificant relationship between lapses and either the number of health conditions (Conditions) and
changes in health conditions (∆Conditions). Therefore, individuals who lapse are not healthier than those
who maintain coverage and they do not appear to lapse after positive health shocks, which is not in line
with a reclassification risk channel.

Evidence of Lapsing in Health and Retirement Survey
Logit Regression Logit Marginal Effect

Variable Coefficient SE Coefficient SE
Constant 1.73 0.987 na na

Age 0.012 0.007 0.001 0.000
Logincome -0.406∗∗∗ 0.046 -0.032∗∗∗ 0.003

Number of health conditions 0.008 0.026 0.007 0.002
Married 0.162 0.250 0.012 0.019

Has children -0.775 0.657 -0.061 0.052
Age of youngest child -0.004 0.005 0.000 0.000

∆Age 0.202 0.327 0.016 0.026
(∆Age)^2 -0.011 0.078 -0.001 0.006

∆Logincome 0.076 0.051 0.006 0.004
(∆Logincome)^2 -0.003 0.014 0.000 0.001

∆Conditions 0.106 0.139 0.008 0.011
(∆Conditions)^2 0.013 0.075 0.001 0.006

∆Married -0.299 0.335 -0.023 0.026

Table 4: Logistic Regression using 1992 - 2012 RAND HRS Longitudinal (13,137 Observations) with
dependent variable equal to maintaining (0) / lapsing (1) coverage. ***, **, and * represent significance
at 0.001, 0.01, and 0.05, respectively.

MetLife and SBLI Data

As we examine in Subsection 5.2, in the presence of fixed costs that are proportional to coverage, such
as sales commissions or illiquidity premiums, even consumers with rational expectations may demand
policies with surrender fees. With commissions, one should not observe different surrender fees after all
commissions have been paid, which typically happens in the first two or three years of the policy.

As described in Subsection 5.2, with an explanation based on the cost of liquidating investments,
the optimal insurance policy sets a surrender fee that balances the higher return that can be obtained by
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facing a more predictable pattern of lapses against the cost that policyholders face when they are unable
to smooth consumption after a liquidity shock. Let the liquidity premium be the proportion of the value
of an investment that has to be given up in case of early liquidation. Since the (ex-ante) expected cost to
policyholders of being unable to smooth consumption is increasing in the probability of a liquidity shock,
this explanation predicts that, holding the liquidity premium constant, surrender fees (as a proportion of
the amount invested) should decrease in the probability of facing a liquidity shock.

In order to evaluate the relationship between surrender fees and the probability of liquidity shocks,
we hand-collected detailed whole life insurance policy offers from two national insurance companies,
MetLife and SBLI, at the Lifequotes (2013) website.53 MetLife and SBLI are two national life insurers
with operations in most of the 50 states. MetLife is the largest U.S. life insurer with over $2 trillion in
total life insurance coverage in force while SBLI is middle sized with $125 billion of coverage in force,
thereby allowing us to ensure that premium data was not driven by idiosyncratic features associated
with firm size. We collected policy information across both genders across with the following coverage
amounts: $100,000; $250,000; $500,000; $750,000 and $1,000,000. We chose ages between 20 and
70 in 5-year increments and both genders. We focused on traditional whole life policies since future
cash surrender values do not depend on the return of the insurer’s portfolio.54 MetLife policies mature
at age 120, whereas SBLI policies mature at age 121. All policies assume no tobacco or nicotine use
and excellent health (“preferred plus”). Premiums are annual, which is the most common frequency. An
automation tool was used to effectively eliminate human coding error. For each policy, we obtained the
cash surrender values for each of the 25 years after purchase.

Our data set covers all American States except for New York55, where the companies did not offer
these policies, for a total of 10,738 policies. MetLife offered policies for all coverage amounts noted
above, for a total of 5,390 policies (2,695 per gender). SBLI did not offer policies with $100,000 coverage
for individuals aged 60 and older in the states of Alabama, Alaska, Idaho, Minnesota, Montana, Nebraska,
North Dakota, and Washington. In total, these missing data add up to 42 policies (21 per gender). Our
results remain if we exclude these states from the sample. In sum, our data set consists of 5,348 policies
(2,674 per gender) SBLI policies.

The surrender fee for each policy corresponds to the proportion of the discounted sum of insurance
loads (i.e., present value of premiums paid in excess of the actuarially-fair price) that cannot be recovered
as cash surrender value. Thus, the surrender fee is the fraction of pre-paid premiums that cannot be
recovered if the policy is surrendered. To ensure the comparability of the policies, we kept the terms of
each policy constant except for our controls (coverage, ages, and genders). We, therefore, focused on

53The choice of these two firms was dictated by data availability. Whole-life policies are typically used differently than
Universal Life (UL) policies, as UL policies are often used a tax-preferred investment vehicle in addition to insurance.

54Unlike traditional whole policies, most universal life insurance policies only provide an estimate of future cash surrender
values.

55Unfortunately, these two companies did not sell this type of policies in the state New York. SBLI does not operate in New
York. MetLife whole policies in New York are issued separately from the ones in other states. In order to verify the robustness
of our findings to other companies, we also collected data from other insurance firms for the state of California and obtained
the same results.
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Figure 6: Mean surrender fees by policy duration for each age (different color line) and their 95% confi-
dence intervals.

policies for the “preferred plus” health category that require a health exam.
To test the prediction that surrender fees should increase in the probability of liquidity shocks, we

need observable measures of the probability of liquidity shocks. Since we have detailed policy data
but no administrative information about the individuals who buy each policy, we need to proxy for the
probability of liquidity shocks using the terms of the policies. We use two different proxies: age and
coverage. It is widely documented that younger individuals are more likely to be liquidity constrained,
and age is a frequently-used proxy for the presence of liquidity constraints.56 In fact, consistently with
these proxies, lapse rates are decreasing in both age and coverage (Section 2).

Figure 6 shows the mean surrender fees as a function of policy duration at each age along with
their associated 95% confidence intervals.Because whole life policies do not have a cash surrender value
during the first few years after purchasing, surrender fees start at 100% for each age. As policies mature,
they accumulate cash value, reducing the surrender fee. Our main interest, however, is in the difference
in surrender fees for policies sold to individuals of different ages. For both MetLife and SBLI policies,
notice that the surrender fees decrease in age, at each duration. Thus, consistently with the differential

56See, for example, Jappelli (1990), Jappelli, Pischke, and Souleles (1998), Besley, Meads, and Surico (2010), and Zhang
(2014).
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Figure 7: Mean surrender fees by policy duration for each face amount and their 95% confidence inter-
vals.

attention and forgetfulness models, younger individuals face higher surrender fees. The differences by
age are not only statistically significant; they are also economically large. For example, while a 20-year-
old policyholder who surrenders after 5 years would not collect any cash value, a 70 year old collects
about 30% of the amount paid in excess of the actuarially-fair prices. Figure 7 shows the mean surrender
fees for different coverage amounts and their associated 95% confidence intervals. In contrast to the
prediction of the rational model, surrender fees for both MetLife and SBLI policies are decreasing in
coverage. However, while for MetLife the difference is always statistically significant, for SBLI policies
with coverage above $100,000 are not statistically significant at 5% level.57 Relative to age considered
above, differences by coverage levels are slightly smaller. Nevertheless, the surrender fee on a $100,000
policy is, on average, between 5 and 10 percentage points larger than the surrender fee on a $1,000,000
policy.

57The lack of statistical significance for SBLI policies with more than $100,000 coverage could be due to the fact that,
while lapse probabilities are much higher for smaller policies, the difference is not very large for policies with coverage above
$200,000 (see Figure 2).
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Compulife

Data on insurance policy quotes, current as of February 2013, were obtained from Compulife (2013). We
gathered quotes for a $500,000 policy with a 20 year term for a male age 35, non-smoker, and a preferred-
plus rating class. For the mortality table, we use the 2008 Valuation Basic Table (VBT) computed by the
Society of Actuaries that captures the “insured lives mortality” based on the insured population. For
Figure 3 in the main text, we assume a nominal interest rate of 6.5%. However, the results are very robust
to the interest rate. The figures below repeat the exercise under extreme assumptions about the nominal
interest rate and the inflation rate. Note that the only cost in actuarial profits is the death benefit. To
obtain economic profits, one should subtract all other costs.
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C mpulife: Expected Actuarial Pr fit (2% discount rate)

Figure 8: Insurer’s profits if the consumer plans to hold policy for after N years under 2% nominal interest
rate.
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Figure 9: Insurer’s profits if the consumer plans to hold policy for after N years under 8% nominal interest
rate.
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Large Life Insurer (LLI) Color-Coded Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Policy Year

−10000

0

10000

20000

30000

40000

50000
US

D
(b) Da a: Realized Ac uarial Profi s

Figure 10: Figure 3(b) with color coding of policies: 10-year (red), 15-year (green), 20-year (blue) and 30-year
(black).
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