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Abstract

This paper examines how market power affects coverage in a general class of insur-
ance models. We show that market power decreases coverage for individuals who are less
willing to pay for insurance but increases coverage for those with a higher willingness to
pay. Under weak conditions, a monopolist always excludes a positive mass of customers,
whereas competitive firms do not. However, to avoid cream skimming, competitive firms
provide less coverage than a monopolist for consumers who are willing to pay more. The
welfare comparison between competitive and monopolistic markets depends on whether
the distortion at the bottom (higher under monopoly) exceeds the distortion at the top
(higher under competition). Using simulations based on an empirical model of prefer-
ences, we find that both effects are quantitatively important although the effect at the
bottom dominates. So, in our calibrated model, the market power distortion exceeds
the cream skimming distortion from competition.
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1 Introduction

Access to insurance coverage is crucial for both efficiency and equity reasons. For instance, in
the past century, all high-income countries implemented measures to ensure access to health
insurance. While most of them opted for public provision, the United States chose to keep
health insurance privately provided. Several policies were introduced to increase insurance
coverage, including tax benefits for employer-provided plans, free health insurance for the
poor, elderly, and disabled, risk adjustments, penalties for lacking coverage through individual
and employer mandates, and setting up health insurance exchanges. While these policies have
considerably reduced the number of uninsured individuals, over 30 million Americans remain
without coverage. Understanding why so many people do not have health insurance is a key
policy issue.

In this paper, we show that a general prediction of market power in insurance is that a
positive fraction of the population does not purchase any coverage. In contrast, under mild
assumptions, all consumers buy some coverage in competitive markets. These theoretical
predictions suggest that market power may be an important feature of health insurance
markets in the United States. This is consistent with a large body of empirical work, which
finds that health insurance markets are highly concentrated and insurers have substantial
market power.1

A monopolist faces a trade-off between efficiency and rent extraction. Reducing cover-
age is costly because risk-averse customers would pay more than the actuarially fair price
to increase their coverage. However, this reduction in coverage allows the firm to charge
higher premiums to those willing to pay more. We show that the rent-extraction effect al-
ways dominates for customers at the lower end of the willingness-to-pay spectrum. Thus, a
monopolistic insurer profits from excluding a positive mass of customers. In contrast, in a
competitive market with endogenous contracts, there is no exclusion of risk-averse consumers.
Therefore, consumers with lower willingness to pay buy less coverage under monopoly than
in a competitive market, with some not purchasing coverage at all.

However, the effect of market power on coverage is heterogeneous across consumers. Those
with a high willingness to pay obtain higher coverage under monopoly than in competitive
markets (see Figure 1). This is because competitive firms have an incentive to cream skim,
stealing safer consumers from other firms by offering less coverage. A monopolist does not
face the risk of losing its safest customers to other firms, so it can provide more coverage to
those at the higher end of the willingness-to-pay spectrum.

We illustrate the quantitative importance of these effects in a calibrated health insurance
model based on Einav et al. (2013). As depicted in Figure 2, there is substantial exclusion

1See Dafny (2010); Dafny et al. (2012); Starc (2014); Ho and Lee (2017); Cabral et al. (2018); Cicala et al.
(2019); Polyakova and Ryan (2021; 2023); Saltzman et al. (2021); and Tebaldi (Forthcoming).
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Figure 1: Coverage under Monopoly and Perfect Competition (Rothschild & Stiglitz)
Notes: Coverage in the Rothschild and Stiglitz setting (example 2). Consumers have CARA utility with risk
aversion A = 1

2 and face a loss of L = 1. The horizontal axis depicts each consumer’s loss probability, which
is uniformly distributed between 5 and 95 percent. The blue line depicts the coverage of each consumer under
perfect competition. The red line depicts the coverage under monopoly. A monopolist provides less coverage
for types with a low loss probability and excludes those with sufficiently small loss probabilities. Competitive
firms provide more coverage for those types and do not exclude any types. However, consumers with high
loss probabilities receive less coverage under perfect competition than with a monopolist.

with monopoly, with 70 percent of consumers not purchasing any coverage. In contrast, with
perfect competition, all consumers buy coverage. At the top, 12 percent of consumers pur-
chase a higher coverage under monopoly than under perfect competition. In our simulations,
both consumer and total surplus are higher under perfect competition than under monopoly.
Specifically, the average annual consumer surplus equals $3,047 in the competitive equilib-
rium and $1,308 under monopoly. The average annual total surplus is again $3,047 in the
competitive equilibrium (insurers make zero profits) and $2,223 with a monopolist.

While our simulation considers a model of health insurance, our theoretical results apply
to many other markets with adverse selection, including other insurance and credit markets.
See Einav et al. (2021) for a survey of the literature.

Our paper is structured as follows. In Section 2, we introduce the general model, ex-
amples, and main definitions. Section 3 presents the results for one-dimensional types. We
then generalize the results to multi-dimensional types in Section 4. Section 5 illustrates the
quantitative implications of our results using a calibrated health insurance model. We review
the related literature in Section 6. Then, Section 7 concludes. Intuitive proofs are presented
in the text, whereas more technical proofs are in the appendix.
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Figure 2: Coverage under Monopoly and Perfect Competition (Calibrated Model)
Notes: Distribution of coverage choices in the numerical example from Section 5. The horizontal axis depicts
the contracts chosen by consumers, with coverage ranging between 0 to 100 percent of expenses. Blue
bars represent the distribution of coverage in the competitive equilibrium. Orange bars represent coverage
with a monopolist. With monopoly pricing, approximately 70 percent of consumers are uninsured. With
perfect competition, all consumers purchase some coverage. However, more consumers purchase policies with
coverage levels above 70 percent with monopoly than with perfect competition.

2 Model

2.1 The Model

Following a large applied literature, we assume that consumers have quasi-linear utility. This
assumption is consistent with insurance models in which consumers have constant absolute
risk aversion.2 Consumer private information is represented by a K-dimensional type θ drawn
from Θ ≡ [θ1, θ̄1] × ... × [θK , θ̄K ] ⊂ RK

+ . Types are distributed according to an absolutely
continuous measure µ on Θ with a continuous probability density function f with full support.

A type-θ consumer’s utility from buying a policy with coverage level x ∈ [0, 1] and pre-
mium p ∈ R is:

u(θ, x)− p. (1)

The firm’s expected profit from selling a policy with coverage x to a type-θ consumer is:

p− c(θ, x). (2)
2Constant absolute risk aversion is a common assumption in the applied literature (see, for example,

Cardon and Hendel (2001), Handel (2013), Einav et al. (2013), Handel et al. (2015), and Hackmann et al.
(2015)). All of our results hold with arbitrary utility in the standard setting of Rothschild and Stiglitz (1976).
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The surplus from providing coverage x to type θ is:

S(θ, x) ≡ u(θ, x)− c(θ, x).

The willingness to pay and the cost of providing zero coverage are both zero: u(θ, 0) =

c(θ, 0) = 0 for all θ.
We maintain the following assumptions throughout the paper:3

Assumption 1. The utility function u : RK
+ × [0, 1] → R+ is twice continuously differentiable

and is strictly increasing in θ for each x > 0. The cost function c : RK
+ × [0, 1] → R+ is

continuously differentiable.

This framework is general enough to allow for multidimensional heterogeneity, as formu-
lated in many empirical models. Ex-post moral hazard can be incorporated through the
definitions of the utility and cost functions. By specifying the utility function appropriately,
it also allows for other types of consumer behavior, such as overconfidence, inertia to abandon
a default choice, or misunderstanding the benefits from being insured.4

2.2 Examples

The following examples clarify how our general framework can be applied to different settings.
The first example is the model we use in our simulations (Figure 2 and Section 5):

Example 1. (Einav et al. (2013); Azevedo and Gottlieb (2017)) Consumers face a stochastic
health shock l, which is normally distributed with mean M and variance S2.5 After the
shock, they decide how much to spend on health services e. Consumers are heterogeneous in
their distribution of health shocks (parametrized by M and S2), risk aversion parameter A,
moral hazard parameter H, and initial wealth W . Utility after the shock equals

CE(e, l;x, p,H) = [W − p− (1− x)e] + [(e− l)− 1

2H
(e− l)2].

Substituting the privately optimal health expenditure, e = l +Hx, we can write the utility
after the shock as

CE∗(l;x, p,H) = W − p− l + l · x+
H

2
· x2.

3Note that u and c are also defined for types outside of the type space Θ. This allows us to obtain
conditions on the type space Θ, while ensuring that preferences and costs are well defined.

4See Handel (2013) and Polyakova (2016) for inertia and Handel and Kolstad (2015) and Handel et al.
(2019) for other frictions.

5Appendix A generalizes the model for arbitrary distributions and presents simulations for the truncated
normal.
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Consumers have constant absolute risk aversion (CARA), so their expected ex-ante utility
equals

E[−e−A·CE∗(l;x,p,H)|l ∼ N(M,S2)].

Using the expression for the normal distribution, the model can be described as in (1) and
(2) with

u(θ, x) = xM + x(2− x)
S2A

2
+ x2H

2
, and (3)

c(θ, x) = xM + x2H.

The consumer’s willingness to pay for coverage depends on three terms: average covered
expenses xM , utility from risk-sharing x(2 − x) · S2A/2, and utility from overconsumption
of health services x2H/2. Since the firm has to pay the covered expenses, the first term
is subtracted from the firm’s profits. Over-consuming health services (moral hazard) costs
firms twice as much as consumers are willing to pay for it. Risk neutral firms have no cost
of absorbing risk. The value of risk-sharing is increasing in coverage, in the consumer’s risk
aversion, and in the variance of health shocks.

Farinha Luz et al. (2023) consider a special case of example 1 without moral hazard (H = 0

for all consumers). We now turn to simpler, one-dimensional models.

Example 2. (Rothschild and Stiglitz, 1976; Chade and Schlee, 2021) Consumers have initial
wealth W and face a potential loss of L ∈ (0,W ). They have heterogeneous loss probabilities
θ ∈ [θ, θ̄], which is their private information, where 0 ≤ θ < θ̄ < 1. Risk-neutral firms
sell insurance policies. An insurance policy with coverage x repays x · L if the consumer
experiences a loss.

Consumers have constant absolute risk aversion, so their preferences can be represented
as in equation (1) with

u(θ, x) =
ln
[
1− θ + θeAL

]
− ln

[
1− θ + θeAL(1−x)

]
A

, (4)

where A > 0 is the coefficient of risk aversion.6 Firm profits can be written as in (2) with
c(θ, x) = xθL.

The next example follows Rothschild-Stiglitz in assuming that types are one-dimensional,
but does not restrict losses to be binary:

6Our results still hold in this model if we do not assume constant absolute risk aversion.
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Example 3. (Levy and Veiga, 2022) Consider the following willingness to pay and cost of
providing coverage functions

u(M,x) = xM + g(x), and (5)

c(M,x) = xM,

where g : [0, 1] → R+ is a strictly concave function satisfying g(0) = 0, g′(x) > 0 for x < 1,
and g′(1) = 0. In this model, types are one-dimensional and correspond to the consumer’s
expected loss: θ = M .

The two examples below help illustrate results that hold beyond insurance.

Example 4. (Lemons Market with a Divisible Asset) Buyers are privately informed about
the quality of an asset, represented by the type θ.7 The valuations of buyers and sellers are:

u(θ, x) = αθx, and (6)

c(θ, x) = θx,

where α > 1 (so there are positive gains from trade).

Example 5. (Non-Linear Pricing) In models of non-linear pricing, the seller’s cost does not
depend on the buyer’s type: c(θ, x) = c(θ̃, x) for all θ, θ̃.

2.3 Definitions

An allocation is a measure α over Θ × [0, 1] such that the marginal distribution satisfies
α|Θ = µ. That is, α({θ, x}) is the measure of θ types who purchase contract x. A price is
a measurable function p : [0, 1] → R with p(0) = 0, with p(x) denoting the premium charged
for coverage x.8 A mechanism (p, α) consists of a price p and an allocation α. A mechanism
(p, α) is incentive compatible if for almost every (θ, x) with respect to α, consumers pick
their contracts optimally:

u(θ, x)− p(x) = sup
x′∈X

u(θ, x′)− p(x′).

An allocation α is deterministic if for each θ, there exists x(θ) such that α(θ, [0, 1]) =

α(θ, x(θ)). That is, a deterministic allocation assigns the same contract to each type.
7This example assumes that buyers are the informed party. It is straightforward to relabel players and

renormalize prices and quantities to allow buyers to be uninformed and sellers to be informed.
8The requirement that zero coverage has a premium of zero corresponds to the standard participation

constraint.
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The monopolist’s expected profits from a mechanism (p, α) are given by the expectations
over the firm’s profits (2) with respect to the measure α. A mechanism maximizes the mo-
nopolist’s profits if: (a) it is incentive compatible, and (b) no other incentive-compatible
mechanism gives higher expected profits. We use the following shorthand notation for con-
ditional moments:

Ex[c|α] = Ex[c(θ̃, x̃)|α, x̃ = x].

That is, Ex[c|α] is the expectation of c(θ̃, x̃) according to the measure α and conditional on
coverage x̃ = x. Our competitive equilibrium concept is based on Azevedo and Gottlieb
(2017):

Definition 1. The pair (p∗, α∗) is a competitive equilibrium if

1. For each contract x, firms make zero profits: p∗(x) = Ex[c|α∗] almost everywhere
according to α∗.

2. Consumers select contracts optimally: for almost every (θ, x) with respect to α∗, we
have

u(θ, x)− p∗(x) = sup
x′∈X

u(θ, x′)− p∗(x′).

3. For every contract x′ ∈ X with strictly positive price, there exists (θ, x) in the support
of α∗ such that

u(θ, x)− p∗(x) = u(θ, x′)− p∗(x′) and c(x′, θ) ≥ p(x′).

That is, every contract that is not traded in equilibrium has a low enough price for
some consumer to be indifferent between buying it or not, and the cost of this consumer
is at least as high as the price.

Conditions 1 and 2 state that consumers and firms to optimize taking prices as given.
Since condition 1 only requires prices to be equal to the average cost of consumers almost
everywhere, it does not place restrictions on the prices of contracts that are not traded.
Therefore, these two conditions alone do not rule out unreasonable equilibria where firms
do not offer a contract because they fear that it will attract overly risky consumers when,
in fact, if they offered this contract, they would attract consumers with much lower risk.
Condition 3 is a refinement that rules out this type of “unreasonably pessimistic” beliefs. It
requires contracts that are not traded to be such that, if their prices were slightly reduced,
some consumers would choose to purchase them and the firm would not make money.9

9As Azevedo and Gottlieb (2017) show, condition 3 can be obtained from requiring the equilibrium to be
robust to small perturbations in the spirit of proper equilibrium (Myerson (1978)). Moreover, competitive
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Existence of competitive equilibrium follows from Theorem 1 and Proposition 1 in Azevedo
and Gottlieb (2017). Existence of a mechanism that maximizes the monopolist’s profits fol-
lows from Theorem 5.11 in Kadan et al. (2017).

3 One-Dimensional Types

To illustrate our results, we first assume that types are one dimensional: Θ = [θ, θ̄] ⊂ R+.
We show three results below: there is no exclusion with perfect competition, a monopolist
excludes a positive mass of consumers if θ is low enough, and high enough types get more
coverage with a monopolist than with perfect competition.

3.1 No Exclusion with Perfect Competition

We impose the following assumption:

Assumption 2. There exist ε > 0 and bounded functions v, κ : [0, 1] → R such that for all
x < ε and all θ > θ, ∂u

∂x
(θ, x) ≥ θv(x) and c(θ, x) ≤ θκ(x). Moreover, κ is differentiable at 0

and v(0) > κ′(0) ≥ 0.

The first part of the assumption is technical. It requires marginal utility to be bounded
from below and cost to be bounded from above for coverages close to zero. The second part
is more economically substantial. It requires that small amounts of coverage increase surplus,
implying that exclusion is not a property of the first best.

Proposition 1. Suppose Assumptions 1 and 2 hold and let (p∗, α∗) be a competitive equilib-
rium. Then there is no exclusion: α∗ (Θ, 0) = 0.

Proof. Fix a competitive equilibrium in which a positive mass of types are excluded. By
condition 2 of Definition 1, whenever (θ, x) is in the support of α∗, we must have:

p′(x) =
∂u

∂x
(θ, x) ≥ θv(x) (7)

at all points of differentiability of x. Since the inequality holds for each θ picking x, it must
also hold for the expected θ among those choosing x:

p′(x) ≥ m(x)v(x), (8)

equilibrium corresponds to the limit of a game in which horizontally differentiated firms with small scales
compete through prices, as the amount of horizontal differentiation vanishes. For one-dimensional settings
with single crossing, competitive equilibrium gives the same allocation as in Riley (1979) (see Subsection
3.3).
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where m(x) ≡ Ex[θ|α∗] ≥ θ. By condition 1 (zero profits):

p(x) = Ex [c|α∗] ≤ m(x)κ(x). (9)

Suppose that for every ε > 0 there exists x ∈ (0, ε) such that no type is indifferent
between their equilibrium contract and x. Then, by condition 3 of Definition 1, the price
of that contract must be zero, which implies that no type can be excluded (since any such
type prefers to purchase x > 0 small enough at price zero over zero coverage). Thus, for
any contract in a neighborhood of zero, there must exist some type for whom picking that
contract maximizes utility. Moreover, again by condition 3, the cost of selling x to that type
must be weakly higher than the price. Letting m(x) ≥ θ denote such a type, we find:

p′(x) =
∂u

∂x
(m(x), x) ≥ m(x)v(x),

and
p(x) ≤ c(m(x), x) ≤ m(x)κ(x). (10)

Therefore, the lower bound on p′ and the upper bound on p are the same as in (8) and (9).
Integrate (8) and use p(0) = 0 to obtain:∫ x

0

m(x̃)v(x̃)dx̃ ≤ p(x) ≤ m(x)κ(x),

where the last inequality used (9). Divide both sides by x > 0 and rearrange:

m(x)
κ(x)

x
−
∫ x

0
m(x̃)v(x̃)dx̃

x
≥ 0.

Note that this condition must hold for all x > 0. We consider the limit of this expression as
x ↘ 0. By the Fundamental Theorem of Calculus, limx↘0

∫ x
0 m(x̃)v(x̃)dx̃

x
= m(0+)v(0), where

m(0+) ≡ limx↘0m(x). Therefore, the condition above for x in a neighborhood of x = 0

requires:
m(0+) [κ

′(0)− v(0)] ≥ 0.

Since v(0) > κ′(0) (Assumption 2), this condition requires m(0+) ≤ 0. Since m(x) ≥ θ for
all x, this is a contradiction if θ > 0. If instead θ = 0, it implies m(0+) = 0, so at most
the lowest type (θ = 0), which has zero measure, can be excluded. Therefore, there is no
equilibrium in which a positive mass of types is excluded.

Note that allowing contracts to be endogenously determined is key for the no-exclusion
result. With a single exogenous contract, the competitive equilibrium often excludes some
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types, and it may even exclude almost all types, as in Akerlof (1970).10

3.2 Exclusion with Monopoly

In this subsection, we show that exclusion is optimal whenever the type space includes types
with low enough surplus from coverage. To make this statement formal, we need to define
what it means for a type to have low enough surplus. This is done by considering a “safe
type” (θ = 0), which may not be in the type space (since we may have θ > 0):

Assumption 3. (Safe type) ∂S
∂x
(0, x) ≤ 0 for all x > 0 and ∂2u

∂θ∂x
(0, 0) > 0.

Assumption 3 states that providing coverage does not increase the safe type’s surplus
(∂S
∂x
(0, x) ≤ 0), and types close enough to the safe type have a higher willingness to pay for

coverage than the safe type ( ∂2u
∂θ∂x

(0, 0) > 0).11

To understand Assumption 3, consider the Rothschild and Stiglitz (1976) model, where
a type corresponds to the loss probability. An individual with θ = 0 has probability zero of
having a loss and therefore has both a zero willingness to pay and zero cost of coverage. If
θ > 0, all types have a positive probability of experiencing a loss, so all types have a positive
surplus from purchasing coverage. In fact, the surplus-maximizing contract for all types is
full insurance. Nevertheless, as we show below, a monopolist excludes a positive mass of
types as long as θ is close enough to zero.

Proposition 2. Suppose Assumptions 1 and 3 hold. There exists θ∗ > 0 such that if θ < θ∗,
then any mechanism that maximizes the monopolist’s profits excludes a set of types with
positive measure: α(Θ, 0) > 0.

Proof. For simplicity, we restrict attention to deterministic allocations here (see the online
appendix for the general proof, which also allows for stochastic allocations). Fix an incentive-
compatible allocation x(·) and let U(θ) ≡ u(θ, x(θ)) − p(x(θ)) denote the indirect utility of
type θ. By the envelope theorem, incentive compatibility implies:

U̇(θ) =
∂u

∂θ
(θ, x(θ)) > 0. (11)

Since U(·) is increasing in θ, the exclusion region is an interval: [θ, θ∗]. If all types participate
(θ∗ = θ ), any allocation that maximizes the firm’s profits must give zero utility to the lowest

10Other restrictions to the contract space, such as a minimum coverage, may also generate exclusion (see
Azevedo and Gottlieb (2017) and Levy and Veiga (2022)). Note that the no-exclusion result is immediate if
there is no adverse selection (such as in example 5), since the competitive equilibrium has each good supplied
at its marginal cost, so all consumers with a positive surplus buy positive amounts.

11This second requirement is related to but substantially weaker than the single-crossing property (see
Assumption 4 below).
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type. If there is exclusion (θ∗ > θ), all types who do not participate get zero utility. So in
either case we have U(θ∗) = 0.

Integrate equation (11) to obtain:

U(θ)− U(θ∗)︸ ︷︷ ︸
0

=

∫ θ

θ∗

∂u

∂θ̃
(θ̃, x(θ̃))dθ̃.

Substituting in the firm’s expected profits and integrating by parts, we obtain the virtual
surplus expression: ∫ θ

θ∗

[
S(θ, x(θ))− ∂u

∂θ
(θ, x(θ)) · 1− F (θ)

f(θ)

]
f(θ)dθ.

For the moment, suppose θ = 0. To show that any optimal allocation excludes some types,
we verify that the integrand of the expression above is negative for θ close enough to zero.

The integrand evaluated at θ = 0 equals

S(0, x(0))− ∂u

∂θ
(0, x(0)) · 1

f(0)
.

Note that Assumption 3 implies S(0, x) ≤ 0 for all x (since S(0, 0) = 0 and ∂S
∂x
(0, x) ≤ 0).

Therefore, if x(0) > 0, then S(0, x(0)) ≤ 0 and ∂u
∂θ
(0, x(0)) > 0 (Assumption 1) imply that

this expression is strictly negative, so setting θ∗ > 0 is optimal. If x(0) = 0, the expression
above equals zero. Evaluating its derivative with respect to x(0), we obtain

∂S

∂x
(0, 0)− ∂2u

∂x∂θ
(0, 0) · 1

f(0)
< 0,

where the inequality follows from ∂S
∂x
(0, 0) ≤ 0 and ∂2u

∂x∂θ
(0, 0) > 0 (Assumption 3). Since

x(θ) > 0 for all θ > θ∗ = 0 (types above θ∗ are not excluded), by the continuity of the expres-
sion on the LHS, it follows that the integrand is strictly negative for all θ in a neighborhood
of θ∗ = 0. Since S is continuously differentiable and u is twice continuously differentiable,
and the integrand remains negative if θ is sufficiently small.

3.3 Monopoly provides more coverage at the top

Propositions 1 and 2 imply that low types buy more coverage in a competitive market than
with a monopolist. We now consider the coverage purchased by high types. We impose the
following conditions:

Assumption 4. (Single Crossing) The utility function satisfies ∂2u
∂θ∂x

(θ, x) > 0 for all θ, x.
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Assumption 4 is standard in one-dimensional models. It states that higher types to have
a higher marginal utility from coverage and implies that incentive-compatible mechanisms
are non-decreasing.

Assumption 5. The utility function u is strictly increasing in x for all θ > θ. The cost
function c is strictly increasing in x for all θ > θ, and strictly increasing in θ for all x > 0.

In addition to stating that customers like coverage but providing coverage is costly, As-
sumption 5 states that there is adverse selection, so that it costs more to provide coverage
to types who are willing to pay more for coverage.

Assumption 6. ∂S
∂x
(θ̄, x̄) = 0 where x̄ ≡ argmaxx S(θ̄, x) > 0 and ∂2S

∂x2 (θ, x) < 0 for all θ.

Assumption 6 states that the efficient contract for the highest type is determined by a
first-order condition. Intuitively, this assumption precludes exogenous upper bounds on the
space of contracts. It requires that either the efficient coverage of the highest type is interior
(0 < x̄ < 1) or that it would be inefficient to offer a coverage greater than 100 percent (so
the consumer makes money by incurring a loss).

Our last assumption imposes technical smoothness conditions:

Assumption 7. The PDF f is continuously differentiable and u is three times continuously
differentiable.

The least-costly separating allocation is the deterministic allocation that solves the
following ordinary differential equation:

ẋ(θ) =
∂c
∂θ
(θ, x(θ))

∂S
∂x
(θ, x(θ))

, (12)

with boundary condition x(θ̄) = x̄.12 To understand this equation, note that incentive
compatibility requires type x(θ) to maximize type the utility of type θ, giving the necessary
first-order condition:

∂u

∂x
(θ, x(θ)) = p′(x(θ)) (13)

at all points in which p is differentiable. If types are separated, the zero profits condition
gives:

p(x(θ)) = c(θ, x(θ)).

Differentiating and substituting back in equation (13), gives (12). Note that the least costly
separating allocation has x(θ̄) = x̄ and limθ↗θ̄ ẋ(θ) = +∞. Therefore, coverage is very steep
close to the top.

12Formally, equation (12) is not well defined at θ = θ̄. However, one can define the least-costly separating
allocation in terms of its inverse, the “type-assignment function,” which specifies the type that picks each
coverage. Existence and uniqueness then follow from the Picard-Lindelöf Theorem.
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The lemma below shows that this is the allocation in the unique competitive equilibrium:

Lemma 1. Suppose Assumptions 1 and 4-7 hold. The competitive equilibrium is unique and
its allocation xc(·) is the least-costly separating allocation.

To illustrate the reason for screening in a competitive market, suppose the surplus-
maximizing coverage does not depend on types: ∂S

∂x
(θ, x̄) = 0 for all θ. This is the case,

for example, in the Rothschild and Stiglitz model, where full insurance maximizes the sur-
plus of each type. The problem is that competitive firms cannot prevent cream skimming
by other firms. If multiple types purchase the same coverage level, a firm can always profit
by offering slightly less coverage at a lower premium, attracting only the less risky types.
The competitive equilibrium allocation distorts each type’s coverage downwards by the exact
amount needed to prevent cream skimming while preserving zero profits.

To understand the amount of distortion needed to prevent cream skimming, note that
each type equates the marginal utility from coverage with the price of an additional cov-
erage, as in equation (13). The price of an additional unit of coverage p′(x(θ)) has two
components: the marginal cost of coverage holding selection constant, ∂c

∂x
(θ, x(θ)), and the

increase in cost due to adverse selection,
∂c
∂θ

(θ,x(θ))

ẋ(θ)
. Since the first best equates marginal utility

with the marginal cost of coverage, ∂u
∂x
(θ, x(θ)) = ∂c

∂x
(θ, x(θ)), adverse selection distorts the

equilibrium allocation downwards. Moreover, as types increase, we approach the efficient al-
location. Close to the efficient allocation, the loss in surplus from reducing coverage becomes
arbitrarily small. Therefore, in order to prevent cream skimming, firms must substantially
reduce coverage: limθ↗θ̄ ẋ(θ) = +∞.

We now turn to the monopolist’s program. For simplicity, we restrict ourselves to deter-
ministic allocations (that is, we focus on mechanisms that maximize the monopolist’s profits
among those with deterministic allocations). In the appendix, we generalize the analysis to
allow for stochastic allocations.

Lemma 2. Suppose Assumptions 1 and 4-7 hold and suppose xm(·) maximizes the monopo-
list’s profits among deterministic allocations. Then, xm(θ̄) ≥ x̄ and ẋm(θ̄) < ∞.

The proof solves the monopolist’s program and shows that there are two cases. If the
monotonicity constraint associated with incentive compatibility does not bind, the solution
has the same boundary condition xm(θ̄) = x̄ (no distortion at the top) but has a flatter slope
ẋm(θ̄) < +∞. If the monotonicity constraint does not bind, there is bunching at the top at
a point above the efficient coverage: xm(θ̄) ≥ x̄ and ẋm(θ̄) = 0.13

13In the Rothschild-Stiglitz model (example 2), the allocation that maximizes profits is deterministic and
has no bunching at the top, so the solution entails xm(θ̄) = x̄ and ẋm(θ̄) < +∞.
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A monopolist offers partial insurance for a different reason than competitive firms. A
monopolist does not face the risk of cream skimming. However, providing the efficient cover-
age to all types would require the monopolist to charge the willingness to pay of the lowest
type, leaving excessive informational rents. The monopolist balances the efficiency gain from
increasing coverage against informational rents that are left to higher types. As long as the
distribution of types is continuously differentiable around θ̄, the optimal policy has a finite
slope.

From Lemmas 1 and 2, it follows that the monopolist always provides more coverage for
high enough types:

Proposition 3. Suppose Assumptions 1 and 4-7 hold. There exists θ∗ < θ̄ such that xm(θ) >

xc(θ) for all θ ∈ (θ∗, θ̄).

Recall that Assumption 5 requires costs to be increasing in types, ruling out non-linear
pricing models (example 5). If instead costs were constant in consumer types, the competi-
tive equilibrium would feature each product being sold at cost and the allocation would be
efficient. Under standard regularity conditions on the distribution of types, the monopolist
would distort quantity downwards. Therefore, Proposition 3 does not generalize to private
values settings.

4 Multidimensional Model

This section generalizes the results from Section 3 to allow for multidimensional types.

4.1 No Exclusion with Perfect Competition

The following assumption generalizes Assumption 2:

Assumption 2′. There exist ϵ > 0 and bounded functions v0, vk, and κk such that for all
x < ϵ and all θ:

a. (Bounded marginal utility) ∂u
∂x
(θ, x) ≥ v0(x) +

∑K
k=1 θkvk(x) > 0;

b. (Bounded cost) c(θ, x) ≤
∑K

k=1 θkκk(x);

c. (Positive surplus) v0(0) +
∑K

k=1 θk [vk(0)− κ′
k(0)] > 0.

Condition (a) is a technical condition requiring the marginal utility of a small amount of
coverage to be bounded from below by functions that are linear in types. Condition (b) is
also a technical condition requiring the cost of a small amount of coverage to be bounded
above by functions that are linear in types. Condition (c) states that the marginal utility
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of a small amount of coverage exceeds the marginal cost for each type, so exclusion is not a
property of the first best.

It is straightforward to verify Assumption 2’ in all the examples from Subsection 2.2.14

Since u is an increasing function of types (Assumption 1), the exclusion region must be
an interval starting at the lowest type.15 The theorem below establishes that there is no
exclusion in competitive equilibrium.

Theorem 1. Suppose Assumptions 1 and 2’ hold and let (p∗, α∗) be a competitive equilibrium.
Then there is no exclusion: α∗ (Θ, 0) = 0.

The proof follows similar steps as in the one-dimensional case and is presented in the
appendix.

4.2 Exclusion with Monopoly

We show that a monopolist always excludes a positive mass of consumers if some types have
low enough surplus from coverage. Let ∥·∥ denote the Euclidean norm and let ∇θu denote
the gradient of u with respect to θ. As in Assumption 3, we impose some structure about
the marginal utility of coverage for types close enough to zero:

Assumption 8. There exist κ > 0 and ε > 0 such that θ · ∇θu(θ, x) ≥ κu(θ, x) for all x ≥ 0

and all θ with ∥θ∥ < ε.

It is straightforward to verify that Assumption 8 holds in examples 1-4.16 If types are
one-dimensional, the assumption states that there exists κ > 0 such that

d

dθ

[
u(θ, x)

θκ

]
≥ 0

for all x and all θ < ϵ. That is, the rate of growth of the utility can be bounded from below
by the rate of of growth of a power function. More generally, Assumption 8 allows us to
obtain a lower bound on the consumer’s informational rent using a homogeneous function.

Our second assumption generalizes the requirement that there exist some types with low
enough surplus in Assumption 3. Before stating the assumption, we need to introduce some
notation. For each θ ∈ Θ, let ℓ(θ) ≡ max{t : t ≥ 1 and tθ ∈ Θ} denote the length of the ray

14In example 1, we have θ = (M,S2A,H), and the conditions are satisfied with v0(x) = 0, v1(x) = 1,
v2(x) = 1− x, v3(x) = x, κ1(x) = x, κ2(x) = 0, and κ3(x) = x2.

15Since Theorem 1 does not impose an order on marginal utility of coverage (such as the single-crossing
property with one-dimensional types), incentive compatible allocations may be non-monotonic.

16It is immediate that Assumption 8 holds if the utility function is linear in types as in examples 1, 3, and
4. Simple calculations allow one to verify that it also holds in example 2.
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connecting θ to the boundary of Θ. For each ϵ > 0, let

Θϵ ≡ {θ ∈ Θ : ||θ − θ|| < ϵ}

denote the set of types distanced less than ϵ from θ. Let ℓ ≡ inf{ℓ(θ) : θ ∈ Θϵ} > 1 denote
the shortest ray connecting a type in Θϵ and the boundary of Θ and let f ≡ min{f(θ) : θ ∈
Θ} > 0 denote the lowest density of types. Finally define the following constant:

η ≡ 1

1− κ ℓK−1
K

f

f(θ)

> 1, (14)

where θ ≡ (θ1, ..., θK). Note that η depends on the geometry of the type space (through ℓ

and K), the distribution of types (through f and f(θ)), and the utility function (through κ

and ϵ).

Assumption 3′. ηc(θ, x) ≥ u(θ, x) for all x > 0 and η ∂c
∂x
(θ, 0) ≥ ∂u

∂x
(θ, 0).

Note that Assumption 3’ always holds if the lowest type has non-positive surplus and
marginal surplus: c(θ, x) ≥ u(θ, x) and ∂c

∂x
(θ, 0) ≥ ∂u

∂x
(θ, 0). With the terminology of Assump-

tion 3, this condition always holds if the “safe type” belongs to the type space. But just as
with Assumption 3, we do not require that the safe type belongs to the type space. Since
η > 0, Assumption 3’ allows for all types to have a positive surplus and marginal surplus
from coverage, as long as they are “not too high” for the lowest type.

Theorem 2. Suppose Assumptions 1, 3’, and 8 hold. Then, any mechanism that maximizes
the monopolist’s profits excludes a set of types with positive measure: α(Θ, 0) > 0.

As in the one-dimensional model, a monopolist balances the efficiency gain in providing
additional coverage to some consumers against the ability to change more from those with
a higher willingness to pay for coverage. When consumers with the lowest willingness to
pay have low enough surplus, the efficiency gain from excluding them is lower than the rent
extraction. Equation (14) provides a precise upper bound on the surplus of those consumers.
It is increasing in the range of types for which informational rents can be bounded by a
power function (since ℓ is increasing in ϵ) and is decreasing in the density of lowest types
f(θ) (which makes exclusion more costly to the firm).

Finally, note that Theorem 2 also applies to economies without adverse selection since it
does not require any assumptions about how costs depend on θ.

4.3 Cream Skimming at the Top

Theorems 1 and 2 imply that a monopolist provides less coverage to individuals with a low
willingness to pay than competitive firms. We now consider the distortions at the top (Propo-
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sition 3) for multidimensional types. Recall the main intuition from the one-dimensional
model: to prevent cream skimming, competitive firms offer less coverage for consumers with
a high willingness to pay. We now formalize this intuition more generally.

In this subsection, we assume that consumers have separable utility:

u(θ, x) =
K∑
i=1

θiϕi(x). (15)

Suppose total surplus is strictly concave in coverage with a second derivative uniformly
bounded away from zero:

Assumption 9. γ = inf
{∣∣∣∂2S

∂x2 (θ, x)
∣∣∣ : (θ, x) ∈ Θ× [0, 1]

}
> 0.

Fix a deterministic allocation x̃ : Θ → [0, 1]. Let x̃+ ≡ sup{x̃(θ) : θ ∈ Θ} denote the
highest contract chosen by some type according to x̃. For each ε > 0, let Nx̃,ε ≡ {θ ∈ Θ :

x̃(θ) > x̃+−ε} denote the set of types who pick contracts in an ε-neighborhood of this highest
contract.

Definition 2. A deterministic allocation x̃ has no excess coverage at the top if there
exists ε > 0 such that

∂S

∂x
(θ, x̃+) ≥ 0 ∀θ ∈ Nx̃,ε.

This condition states that types choosing the highest coverage do not get more coverage
than the surplus-maximizing amount. It is satisfied in examples 2, 3, and 4, where the highest
type gets the efficient allocation (x̄ = 1) and all other types are distorted downwards. This
condition may fail in some models with moral hazard, where some consumers may purchase
more coverage than the social optimum.

Definition 3. A deterministic allocation x̃ has high incentives to cream skim at the
top if

lim
ε↘0

∫
Nx̃,ε

d(θ)
x̃+−x̃(θ)

f(θ)dθ∫
Nx̃,ε

d(θ)f(θ)dθ
= 0,

for any positive bounded function d(·).

Intuitively, high incentives to cream skim at the top means that the mass of people buying
contracts close to the top vanish faster than the distance between their contracts and the
highest contract.

Proposition 4. Let x̃ be a pure-strategy allocation satisfying no excess coverage at the top
and high incentives to cream skim at the top. Let x be an incentive compatible pure-strategy
allocation and suppose there exists ε > 0 such that:
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• x(θ) ≤ x̃(θ) for all θ ∈ Nx̃,ε, and

• x(θ) < x̃(θ) in a subset of Nx̃,ε with positive measure.

Then, the monopolist’s profit from x̃ is higher than from x.

Proposition 4 formalizes the intuition that starting from an allocation in which competi-
tive firms (i) face intense cream skimming at the top and (ii) under-provide coverage relative
to the social optimum, a firm with market power would benefit by providing greater coverage
for those with a high willingness to pay.

5 Illustrative Calibration

To illustrate the quantitative implications of our results, we calibrated the multidimensional
health insurance model from example 1 based on Einav et al. (2013)’s estimates from em-
ployees in a large US corporation.17 In the appendix, we present results for when losses are
distributed according to a truncated normal, which are similar to the ones discussed here.
Consumers are heterogeneous along four dimensions: expected value of the health shock,
standard deviation of the health shock, moral hazard, and risk aversion. We assumed that
the distribution of parameters in the population is log-normal and picked the same parame-
ters as in Azevedo and Gottlieb (2017), which were chosen to match the central estimates of
Einav et al. (2013).

Figure 2 (in the introduction) contrasts the coverage under monopoly and perfect com-
petition. Under monopoly, there is substantial exclusion, with 70 percent of the population
choosing not to purchase any coverage. In contrast, with perfect competition, all customers
purchase some coverage. This pattern reverses when considering higher levels of coverage,
with 12 percent of customers opting for more coverage under monopoly compared to perfect
competition. Nevertheless, as Figure 3 illustrates, coverage under monopoly is still lower
than the level that maximizes total surplus (second-best).

Due to these offsetting effects, it is theoretically possible to have a higher surplus either
under a monopoly or perfect competition. In our simulations, we consistently observed a
higher total surplus under perfect competition (see Table 1). With parameter values con-
sidered here, the total surplus amounts to $3,047 per consumer per year in the competitive
equilibrium and $2,223 under a monopoly. There is a substantial difference in consumer sur-
plus ($1,308 with monopoly versus $3,047 with perfect competition) because a monopolist
charges much higher prices. With perfect competition, there is approximately 8 percent loss

17Our simulations are not aimed at matching any specific market, which would take the estimates from
Einav et al. (2013) too far from the range of contracts in their data. Our goal is to illustrate that the
theoretical effects obtained previously can be quantitatively important in a realistic setting.
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Figure 3: Monopoly and Efficient Coverage
Notes: The figure depicts the distribution of coverage choices in the numerical example. The horizontal
axis depicts the contracts chosen by consumers, with coverage ranging between 0% (uninsured) to 100% of
expenses. The blue bars represent the distribution of coverage in the competitive equilibrium. The orange
bars represent coverage under monopoly pricing. With monopoly pricing, over 70 percent of consumers
remain uninsured. In the surplus-maximizing allocation, all consumers purchase coverage.

in total surplus relative to the second-best optimum. A monopoly results in a much larger
loss, approximately 32 percent of the surplus.

6 Related Literature

A large theoretical literature studies competitive markets with adverse selection. Most of
this literature follows two distinct approaches, building on either Rothschild and Stiglitz
(1976) or Akerlof (1970). Models that build on Rothschild and Stiglitz allow contracts to
be endogenously determined, while restricting consumers to be heterogeneous along a single

No coverage ≥ 70% coverage ≥ 80% coverage CS Profit
Competition 0.0 11.1 4.1 3,047 0
Monopoly 70.8 11.4 5.7 1,308 915
Efficient 0.0 89.4 62.8 5,769 -2476

Table 1: Coverage with Perfect Competition, Monopoly, and Maximum Surplus
Notes: The table presents the coverage, consumer surplus (CS), and profits in the numerical example with
perfect competition, monopoly, and surplus maximization. The first column corresponds to the percentage
consumers excluded in each market structure. The second and third columns describe the proportion of
consumer who purchase at least 70% and 80% coverage. The two last columns correspond to consumer
surplus and profits.
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dimension. This is an important limitation when considering applications, since there is
abundant evidence that multiple dimensions of private information are important.18

Models that build on Akerlof consider a market with a single insurance contract with
exogenous characteristics.19 This setting allows for rich consumer heterogeneity, which is
important to capture realistic insurance demand patterns. However, the assumption of a
single exogenous contract makes it impossible to use the model to study which policies are
offered in equilibrium. In particular, the model cannot distinguish between effects at the
extensive and intensive margin (such as in Figure 1). More recently, Azevedo and Gottlieb
(2017), Levy and Veiga (2022), and Farinha Luz et al. (2023) consider competitive models
with multiple dimensions of consumer heterogeneity and endogenous contracts. Our paper
builds on this literature by studying the effect of market power in these settings.20

There is also some work on models with market power. Stiglitz (1977) considers op-
timal pricing for a monopolist facing consumers with two risk types. Chade and Schlee
(2021) consider a continuum of consumers.21 Mahoney and Weyl (2017) generalize the Einav
et al. (2010) model to allow for imperfect competition among symmetric firms, retaining the
assumption that firms offer a single exogenous contract. They study how changes in the
degree of selection affects consumer surplus and profits and show that some intuitions from
competitive markets do not carry over to settings with market power.

Veiga and Weyl (2016) allow for endogenous quality, while retaining the assumption that
firms cannot offer multiple contracts. This single-contract assumption leads to a tractable
model in which exclusion is determined by an intuitive first-order condition. They find that
market power has an ambiguous impact on coverage, due to two conflicting effects. On
the one hand, as in settings without selection, a monopolist that cannot price discriminate
would like to cut quantity to increase prices. On the other hand, since market power limits
the firms’ incentives to engage in cream skimming, firms with market power can offer more

18Since pure strategy Nash equilibria often fails to exist in their model, a large literature has studied
alternative equilibrium concepts to capture competitive markets (Wilson (1977), Miyazaki (1977), Riley
(1979), Bisin and Gottardi (1999), Gale (1992), Dubey and Geanakoplos (2002), Azevedo and Gottlieb
(2017)). Farinha Luz (2017) characterizes the mixed strategy equilibria of the original Rothschild and Stiglitz
game.

19See Einav and Finkelstein (2011), Hackmann et al. (2015), Spinnewijn (2017), Scheuer and Smetters
(2018), Fang and Wu (2018), and Handel et al. (2019). Handel et al. (2015) and Landais et al. (2021)
consider a choice between two exogenous contracts, while allowing for rich consumer heterogeneity. Einav
et al. (2021) survey the recent industrial organization literature on selection markets.

20Working in the Rothschild and Stiglitz setting, Hendren (2013, 2014) obtains conditions for consumers
not to obtain any coverage in incentive-compatible mechanisms that break even. The conditions require the
type space to include a type that incurs the loss with certainty. When no type incurs a loss with certainty,
the competitive equilibrium features the least costly separating allocation. Shutdown does not happen in
Proposition 1 because Assumption 2 rules out models in which it is efficient for the highest type to purchase
zero coverage.

21Castro-Pires et al. (Forthcoming) propose a decoupling method to study the monopolist’s problem with
both adverse selection and moral hazard.
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coverage. Our results show these two effects persist when firms can offer multiple policies,
and each of them dominates at each end of the distribution of coverage. At the bottom,
the rent extraction motive dominates, making coverage lower under monopoly than under
competition. At the top, the cream skimming effect dominates, making coverage higher under
monopoly.

Chade et al. (2022) consider a multidimensional model with a finite set of contracts. They
show that the unrestricted optimum can be approximated with a finite number of contracts
and contrast policies that maximize social welfare with those that maximize monopoly profits.
They also consider a simplified program, show that a monopolist has higher incentives to
exclude than a utilitarian social planner, and obtain conditions for exclusion. Our numerical
results suggest that our model and Chade et al. (2022) agree on many qualitative predictions.
For example, both our simulations find substantial exclusion (39 percent in their simulations
versus 70 in ours).

As illustrated in example 5, our framework is also related to the literature on non-linear
pricing with a single instrument.22 The main difference between non-linear pricing and
insurance is that values are private in non-linear pricing, whereas common values play an
important role in insurance due to adverse selection. Since the exclusion results do not rely
on common values, they still apply in non-linear pricing settings. Without adverse selection,
a monopolist still excludes a positive mass of consumers if some of them have low enough
willingness to pay (Proposition 2 and Theorem 2).23 On the other hand, since competitive
firms set prices equal to marginal cost and sell the efficient quantity, there is no exclusion with
perfect competition. However, because there are no incentives to cream skim, monopolists
do not provide greater coverage at the top if there is no adverse selection (Propositions 3 and
4 do not hold).

7 Conclusion

This paper studies how market power affects insurance policies in a general class of models.
We show that market power creates different distortions compared to perfect competition,

22Examples of such models include Mussa and Rosen (1978) and Maskin and Riley (1984) for one-
dimensional types and Laffont et al. (1987) for two-dimensional types. See Rochet and Stole (2003) for
a survey.

23Armstrong (1996) shows the optimality of exclusion in a non-linear pricing model with multidimensional
types. His result is distinct from our Proposition 2 and Theorem 2 in multiple ways. First, he considers
a monopolist selling multiple goods, so the instrument has as many dimensions as the type, whereas we
consider the allocation of a one-dimensional object (coverage). Second, he assumes that the utility function
is homogeneous of degree one, while we consider more general utility functions. Third, he considers private
values. And fourth, he considers types that are bounded away from zero, so there may not be exclusion in
the one-dimensional version of his model. However, we build on his approach of integrating along rays in our
proof of Theorem 2.
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with each distortion dominating at different ends of the willingness-to-pay spectrum.
A monopolist faces a trade-off between efficiency and rent extraction. Reducing coverage

results in an efficiency loss, as customers would be willing to pay more than the actuarially
fair price to increase their coverage. However, this reduction in coverage allows the firm to
extract higher rents by increasing the premiums charged from those willing to pay more. At
the lower end of the willingness-to-pay spectrum, the rent extraction effect dominates, so a
monopolist prefers not to sell to a positive mass of customers.

In a competitive market, firms are concerned about cream skimming by other firms.
With cream skimming, a competitor steals the less risky customers, leaving the original firm
only with the riskier, less profitable ones. The competitive equilibrium allocation distorts
coverage downwards to prevent cream skimming. At the higher end of the willingness-to-pay
spectrum, the incentives to cream skim are very high, so the competitive allocation provides
less coverage than a monopolist.

The welfare effect of market power depends on whether the distortion at the bottom
exceeds the one at the top. Using simulations based on an empirical model of preferences, we
find that those both effects are quantitatively important, although the effect at the bottom
usually dominates. Consequently, in our simulations, total surplus is higher under perfect
competition than under monopoly.
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Appendix: Proofs

Lemmas 1 and 2: See Appendix B.

Proof of Theorem 1:

Fix a competitive equilibrium in which a positive mass of types are excluded. By consumer
optimization (condition 2 of Definition 1), whenever (θ, x) is in the support of α∗, we must
have:

p′(x) =
∂u

∂x
(θ, x) ≥ v0(x) +

K∑
k=1

θkvk(x). (16)

Since the inequality holds for each θ picking x, it must also hold for the expected θ among
those choosing x:

p′(x) ≥ v0(x) +
K∑
k=1

mk(x)vk(x), (17)

where mk(x) ≡ Ex[θk|α∗].
Suppose that for every ε > 0 there exists x ∈ (0, ε) such that no type is indifferent

between their equilibrium contract and x. Then, by Condition 3 of Definition 1, the price of
that contract must be zero, which implies that no type can be excluded (since any such type
prefers to purchase x > 0 at price zero over zero coverage). Thus, for any contract x in a
neighborhood of zero, there must exist some type for whom picking that contract maximizes
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utility. Therefore, x must also maximize some type θ’s utility, satisfying condition (16).
Moreover, the cost of selling x to θ must be weakly higher than the price p(x). For each such
x, let m(x) ≡ (m1(x), ...,mK(x)) denote that type, so that (17) must again hold.

Integrate and use p(0) = 0 to obtain:

p(x) ≥
∫ x

0

[
v0(x̃) +

K∑
k=1

mk(x̃) · vk(x̃)

]
dx̃.

By Conditions 1 and 3 of Definition 1,

p(x) ≤ Ex[c|α∗] ≤
K∑
k=1

Ex[θk|α∗]κk(x) =
K∑
k=1

mk(x)κk(x)

(where the first inequality holds as an equality if (θ, x) is in the support of α∗ and we extend
the conditional expectation to assign full mass to some selection m(x) if there is no (θ, x) is
in the support of α∗). Combine both of these inequalities to obtain:

K∑
k=1

mk(x)κk(x) ≥
∫ x

0

[
v0(x̃) +

K∑
k=1

mk(x̃) · vk(x̃)

]
dx̃.

Divide both sides by x > 0 and rearrange:

K∑
k=1

mk(x)
κk(x)

x
−
∫ x

0
v0(x̃)dx̃

x
−

K∑
k=1

∫ x

0
mk(x̃) · vk(x̃)dx̃

x
≥ 0.

Note that this condition must hold for all x > 0 in a neighborhood of 0.
We consider the limit of the expression on the LHS as x ↘ 0. By the Fundamental The-

orem of Calculus, we have limx↘0

∫ x
0 v0(x̃)dx̃

x
= v0(0) and limx↘0

∫ x
0 mk(x̃)·vk(x̃)dx̃

x
= mk(0+)vk(0),

where mk(0+) ≡ limx↘0mk(x). Therefore, the condition above for x in a neighborhood of
x = 0 requires:

0 ≥ v0(0) +
K∑
k=1

mk(0+) [vk(0)− κ′
k(0)] ,

which contradicts part 3 from Assumption 2’. Therefore, there is no equilibrium with a
positive mass of excluded types.

Proof of Theorem 2:

The proof of Theorem 2 has three steps. First, we construct a family of subsets of the type
space Θξ ⊂ Θ ≡ [θ1, θ̄1] × ... × [θK ,

¯̄
Kθ] that converges to the whole type space Θ as ξ ↘ 0.
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Second, we show that, for any mechanism that excludes a zero measure set of types in the
original type space Θ, a small enough increase in prices raises the firm’s profits in the economy
with type space Θξ uniformly in ξ. Lastly, since this increase is uniform in ξ, it also applies
to Θ.

Without loss of generality, we can consider an economy with type space equal to RK
+ by

assigning zero mass to all types outside Θ.24 Let α be an incentive compatible allocation and
let U(θ) be the informational rent of type θ associated to α. Since U is differentiable a.e.
along rays, we can write

U(θ) = U(0) +
∫ 1

0

d

dr
U(rθ)dr. (18)

By the envelope condition,

d

dr
U(rθ) = θ · E

[
∇θu(θ̃, x̃)|α, θ̃ = rθ

]
, (19)

where the Leibniz integral rule is justified by the Dominated Convergence Theorem.
By the monotonicity of u(·, x), it follows that U is non-decreasing, so the lowest value of

U is attained at θ = 0. Thus, any mechanism that maximizes the monopolist’s profits must
have U(0) = 0. Also by monotonicity, if U(θ) = 0 for any θ >> θ, then U(θ̃) = 0 for all
θ̃ ∈ {θ̃; θ ≤ θ̃ ≤ θ}, which is a positive-measure set. Therefore, in any incentive-compatible
mechanism in which the set of excluded types has measure zero, any excluded type (θ1, ..., θK)
must have at least one coordinate equal to the lowest value θk.

To introduce the family of subsets of the type space mentioned previously, it is helpful to
introduce some terminology. For each set of vectors {a1, ..., aK} ⊂ RK , let

C(a1, ..., aK) ≡

{
K∑
k=1

λkak : λk ≥ 0, k = 1, ..., K

}

denote the convex cone generated by {a1, ..., aK}. For each ξ > 0, let eξk = (ξ, ..., 1, ..., ξ)

denote the vector with ξ ∈ R in all but the k-th coordinate, where it equals 1. Finally, for
each ξ > 0, let

Θξ ≡ Θ ∩
(
θ + C(eξ1, ..., e

ξ
K)
)

denote the ξ-perturbed type space. Note that Θξ ⊆ Θ, and Θξ converges to Θ0 = Θ as ξ ↘ 0

in the Hausdorff distance.
24Every incentive-compatible mechanism with type space Θ can be mapped into an incentive compatible

mechanism with type space RK
+ such that its restriction to Θ coincides with the original mechanism. For

instance, we can assign for each type θ /∈ Θ a contract that maximizes this type’s payoff among those offered
to types in Θ. By construction, this new mechanism is also incentive compatible. Since all such types have
zero mass, this extension does not affect the firm’s profits.
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An economy is defined by a pair (Θ, µ). A ξ-perturbed economy consists of an economy
with the ξ-perturbed type space Θξ and a distribution of types given by the restriction of µ
to Θξ. We first consider mechanisms in ξ-perturbed economies. The first lemma shows that
any incentive-compatible mechanism that excludes a set of measure zero of types can only
exclude at most the lowest type θ.

Lemma 3. Fix an incentive-compatible mechanism for the ξ−perturbed economy, where ξ ∈
(0, 1). Let E be the set of excluded types and suppose µ(E) = 0. Then, E ⊆ {θ}.

Recall that, by monotonicity, if θ is excluded then any θ̃ << θ must also be excluded.
The proof below shows that, in any ξ−perturbed economy, for any θ ̸= θ, the set of types
θ̃ ∈ Θξ such that θ̃ << θ has positive measure. Therefore, the firm cannot exclude a measure
zero of types while excluding any type other than θ.

Proof. By the definition of Θξ, if θ ∈ Θξ\{θ}, then θ = θ+
∑K

k=1 λke
ξ
k, for some λ0

1, ..., λ
0
K ≥ 0.

Moreover, since θ ̸= θ, we must have λ0
k′ > 0 for some k′. Let θ̂ ≡ θ +

∑
k ̸=k′ λ

0
ke

ξ
k +

λ0
k′
2
eξk′ ∈

Θξ\{θ}. Since ξ > 0, each coordinate of the vector
∑K

k=1 λke
ξ
k is strictly positive. Therefore,

θ̂ = θ +
∑
k ̸=k′

λ0
ke

ξ
k +

λ0
k′

2
eξk′ << θ +

∑
∀k

λ0
ke

ξ
k = θ.

Since the expression on the LHS is linear (and therefore continuous) in (λ0
1, ..., λ

0
K), there

exists r > 0 small enough such that

θ +
K∑
k=1

λke
ξ
k << θ, if λk < λ0

k + r, for all k ̸= k′ and λk′ <
λ0
k′

2
+ r. (20)

Let Λ ≡ {(λ1, ..., λK) ∈ RK
++ such that (20) holds}. It is straightforward to see that Λ is a

non-empty open subset of RK
+ . Finally, if ξ ∈ (0, 1), then the affine transformation T : RK →

RK given by T (λ1, ..., λK) = θ+
∑K

k=1 λke
ξ
k is a bijection (i.e., an affine isomorphism). Hence,

T (Λ) ⊂ Θξ is a non-empty open set such that θ̂ << θ for all θ̂ ∈ T (Λ). Therefore, if type θ

is excluded, every type in T (Λ) is also excluded, which is a set with positive measure.

Let Eθ [S|α] ≡ E
[
S(θ̃, x̃)|α, θ̃ = θ

]
denote the expected surplus according to measure α

conditional on type θ. We use analogous notation for the conditional expectation of other
functions. For each Θ̃ ⊂ RK

+ , let πα(Θ̃) denote the firm’s expected profit under allocation α

among types in Θ̃:

πα(Θ̃) ≡
∫
Θ̃

{Eθ [S|α]− U(θ)} f(θ)dθ. (21)

For each ϵ > 0, let Θξ
ϵ ≡ {θ ∈ Θξ : ||θ − θ|| < ϵ} denote the set of types in the perturbed

type space that are close to the lowest type. The lemma below provides an upper bound on
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the firm’s profits restricted to Θξ
ϵ :

Lemma 4. For every ϵ > 0 and ξ > 0, we have

πα(Θ
ξ
ϵ) ≤

∫
Θξ

ϵ

{
Eθ [S|α]− κ

g(θ)

f(θ)
Eθ [u|α]

}
f(θ)dθ, (22)

where g(θ) ≡
∫∞
1

tK−1f(tθ)dt.

Proof. By the envelope condition (19) and the Assumption 8 for type rθ, we have:

d

dr
U(rθ) = θ · Eθ [∇θu(rθ, x)|α] ≥

κ

r
Eθ [u(rθ, x)|α] ,

for all θ ∈ Θϵ. Substitute in (18) to obtain:

U(θ) ≥
∫ 1

0

κ

r
E
[
u(θ̃, x̃) | α, θ̃ = rθ

]
dr.

Taking expectations gives:∫
Θξ

ϵ
U(θ)f(θ)dθ ≥

∫
Θξ

ϵ

{∫ 1

0
κ
r
E
[
u(θ̃, x̃) | α, θ̃ = rθ

]
dr
}
f(θ)dθ

=
∫ 1

0

[∫
Θξ

ϵ

κ
r
E
[
u(θ̃, x̃) | α, θ̃ = rθ

]
f(θ)dθ

]
dr.

(23)

Apply the change of variables θ̂ = rθ and use the fact that dθ̂ = rKdθ to get

∫
Θξ

ϵ

1

r
E
[
u(θ̃, x̃) | α, θ̃ = rθ

]
f(θ)dθdr =

∫
Θξ

ϵ

1

rK+1
Eθ̂ [u|α] f

(
θ̂

r

)
dθ̂

where, as defined previously, Eθ̂ [u|α] ≡ E
[
u(θ̃, x̃) | α, θ̃ = θ̂

]
. Substituting in (23), gives:

∫
Θξ

ϵ
U(θ)f(θ)dθ ≥

∫ 1

0

[∫
Θξ

ϵ

κ
rK+1Eθ̂ [u|α] f

(
θ̂
r

)
dθ̂
]
dr

=
∫
Θξ

ϵ

κ
rK+1Eθ̂ [u|α]

[∫ 1

0
1

rK+1f
(

θ̂
r

)
dr
]
dθ̂.

(24)

Substitute t = 1/r to obtain:

∫ 1

0

1

rK+1
f

(
θ̂

r

)
=

∫ ∞

1

tK−1f(tθ̂)dt.

Plugging this expression back into (24) gives:∫
Θξ

ϵ

U(θ)f(θ)dθ ≥ κ

∫
Θξ

ϵ

Eθ [u|α] g(θ)dθ, (25)
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where g(θ) is as defined in the statement of the lemma. Substitute (25) in (21) to obtain
(22).

Lemma 5. Fix an incentive-compatible mechanism (αξ, pξ) for the ξ−perturbed economy,
where ξ ∈ (0, 1). If the set of excluded types has measure zero (α(Θ, {0}) = 0) then the
mechanism does not maximize the firm’s profits.

Proof. Let U denote the informational rent function associated with the mechanism. By
Lemma 3, this mechanism can only exclude type θ. Now consider a small uniform price
increase of δ > 0 for all x ̸= 0. There are two effects. First, types who were getting surplus
below the price increase choose not to participate, i.e., types in

Aξ
δ ≡ {θ ∈ Θξ;U(θ) < δ}.

Second, the firm increases profits by δ from all types who remain, i.e., types in Θξ\Aδ. So
the increase in the firm’s profits from those who remain is equal to

δ.

∫
Θξ\Aξ

δ

f(θ)dθ. (26)

For the first effect, we will show that it also leads to a positive gain for the firm when δ is
small enough. For this, we claim that there exists ϵ > 0, uniform in ξ, such that[

1− κ
g(θ)

f(θ)

]
Eθ [u|α]− Eθ [c|α] < 0, (27)

for all θ ∈ Θξ
ϵ . Indeed, let x ≡ inf{x : x ∈ support α(θ, ·); θ ∈ Θξ} denote the lowest

coverage among the coverages in the support of the mechanism distributions. Recall that by

the definition of η in the text, we have η <
[
1− κ

g

f(θ)

]−1

, where g := inf{g(θ) : θ ∈ Θϵ} > 0.
If x > 0, Assumption 3’ implies that[

1− κ
g

f(θ)

]
u(θ, x)− c(θ, x) < 0.

By the continuity of the above expression at (θ, x) and the definition of x, we can find ϵ

sufficiently small so that inequality (27) holds for all θ ∈ Θϵ. Since Θξ
ϵ ⊂ Θϵ, the choice of ϵ

is uniform in ξ.
If x = 0, Assumption 3’ again implies that[

1− κ
g

f(θ)

]
∂u

∂x
(θ, 0)− ∂c

∂x
(θ, 0) < 0.

By the continuity of the above expression at (θ, 0), we can find ϵ > 0 sufficiently small such
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that (27) holds for all θ ∈ Θϵ. Thus, as before, the choice of ϵ is uniform in ξ.
Integrating (27) on Θξ

ϵ , we conclude that the right hand side of (22) (see Lemma 4)
restricted to Θξ

ϵ is negative, where ϵ is determined in the two cases considered above (x > 0

and x = 0) and is uniform on ξ. Finally, since the only excluded type is θ, for such ϵ > 0,
there exists δ > 0 sufficiently small such that Aξ

δ ⊂ Θξ
ϵ . By increasing the price by δ, the

firm excludes types that lead to ex-post losses (i.e., types in Aξ
δ ⊂ Θξ

ϵ) and gain extra profit
with one that are still participating (i.e., types in

(
Aξ

δ

)c
). Therefore, the firm can ensure

a positive gain of at least (26), which is uniformly (in ξ) bounded away from zero, which
implies the result.

Proof of Theorem 2. Fix an incentive compatible mechanism that excludes a zero measure
set of types in Θ. For each ξ ∈ (0, 1), consider the restriction of this mechanism to Θξ. By
Lemma 5, there exists a uniform increase in price δ > 0 that ensures that the firm increases
profits by at least (26) in each ξ−perturbed economy. Since this gain is uniform in ξ > 0,
taking ξ ↘ 0, this uniform increase in prices also increases profits by at least (26) for ξ = 0,
which concludes the proof.

Proof of Proposition 4:

Using the same argument of Lemma 8 (see proof of Theorem 2) and the degree one homo-
geneity of u, the monopolistic profit restricted to Nx̃,ε is

π(x) =

∫
Nx̃,ε

[
S(θ, x(θ))− g(θ)

f(θ)
u(θ, x(θ))

]
f(θ)dθ,

where g(θ) ≡
∫∞
1

tK−1f(tθ)dt. The Gateaux derivative in the direction h > 0 equals:

δπ(x, h) =

∫
Nx̃,ε

[
∂S

∂x
(θ, x(θ))− g(θ)

f(θ)

∂u

∂x
(θ, x(θ))

]
h(θ)f(θ)dθ.

By the mean value theorem, there exists z(θ) ∈ [x(θ), x̃+] such that

∂S

∂x
(θ, x(θ)) =

∂S

∂x
(θ, x̃+) +

∂2S

∂x2
(θ, z(θ)) [x(θ)− x̃+] .

Hence, by Assumption 9, we have

δπ(x, h) ≥
∫
Nx̃,ε

[
∂S

∂x
(θ, x̃+)− γ(x(θ)− x̃+)−

g(θ)

f(θ)

∂u

∂x
(θ, x(θ))

]
h(θ)f(θ)dθ.
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Moreover, since x(θ) ≤ x̃(θ) < x̃+,∫
Nx̃,ε

g(θ)

x̃+ − x(θ)
dθ ≤

∫
Nx̃,ε

g(θ)

x̃+ − x̃(θ)
dθ.

Hence,

δπ(x, h) ≥
∫
Nx̃,ε

∂S
∂x
(θ, x̃+)h(θ)f(θ)dθ

+
∫
Nx̃,ε

(x̃+ − x̃(θ))
(
γ − L g(θ)

x̃+−x̃(θ)

)
h(θ)f(θ)dθ,

where L is a uniform bound on g(θ)∂u
∂x
(θ, x)/f(θ). Notice that the last term is strictly positive

if and only if ∫
Nx̃,ε

d(θ)
x̃+−x̃(θ)

f(θ)dθ∫
Nx̃,ε

d(θ)f(θ)dθ
<

γ

L
,

where d : Θ → R+ given by d(θ) ≡ (x̃+ − x̃(θ))h(θ) is a positive, bounded function. By the
“high incentives to scream skim at the top” assumption, there exists ϵ > 0 sufficiently small
such that this condition holds whenever h(θ) > 0 on a positive measure subset of Nx̃,ε.

Therefore, for sufficiently small ϵ > 0, increasing from the allocation x(·) to x̃(·) at top
generates profit gains for the monopolist whenever x(θ) < x̃(θ) in a positive measure set at the
top. We have to show that there exists an incentive-compatible allocation that implements
this improvement. Let U denote the informational rent associated with mechanism x and
let V denote the rent associated with x̃. Notice that the utility function considered here
(separable and with non-decreasing ϕi(·), for each i) imply that ∇V (θ) ≥ ∇U(θ) if and
only if x̃(θ) ≥ x(θ). Applying Lemma 8 below restricted to the domain Nx̃,ε, we find that
U = max{U, V τ} for some τ ∈ R is the informational rent associated with an incentive-
compatible mechanism that increases the monopolist’s profit in the domain Nx̃,ε. Finally,
we can extend the informational rent (and the allocation) outside of Nx̃,ε to coincide with
U (coincide with x). By construction, this mechanism satisfies the participation constraint
because its informational rent is greater or equal to U .

Lemma 6. U is an informational rent function from an incentive compatible mechanism if
and only if U is a convex function and the consistency condition is satisfied (i.e., there exists
a mechanism (x, p) that leads to the informational rent U).

Proof. (Necessity) Fix an incentive compatible mechanism (x, p). The informational rent
associated to this mechanism is

U(θ) = max
θ̂∈Θ

u(θ, x(θ̂))− p(θ̂).

Since for each θ̂ ∈ Θ, the function θ → u(θ, x(θ̂))− p(θ̂) is convex by assumption, U(θ) is the
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upper envelope of convex functions. Therefore, U(θ) is a convex function.
(Sufficiency) By the subgradient inequality, we have that

U(θ)− U(θ̂) ≥ ∇U(θ̂) · (θ − θ̂) = uθ(θ̂, x(θ̂)) · (θ − θ̂),

where the equality is a consequence of the envelope theorem. By separability of u, uθ(θ̂, x(θ̂))·
(θ − θ̂) = u(θ, x(θ̂)− u(θ̂, x(θ̂)). Hence, using the definition of U and consistency condition,
the previous inequality is equivalent to

U(θ) ≥ u(θ, x(θ̂))− p(θ̂),

which shows that the incentive compatibility holds for the mechanism (x, p).

In the next lemma, we denote by ∇V and ∇U the gradients of functions V and U .

Lemma 7. Let U, V : Θ → R be functions such that ∇V ≥ ∇U . If V (θ) ≥ U(θ), then
V (θ̂) ≥ U(θ̂), for all θ̂ ≥ θ.

Proof. The result follows by considering the restriction of functions V and U to the line
segment connecting θ and θ̂.

Lemma 8. Suppose that Θ is a convex set with a maximal type θ. Let U, V : Θ → R be a
convex functions such that ∇V ≥ ∇U . Denote V τ := V + τ the τ -translation of V , for each
τ ∈ R. Then:

(i) there exists τ0 ∈ R such that V τ0(θ) = U(θ);
(ii) for every ϵ > 0, there exists δ > 0 such that V τ ≥ U in an open neighborhood

contained in the ball B(θ, ϵ), for all τ ∈ (τ0, τ0 + δ);
(iii) if u is a separable function and U and V are informational rent functions associ-

ated with incentive-compatible mechanisms, then U = max{U, V τ} is an informational rent
function associated with an incentive-compatible mechanism.

Proof. (i) Define τ0 as the supremum of τ such that V τ ≤ U . The result follows from Lemma
7.

(ii) Since U and V are continuous functions in the interior of Θ, the result follows imme-
diately from item (i) and Lemma 7.

(iii) Notice that U is a convex function. By Lemma 6, it is an informational rent func-
tion of an incentive-compatible mechanism because the consistency condition is satisfied in
each region where U = U or U = V τ . Moreover, U ≥ U implies that it also satisfies the
participation constraint.
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A Numerical Simulations

A.1 Normal Distribution

We followed the algorithm from Azevedo and Gottlieb (2017) to calculate a competitive
equilibrium. We used a perturbation with 26 evenly spaced contracts and a 1% mass of
behavioral consumers that have zero cost. We then applied a fixed-point algorithm. In each
iteration, consumers picked their favorite contracts taking prices as given. Then, we adjusted
prices according to their profitability. Prices consistently converged to the same equilibrium
for different initial values.25

Table 2: Consumer Types (Normal Distribution)
A H M S

Mean 1× 10−5 1, 330 4, 340 24, 470
Log covariance

A 0.25 -0.01 -0.12 0
H 0.28 -0.03 0
M 0.20 0
S 0.25

Notes: The table presents the parameters used for the simulation described in the text. Consumer types are
log normally distributed with the moments in the table.

Table 2 summarizes the parameters used in the calibration presented in the text, which
are the same as in Azevedo and Gottlieb (2017). The monopolist and efficient allocations
were computed numerically. As usual with arbitrary nonlinear maximization problems, it
is impossible to guarantee that a local optimum is a global optimum. We calculated lo-
cal optima starting from the equilibrium allocation, using both an ad-hoc procedure and
the commercial optimization package KNITRO. We also calculated local optima from 300
random starting values in each simulation. The random starting values did not outper-
form the optimization starting at the equilibrium prices. Replication code is available at
https://github.com/diogowolff/ag-monopoly.

A.2 Truncated Normal Distribution

In example 1, we assumed that losses were normally distributed. While this assumption led to
the transparent representation of preferences and costs in equations (3), it has the undesirable
feature that it allows for negative losses. However, our results can still be applied for general
distributions of losses.

25Since the model may have multiple equilibria, it is important to consider different initial values to verify
that the predictions do not depend on the initial value in the computations.

https://github.com/diogowolff/ag-monopoly
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Figure 4: Coverage under Monopoly and Perfect Competition (Truncated Normal)

Notes: The figure depicts the distribution of coverage choices in example 1 with a truncated Normal distri-
bution (losses are truncated at zero). The horizontal axis depicts the contracts chosen by consumers, with
coverage ranging between 0% (uninsured) to 100% of expenses. The blue bars represent the distribution of
coverage in the competitive equilibrium. The orange bars represent coverage under monopoly pricing. With
monopoly pricing, approximately 78 percent of consumers remain uninsured. With perfect competition, all
consumers purchase coverage. However, 7.9 percent of consumers purchase policies with coverage levels above
70 percent with monopoly, compared with only 5.8% with perfect competition.

Figure 5: Coverage under Monopoly and Perfect Competition (Truncated Normal)

Notes: The figure depicts the distribution of coverage choices in example 1 with a truncated Normal distri-
bution (losses are truncated at zero). The horizontal axis depicts the contracts chosen by consumers, with
coverage ranging between 0% (uninsured) to 100% of expenses. The blue bars represent the distribution of
coverage in the competitive equilibrium. The orange bars represent coverage under monopoly pricing. With
monopoly pricing, over 70 percent of consumers remain uninsured. In the surplus-maximizing allocation, all
consumers purchase coverage.
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Suppose losses are distributed according to a CDF Fκ, where κ is a vector of parameters
that represent the consumer’s private information about the distribution of losses. Prefer-
ences and costs can still be described with quasilinear preferences as in (1) and (2) with

u(θ, x) =
ln
(
E
[
eAl|l ∼ Fκ

])
− ln

(
E
[
eA(1−x)l|l ∼ Fκ

])
A

+
H

2
x2, and (28)

c(θ, x) = x E [l|l ∼ Fκ] + x2H,

where θ = (κ,A,H) denotes the consumer’s type.26

Table 3: Consumer Types (Truncated Normal Distribution)
A H M S

Mean 65× 10−5 1, 330 1, 500 4, 500
Log covariance

A 0.25 -0.01 -0.12 0
H 0.28 -0.03 0
M 0.20 0
S 0.25

Notes: The table presents the parameters used for the simulation described in the text. Consumer types are
log normally distributed with the moments in the table.

To ensure that losses are non-negative, we considered a truncated normal distribution,
truncated at zero. We calculated the competitive equilibrium, the profit-maximizing allo-
cation for the monopoly, and the surplus-maximizing allocation using the same algorithm
described in the previous subsection. Table 3 describes the parameter values used.

Due to the truncation at zero, the parameter M no longer corresponds to the mean of the
loss distribution. Keeping it at its original value while truncating losses at zero would lead to
substantially higher average losses. We therefore chose to reduce the loss parameter M . Since
the resulting distribution had considerably lower risk premia, we adjusted the coefficient of
risk aversion A.

The results are qualitatively similar to the ones with a normal distribution.

B Competitive Equilibrium in One-Dimensional Model

In this appendix, we characterize the competitive equilibrium under assumptions 4, 5, and 6,
establishing the result stated in Lemma 1. We will first show that all competitive equilibria
have degenerate allocations and pooling can only occur at zero. Then, we show that it
features the least costly separating allocation.

26When using this model, one must ensure that the moments in (1) and (2) exist.
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No coverage ≥ 70% coverage CS Profit
Competition 0.0 5.8 5,453 0
Monopoly 78.3 7.9 2,406 1,393
Efficient 0.0 69.4 8,084 -2,133

Table 4: Coverage with Perfect Competition, Monopoly, and Maximum Surplus (Truncated
Normal)
Notes: The table presents the coverage, consumer surplus (CS), and profits in the numerical example with
a truncated normal distribution. The first column corresponds to the percentage of consumers excluded in
each market structure. The second and third columns describe the proportion of consumer who purchase at
least 70% and 80% coverage. The two last columns correspond to consumer surplus and profits.

B.1 Degenerate Allocations and No Pooling

We will show that all competitive equilibria are in pure strategies, and pooling can only occur
at zero. Formally:

Proposition 5. Let (p∗, α∗) be a competitive equilibrium. If (θ, x) and (θ, x′) are in the
support of α∗, then x = x′. If (θ, x) and (θ′, x) are in the support of α∗ and x > 0, then
θ = θ′ (there is no pooling at positive contracts).

The proof will follow a series of lemmas. Before presenting them, we note the following
implication of single crossing (Assumption 4), which will be used throughout this appendix:

Remark 1. Let x1 > x0 and suppose that u
(
θ̂, x0

)
= u

(
θ̂, x1

)
for some θ̂. Then, u (θ, x1) <

u (θ, x0) for all θ < θ̂, and u (θ, x1) > u (θ, x0) for all θ > θ̂.

Note also that in any competitive equilibrium, prices are Lipschitz continuous (see Propo-
sition 1 in Azevedo and Gottlieb, 2017). The first lemma establishes that consumer opti-
mization implies in the monotonicity of the allocations:

Lemma 9. Let (p∗, α∗) be an equilibrium. Suppose (θ, x0) and (θ, x1) are both in the support
of α∗, where x0 < x1. Let θ0 < θ < θ1. Then, (θ0, x1) and (θ1, x0) are not in the support of
α∗.

Proof. Suppose (θ, x0) and (θ, x1) are both in the support of α∗. Then, by consumer opti-
mization, θ must be indifferent between them:

u (θ, x1)− u (θ, x0) = p (x1)− p (x0) .

By single crossing, it follows that for any θ0 and θ1 with θ1 > θ > θ0,

u (θ1, x1)− u (θ1, x0) > p (x1)− p (x0) > u (θ0, x1)− u (θ0, x0) ,

which implies that x0 does not satisfy consumer optimization for θ1 and vice-versa.
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The second lemma shows that any pooling allocation is an isolated point in the set of
equilibrium allocations:

Lemma 10. Let (p∗, α∗) be a competitive equilibrium and suppose (θ0, x) and (θ1, x) are in
the support of α∗, where θ0 ̸= θ1. There exists ϵ > 0 such that 0 < |x′ − x| < ϵ implies that
(θ, x′) is not in the support of α∗ for any θ.

Proof. Let
θ∗ ≡ inf {θ : (θ, x) are in the support of α∗} ,

and
θ∗ ≡ sup {θ : (θ, x) are in the support of α∗} .

Since Θ is bounded and the set of types for which (θ, x) are in the support of α∗ is non-empty
(θ0 and θ1 belong to that set), θ∗ and θ∗ exist.

By zero profits and the fact that c is strictly increasing in types,

p∗ (x) ∈ (c (θ∗, x) , c (θ
∗, x)) . (29)

Let x′ > x (the case where x′ < x is analogous, with θ∗ substituted by θ∗) and suppose that
(x′, θ′) is in the support of α∗. Consumer optimization gives

u(θ′, x′)− p(x′) ≥ u(x, θ′)− p(x),

and
u(θ∗, x)− p(x) ≥ u(θ∗, x′)− p(x′).

Combining these expressions, we obtain

u(θ′, x′)− u(θ′, x) ≥ p(x′)− p(x) ≥ u(θ∗, x′)− u(θ∗, x),

which, by single crossing, yields θ′ ≥ θ∗. Since all types choosing x′ are (weakly) greater than
θ∗,

p∗ (x′) ≥ c (θ∗, x′) ≥ c (θ∗, x) ,

where the first inequality follows from zero profits (and c increasing in types), while the
second follows from x′ > x (and c non-decreasing in x).

Suppose that for any n ∈ N, there exists (θ′n, x
′
n) is in the support of α∗ such that

0 < |x′
n − x| < 1

n
. Then, we can obtain a sequence {x′

n} converging to x for which p∗ (x′
n) ≥

c (θ∗, x) for all n. By continuity of p∗, it follows that p∗(x) ≥ c(θ∗, x), which contradicts
p∗(x) < c(θ∗, x) (by 29).
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The next lemma establishes that the only contract that may exhibit pooling in equilibrium
is the null contract:

Lemma 11. Let (p∗, a∗) be a competitive equilibrium and suppose (θ0, x) and (θ1, x) are in
the support of α∗, where θ0 ̸= θ1. Then, x = 0.

Proof. Suppose we have a competitive equilibrium in which multiple types choose the same al-
location x. As in the proof of the previous lemma, let θ ≡ inf {θ : (θ, x) are in the support of α∗}
and recall that, by zero profits, p(x) > c(θ, x). Suppose, in order to obtain a contradiction,
that x > 0. From the previous lemma, there exists ϵ > 0 such that 0 < |x − x′| < ϵ implies
that (θ, x′) is not on the support of a∗ for any θ.

By continuity of u and the fact that u(θ, x) > 0 for all x > 0, prices have to be strictly
positive in a small neighborhood of x > 0. Thus, by condition 3 of Definition 1, for each
contract x′ in a neighborhood of x, there must be types who are indifferent between their
equilibrium contracts and x′. By increasing difference, types who are indifferent between
their equilibrium contracts and x′ < x satisfy θ ≤ θ (otherwise, θ would strictly benefit from
picking x′, thereby violating consumer optimality). Hence, again by condition 3 of Definition
1, we must have

p (x′) ≤ c (θ, x′) .

Taking the limit as x′ ↗ x yields p (x) ≤ c (θ, x) , contradicting p(x) > c(θ, x).

Lemma 12. Let (p∗, α∗) be a competitive equilibrium and suppose (θ, x) and (θ, x′) are in the
support of α∗ for some θ, where x < x′ (i.e., the allocation of some type is non-degenerate).
Then, x = 0.

Proof. Let (p∗, α∗) be a competitive equilibrium and suppose (θ, x) and (θ, x′) are in the
support of α∗, for 0 < x < x′. By the Lemma 11, θ is the only type who picks both x and
x′ in this competitive equilibrium (since they are both strictly positive and pooling can only
occur at zero). Type θ has to be indifferent between these two allocations in order to mix:

u(θ, x)− p (x) = u(θ, x′)− p (x′) .

Moreover, fits must make zero profits:

p (x) = c (θ, x) , p (x′) = c (θ, x′) .

Combining both expressions, it follows that both allocations must yield the same surplus for
type θ:

u(θ, x)− c (θ, x) = u(θ, x′)− c (θ, x′) . (30)
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Let x̃ ∈ (x, x′). By strictly concavity of the surplus, equation (30) implies that

u (θ, x̃)− c (θ, x̃) > u (θ, x)− c (θ, x) . (31)

By monotonicity (Lemma 9), either θ picks x̃ in this competitive equilibrium or no one
does. In both cases, the equilibrium has to satisfy the following indifference and zero profit
conditions:

u(θ, x)− p (x) = u(θ, x̃)− p (x̃) , and p(x̃) ≤ c(θ, x̃).

To wit, if type θ picks x̃ in equilibrium, then both must hold with equality. Otherwise, by
condition 3 of Definition 1, some other type must be indifferent between x̃ and their equi-
librium contract (otherwise, the price would be zero, which would contradict the optimality
of picking x < x̃ while paying a non-negative price p(x) = c(θ, x) > 0). By monotonicity, it
must be type θ. Then, again by condition 3 of Definition 1, we must have p(x̃) ≤ c(θ, x̃).
Therefore, the two previous conditions also have to hold when x̃ is not chosen by any type
in equilibrium. Combining them, we obtain:

u(θ, x)− c (θ, x) ≥ u(θ, x̃)− c(θ, x̃),

which contradicts condition (31). Thus, we cannot have the same type picking two non-zero
allocations with strictly positive probabilities.

Suppose two types θ < θ′ obtain non-degenerate allocations in a competitive equilibrium.
Then, type θ must mix in {0, x} and type θ′ must mix in {0, x′}, where x > 0 and x′ > 0.
However, this contradicts Lemma 9, which states that if (θ, 0) and (θ, x) are in the support
of α∗, then (θ′, 0) cannot be in the support of α∗. Hence, there is at most one type that plays
mixed strategies in any competitive equilibrium.

We are now ready to establish the main result:

Lemma 13. Let (p∗, α∗) be a competitive equilibrium and suppose (θ, x) and (θ, x′) are in
the support of α∗. Then, x = x′.

Proof. From the previous lemma, the only possible equilibrium with pooling has one single
type randomizing between 0 and some x > 0. This type must be indifferent between these
two allocations:

u (θ, x)− p (x) = u (θ, 0)− p (0) .

By zero profits, we must have:

p(x) = c (θ, x) , p (0) = 0.
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Using the fact that u(θ, 0) = 0, we can write these conditions as

u (θ, x)− c (θ, x) = 0.

That is, the indifferent type must have zero surplus in both cases. Since the surplus u(θ, .)−
c(θ, .) is a strictly concave function of allocations,

u (θ, x)− c (θ, x) = u (θ, 0)− c (θ, 0) = 0

implies
u (θ, x̃)− c (θ, x̃) > 0 (32)

for all x̃ ∈ (0, x).
Condition 3 from Definition 1 implies that prices of contracts between 0 and x must be

on type θ’s indifference curve and cannot exceed type θ’s cost. That is, for all x̃ ∈ (0, x), we
must have

u (θ, x̃)− p (x̃) = 0, (Indifference)

and
p (x̃) ≤ c (θ, x̃) . (Zero Profits)

Combining them, gives u (θ, x̃) ≤ c (θ, x̃), which contradicts (32).

B.2 Least Costly Separating Allocation

Since the allocation in any competitive equilibrium is degenerate, we can represent it by a
pair x : Θ → X and p : X → R+.

Lemma 14. Let (p, x) be a competitive equilibrium. The allocation function x(·) is continu-
ous.

Proof. By single crossing and the fact that there is no pooling outside of the null contract,
x(·) is strictly monotone. Suppose there exists θ̂ such that

x+ := lim
θ↘θ̂

x (θ) > lim
θ↗θ̂

x (θ) =: x−

(the argument for other types of discontinuities is analogous). Consumer optimization gives

u (θ, x (θ))− p (x (θ)) ≥ u (θ, x)− p (x) ∀x.



44

Take x = x− and consider the limit as θ ↘ θ̂. Because both u and p are continuous, we have

u
(
θ̂, x+

)
− p (x+) ≥ u

(
θ̂, x−

)
− p (x−) .

Similarly, setting x = x+ and taking the limit as θ ↗ θ̂, gives

u
(
θ̂, x−

)
− p (x−) ≥ u

(
θ̂, x+

)
− p (x+) .

Combining both conditions, gives

u
(
θ̂, x+

)
− p (x+) = u

(
θ̂, x−

)
− p (x−) .

Zero profits implies that p (x+) = c
(
θ̂, x+

)
and p (x−) = c

(
θ̂, x−

)
. Thus,

u
(
θ̂, x+

)
− c

(
θ̂, x+

)
= u

(
θ̂, x−

)
− c

(
θ̂, x−

)
.

Since x is monotonic, it follows that x ∈ (x−, x+) is not picked by any type. By single
crossing, condition 3 from Definition 1 implies that they must be priced according to type
θ̂’s indifference curve:

u
(
θ̂, x+

)
− c

(
θ̂, x+

)
= u

(
θ̂, x
)
− p (x) , (Indifference)

p(x) ≤ c
(
θ̂, x
)
. (Zero Profits)

Combining the conditions, we obtain, for all x− < x < x+,

u
(
θ̂, x
)
− c

(
θ̂, x
)
≤ u

(
θ̂, x+

)
− c

(
θ̂, x+

)
= u

(
θ̂, x−

)
− c

(
θ̂, x−

)
,

which violates the strict concavity of the surplus function.

The next lemma shows that almost all types are distorted downwards:

Lemma 15. Let (p, x) be a competitive equilibrium. Then, x(θ) ≤ argmaxx∈X u (θ, x) −
c (θ, x) , with strict inequality almost everywhere.

Proof. Since Θ = [θ, θ̄] is an interval and x is a continuous and increasing function, it follows
that x (Θ) is an interval. Consumer optimization on the equilibrium path can be written as:

x (θ) ∈ arg max
x(θ)≤x≤x(θ̄)

u (θ, x)− p (x) .
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Zero profits for allocations x ∈ [x (θ) , x
(
θ̄
)
] gives

p(x(θ)) = c(θ, x(θ)).

Note that x is a monotone function and, therefore, is differentiable almost everywhere. Con-
sumer optimization requires that at all points of differentiability of x, we have

∂u

∂x
(θ, x (θ)) = p′ (x (θ)) (33)

for all x(θ) ∈ (x (θ) , x
(
θ̄
)
). In general, this local first-order condition is only necessary for

consumer optimality. As usual, we ignore the sufficiency condition for now and verify it at
the end.

From zero profits, at all points of differentiability of x, we have

p′(x(θ))ẋ(θ) =
∂c

∂θ
(θ, x(θ)) +

∂c

∂x
(θ, x(θ))ẋ(θ).

Combining both expressions, gives[
∂u

∂x
(θ, x (θ))− ∂c

∂x
(θ, x(θ))

]
ẋ(θ) =

∂c

∂θ
(θ, x(θ)).

Since ∂c
∂θ
(θ, x(θ)) > 0, it follows that ẋ (θ) ̸= 0 and, since x is strictly increasing,

∂u

∂x
(θ, x (θ)) >

∂c

∂x
(θ, x(θ))

at all points of differentiability of x. Since x is strictly increasing and satisfies the first-order
condition (33), and the consumer’s utility satisfies single crossing, it follows from standard
arguments that global incentive compatibility holds.

Let x∗(θ) ≡ argmaxx u (θ, x) − c (θ, x) denote the surplus-maximizing allocation. Since
the surplus is strictly concave, it follows from the Theorem of the Maximum that x∗(θ) is
continuous. Then, the previous inequality implies that x (θ) < x∗ (θ) almost everywhere.
Because x and x∗ are both continuous, it follows that x (θ) ≤ x∗ (θ) at all points.

Lemma 16. Let (p, x) be a competitive equilibrium. Then, x(θ̄) = argmaxx∈X u(θ̄, x) −
c(θ̄, x).

Proof. From the previous lemma, x(θ̄) ≤ argmaxx∈X u(θ̄, x) − c(θ̄, x). Suppose, in order to
obtain a contradiction, that the inequality is strict. By the monotonicity of x(·), it follows
that no type picks x > x(θ̄). Then, because of single crossing, the competitive equilibrium
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requires all allocations x > x(θ̄) to be priced according to θ̄’s indifference curve:

p(x) = u(θ̄, x)− u(θ̄, x(θ̄)) + p(x(θ̄)),

and to satisfy the zero-profit condition:

p(x) ≤ c
(
θ̄, x
)
.

Combining both conditions and using the fact that p(x(θ̄)) = c
(
θ̄, x(θ̄)

)
, gives

u(θ̄, x)− c
(
θ̄, x
)
≤ u(θ̄, x(θ̄))− c(θ̄, x(θ̄))

for all x > x̄, contradicting the assumption that x(θ̄) ≤ argmaxx∈X u(θ̄, x)− c(θ̄, x).

These previous lemmas therefore establish that the equilibrium is determined by incentive
compatibility with the boundary condition specifying that the highest type gets the efficient
allocation (least costly separating allocation).

Next, we show that the slope of the equilibrium allocation becomes infinitely steep close
to the top:

Lemma 17. Let x(θ) be a competitive equilibrium. Then, limθ↗θ̄ ẋ(θ) = +∞.

Proof. As shown in the previous lemma, the competitive equilibrium allocation solves:[
∂u

∂x
(θ, x (θ))− ∂c

∂x
(θ, x(θ))

]
ẋ(θ) =

∂c

∂θ
(θ, x(θ)),

with x(θ̄) = argmaxx u(θ̄, x)− c(θ̄, x). As θ ↗ θ̄, we have[
∂u

∂x
(θ, x (θ))− ∂c

∂x
(θ, x(θ))

]
︸ ︷︷ ︸

↘0

ẋ(θ) =
∂c

∂θ
(θ, x(θ))︸ ︷︷ ︸

→ ∂c
∂θ

(θ̄,x(θ̄))>0

,

so limθ↗θ̄ ẋ(θ) = +∞.

C Monopolist Solution in One-Dimensional Model

In this appendix, we consider the monopolist’s problem in the one-dimensional model. We
first establish the result from Lemma 2, which considers deterministic mechanisms. Then,
we generalize it to allow for stochastic mechanisms.
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C.1 Deterministic Mechanisms and Lemma 2

Using standard arguments, we can write the monopolist’s program as

max
x(·)

∫ θ̄

θ

[
S (θ, x (θ))− 1− F (θ)

f(θ)

∂u

∂θ
(θ, x (θ))

]
f (θ) dθ

subject to x(·) non-decreasing. Let xm(·) denote the solution to this program (i.e., the
allocation that maximizes the monopolist’s profits). It is helpful to separate into two cases:

• If the monotonicity constraint does not bind at the top (i.e., there exists ϵ > 0 such that
xm(θ) is strictly increasing for θ ∈ (θ̄− ϵ, θ̄)), the solution must satisfy xm(θ̄) = xFB(θ̄)

and ẋm(θ̄) < ∞.

• If the monotonicity constraint binds at the top (i.e., there exists ϵ > 0 such that
xm(θ) = x∗ for all θ ∈ (θ̄ − ϵ, θ̄)), then x∗ ≥ xFB(θ̄).

Case 1: Separation

In this case, the solution for types in (θ̄−ϵ, θ) must satisfy the pointwise optimality condition:

∂S

∂x
(θ, x (θ)) =

1− F (θ)

f(θ)

∂2u

∂θ∂x
(θ, x (θ)) .

By Assumption 4, all types except for θ̄ get less coverage than the efficient amount. By the
implicit function theorem, we have

ẋ(θ̄) = −
∂2S
∂θ∂x

(
θ̄, x(θ̄)

)
− d

dθ

[
1−F (θ)
f(θ)

∂2u
∂θ∂x

(θ, x)
]∣∣∣

θ=θ̄,x=x(θ̄)

∂2u
∂x2

(
θ̄, x(θ̄)

)
− ∂2c

∂x2

(
θ̄, x(θ̄)

) .

Differentiating and using the fact that f ′(θ̄) < ∞ (Assumption 7), we obtain

d

dθ

[
1− F (θ)

f(θ)

∂2u

∂θ∂x
(θ, x)

]∣∣∣∣
θ=θ̄

= − ∂2u

∂θ∂x

(
θ̄, x
)
.

Substituting back, we obtain:

ẋ(θ̄) = −
∂2S
∂θ∂x

(
θ̄, x(θ̄)

)
+ ∂2u

∂θ∂x

(
θ̄, x(θ)

)
∂2S
∂x2

(
θ̄, x(θ̄)

) < +∞,

where the inequality follows from Assumption 6 (∂2S
∂x2

(
θ̄, x(θ̄)

)
< 0) and the fact that S is

twice continuously differentiable (so the numerator is bounded).
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Case 2: Pooling

Introducing the auxiliary variable z(θ) = ẋ(θ), we can write the monopolist’s program as:

max
x(·),z(·)

∫ θ̄

θ

[
S (θ, x (θ))− 1− F (θ)

f(θ)

∂u

∂θ
(θ, x (θ))

]
f (θ) dθ

subject to
ẋ(θ) = z(θ)

z(θ) ≥ 0

This is a standard optimal control problem, which has the following necessary optimality
conditions:

z(θ) ∈ argmax
z≥0

{[
S (θ, x (θ))− 1− F (θ)

f(θ)

∂u

∂θ
(θ, x (θ))

]
f (θ) + λ(θ)z

}
,

so that λ(θ) ≤ 0 for all θ with z(θ) = 0 if λ(θ) < 0,[
∂S

∂x
(θ, x (θ))− 1− F (θ)

f(θ)

∂2u

∂θ∂x
(θ, x (θ))

]
f (θ) = −λ̇(θ), (34)

and the transversality condition: λ(θ̄) = 0.

Since λ(θ̄) = 0 and λ(θ) ≤ 0 for all θ, we must have λ̇(θ̄) ≥ 0 (otherwise, we would have
λ(θ) > 0 for all θ < θ̄ close enough to θ̄). Therefore, equation (34) gives:

∂S

∂x

(
θ̄, x

(
θ̄
))

≤ 0,

which by the concavity of S implies x(θ̄) > x̄ (that is, x(θ̄) is weakly above the first best).

C.2 Stochastic Mechanisms

We now generalize the analysis to allow for stochastic mechanisms. In addition to Assump-
tions 1 and 4-7 made in the deterministic case, we also assume that ∂2u

∂θ2
(θ, x) ≥ 0 for all (θ, x)

and ∂3u
∂θ∂x2 (θ, x) ≥ 0 for all x and all θ in a neighborhood of θ̄.

We consider direct mechanisms. Because the utility is quasi-linear, there is no loss of
generality in restricting attention to deterministic prices. Therefore, a mechanism specifies a
price p(θ) and distribution over coverages ξθ(x) for each type θ. Fix a mechanism and let

U(θ) ≡
∫
x

u (θ, x) dξθ(x)− p(θ)
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denote the indirect utility of type θ.

Lemma 18. Suppose ∂2u
∂θ2

≥ 0. A mechanism is incentive compatible if and only if U̇(θ) is
non-decreasing and satisfies the envelope condition:

U̇(θ) =

∫
x

∂u

∂θ
(θ, x) dξθ(x). (35)

Proof. If the mechanism is incentive compatible, then

U(θ) = max
θ̂

{∫
u(θ, x)dξθ̂(x)− p(θ̂)

}
where, given the assumption, the function θ →

∫
u(θ, x)dξθ̂(x)− p(θ̂) is convex in θ, for each

θ̂. Therefore, U(θ) is the upper envelope of convex functions and, therefore, convex, so that
U̇(θ) is non-decreasing. Moreover, condition (35) follows from the envelope theorem.

Conversely, suppose these two conditions hold. Then, for each θ > θ̂, we have that

U(θ)− U(θ̂) =

∫ θ

θ̂

∫ [
uθ(θ̃, x)

]
dξθ̃(x)dθ̃ ≥

∫ θ

θ̂

∫ [
uθ(θ̃, x)

]
dξθ̃(x)dθ̃

where the equality follows from the envelope condition (35) and the inequality follows from
the convexity of U(θ). Therefore,

U(θ)− U(θ̂) ≥
∫ [

u(θ, x)− u(θ̂, x)
]
dξθ̂(x),

which is equivalent to

U(θ) ≥
∫

u(θ, x)dξθ̂(x)− p(θ̂).

We can therefore write the firm’s program as:

max
µ,U

∫ θ̄

θ

{∫
x

S (θ, x) dξθ(x)− U(θ)

}
f (θ) dθ

subject to

U̇(θ) =

∫
x

∂u

∂θ
(θ, x) dξθ(x)

U̇(θ) non-decreasing,

and
U(θ) ≥ 0.
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The next lemma provides the key step for our main result. Let x̄θ = argmaxx S(θ, x),
which is unique by the strict concavity of S.

Lemma 19. Let Θ− ≡ {θ : ∂3u
∂θ∂x2 (θ, x) ≥ 0}. Suppose a mechanism has a set of types with

positive measure in Θ− receiving non-degenerate allocations with E[x|ξθ] < x̄θ. Then, the
mechanism is not optimal.

Proof. To build intuition, let x∗
θ be the deterministic payment that solves:∫
x

∂u

∂θ
(θ, x) dξθ(x) =

∂u

∂θ
(θ, x∗

θ) .

Note that x∗
θ has the same informational rents as with the original allocation µθ, that is

U̇(θ) =
∂u

∂θ
(θ, x∗

θ) .

Therefore, replacing non-degenerate allocations ξθ by x∗
θ in any set of types in Θ− leads to

the same indirect utility and therefore preserves IC.
Since ∂u

∂θ
is convex, it follows that x∗

θ ≥
∫
xdξθ(x). Therefore, this replacement increases

coverage. If x∗
θ ≤ x̄θ, replacing the non-degenerate allocation ξθ by x∗

θ strictly increases
surplus (pointwise) since S is strictly concave and strictly increasing in x ≤ x̄θ. If instead
x∗
θ > x̄θ, the effect is ambiguous since S is no longer increasing in x.

For x∗
θ > x̄θ > E[x|ξθ], we follow the same idea except we do not substitute ξθ by a

deterministic contract x∗
θ. Instead, we construct a mean-preserving contraction that ensures

that the effect is positive. First, note that for any mean-preserving contraction ξ̃θ of ξθ, we
have ∫

x

∂u

∂θ
(θ, x) dξθ(x) ≥

∫
x

∂u

∂θ
(θ, x) dξ̃θ(x)

by the weak convexity of ∂u
∂θ

. Since ∂2u
∂θ∂x

> 0 and ∂u
∂θ

is continuous, there exists δ ≥ 0 such
that ∫

x

∂u

∂θ
(θ, x) dξθ(x) =

∫
x

∂u

∂θ
(θ, x+ δ) dξ̃θ(x).

Intuitively, any mean-preserving contraction generates “additional coverage” δ ≥ 0 that can
be used to increase surplus while keeping informational rents unchanged. The highest mean-
preserving contraction replaces ξθ(x) by a degenerate distribution concentrated at its mean.
But as seen above the additional coverage δ that it generates may be too large, leading to
coverage beyond the surplus-maximizing point. However, by picking a small enough mean-
preserving contraction (formally, any mean-preserving contraction with δ ≤ x̄θ − E[x|ξθ],
which is positive by the assumption of the lemma), the previous argument gives a strict
gain for the monopolist since it this keeps informational rents constant and increases surplus.
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Since x̄θ > E[x|µθ] and ξθ is non-degenerate, such a small enough mean-preserving contraction
always exists.

By the previous lemma, non-degenerate contracts must offer expected coverage above the
surplus-maximizing level, Ex[x|µθ] ≥ x̄θ, for almost all types in Θ−. Then, by the assumption
that ∂3u

∂θ∂x2 (θ, x) ≤ 0 for all x and all θ in a neighborhood of θ̄, it follows that (almost) any θ in
that neighborhood that is offered a non-degenerate contract must have Ex[x|ξθ] ≥ x̄θ > x∗(θ),
where x∗(θ) is the competitive equilibrium allocation (least-costly separating allocation). If
types around θ̄ are offered deterministic contracts, it follows from the analysis from the
last subsection (deterministic contracts) that the monopolist offers more coverage than the
competitive equilibrium. The following proposition formalizes this argument:

Proposition 6. Consider an incentive-compatible mechanism such that Ex[x|ξθ] < x∗(θ) for
almost all types in an interval (θ̄ − ϵ, θ̄] for some ϵ > 0. Then, the mechanism does not
maximize the monopolist’s profits.

Proof. If the mechanism offers a non-degenerate allocation for a positive measure of types
in this interval, the previous lemma implies that this mechanism is not optimal. If the set
of types obtaining non-degenerate allocations has measure zero, there is no loss in replacing
their allocations by their certainty equivalents, which preserves incentive compatibility and
does not affect the firm’s profits (since this set has zero measure). But, from Lemma 2,
the resulting allocation is also sub-optimal (since the optimal deterministic mechanism has
xm(θ) > x∗(θ) for all θ ∈ (θ̄ − δ, θ̄) for some δ > 0).

D Omitted Proof of Proposition 2

The proof incorporates mixed strategies using the same approach as the proof of Theorem 2.
By quasi-linearity, there is no loss of generality in focusing on mechanisms with deterministic
prices.

Let U(θ) ≡ Eθ [u(θ, x))]− p(θ). By the envelope condition, we must have

U̇(θ) ≡ Eθ

[
∂u

∂θ
(θ, x))

]
> 0, (36)

where the Dominated Convergence Theorem justifies differentiating under the expectation.
Since U(·) is increasing, the exclusion region is an interval: [θ, θ∗].

If all types participate (θ∗ = θ ), any allocation that maximizes the firm’s profits must
give zero utility to the lowest type. If there is exclusion (θ∗ > θ), all types who do not
participate get zero utility. In either case we have U(θ∗) = 0.
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Integrate equation (36) to obtain:

U(θ)− U(θ∗)︸ ︷︷ ︸
0

=

∫ θ

θ∗
Eθ̃

[
∂u

∂θ
(θ̃, x))

]
dθ̃.

Substitute in the firm’s expected profits and use integration by parts to rewrite the firm’s
profits as ∫ θ

θ∗

{
Eθ [S(θ, x)]− Eθ

[
∂u

∂θ
(θ, x))

]
· 1− F (θ)

f(θ)

}
f(θ)dθ.

For the moment, suppose θ = 0. To show that any optimal allocation excludes some types,
we verify that the integrand of the expression above is negative for θ close enough to zero.

First, note that the integrand evaluated at θ = 0 equals:

Eθ=0

[
S(θ, x)− ∂u

∂θ
(θ, x)) · 1

f(0)

]
.

If the mechanism assigns positive mass to x > 0 when θ = 0, then this expression is strictly
negative (since S(0, x) ≤ 0 for all x and ∂u

∂θ
(0, x) ≥ 0 with > for x > 0 (Assumption 1). Thus,

setting θ∗ > 0 is optimal.
If the mechanism assigns full mass to x = 0 when θ = 0, the expression above equals zero.

Evaluating the derivative of the term inside expectation with respect to x, we obtain

∂S

∂x
(0, 0)− ∂2u

∂x∂θ
(0, 0) · 1

f(0)
< 0,

where the inequality follows from ∂S
∂x
(0, 0) ≤ 0 and ∂2u

∂x∂θ
(0, 0) > 0 (Assumption 3). Since the

mechanism assigns positive mass to x > 0 for all θ > θ∗ = 0 (types above θ∗ are not excluded),
by the continuity of the expression on the LHS, it follows that the integrand is strictly negative
for all θ in a neighborhood of θ∗ = 0. Since S is continuously differentiable and u is twice
continuously differentiable, and the integrand remains negative if θ is sufficiently small.
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