
Online Appendix

A Existence of Equilibrium
Proposition 12 There exists a PBE.

Proof: Fix an ex-ante action a ∈ A, and consider the “restricted game” Ga as the continuation game following
such action. From Definition 1, a profile of PBEs of all restricted games {φ∗

a, φ
∗
b ,m

∗
H (a) ,m∗

L (a) , μ (.|σ̂a)}a∈A is a
PBE of the original game considered in the text if and only if

φ∗
a ∈ argmax

a∈A

{
Eσ̂a [Eμ [u (a, φ

∗
b (a, σ̂a) , θ, σa) |σ̂a] |m∗

L (a) ,m∗
H (a)]

−qψH (m∗
H (a))− (1− q)ψL (m∗

L (a))

}
.

First, we note that the all continuation games have a PBE. Fix an action a ∈ A (which, for notational simplicity,
will be omitted from the expressions below). Let bH ∈ argmaxb uH (b,H) , bL ∈ argmaxb uL (b, L) , and note that
both bH and bL are not functions of mH ,mL, or α. Define the correspondence T : [−ηH , 1− ηH ]× [−ηL, 1− ηL]×
[0, 1]×Δ(B) → [−ηH , 1− ηH ]× [−ηL, 1− ηL]× [0, 1]×Δ(B) by

T
(
mH ,mL, α, φb∅

) ≡ (m∗
H

(
mL, φb∅ , α

)
,m∗

L

(
mH , φb∅ , α

)
, α
(
mL,mH , φb∅

)
, φb∅ (mL,mH , α)

)
,

where:

m∗
H ≡ argmax

mH

(ηH +mH)uH (bH , H)+(1− ηH −mH)
[
α∗uH

(
φb∅ , H

)
+ (1− α∗)uL

(
φb∅ , H

)]−ψH (mH) , (23)

m∗
L ≡ argmax

mL

(ηL +mL)uL (bL, L) + (1− ηL −mL)
[
α∗uH

(
φb∅ , L

)
+ (1− α∗)uL

(
φb∅ , L

)]− ψL (mL) , (24)

α∗ =
q (1− ηH −m∗

H)

q (1− ηH −m∗
H) + (1− q) (1− ηL −m∗

L)
, (25)

φb∅ ≡ arg max
{φ(b)}b∈B

{∑
b

φ (b) [α∗uH (b,H) + (1− α∗)uL (b, L)]

}
. (26)

A fixed point of T, combined with b∗ (H) = bH and b∗ (L) = bL constitute a PBE of the restricted game Ga.
Equation (23) is a continuous and concave function of mH . Therefore, m∗

H is a non-empty, convex, and compact
set. Similarly, equation (24) is a continuous and concave function of mL, implying that m∗

L is a non-empty, convex,
and compact set. Note that equation (25) defines α∗ as a function of mL,mH , b∅. Therefore, α∗ is a singleton,
which is trivially a non-empty, convex, and compact set. Moreover, since the equation in (26) is a linear function
of φ (b) , φb∅ is a non-empty, convex, and compact set. Then, Kakutani’s theorem establishes that there exists a
fixed-point of T, which corresponds to a PBE of the restricted game Ga.

Given a profile of PBEs of all restricted games {Ga : a ∈ A} , define

a∗ ∈ argmax
a∈A

{
Eσ̂a [Eμ [u (a, φ

∗
b (a, σ̂a) , θ, σa) |σ̂a] |m∗

L (a) ,m∗
H (a)]

−qψH (m∗
H (a))− (1− q)ψL (m∗

L (a))

}
.

Since A is finite, such an a∗ exists. The profile {a∗, φ∗
b ,m

∗
H (a) ,m∗

L (a) , μ (.|σ̂a)} constructed previously constitutes
a PBE of the original game. �

B Non-Bayesian Framework
Throughout the paper, I have maintained the assumption that decision makers understand that they engage in
memory manipulation and, thus, interpret their recollections according to Bayes’ rule (sophisticated decision mak-
ers). In this section, I consider the case of naive individuals. As in Mullainathan (2002), naive individuals are
unaware of their imperfect memory and interpret recollections as if they were the true outcomes.

Two new features emerge under naiveté. First, unlike in the sophisticated case, the equilibrium is unique.
Second, individuals may prefer to observe a signal even if it has no objective value. As a consequence, they may
display ambiguity seeking behavior even under additive separability between attributes and money. Moreover, they
may exhibit zeroth-order risk seeking behavior.
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Consider a naive decision maker (NDM), who is unaware of her memory manipulation efforts. Unawareness
implies that she applies Bayes’ rule as if her recollections were generated by the case where she does not engage in
memory manipulation, i.e. mL = mH = 0. When σ̂ ∈ {H,L} , she correctly infers that outcome σ = σ̂ has been
observed in period 1. However, when an outcome is forgotten, she attributes weight

ρ ≡ q (1− ηH)

q (1− ηH) + (1− q) (1− ηL)
(27)

to a high outcome and (1− ρ) to a low outcome. I refer to this rule as a naive updating rule.60 The following
definition proposes an adaptation of the PBE concept to naive decision makers:

Definition 3 A Perfect Naive Equilibrium (PNE) of the game is a strategy profile (a∗, b∗,m∗
H (a) ,m∗

L (a)) and
posterior beliefs μ (.|σ̂a) such that:

1. a∗ ∈ argmax
a∈A

{
Eσ̂a [Eμ [u (a, b

∗
a (σ̂a) , θ, σa) |σ̂a] |m∗

L (a) ,m∗
H (a)]

−qψH (m∗
H (a))− (1− q)ψL (m∗

L (a))

}
;

2. m∗
σ (a) ∈ argmax

mσ

{
(ησ +mσ)Eμ [u (a, b

∗
a (σ̂a) , θ, s) |σ̂a = σ]

+ (1− ησ −mσ)Eμ [u (a, b
∗
a (σ̂a) , θ, σ) |σ̂a = ∅]− ψσ (mσ)

}
,

σ ∈ {H,L};
3. b∗a (σ̂) ∈ argmax

b∈B
{Eμ [u (a, b, θ, σa) |σ̂a = σ̂]} ;

4. μ (θ|σ̂a = σ̂) is obtained by the naive updating rule if Pr (σ̂a = σ̂|mL = mH = 0, a) > 0, σ̂ ∈ {L,H,∅} , a ∈ A.

Conditions 1− 3 are the same as in the PBE concept. Condition 4 modifies the standard Bayesian condition by
requiring agents to follow the naive updating rule instead. An immediate consequence of the naive updating rule
in this model is that it leads to posterior beliefs that first-order stochastically dominate beliefs obtained by Bayes’
rule. Therefore, naive individuals are optimistic about their type θ.

An interesting special case of this naive framework is obtained when we take the forgetfulness memory system
of Example 1. Recall that if the state ∅ is interpreted as a recollection of a high outcome, then the model from
Example 1 becomes one where the agent is able to convince herself that a low outcome was a high outcome
by engaging in memory manipulation. Suppose an individual recollects a high outcome (i.e., σ̂ = ∅). If this
individual is sophisticated, she then corrects for her memory imperfection and attributes some (Bayesian) weight
to the possibility that she has observed a low outcome but managed to convince herself that the outcome was high
instead. On the other hand, a naive individual believes her recollection is correct and attributes full weight to a
high outcome (ρ = 1).

B1 Equilibrium Uniqueness

This subsection establishes that a PNE exists and, under mild conditions, is unique. The naive updating rule
implies that the NDM’s expected utility given σ̂ = ∅ is

u∅ (a, b, σ) = ρuH (a, b, σ) + (1− ρ)uL (a, b, σ) . (28)

Upon observing an outcome s ∈ {H,L} , self 1 maximizes:

(ηs +ms)us (a, ba (s) , s) + (1− ηs −ms)u∅ (a, ba (∅) , s)− ψs (ms) . (29)

The key feature of the naive updating rule is that it is not a function of the amount of memory manipulation employed
by self 1. This greatly simplifies the computation of the PNE of the model since, unlike in the sophisticated case,
there is no feedback between self 2’s expectation of the manipulation exerted by self 1 and self 1’s manipulation
choice. Then, the equilibrium amount of manipulation is determined by the maximum of expression (29).

60Benabou and Tirole (2006a) present a slightly different formulation of naiveté. In their model, agents follow an updating
rule that underweights bad news by a fixed proportion. Unlike under our notion of naiveté, they still obtain multiple equilibria
when agents are naive. However, as in our model, naiveté also tends to reduce the welfare costs of self-deception.
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Proposition 13 There exists a PNE. Furthermore, if ψσ is strictly convex and ba (σ̂) is a (single-valued) function
where σ ∈ {H,L} and σ̂ ∈ {H,L,∅}, the PNE is essentially unique.61

Proof. Existence of PNE follows an argument analogous to the existence of a PBE. Note that Condition 3 from
Definition 3 implies that ba (ŝ) is not a function of self 1’s memory manipulation. Strict convexity of ψs implies that
expression (29) is strictly concave in ms. Then, the equilibrium amounts of memory manipulation m∗

L and m∗
H are

unique. Condition 4 implies that beliefs must also coincide in all recollections such that Pr (σ̂a = σ̂|m∗
L = m∗

H = 0) >
0.

Corollary 2 The PNE is essentially unique when either: (i) u (a, ., θ, σa) : B → R is a strictly concave function,
or (ii) B is a singleton (i.e., the individual does not take ex-post actions).

Remark 7 Suppose that B is finite and fix the natural rates of remembering an outcome ηL and ηH . Since the set
of utility functions u : Θ × A × B × R → R such that argmax

b∈B
{Eμ [u (a, b, θ, σa) |σ̂a = σ̂]} contains more than one

element is nowhere dense, the PNE is essentially unique for generic utility functions when the set of ex-post actions
B is finite.

The generic uniqueness of the PNE contrasts with the multiplicity of the PBE. Multiplicity arises from the fact
that self 1 affects self 2’s equilibrium inference when the individual is sophisticated. In the naive case, because there
is not effect from memory manipulation on self 2’s inference, uniqueness is obtained.

B2 Ambiguity-Seeking Behavior

For simplicity, consider the forgetfulness memory system of Example 1 and, as in the Section A, assume that the
utility is additively separable between attributes and money. Then, the equilibrium amount of memory manipulation
is m∗

L = min
{
ψ′−1

L (Δu) ; 1
}
. The ex-ante expected utility of the NDM is

U (Σ) = (1− q) (1 +m∗
L)uL + [q − (1− q)m∗

L]u∅ − (1− q)ψL (m∗
L)

= (1− q) (1 +m∗
L)uL + [q − (1− q)m∗

L]uH − (1− q)ψL (m∗
L) ,

where the second inequality uses the fact that u∅ = uH . The NDM prefers to observe the signal Σ if and only if the
expected improvement in self-image |m∗

L|Δu is greater than the cost of memory manipulation ψL (m∗
L) .

62 Thus,
naive individuals may prefer to observe signals even if the objective value of information (which in this case is zero)
is lower than the expected costs of manipulation.

Remark 8 Proceeding as in Appendix A, the NDM’s expected utility from the monetary lottery can be represented
by

U (Σ) = w (q)uH + [1− w (q)]uL,

where w (q) = q − (1− q)
[
m∗

L +
ψL(m∗

L)
Δu

]
, w (0) = 0, and w (1) = 1. Thus, the NDM is ambiguity averse if

|m∗
L|Δu < ψL (m∗

L) and ambiguity seeking if the reverse inequality is satisfied. Hence, a naive individual may be
ambiguity seeking even when the utility function is additively separable between attributes and money.

B3 Zeroth-Order Risk Seeking Behavior

This subsection shows that the NDM may be zeroth-order risk seeking. As in Subsection A.3, consider a lottery
that pays x = εs, s ∈ {H,L} , where qH + (1− q)L = 0. Let m∗

s (ε) denote the equilibrium amount of memory
manipulation as a function of ε. The certainty equivalent of this lottery is:ˆ

u (θ, CE (ε)) dF (θ) = (1− q) (1 +m∗
L (ε))uL (L)

+ [q − (1− q)m∗
L (ε)]uH (H)− (1− q)ψL (m∗

L (ε))− qψH (m∗
H (ε)) ,

61The PNE is essentially unique in the sense that, all equilibria feature the same choices of actions a and b, manipu-
lation efforts mL and mH , and beliefs given recollections that are believed to be reached with positive probability (i.e.,
(σ̂a = σ̂|mL = mH = 0) > 0). Equilibria may diverge only with respect to beliefs at recollections that are not believed to be
reached with positive probability. Obviously, one can ensure uniqueness of beliefs in all recollections by assuming that the
NDM believes that all recollections are reached with positive probability: 0 < min {ηH , ηL} < 1.

62As in Subsection 4.1, the NDM’s surplus from observing a signal is decreasing in the favorableness of her prior distribution
over her attributes under Assumption 3. However, unlike Conjecture 1, this surplus may be positive when the individual is
naive.
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Recall that uσ (s) ≡
´
u (θ, s) dF (θ|σ)us (σ) = vσ+ τ (s) , where the last equality follows from additive separability.

Then, taking the limit as ε → 0+, we obtain:

τ (CE (0)) = −m∗
L (1− q)Δv − (1− q)ψL (m∗

L)− qψH (m∗
H) .

Hence, CE (0) > 0 if |m∗
L (0)| (vH − vL) > ψL (m∗

L (0))+ q
1−qψH (m∗

L (0)) and the NDM is zeroth-order risk seeking.
In the opposite case, the NDM is zeroth-order risk averse. Thus, we have established the following result:

Proposition 14 The NDM is:

• zeroth-order risk averse if |m∗
L (0)| (vH − vL) < ψL (m∗

L (0)) + q
1−qψH (m∗

L (0)) , and

• zeroth-order risk seeking if |m∗
L (0)| (vH − vL) > ψL (m∗

L (0)) + q
1−qψH (m∗

L (0)) .

B4 Convergence
This subsection shows that, under certain regularity conditions, the beliefs of a NDM converge to the truth

despite her departure from Bayes’ rule. Let θ̃n denote the NDM’s expected type.

Proposition 15 Let N → ∞ and fix a NPE. There exists a random variable z such that θ̃n → z for almost all
histories.

Proof. Let q̃n denote the expected value of q according to the naive updating rule. It is straightforward to verify
that 1 − q̃n follows a supermartingale and, by Doob’s theorem, it converges in distribution. Then using the fact
that q (θ) is continuous and strictly increasing concludes the proof.

The proposition above does not imply that manipulation converges to zero since z may be nondegenerate and,
therefore, Δu may not converge to zero. In order to ensure that this is the case, we will use the following regularity
condition:

Regularity Condition. The prior distribution f (q) satisfies

lim
n→∞

⎧⎨
⎩

´ x
0

qαn+1(1−q)βn[q(1−ηH)+(1−q)(1−ηL)](1−α−β)nf(q)dq´ 1
0
qαn+1(1−q)βn[q(1−ηH)+(1−q)(1−ηL)](1−α−β)nf(q)dq

−
´ x
0

qαn(1−q)βn+1[q(1−ηH)+(1−q)(1−ηL)](1−α−β)nf(q)dq´ 1
0
qαn(1−q)βn+1[q(1−ηH)+(1−q)(1−ηL)](1−α−β)nf(q)dq

⎫⎬
⎭ = 0,

for all (α, β, x) ∈ [0, 1]
3
.

The regularity condition states that the impact of a single observation is small when the number of observations
is large. It is satisfied, for example, in the forgetfulness model of Example 1 and in the limited memory model
of Example 2 when the prior distribution is uniform. The following proposition shows that although the NDM is
optimistic in any finite period, her beliefs converge to the truth and her memory manipulation converges to zero.

Proposition 16 Suppose the regularity condition is satisfied and let N → ∞. Then, mσ
D→ 0 and θ̂n

D→ θ.

Proof. Let q̂ (hn) denote the NDM’s beliefs about q given hn. The regularity condition implies that (q̂t|hn, H) −
(q̂t|hn, L)

D→ 0. Let Ẽ be the expectation under the NDM’s beliefs. Then, Ẽ [q|hn, H]− Ẽ [q|hn, L] → 0. Then, the
amount of memory manipulation converges to zero. But ms

D→ 0 implies that θ̂n
D→ θ.

C Non-Separable Preferences
In Section A, the DM’s preferences additively separable between attributes and money. In this appendix, I consider
general utility functions. A key ingredient of the general model is the degree of complementarity between attributes
and money. Since a DM is not as affected by monetary outcomes when she is uninformed about her attributes
when attributes and money are complementary, complementarity can be interpreted as providing “psychological
insurance.” Therefore, the DM may prefer a lottery whose outcomes are informative about her attributes if the
complementarity effect is greater than the costs of self-deception. Moreover, the resulting probability weighting
function may have an “inverted S-shape” as in Tversky and Kahneman (1992) and Prelec (1998).
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Let uσ (s) ≡
´
u (θ, s) dF (θ|σ) denote the expected utility from a monetary amount equal to s conditional on

outcome σ. From Lemma 2, m∗
H > 0 ≥ m∗

L. Define the degree of complementarity between θ and money by

χ (H,L) ≡ uH (H) + uL (L)− uL (H)− uH (L) . (30)

Note that χ (H,L) ≥ 0 if u has increasing differences and χ (H,L) ≤ 0 if u has decreasing differences. The additively
separable case presented in the text corresponds to the case where χ (H,L) = 0. The ex-ante expected utility from
the lottery is

U (Σ) = q (ηH +m∗
H)uH (H) + (1− q) (ηL +m∗

L)uL (L)

+ q (1− ηH −m∗
H)u∅ (H) + (1− q) (1− ηL −m∗

L)u∅ (L)−MC,

where MC = qψH (m∗
H) + (1− q)ψH (m∗

L) is the expected memory cost. Then, long but tedious algebraic manip-
ulations yield

U (Σ) = quH (H) + (1− q)uL (L) + zχ (H,L)−MC. (31)

where z =
q(1−q)(1−ηL−m∗

L)(1−ηH−m∗
H)

q(1−ηH−m∗
H)+(1−q)(1−ηL−m∗

L)
> 0 and MC = qψH (m∗

H) + (1− q)ψH (m∗
L) .

The utility of a monetary lottery can be decomposed in three terms: First, the expected utility quH (H) +
(1− q)uL (L) of the lottery when memory is perfect. Second, the expected manipulation costs MC. These two
effects are precisely the same as in the additively separable case (see equation 11). The third effect, which is not
present when the utility is additively separable, is the degree of complementarity between attributes and money.
When signals are forgotten, there is probability α (m∗

H ,m∗
L) that a high signal was observed and the complementary

probability that a low signal was observed. Thus, forgetting a signal can be seen as providing “psychological
insurance” to the agent. This raises her expected utility if θ and money are complementary (χ > 0) and decreases
her expected utility if they are substitutes (χ < 0).

Proceeding as in Subsection A.1, the DM’s expected utility can be represented by

U (Σ) = w (q)× uH (H) + [1− w (q)]× uL (L) ,

where w (q) = q + zχ(H,L)−MC
uH(H)−uL(L) . Moreover, it is straightforward to show that w (0) = 0, and w (1) = 1. Therefore,

when attributes and money are complementary, the DM may exhibit ambiguity loving behavior. In particular, the
following example shows that the model may lead to an inverted S-shaped probability weighting function:

Example 7 (Inverted S-shaped Probability Weights) Consider the limited memory model of Example 2 and
suppose that the manipulation effort is a binary variable: mH ∈ {0, 3

4

}
, where ψH

(
3
4

)
= 1

5 . Let χ (H,L) =

uH (H) − uH (L) = 1. Then, self 1 chooses to engage in memory manipulation if q ∈ (0, 11
12

)
. It is straightforward

to show that, for values of q such that the DM engages in memory manipulation, the probability weighting function
has an inverted S-shape:

w (q)

{
> q if q ∈ (0, 1

2

)
< q if q ∈ ( 12 , 11

12

) .
As in Section A, denote by U I the utility of a lottery with the same distribution over monetary outcomes as

the one above but whose monetary outcomes are uninformative about θ. Rearranging equation (31), we obtain

U (Σ) = U I + yχ (H,L)−MC, (32)

where y = q (1− q)

[
1 +

(1−ηL−m∗
L)(1−ηH−m∗

H)

q(1−ηH−m∗
H)+(1−q)(1−ηL−m∗

L)

]
> 0. Consider the choice between the lottery Σ and another

lottery with the same distribution over monetary outcomes but whose monetary outcomes are uninformative about
θ. Equation (32) implies that the DM will prefer lottery Σ if the degree of complementarity is high enough or if the
expected memory cost is low enough: yχ (H,L) ≥ MC. Therefore, when attributes and money are complementary,
the DM may prefer the attribute-dependent lottery.

However, when the monetary lottery is “small” (i.e., when the lottery pays x = εs for ε low), the complementarity
effect vanishes. Since the memory cost converges to a strictly positive number as ε converges to zero, it follows that
the certainty equivalent of the lottery converges to CE (0) < 0. Therefore,

lim
ε→0+

π (ε)

ε
= − lim

ε→0+

CE (ε)

ε
= +∞

and, for any degree of complementarity between attributes and money, the DM always exhibits zeroth-order risk
aversion. This is formally stated in the following proposition:
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Proposition 17 In any PBE, the DM exhibits zeroth-order risk aversion.

Proof. For any PBE, define the expected manipulation cost as MC (ε) ≡ qψH (m∗
H (ε)) + (1− q)ψH (m∗

L (ε)) .
Note that limε→0+ χ (εH, εL) = 0. Therefore, for small ε, equation (15) becomes:

ˆ
u (θ, CE (ε)) dF (θ) = quH (εH) + (1− q)uL (εL)−MC (ε) . (33)

Since MC (0) > 0 and, by the Theorem of the Maximum, MC (ε) is continuous, it follows that MC (ε) > 0 for
small ε. Hence, limε→0+ MC (ε) > 0. Then, equation (33) yields:

lim
ε→0+

ˆ
u (θ, CE (ε)) dF (θ) > quH (0) + (1− q)uL (0) =

ˆ
u (θ, 0) dF (θ) ,

where the last equality follows from Bayes’ rule. Since u is continuous and increasing in money, this implies that
limε→0+ CE (ε) > 0. Hence, limε→0+ π (ε) /ε = − limε→0+ CE (ε) /ε < 0.

It is interesting to contrast the general model with the a model from the following example where the DM does
not face memory costs:

Example 8 (Exogenous Memory Model) Take ψs (ms) = +∞ for all ms �= 0. Thus, the agent cannot engage
in endogenous memory manipulation. Let ηs < 1 so that the agent forgets outcome with (exogenous) probabilities
1 − ηs > 0. If ηH > ηL, memory is selective in the sense that good news is more likely to be remembered than bad
news.

When memory manipulation is endogenous (and differentiable at ms = 0), the effect from memory manipulation
always dominates the complementarity effects and the DM displays zeroth-order risk aversion. When memory
manipulation is exogenous, the order of risk aversion is determined by the degree of complementarity between
attributes and money. Note that for small ε, attributes and money are complementary if u′

H (0) < u′
L (0) and

substitutes if u′
H (0) > u′

L (0).

Proposition 18 In the exogenous memory model: (i) the DM is first-order risk averse if u′
L (0) > u′

H (0) ; (ii) the
DM is first-order risk seeking if u′

L (0) < u′
H (0) ; and (iii) the DM has second-order risk preferences if u′

L (0) =
u′
H (0) .

Proof. Since MC (ε) = 0 for all ε, equation (15) becomesˆ
u (θ, CE (0)) dF (θ) = quH (εH) + (1− q)uL (εL) + zχ (εH, εL) . (34)

Substituting χ (0, 0) = 0, yields ˆ
u (θ, CE (0)) dF (θ) = quH (0) + (1− q)uL (0) .

Therefore, Bayes’ rule implies that
´
u (θ, CE (0)) dF (θ) =

´
u (θ, 0) dF (θ) and, because u is strictly increasing in

money, π (0) = −CE (0) = 0. Differentiating equation (34), it follows that

CE′ (0) =
qu′

H (0)H + (1− q)u′
L (0)L+ z (H − L) [u′

H (0)− u′
L (0)]

qu′
H (CE) + (1− q)u′

L (CE)
.

Substituting qH + (1− q)L = 0, we obtain

CE′ (0) = K [u′
H (0)− u′

L (0)] ,

where K = H
qu′

H(0)+(1−q)u′
L(0)

(
q + z

1−q

)
> 0. Then, by L’Hospital’s rule, it follows that

lim
ε→0+

π (ε) /ε = −CE′ (0) = −K [u′
H (0)− u′

L (0)] ,

which concludes the proof.
Therefore, the DM may display risk preferences of first order when there are no manipulation costs. Unlike

when memory manipulation is endogenous, the DM may be first-order risk seeking or have risk preferences of second
order.
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D Proof of Claim 2
The p.d.f. of q conditional on hn is

f (q|hn) =

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
×
∏

t:σt=H

q
(
ηH +m∗

H,t

)× ∏
t:σt=L

(1− q)
(
ηL +m∗

L,t

)× f (q)

´
⎧⎪⎪⎨
⎪⎪⎩

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
×
∏

t:σt=H

q
(
ηH +m∗

H,t

)× ∏
t:σt=L

(1− q)
(
ηL +m∗

L,t

)× f (q)

⎫⎪⎪⎬
⎪⎪⎭ dq

.

Let #H denote the number of times that a signal σ̂ = H was recollected: # {t : σ̂t = H} . Similarly, define #L as
# {t : σ̂t = L} .63 Then, after some algebraic manipulations, we can write:

f (q|hn) =

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]× q#H × (1− q)
#L × f (q)

´ ∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H × (1− q)

#L × f (q) dq
.

Note that f (q|hn) is not a function of mH,t and mL,t for any history hn such that σ̂t �= ∅. This follows from the
signals σt being i.i.d. and the fact that σ̂t = σt when σ̂t �= ∅. Integrating the equation above, we obtain

F (x|hn) =

´ x
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]× q#H × (1− q)
#L × f (q) dq

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H × (1− q)

#L × f (q) dq
.

We are now ready to prove the Claim:
Proof of Claim 2.We have to show that

´ x
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]× q#H × (1− q)
#L × f (q) dq

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H × (1− q)

#L × f (q) dq
≤

´ x
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]× q#H−1 × (1− q)
#L+1 × f (q) dq

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H−1 × (1− q)

#L+1 × f (q) dq
.

When x = 0, both sides become 0 and, when x = 1, both sides are equal to 1.
The derivative of the LHS with respect to x is∏

t:σt=∅

[
x
(
1− ηH −m∗

H,t

)
+ (1− x)

(
1− ηL −m∗

L,t

)]× x#H × (1− x)
#L × f (x)

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H × (1− q)

#L × f (q) dq
,

and the derivative of the RHS with respect to x is∏
t:σt=∅

[
x
(
1− ηH −m∗

H,t

)
+ (1− x)

(
1− ηL −m∗

L,t

)]× x#H−1 × (1− x)
#L+1 × f (x)

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H−1 × (1− q)

#L+1 × f (q) dq
.

63Obviously, #H and #L are functions of histories. We omit this dependence for notational clarity.
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Note that dRHS
dq > dLHS

dq if and only if

∏
t:σt=∅

[
x
(
1− ηH −m∗

H,t

)
+ (1− x)

(
1− ηL −m∗

L,t

)]× x#H × (1− x)
#L × f (x)

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H × (1− q)

#L × f (q) dq

≤

∏
t:σt=∅

[
x
(
1− ηH −m∗

H,t

)
+ (1− x)

(
1− ηL −m∗

L,t

)]× x#H−1 × (1− x)
#L+1 × f (x)

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H−1 × (1− q)

#L+1 × f (q) dq
.

Rearranging, we obtain:

x´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H × (1− q)

#L × f (q) dq

≤ (1− x)´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H−1 × (1− q)

#L+1 × f (q) dq
.

Thus, dRHS
dq > dLHS

dq if and only if

ρ (x) >

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]× q#H × (1− q)
#L × f (q) dq

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H−1 × (1− q)

#L+1 × f (q) dq
,

where ρ (x) = x
1−x . Since ρ (0) = 0, ρ (1) = +∞, ρ (x) is strictly increasing in x, and the term on the right is a

positive constant, there exists a unique x̄ such that

ρ (x) > (<)

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]× q#H × (1− q)
#L × f (q) dq

´ 1
0

∏
t:σt=∅

[
q
(
1− ηH −m∗

H,t

)
+ (1− q)

(
1− ηL −m∗

L,t

)]
× q#H−1 × (1− q)

#L+1 × f (q) dq
,

if x < (>) x̄.
Therefore, we have thatdRHS

dq > dLHS
dq if x < x̄ and dRHS

dq < dLHS
dq if x > x̄. Thus, the inequality is satisfied for

all q (it is satisfied with strict inequality whenever q ∈ (0, 1) and with equality at q ∈ {0, 1}. �

References
Prelec, D. (1998). “The probability weighting function,” Econometrica, 66, 497–527.

Tversky, A. and D. Kahneman (1992). “Advances in prospect theory: cumulative representation of uncertainty,”
Journal of Risk and Uncertainty, 5, 297–323.

8




