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Abstract

This paper presents a prospect theory-based model of insurance against mortality
risk. The model accounts for five main puzzles from life insurance and annuity markets:
under-annuitization; insufficient life insurance among the working age; excessive life
insurance among the elderly; guarantee clauses; and the simultaneous holding of life
insurance and annuities.
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1 Introduction

Twenty-five years ago, while delivering his Nobel Prize banquet speech, Franco Modigliani
pointed out that “annuity contracts, other than in the form of group insurance through pen-
sion systems, are extremely rare. Why this should be so is a subject of considerable current
interest. It is still ill-understood.”1 In the two and a half decades that followed, not only has
this under-annuitization puzzle persisted, but several other puzzles been documented in the
study of insurance markets for mortality risk. This paper suggests that prospect theory can
simultaneously account for all of these puzzles.

The death of a family member is among the most important financial risks a household
faces. About 30 percent of elderly widows live below the poverty line, compared to only eight
to nine percent of the married elderly. In addition, over three-quarters of poor widows were
not poor before their husband’s death.2 The importance of life insurance and annuities for
hedging against mortality risk has been understood since the seminal work of Yaari (1965).3

Working-aged individuals with dependents should purchase life insurance to financially pro-
tect their dependents in the event of an untimely death. Retirees should purchase annuities
to protect against outliving their assets. Additionally, because purchasing a life insurance
policy is equivalent to selling an annuity, the same person should not buy both at the same
time.

The demand for life insurance and annuities observed in practice, however, is strikingly
different from what theory predicts. Five puzzles have been extensively documented in the
empirical literature. First, as mentioned by Modigliani, few individuals purchase annuities.
Second, working-age individuals do not purchase sufficient life insurance. Third, too many
retired individuals have life insurance. Fourth, many of those who do purchase annuities hold
life insurance policies at the same time. And fifth, most annuity policies have clauses that
guarantee a minimum repayment. Overall, it is surprising that individuals treat annuities
and life insurance so differently since they are simply mirror images of each other: an initial
installment in exchange for payments on the condition either of death (insurance), or of
continuing to live (annuities).

This paper presents a dynamic model of the demand for annuities and life insurance
based on prospect theory, and suggests that it simultaneously accounts for the apparently
diverse behaviors described in these five puzzles. Prospect theory has three main features.
First, preferences are defined over gains and losses. Second, preferences have a kink at zero

1Modigliani (1986). Also cited by Brown (2007) and Benartzi, Previtero, and Thaler (2011).
2Hurd and Wise (1989).
3Davidoff, Brown, and Diamond (2005) generalize Yaari’s analysis to environments with incomplete mar-

kets.
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so that the marginal utility in the domain of gains is smaller than in the domain of losses
(loss aversion). And third, individuals are risk averse over gains and risk seeking over losses.4

In addition, following the original work of Tversky and Kahneman (1981), Redelmeier and
Tversky (1992), and Kahneman and Lovallo (1993), most applications of prospect theory
assume that lotteries are evaluated in isolation from other risks (narrow framing).5

There are different ways of modeling narrow framing in insurance, leading to different
reference points. Traditionally, economists have assumed that individuals treat “full insur-
ance” as the reference point. Then, as in other models of first-order risk aversion, prospect
theory predicts that people demand “too much insurance” compared to an expected utility
maximizer.

More recently, however, some researchers have suggested that individuals view life insur-
ance and annuities as risky investments, which are profitable if the total payment received
from the insurance company exceeds the premium. As Brown (2007) puts it: “Without
the annuity, the individual has $100,000 for certain. With the annuity, in contrast, there
is some positive probability that the individual will receive only a few thousand dollars in
income (if he were to die within a few months), some probability that the individual will
receive far more than $100,000 (if he lives well past life expectancy), and a full distribution
of possibilities in between.” Similarly, Kunreuther and Pauly (2012) argue that “[t]here is a
tendency to view insurance as a bad investment when you have not collected on the premium
you paid the insurer. It is difficult to convince people that the best return on an insurance
policy is no return at all.”6 This view of insurance as a risky investment, therefore, suggests
that individuals narrowly frame the insurance payments, rather than losses relative to full
insurance.

Countless press articles describe the tendency to view life insurance and annuities as risky
investments. Consider, for example, the following excerpt from an article recently published
by Forbes magazine:

Every once in a while we get a call on our Financial Helpline from someone whose
financial adviser recommended that they invest in a permanent life insurance
policy (...). The adviser’s pitch can sound compelling. Why purchase temporary
term life insurance that you’ll likely never use? Isn’t that like throwing money
away? With permanent life insurance, part of your premiums are invested and

4The other component of prospect theory, which I abstract from in this paper for simplicity, is the idea
that people overweight small probability outcomes and underweight large probability outcomes.

5Read, Lowenstein, and Rabin (1999) present several examples of narrow framing.
6Analogously, in his discussion of Cutler and Zeckhauser (2004), Kunreuther argued that “consumers seem

to view insurance as an investment rather than a contingent claim. This view creates a strong preference for
low deductibles and rebate schemes so that the insured can get something back.”
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some of it can be borrowed tax-free for retirement, or your children’s college
education, or anything else you’d like and your heirs will get a nice death benefit
when you pass away. But is it really always as great as it sounds?

The author then compares a standard permanent life policy (which combines insurance and
savings) with a mix of term insurance and a 401(k) plan. While the permanent life policy
would pay approximately $600k at retirement, a combination of term insurance and 401(k),
which costs exactly the same and provides the same insurance coverage, would pay $980k.7,8

Prospect theory’s asymmetric evaluation of gains and losses accounts for the difference
in how people treat annuities and life insurance. According to prospect theory, consumers
are risk averse in the domain of gains and risk seeking in the domain of losses. An annuity
involves an initial payment to the insurance company in exchange for a payment stream
conditional on being alive. It initially features a considerable chance of loss (if the consumer
dies soon), but also the possibility of a gain (if she lives a long time). Because of the kink
between the domains of gains and losses domains (loss aversion), consumers under-annuitize.
As time passes, surviving consumers collect annuity payments, thereby shifting the support
of the distribution to the right. If they live for long enough, the support of the distribution
eventually falls entirely in the gains domain. Then, the kink lies outside of the support and
loss aversion is no longer relevant. However, because consumers are risk averse in the gains
domain, they keep under-purchasing annuities.

By contrast, a life insurance policy involves an initial payment to the insurance company
in exchange for a repayment to beneficiaries in case of death. Thus, it initially comprises
a significant chance of gain (if the consumer dies soon), but also the possibility of a loss
(if she lives a long time). The kink between the domains of gains and losses again implies

7Davidson, L. “Should You Use Life Insurance as an Investment? 3 Things to Consider,” Forbes, July
2011. For another example, see Richards, C. “Why Life Insurance Is Not an Investment,” The New York
Times, April 2010. Anagol, Cole, and Sarkar (2011) study the Indian life insurance market and show that
whole life insurance policies, which are purchased by a substantial fraction of the population, are dominated
by a bundle of term life insurance policies and non-life contingent savings.

8The tendency to evaluate insurance in terms of investments dates back to the origins of the life insurance
industry. The launch of Tontine insurance policies, which promised payments to consumers who outlived
their life insurance policies, was one of the most important marketing innovations in the history of American
life insurance. Henry B. Hyde introduced these policies in 1868. He refused to refer to payments as prizes,
calling them “investment returns” instead. He acknowledged that “[t]he Tontine principle is precisely the
reverse of that upon which Life Assurance is based.” By the time of his death, his company had become
the largest life insurance company in the world, and the companies selling tontine policies had become the
largest financial institutions of the day. The Tontine Coffee House in Manhattan was the first home of
what eventually became the New York Stock Exchange (see Hendrick (1907), Jennings and Trout (1982),
or McKeever (2009)). Tontine policies were eventually outlawed on the basis of providing gambling rather
than insurance products (Baker and Siegelman (2010)). Nevertheless, the idea of including payments in case
one does not use the insurance policy persisted. Whole life insurance policies, which pay the face value if
policyholders outlive their policy, amount to roughly two-thirds of total policies and one-third of the total
face value being issued in the individual life insurance market (ACLI Life Insurers Factbook 2012).
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that consumers initially under-purchase life insurance. As time passes, surviving consumers
continue to spend on insurance without collecting any payments. Therefore the support of
the distribution gradually shifts to the left and, if consumers survive for long enough, it
eventually falls entirely in the losses domain. At that point, the kink lies outside of the
support and no longer affects the decision. Moreover, because consumers are risk seeking in
the domain of losses, they buy too much life insurance when they are old. That is, consumers
are reluctant to liquidate their life insurance policies after having invested in them for long
enough. As a result, consumers underinsure when young and over-insure when old. In fact,
I show that they may even hold both annuities and life insurance policies at the same time,
if they have previously purchased life insurance and the load is below a certain threshold.

This is not the first paper to suggest a connection between prospect theory and the under-
annuitization puzzle. The so-called “hit-by-a-bus concern,” according to which individuals
may be reluctant to purchase annuities because they fear dying shortly thereafter, can be
translated in terms of narrow framing and loss aversion. Brown et al. (2008) present survey
results consistent with the idea that individuals frame annuities as an uncertain gamble,
wherein one risks losing the invested wealth in case of death shortly after the purchase.9

Hu and Scott (2007) formally show that prospect theory can explain under-annuitization.
Gazzale and Walker (2009) find support for prospect theory as a cause of under-annuitization
in a laboratory experiment. This is, however, the first paper to link the under-annuitization
puzzle to the other four main puzzles of insurance against mortality risk, and to suggest that
these apparently diverse findings can be explained by the same model.10

The predictions of the model differ sharply from the predictions of both expected and
standard non-expected utility models. The celebrated theorem of Mossin (1968) shows that
risk-averse expected-utility consumers will choose full insurance coverage if the load is zero,
and they will choose partial insurance coverage if the load is positive. Segal and Spivak (1990)
show that Mossin’s result also holds for non-expected utility theories satisfying second-order
risk aversion. Under first-order risk aversion, consumers will still choose full coverage if the
load is zero, but they may also choose full coverage under positive loads.11 Mossin’s result

9Brown and Warshawsky (2004) describe how participants in focus groups conducted by the American
Council of Life Insurers consider the purchase of annuities “gambling on their lives.” In light of prospect
theory, it appears that these individuals do not integrate the annuity payoffs into their wealth but instead
evaluate them separately. Brown, Kapteyn, and Mitchell (2011) present experimental evidence that indi-
viduals are more likely to delay claiming Social Security benefits when benefits are framed as gains rather
than losses, and when they are described in terms of consumption rather than investment. See also Benartzi,
Previtero, and Thaler (2011).

10Prospect theory has been successfully applied to several other environments – see, e.g., Camerer (2004)
and Barberis (2013) for surveys. Marquis and Holmer (1996) study the demand for supplementary health
insurance and find that prospect theory fits the data better than expected utility theory.

11Karni (1992) and Machina (1995) generalize Mossin’s theorem for non-expected utility theories satisfying
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also fails to hold in the prospect theory model presented here. However, the departure goes
in the opposite direction of standard non-expected utility theories satisfying first-order risk
aversion. Because the kink occurs at the point in which there is no insurance, rather than
full insurance, individuals may choose not to purchase insurance even under actuarially fair
pricing.

The remainder of the paper is organized as follows. Section 2 briefly describes empir-
ical evidence from annuities and life insurance markets. Section 3 starts by considering a
static insurance setting and contrasting the implications from the insurance-as-investment
prospect theory model with those from expected and standard non-expected utility models
(Subsection 3.1). It goes on to introduce a general continuous-time framework of mortal-
ity risk and the demand for life insurance and annuities (Subsection 3.2). Under expected
utility (or standard non-expected utility), consumers generically purchase positive amounts
of either life insurance or annuity policies. In the insurance-as-investment prospect theory
model, purchasing positive amounts of either life insurance or annuities is no longer a generic
property. Section 4 presents the dynamics of life insurance demand, and Section 5 considers
the dynamics of annuity demand under the insurance-as-investment prospect theory model.
Section 6 shows that, in the presence of positive loads, expected utility consumers never si-
multaneously demand both life insurance and annuities, whereas prospect theory consumers
may. Section 7 then simulates the demands for annuities and life insurance over the life cy-
cle using aggregate data from the United States, and shows that the model provides a good
quantitative fit. Section 8 reviews how the predictions of the model relate to the empirical
evidence, and Section 9 concludes. All proofs are in the Appendix.

2 Empirical Evidence

In recent decades, the development of the field of information economics brought insurance
to the center of economic and financial research. Life insurance and annuity markets became
particularly important for several reasons. First, they deal with major and widely-held risks.
Second, these markets can potentially shed light on the role of bequests and intergenerational
transfers.12 And third, they appear to be particularly suitable to test standard insurance
theory. As Cutler and Zeckhauser (2004) argue:

Mortality risk is a classic case where we expect insurance to perform well. On the

Fréchet differentiability. Doherty and Eeckhoudt (1995) show that, in the dual theory of Yaari (1987), the
solution always entails either full or zero coverage, with full coverage when the load is below a certain
threshold.

12See, for example, Bernheim (1991).
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demand side, the event is obviously infrequent, so administrative costs relative
to ultimate payouts are not high. The loss is also well defined, and moral hazard
is contained. On the supply side, it is relatively easy to diversify mortality risk
across people, since aggregate death rates are generally fairly stable.

Nevertheless, numerous studies have established a striking divergence between predictions of
standard insurance theory and empirical observations. The literature documents five puzzles
in the demand for life insurance and annuities.

Puzzle 1. Insufficient Annuitization13

A major puzzle in annuities research is why so few people buy them. Almost no 401(k) plan
even offers annuities as an option, and only 16.6 percent of defined contribution plans do
so.14 In the few cases in which annuities are offered, they are rarely taken. Schaus (2005)
examines a sample of retirees for which annuities were offered as part of their 401(k) plan
in a sample of 500 medium to large firms and finds that only two to six percent of them
accepted. According to a study by Hewitt Associates, only one percent of workers actually
purchase annuities.15 Mitchell, Poterba, Warshawsky, and Brown (1999) show that fees and
expenses are not large enough to justify the lack of annuitization. As Davidoff, Brown,
and Diamond (2005) argue, “the near absence of voluntary annuitization is puzzling in the
face of theoretical results suggesting large benefits to annuitization. (...) It also suggests
the importance of behavioral modeling of annuity demand to understand the equilibrium
offerings of annuity assets.”16

Puzzle 2. Insufficient Life Insurance Among the Working-Aged
Several studies find that too few working-age families have life insurance, and many of
those that do are still underinsured. A large literature shows that the death of a partner
generates large declines in a household’s per capita consumption. Bernheim, Forni, Gokhale,
and Kotlikoff (2003), for example, argue that two-thirds of poverty among widows and over
one-third of poverty among widowers can be attributed to an insufficient purchase of life

13See Brown (2007) and Benartzi, Previtero, and Thaler (2011) for detailed surveys, including discussions
of how prospect theory may explain this puzzle.

14Based on PSCA’s 54th Annual Survey of Profit Sharing and 401(k) Plans.
15See Lieber, R., “The Unloved Annuity Gets a Hug From Obama.” The New York Times, January 29,

2010. Brown (2001) reports that in the AHEAD survey, which consists of households aged 70 and older, less
than eight percent of households held privately purchased annuity contracts.

16Several explanations have been proposed for the low amount of annuitization, including the presence
of pre-annuitized wealth through Social Security and private pension plans (Bernheim, 1991; Dushi and
Webb, 2004); the correlation between out-of-pocket health and mortality shocks (Sinclair and Smetters,
2004); the correlation between labor market and stock returns (Chai, Horneff, Maurer, and Mitchell, 2011);
and the irreversibility of annuity purchases (Milevsky and Young, 2007). Another leading explanation is the
existence of strong bequest motives (Friedman and Warshawsky, 1990, Bernheim, 1991, Lockwood, 2012).
Brown (2001) compares annuitization by households with and without children and argues that bequest
motives cannot account for under-annuitization.
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insurance alone. Roughly two-thirds of secondary earners between ages 22 and 39 would
suffer a decline in consumption of more than 20 percent, and nearly one-third would suffer
a decline of more than 40 percent if a spouse were to die.17 Bernheim, Forni, and Kotlikoff
(1999) consider individuals between the ages of 52 years old and 61 years old from the Health
and Retirement Study and estimate that 30 percent of wives and 11 percent of husbands
face living standard reductions of over 20 percent if a spouse were to die. Since life insurance
policies are close to actuarially fair (Gottlieb and Smetters, 2011), failure to appropriately
insure cannot be attributed to adverse selection or administrative loads.

Puzzle 3. Excessive Life Insurance Among the Elderly
Compared to the predictions of standard life cycle models, elderly people hold too much
life insurance. Brown (2001) finds that 78 percent of couples aged 70 and older own a life
insurance policy. Life insurance is almost 10 times more prevalent than privately purchased
annuities in this cohort. In fact, according to the 1993 Life Insurance Ownership Study,
individual ownership of life insurance policies is actually more frequent among those age 65
and older than in any other age cohort.18 Moreover, many elderly people without dependents
have life insurance policies.19

Puzzle 4. Annuity Guarantees
Approximately 90 percent of annuities sold in the United States include either a guarantee
clause or a refund option.20 A guarantee clause promises payments for a certain period of
time even if the annuitant dies. The majority of annuity contracts feature guarantee clauses,
with 10, 15, and 20 years being the most common guarantee periods (they are usually called
“term certain annuities”). Refund options reimburse beneficiaries for uncollected payments
if the annuitant dies soon after purchase.

Annuities with guarantee clauses or refund options can be seen as a combination of
a standard bond and an annuity with a payout date deferred by the guarantee period.
Considering this, the prevalence of guarantees is puzzling in two ways. First, several other
products offer better payouts at comparable levels of risk than do the bonds implicit in
these annuities (Brown, 2007). Second, because the guarantee de facto delays the start of
annuity, it does not offer protection for the guarantee period. Although the guarantee period
may appear to reduce the risk of the annuity when the policy is evaluated in isolation, it
does so by delaying insurance against mortality risk, which was presumably the reason for

17Gokhale and Kotlikoff (2002).
18Hubener, Maurer, and Rogalla (2013) show that holding life insurance may help protect a surviving

spouse from the loss of annuitized income.
19See also Cutler and Zeckhauser (2004).
20Iqbal, J. and J. E. Montminy. “Recent Research Trumps Immediate Annuities’ Biggest Objection,”

InsuranceNewsNet Magazine, February 2011.
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purchasing the annuity.21

Puzzle 5. Simultaneous Holding of Life Insurance and Annuities
As Yaari (1965) and Bernheim (1991) point out, purchasing a life insurance policy is equiv-
alent to selling an annuity. Therefore, as long as either of them has a positive load, no one
should ever demand both of them at the same time. In practice, however, a substantial
number of the families that own annuities also have life insurance policies. According to
Brown (2001):

Of all married households, 50 percent own both a private pension and some form
of life insurance. Among widows and widowers, 21 percent own both private
pension annuities and life insurance. There are reasons to suspect that private
pensions are not strictly voluntary, especially among those aged seventy and up
who were likely covered for most of their careers in traditional defined benefit
plans. However, even if we restrict ourselves to privately purchased, nonpension
annuities, 6.6 percent of married couples own both. Since only 7.7 percent of
the sample own such an annuity, however, this means that 86 percent of those
married households who have purchased a private, nonpension annuity also own
life insurance.

In the presence of positive loads, any portfolio with positive amounts of both life insurance
and annuities is first-order stochastically dominated by another portfolio with a lower amount
of both. As a result, any decision maker with preferences defined over final wealth cannot
simultaneously demand both assets.22

3 The General Framework

3.1 Insurance as a Risky Investment

Before introducing a general dynamic model, I will consider a canonical static setting in
order to contrast my model with other insurance models. A consumer suffers a financial
loss L > 0 with probability p ∈ (0, 1). She is offered insurance policies with a proportional

21Hu and Scott (2007) also propose that prospect theory can account for the existence of guaranteed
annuities. However, as Brown (2007) points out, consumers who prefer guarantees in the model of Hu and
Scott never purchase annuities. Eckles and Wise (2011) show that, because of loss aversion, prospect theory
consumers may over-insure small losses, which could explain the presence of guarantees. In a laboratory
experiment, Knoller (2011) finds evidence for the prospect theory rationale for annuity guarantees.

22Purchasing life insurance may be desirable for individuals who hold certain deferred annuities and intend
to leave part of them as bequests since life insurance benefits are typically income tax-free, whereas annuity
payments are not.
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loading factor l ∈ [0, 1− p) . That is, each policy costs p + l and pays $1 in case of loss;
insurance is actuarially fair if l = 0.

Following a large literature in prospect theory, I assume that individuals evaluate lot-
teries according to the sum of a “consumption utility function,” which satisfies the standard
assumptions of expected utility theory, and a “gain-loss utility function.”23 Let the strictly
increasing, strictly concave, and differentiable function U : R++ → R denote the consump-
tion utility function. Each lottery is also individually evaluated according to the gain-loss
utility function

V (X) =

{
v (X) if X ≥ 0

−λv (−X) if X < 0
, (1)

where v : R+ → R is a weakly concave, twice differentiable function satisfying v (0) = 0.24

A prospect theory decision-maker maximizes the expected sum of consumption utility and
gain-loss utility.

Let W denote the consumer’s wealth and let I denote the number of insurance policies
purchased. Expected consumption utility is

pU (W − L+ (1− p− l) I) + (1− p)U (W − (p+ l) I) .

Buying insurance corresponds to participating in a lottery that pays [1− (p+ l)] I with
probability p and − (p+ l) I with probability 1− p. Therefore, the expected gain-loss utility
from insurance is

pV ((1− p− l) I) + (1− p)V (− (p+ l) I) .

As argued in the introduction, this paper studies individuals who view insurance as risky
investments, which are profitable if the total amount received from the insurance company
exceeds the premium. Accordingly, my specification of gains and losses takes the point of
zero insurance (status quo) as the reference point: possible outcomes are evaluated against
the alternative of not buying any coverage. As a result, individuals in the model treat the
outcome of an insurance policy as a gain if the net payment from the policy is positive.25

23This “global-plus-local” specification has been widely used in the prospect theory literature. Examples
include Barberis and Huang (2001), Barberis, Huang, and Santos (2001), Barberis and Xiong (2012), Koszegi
and Rabin (2006, 2007, 2009), Rabin and Weizsacker (2009), and Heidhues and Koszegi (2008, 2010). It is
defended by Azevedo and Gottlieb (2012).

24Kahneman and Tversky called v a value function and suggested the power utility functional form v(X) =
Xα, α ∈ (0, 1]. This functional form is concave but it is not differentiable at X = 0 when α 6= 1, which
creates some counterintuitive properties at the kink. The use of the same value function for gains and losses
is for notational convenience only; my results immediately generalize to gain-loss utility functions featuring
different value functions for gains and losses.

25My results remain qualitatively unchanged if we replace the status quo by any other deterministic
reference point below the point of full insurance. In fact, when insurance is actuarially fair, the model
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Narrow framing and loss aversion introduce a kink at the point of zero insurance. Because
of the kink, the consumer prefers not to purchase insurance “more frequently” than if she
were maximizing consumption utility only. In fact, she may prefer not to purchase insurance
even under actuarially fair prices.26 Formally, let IU0 and IPT0 denote the sets of wealth levels,
losses, loss probabilities, and loads (W,L, p, l) for which zero insurance maximizes expected
consumption utility and total utility, respectively. The necessary and sufficient condition for
zero insurance to maximize expected consumption utility is

p (1− p− l)U ′ (W − L)− (1− p) (p+ l)U ′ (W ) ≤ 0.

The necessary local condition for zero insurance to maximize total utility is

p (1− p− l)U ′ (W − L)−(1− p) (p+ l)U ′ (W ) ≤ {p (1− p) (λ− 1) + l [λ (1− p) + p]} v′ (0) .

(2)
Since λ > 1 and l ≥ 0, the right-hand side of (2) is strictly positive: Whenever zero insurance
maximizes consumption utility, it also maximizes total utility. Thus, when insurance is
viewed a risky investment, loss aversion introduces a kink at the point of zero coverage,
which makes purchasing insurance less desirable.

Proposition 1. IU0 ⊂ IPT0 and the inclusion is strict.

In most non-expected utility theories, indifference curves are either smooth or have a kink
at the point of full insurance. Therefore, as discussed by Segal and Spivak (1990), they predict
either just as much or more insurance than expected utility theory does. In contrast, loss-
averse decision makers who frame their insurance purchases narrowly may buy no insurance
even when prices are actuarially fair. Hence, as with non-expected utility theories featuring
first-order risk aversion, Mossin’s (1968) theorem no longer holds. However, the result is
distorted in the opposite direction: While first-order risk averse individuals may demand full
coverage under actuarially unfair prices, prospect theory individuals may not purchase full
coverage even when prices are actuarially fair!

Notice that, in each state of the world, gains and losses are determined relative to not
having purchased insurance (status quo). Hence, when we say that individuals who purchase

is formally equivalent to one where reference points are set at the expected insurance payments. The
predictions of the model are, therefore, qualitative the same as the predictions from Loomes and Sugden’s
(1986) the theory of disappointment aversion, which sets the (utility) reference point at the expected utility
from insurance. On the other hand, my results do not hold if the reference point is set at the point of full
insurance (e.g., if the consumer does not frame insurance narrowly).

26The online appendix illustrates the differences between the expected utility model, standard non-
expected utility models, and the model with narrow framing and loss aversion using the classic Hirshleifer-
Yaari diagram.
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insurance and suffer a financial loss are in the domain of gains, we mean that, conditional
on that loss, they see insurance as a profitable investment. Reciprocally, we say that those
who do not suffer a financial loss are in the domain of losses since, in that state of the
world, buying insurance is seen as an unprofitable investment. Because the financial loss
also decreases consumption utility, the model does not imply that individuals would prefer
to suffer a financial loss. Hence, gains and losses refer to the outcome of the investment, not
to the realized state of the world. In particular, when we apply the theory to mortality risk,
an individual who buys life insurance and survives sees the insurance decision as a “poor
investment” relative to not having bought insurance, which, of course, does not mean that
the individual would rather die earlier.

3.2 Dynamic Model

In order to explore the dynamics of mortality insurance demand, we need to extend the basic
framework in two ways: First, we need to consider more than one period. Second, because
the marginal utility of consumption is likely to be different if the individual is alive or dead,
we must allow consumption utility to be state-dependent.

I consider a continuous-time model of mortality risk. A household consists of a head of
the household and one or more heirs. The head of the household lives for a random length
T ∈ R+ and makes all decisions while alive. For simplicity, I assume that heirs always
outlive the household head. Because the head of the household is responsible for making
decisions while alive, I refer to her as “the consumer.” The functions Ua : R++ → R and
Ud : R++ → R denote the consumption utility in states in which the consumer is alive
and dead; Ud (C) can be interpreted as the instantaneous utility of bequeathing C dollars.
The consumption utility functions Ua and Ud are strictly increasing, strictly concave, twice
continuously differentiable, and satisfy the following Inada condition: limC↘0 U

′
i (C) = +∞,

i = a, d. Because Ua and Ud satisfy the standard assumptions from expected utility, I will
refer to allocations that maximize expected consumption utility as expected utility maximizing
allocations. A prospect theory decision-maker selects allocations that maximize the expected
sum of consumption utility and gain-loss utility (equation 1).

We say that the gain-loss utility is piecewise linear when v (X) = X. The piecewise linear
specification considerably simplifies calculations and is used in several theoretical papers.27

However, it does not generate the risk-seeking behavior in the domain of losses stressed out
by Kahneman and Tversky (1979) and observed in empirical studies. When v is strictly
concave, we say that the gain-loss utility is strictly concave in the gains domain and strictly

27For example, Barberis, Huang, and Santos, 2001, Barberis and Huang, 2001, and Barberis and Xiong,
2012.
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convex in the losses domain. In order to avoid excessively risk-seeking behavior in the losses
domain, we will assume that v is “not too concave”.28 For expositional purposes, I focus
on gain-loss functions that are either piecewise linear or strictly concave in the domain of
gains and strictly convex in the domain of losses. The results can be generalized for weak
concavity in the gains domain and weak convexity in the losses domain.

The assumption that lotteries are evaluated in isolation (narrow framing) is an important
feature of the model. That is, the decision-maker separately evaluates V at the outcome of
each individual lottery, instead of combining the outcomes from all lotteries. Throughout
the paper, life insurance and annuities are treated as different lotteries.29

The time of death T is distributed according to an exponential distribution with param-
eter µ.30 The probability distribution function of the time of death is f(T ) = µ exp (−µT );
the consumer is alive at time t with probability 1−

´ t
0
f (s) ds = exp (−µt) . Expected con-

sumption utility is then
ˆ ∞

0

exp (−µt) {Ua (Ca (t)) + µUd (Cd (t))} dt, (3)

where Ca (t) denotes consumption at time t (if alive) and Cd (t) denotes the amount of
bequests left if the individual dies at t. The consumer earns an income Wa (t) > 0 at time
t if she is alive. The remaining members of the household have lifetime discounted income
Wd(t) > 0 if the consumer dies at t.

While alive, the consumer allocates her income between instantaneous life insurance
policies, I(t), and instantaneous annuities, A (t). Although it is straightforward to generalize
the results for the case of positive proportional loads, I assume that policies are sold at
actuarially fair prices to simplify notation.31 An instantaneous life insurance policy costs µdt
and pays $1 if the individual dies in the interval [t, t+dt]. Since the probability of death in this
interval is µdt, the policy is actuarially fair. Buying an instantaneous annuity is equivalent
to selling an instantaneous life insurance policy: It pays µdt if the consumer survives the
interval [t, t + dt], but costs $1 if she dies in this interval. Therefore, consumption in each
state is Ca (t) = Wa(t) − µ [I(t)− A(t)] and Cd (t) = Wd(t) + [I(t)− A(t)] . Substituting in

28The formal assumption on the concavity of v is presented in Section 4 (Assumption 1).
29Because life insurance and annuities are sold as different products and are relevant at very different

points in life, narrow framing suggests that individuals would not integrate them into a single gain-loss
category.

30Although not key to my results, the exponential distribution simplifies the analysis because its memo-
ryless property allows for a parsimonious recursive formulation. In particular, it implies that actuarially fair
prices are constant over time.

31The simulations in Section 7 incorporate positive loads and mortality probabilities compatible with the
ones observed in practice.
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the expected consumption utility (3), we obtain

ˆ ∞
0

exp (−µt) {Ua (Wa(t)− µ [I(t)− A(t)]) + µUd (Wd(t) + [I(t)− A(t)])} dt. (4)

An expected utility consumer chooses functions A and I to maximize (4).
Because prices are actuarially fair, life insurance and annuities only affect consumption

utility through their net amount: N (t) ≡ I (t) − A (t). Moreover, whenever N (t) 6= 0,

any solution entails either A (t) > 0 or I (t) > 0 (or both).32 A net amount N maximizes
expected consumption utility (4) if and only if U ′a (Wa (t)− µN (t)) = U ′d (Wd (t) +N (t)) for
almost all t: Since insurance is actuarially fair, an expected utility maximizer equates the
marginal utility in both states of the world almost surely (full insurance). Purchasing zero
quantities of both life insurance and annuities is optimal if the income paths Wa and Wd

satisfy
U ′a (Wa (t)) = U ′d (Wd (t)) almost surely. (5)

Let B denote the space of bounded continuous functions (Wa,Wd) : R+ → R2
++, endowed

with the norm of uniform convergence. A property is generic if the set of income paths
(Wa,Wd) ∈ B for which this property is satisfied is a dense and open set. Because Ua and Ud
are strictly concave, the marginal utilities are strictly decreasing. Thus, (5) fails generically.
As a result, an expected utility maximizer generically purchases a strictly positive quantity
of either life insurance or annuity policies:

Proposition 2. Generically, an expected utility maximizer purchases a strictly positive quan-
tity of actuarially fair life insurance or annuities (i.e., generically, NEU 6= 0 almost surely).

Buying a life insurance path I amounts to participating in a lottery that costs µI (t) dt

for as long as the individual is alive and pays I (t) when she dies. Therefore, the gain-loss
utility from life insurance if death occurs at time t is V

(
I (t)− µ

´ t
0
I (s) ds

)
. We say that

life insurance payments are in the gains domain at time t if the payment received exceeds
the total amount spent on life insurance if the individual dies at t: I (t) ≥ µ

´ t
0
I (s) ds.

Recall, however, that gains and losses are defined relative to not buying insurance. Therefore,
when we say that life insurance payments are in the domain of gains at time t, we mean
that, conditional on dying at t, the individual sees the life insurance path I as a profitable
investment. We do not, of course, mean that such an individual would prefer to die at t than
at some other period with a larger gain (since dying at this other period may significantly

32The possibility of holding both life insurance and annuities is an implication of actuarially fair pricing.
Section 6 introduces positive loads and shows that expected utility maximizers do not simultaneously hold
both life insurance and annuities.
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lower her consumption utility).33

Similarly, if the person buys A(t) instantaneous annuities at time t, she either survives
and receives µA(t)dt or dies and loses A (t) . Thus, a person who dies at t has collected a total
of µ
´ t

0
A (s) ds in annuity payments and loses A (t) in annuities that will not be collected;

the gain-loss utility is V
(
µ
´ t

0
A (s) ds− A (t)

)
. Annuity payments are in the gains domain

at time t if the total amount collected in annuities exceed the amount spent on annuities if
the person dies at t: µ

´ t
0
A (s) ds ≥ A (t) .

Because the reference point is the point of zero dollars spent on annuities and life in-
surance, which is constant over time, the consumer is time-consistent. Thus, whether the
consumer is evaluating the insurance paths at time 0 or as time unfolds is immaterial for my
results. It is natural, therefore, to interpret the paths A and I as (possibly time-varying)
annuities and life insurance policies purchased at time t = 0.

There are three advantages to interpreting the annuity and life insurance paths as time-
varying policies purchased at a fixed period rather than instantaneous policies adjusted at
each point in time. First, they are easier to interpret in term of observed policies. A five-year
term life insurance, for example, corresponds to the path I (t) = 1 if t ≤ 5 and I(t) = 0

if t > 5. Second, people do not seem to adjust their life insurance and annuities portfolios
on a regular basis. Therefore, requiring them to choose policies continuously might seem
unrealistic. And third, it avoids issues related to the possible updates of the reference point.

Let ut (N) ≡ Ua (Wa(t)− µN) + µUd (Wd(t) +N) denote the consumption utility from
the net life insurance coverage N at time t. Loss aversion introduces a kink at zero in the
total utility function. Suppose, for example, that the gain-loss utility is piecewise linear.
A constant amount ε > 0 of either life insurance or annuities yields an expected gain-loss
utility of − (λ− 1) e−1ε. Thus, the total utility from the net coverage N (t) = ε is

ˆ ∞
0

exp (−µt)ut (ε) dt− (λ− 1) e−1 |ε| .

The total utility function is therefore not Gâteaux differentiable at the status quo point
(N (t) = 0 for all t). Because of this kink at the status quo, individuals will not purchase
either insurance or annuities if the consumption smoothing value is not high enough relative
to loss aversion:

Proposition 3. Suppose V is piecewise linear and let limt→∞ e
−µt ´ t

0
u′s (0) ds = 0. A

prospect theory consumer does not purchase any annuities or life insurance policies (i.e.,
A = I = 0 almost surely) if supt∈R+

{
u′t(0)

µ
−
´ t

0
u′s (0) ds

}
− inft∈R+

{
u′t(0)

µ
−
´ t

0
u′s (0) ds

}
≤

33In fact, preferences over the timing of death are not identified from choices over life insurance and
annuities only.
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λ− 1.

Therefore, purchasing strictly positive quantities of actuarially fair annuity or life insur-
ance policies is not a generic property of the prospect theory model. As in the static model,
the non-genericity of purchasing either life insurance or annuities is a consequence of the
kink at zero introduced by loss aversion. It resembles the loss aversion rationale for the
endowment effect and the status quo bias.34

3.3 Illustration of Main Results

Next, we will study the dynamics of life insurance and annuity demands separately. However,
before presenting the formal analyses, it is helpful to consider an illustrative example in a
static setting. Consider an individual who has previously spent an amount X ≥ 0 on life
insurance and faces the probability of death p ∈ (0, 1) in a single remaining period. Life
insurance policies are available at actuarially fair prices: Each dollar of coverage costs p.

Let U (I) denote the expected consumption utility from purchasing an amount I of life
insurance coverage. For expositional simplicity, assume that U is continuously differentiable,
strictly concave, and has an interior maximum. Let Ī denote the amount of insurance that
maximizes expected consumption utility: U ′

(
Ī
)

= 0. An insurance coverage I costs pI and
repays (1− p) I in case of death. Therefore, the total net payments from life insurance equal
(1− p) I −X if the individual dies and −pI −X if she survives. The individual maximizes
the sum of expected consumption and gain loss utilities:

U (I) + pV ((1− p) I −X) + (1− p)V (−pI −X) .

The solution depends on whether the net payment in case of death lies in the losses domain
(1− p)I < X, in the gains domain (1− p)I > X, or at the kink (1− p)I = X.35

In the losses domain, the individual chooses the life insurance coverage that solves the
first-order condition:

U ′ (I) = p (1− p)λ [v′ (X + pI)− v′ (X − (1− p) I)] ≤ 0,

where the inequality follows from the weak concavity of v. Therefore, the solution features
I ≥ Ī. In particular, if the gain-loss utility is piecewise linear, the marginal gain-loss utility
is the same whether or not the individual dies (since both are in the losses domain) and

34See, for example, Tversky and Kahneman (1991) and Kahneman, Knetsch, and Thaler (1991).
35It is straightforward, but not very informative, to write these regions in terms of primitives rather than

in terms of the endogenous variable I.
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the individual picks the amount of insurance that maximizes expected consumption utility
I = Ī. If v is strictly concave, gain-loss utility is convex in the domain of losses, which
pushes the individual to purchase more insurance. As a consequence, the individual over-
insures relative to expected utility: I > Ī. The rationale for over-insurance in the domain
of losses resembles the anecdotal description of consumers who renew their term insurance
policies because they have “invested too much to quit.”36 At the kink, the individual chooses
the amount of insurance that would exactly offset the previous expenditure in case of death(
I = X

1−p

)
, which prevents her from entering the losses domain.

In the gains domain, the individual chooses the insurance coverage that solves the fol-
lowing first-order condition:

U ′ (I) = p (1− p) [λv′ (pI +X)− v′ ((1− p) I −X)] .

If the gain-loss utility is piecewise linear, this condition becomes U ′ (I) = p (1− p) (λ− 1) >

0. Therefore, the solution entails under-insurance relative to expected consumption utility:
I < Ī. Under a piecewise linear gain-loss utility function, the marginal gain-loss utility if the
individual survives is λ (since it lies in the domain of losses) whereas the marginal gain-loss
utility if the individual dies is 1 (gains domain). Therefore, loss aversion (λ > 1) induces the
individual to purchase less insurance in the gains domain.

When v is strictly concave, there are two effects. As before, loss aversion pushes the
individual to underinsure. However, convexity of the gain-loss utility in the losses domain
may push her to over-insure or under-insure.37 The individual will prefer to underinsure
as long as the gain-loss utility function is not “too convex” so that the loss aversion effect
dominates.

Figure 1a presents the amount of insurance that maximizes total utility.38 When the
gain-loss utility function is piecewise linear (γ = 1), the individual underinsures relative
to expected utility if the previous expenditure is small (i.e., in the gains and kink regions)
and purchases the coverage that maximizes expected utility if previous expenditure is large
(losses region). When it is strictly concave, she underinsures if the previous expenditure is
small (gains region) and over-insures if it is large (losses region).

Next, let us examine the purchase of annuities in this static setting. Consider an indi-
vidual who has previously received X ≥ 0 in annuity payments and faces the probability

36This rationale is related to the large literature on the escalation of commitment to a failing course of
action. See, for example, Staw (1981).

37Convexity will push the agent to over-insure if
(
1
2 − p

)
I < X and under-insure if the reverse is true.

38For the life insurance path in Figure 2a, I assumed Ud(C) = Ua (C) = C
1
4 , WA = 10, WD = 0, and

p = 1
4 .
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Figure 1: Life insurance coverage and net gains as a function of previous expenditure X.
Gain-loss utility: v (x) = 1

2
[(1 + x)γ − 1], λ = 2.25.

of death p ∈ (0, 1) in a single remaining period. Annuities are available at actuarially fair
prices: Each annuity costs 1− p and pays $1 in case of survival.

With some abuse of notation, let U (A) denote the individual’s expected consumption
utility from purchasing A annuities, where U is continuously differentiable, strictly concave,
and has an interior maximum. Let Ā denote the amount of coverage that maximizes expected
consumption utility: U ′

(
Ā
)

= 0. The consumer maximizes total expected utility

U (A) + pV (X − (1− p)A) + (1− p)V (X + pA) .

The solution depends on whether the net payment in case of death lies in the gains domain
(X > (1− p)A), losses domain (X < (1− p)A), or at the kink. At the kink, the individual
buys the amount of annuities that prevents her from entering the losses domain in case of
death: A = X

1−p .
The first-order condition in the domain of gains is

U ′ (A) = p (1− p) [v′ (X − (1− p)A)− v′ (X + pA)] ≥ 0,

where the inequality follows from the weak concavity of v. Thus, as with life insurance in the
domain of losses, the individual chooses an amount of annuities weakly below the one that
maximizes expected utility: A ≤ Ā. If the gain-loss utility is piecewise linear, the individual
has the same marginal gain-loss utility if she dies or survives. As a result, she chooses the
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annuity coverage that maximizes expected utility (A = Ā). If the gain-loss utility is strictly
concave in the domain of gains, the individual under-annuitizes relative to expected utility:
A < Ā.

In the domain of losses, the first-order condition is

U ′ (A) = p (1− p) [λv′ ((1− p)A−X)− v′ (X + pA)] .

When the gain-loss utility is piecewise linear, the term inside brackets becomes λ − 1 > 0,
implying that the consumer under-annuitizes relative to expected utility: A < Ā. Thus, loss
aversion makes consumers buy less annuities. Strict convexity of the gain-loss utility in the
domain of losses introduces an additional effect, which may be either positive or negative.39

However, as long as the gain-loss utility is “not too convex” in the domain of losses, the loss
aversion effect dominates and the individual under-annuitizes relative to expected utility.

Figure 1b presents the annuity coverage that maximizes total utility. When the gain-
loss utility is piecewise linear (γ = 1), the individual under-annuitizes relative to Ā when
the previous expenditure is small (losses and kink regions) and purchases the amount that
maximizes expected utility when the previous expenditure is large (gains region). When v is
concave (γ < 1), the consumer always under-annuitizes.40 Consistently with the hit-by-a-bus
concern discussed in the introduction, loss aversion induces individuals to under-annuitize.

The analysis in this subsection took the previous expenditure X as given. In a dynamic
model, the choice of life insurance and annuity coverage in one period affects the expenditure
level in all future periods. Purchasing an additional unit of life insurance in one period
increases one’s total life insurance expenditures by 1−p units in all future periods. Similarly,
an additional annuity today raises the net annuity expenditure by p units in all future
periods. As a result, the optimal decision incorporates the effect of a current increase in
coverage in all future gain-loss utility. Sections 4 and 5 consider the dynamic model formally
and establish that the optimal solutions are qualitatively similar to the ones from the static
model considered here.41

39Strict convexity induces the individual to demand more annuities if
(
1
2 − p

)
A > X.

40For Figure 2b, I assumed Ua (C) = C
1
4 , Ud(C) = 0.2 C

1
4 , WA = WD = 10, and p = 1

4 . For these
parameters, the household’s wealth in case of death is not low enough to encourage the individual to ever
enter the losses domain. The individual purchases zero annuities if she has not previously done so (X = 0);
she purchases enough to avoid entering the losses domain if her previous annuity income is not high enough
(zero net gains); and she purchases more if her previous annuity income is high enough (positive net gains).

41The model from this subsection can also be interpreted as representing consumers who readjust their
policies annually without taking into account the effect of their current decisions on future gains and losses, as
in the myopic loss aversion theory of Benartzi and Thaler (1995). The only difference between our approaches
is that, while Benartzi and Thaler argue that investors typically evaluate their portfolios annually and,
therefore, assume that reference points for stock returns are reset yearly, I assume that insurance purchases
are evaluated relative to the status quo of not having purchased insurance and, therefore, are kept constant.
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4 Demand for Life Insurance

This section studies the dynamics of life insurance demand. In order to focus on the dynamic
effects introduced by prospect theory, I assume that income is constant. I will, therefore,
omit the time subscript from the consumption utility function: u (N) ≡ Ua (Wa − µN) +

µUd (Wd +N). Moreover, in order to focus on the demand for life insurance, I assume that
the marginal utility of consumption when alive is greater than when dead in the absence of
any coverage: U ′a (Wa) > U ′d (Wd) . This assumption ensures that consumers do not purchase
annuities.

Let Ī denote the amount of insurance purchased by an expected utility maximizer:42

U ′a
(
w − µĪ

)
= U ′d

(
Ī
)
.

I will refer to Ī as the “efficient” amount of insurance.43 Notice that the efficient amount
Ī is constant over time: I have abstracted from the life cycle component of life insurance
demand by assuming a constant income in order to focus on the dynamic effects introduced
by prospect theory. Therefore, any departure from the constant insurance policy Ī will be
caused by prospect theory only. Section 7 simulates the dynamic life insurance demand
under more realistic life cycle assumptions.

A prospect theory consumer chooses I to maximize

ˆ ∞
0

exp (−µt)
{
u (I (t)) + µV

(
I (t)− µ

ˆ t

0

I (s) ds

)}
dt.

Let GI (t) ≡ I (t) − µ
´ t

0
I (s) ds denote the “net gain” from life insurance payments if the

individual dies in period t. Life insurance payments are in the gains domain if GI (t) > 0, in
the losses domain if GI (t) < 0, and at the kink if GI (t) = 0.

Let IPL and GPL
I denote the optimal life insurance and net gain paths in the benchmark

case of a piecewise linear gain-loss utility. The following proposition establishes the main
properties of the optimal life insurance path:

Proposition 4. IPL (t) is continuous. Moreover, there exist tPL1 > 0 and tPL2 > tPL1 such
that:

1. IPL (t) < Ī is decreasing and GPL
I (t) > 0 when t < tPL1 ;

42For brevity, I will omit the qualifier “for almost all t” in the remainder of the paper.
43Referring to Ī as efficient implicitly takes expected utility as a normative benchmark and treats the

gain-loss utility as a “mistake.” As with most behavioral welfare analyses, this is not an uncontroversial
assumption, although it seems to be the case in standard judgements about whether individuals buy appro-
priate amounts of life insurance and annuities.
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Figure 2: Life Insurance with a piecewise linear gain-loss utility. UA (C) = 2 lnC, UD (C) =
ln (C) , Wa = 1, Wd = 0, λ = 2.25, and µ = 0.2.

2. IPL (t) < Ī is increasing and GPL
I (t) = 0 when tPL1 ≤ t ≤ tPL2 ; and

3. IPL (t) = Ī and GPL
I (t) < 0 when t > tPL2 .

The proof is presented in the appendix along with the expression for the life insurance
path. Here, I discuss the intuition behind it. Time is partitioned in three intervals: the
gains domain [0, t1), the kink (t1, t2), and the losses domain (t2,+∞). The individual is
underinsured in the gains domain and at the kink, and she is efficiently insured in the losses
domain (see Figure 2).

Purchasing an instantaneous life insurance policy has two effects: (i) it spreads con-
sumption from the state in which the individual is alive to the state in which she is not
(consumption utility effect); and (ii) since each policy pays $1 if the consumer dies but adds
µdt to the stock of insurance expenditure if she survives, each policy raises the gain in the
current period while decreasing it in all future periods (gain-loss utility effect).

In the losses domain (t > t2), the marginal gain-loss utility λ is constant. Since policies
are actuarially fair, the law of iterated expectations implies that shifting payments intertem-
porally does not affect the gain-loss utility, and the second effect vanishes. More precisely,
the individual’s gain-loss utility for t > t2 is

´ +∞
t2

exp (−µt)µ
[
λ
(
I (t)− µ

´ t
0
I (s) ds

)]
dt.

Applying integration by parts, this expression simplifies to −µλ exp (−µt2)
´ t2

0
I (t) dt, which

is not a function of I (t) for t > t2. Thus, the gain-loss utility cancels out : The consumer
maximizes expected consumption utility only, which yields the efficient insurance level in
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this last interval.44

In the gains domain (t < t1), the marginal gain-loss utility is 1. Since the individual
may eventually reach the losses domain (if she lives past t2), where the marginal gain-loss
utility is λ > 1, she underinsures. Moreover, the probability of reaching the losses domain is
increasing, inducing her to further reduce the amount of life insurance over time. At t = t1,

the individual reaches the kink. At this point, she chooses exactly the amount needed to
avoid entering the losses domain. In order to do so, the amount of insurance needs to grow
at rate µ.45

Next, consider the model with a strictly concave v so that the gain-loss utility is strictly
concave in the gains domain and strictly convex in the losses domain. I will make two
assumptions that rule out uninteresting cases. First, in order to ensure that consumers will
not spend their entire wealth on life insurance in the losses domain, I assume that v is strictly
concave, but not “too concave”:

Assumption 1. u′′(I)
µ

< λv′′ (X) < 0 for all X, I ∈ R.

Second, to rule out the case where consumers never purchase insurance, I assume that the
discounted marginal consumption utility exceeds the expected marginal gain-loss utility at
the point of zero coverage:46

Assumption 2. u′(0)
µ

> v′ (0) (λ− 1) e−1.

Let IC denote the optimal life insurance path when v is strictly concave. Strict convexity of
the gain-loss utility in the losses domain induces the consumer to demand more insurance
than in the piecewise linear case (efficient level). Since the insurance path eventually falls
in the losses domain, consumers over-insure if they live for long enough. The following
proposition states this result formally:

Proposition 5. Suppose Assumptions 1 and 2 hold. There exists t∗ > 0 such that IC (t) > Ī

for all t > t∗.

Therefore, the life insurance path follows the pattern described in Puzzles 2 and 3. Be-
cause of loss aversion, consumers initially buy too little life insurance. Moreover, because
consumers are risk seeking in the domain of losses, they eventually over-insure.

44If insurance were actuarially unfair, the law of iterated expectations would cancel all terms except for
the positive insurance loads. Then, loss aversion induce lower insurance purchases due to the losses from
insurance loads. Section 7 presents simulations using positive insurance loads.

45Notice that the comparative statics in the losses domain allows us to distinguish between the myopic
model in which the individual does not take the effect of current insurance purchases on future reference
points (Subsection 3.3) and the model in which she takes this effect into account. In the myopic model,
insurance is increasing over time in all regions (see Figure 1 for γ = 1). When she takes into account the
effect of current purchases on future reference points, coverage is decreasing in the losses domain.

46By the Inada condition, Assumption 2 is always satisfied if the dependent’s wealth Wd is low enough.
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5 Demand for Annuities

This section considers the dynamics of annuity demand. As in Section 4, we will consider
constant incomes in order to focus on the dynamic effects introduced by prospect theory.
We also assume that there is no role for life insurance and an expected utility individual
would demand a strictly positive amount of annuities: U ′a (Wa) > U ′d (Wd). At time t,
household consumption equals Wa + µA(t) if the individual survives and Wd − A(t) if she
dies. Let Ā denote the amount of annuities purchased by an expected utility maximizer:
U ′a
(
Wa + µĀ

)
= U ′d

(
Wd − Ā

)
. I will refer to Ā as the efficient amount of annuities.

A prospect theory consumer chooses A to maximize

ˆ ∞
0

exp (−µt)
{
Ua (Wa + µA(t)) + µ

[
Ud (Wd − A(t)) + V

(
µ

ˆ t

0

A (s) ds− A (t)

)]}
dt.

Let GA (t) ≡ µ
´ t

0
A (s) ds − A (t) denote the gain from annuities if the individual dies at t.

Annuity payments are: in the gains domain if GA (t) > 0, in the losses domain if GA (t) < 0,
and at the kink if GA (t) = 0.

Let APL and GPL
A denote the optimal annuity and net gain paths in the benchmark case of

a piecewise linear gain-loss utility. The following proposition establishes the main properties
of the dynamic annuity demand in this benchmark case:

Proposition 6. APL (t) is continuous. Moreover, there exist tPL1 > 0 and tPL2 > tPL1 such
that:

1. APL (t) < Ā is decreasing and GPL
A (t) < 0 when t ∈ [0, tPL1 ),

2. APL (t) < Ā is increasing and GPL
A (t) = 0 when t ∈ (tPL1 , tPL2 ), and

3. APL (t) = Ā and GPL
A (t) > 0 when t > tPL2 .

The proof of Proposition 6 is analogous to the one from Proposition 4. The main difference
is that, with annuities, the solution starts in the losses domain (t < t1), reaches the kink
(t1 < t < t2), and then eventually lies in the gains domain (t > t2). The consumer under-
annuitizes in the losses domain and at the kink, and buys the efficient amount of annuities
in the gains domain.

As in the case of life insurance, an annuity has two effects. It spreads consumption from
the state in which the individual dies to the one in which she survives (“consumption utility
effect”); and it reduces the gain-loss utility by $1 if the individual dies but increases the stock
of annuity payments in all future periods by µdt if she survives (“gain-loss utility effect”). In
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Figure 3: Annuity path with a piecewise linear gain-loss utility. UA (C) = UD (C) = ln (C) ,
Wa = 0, Wd = 1, λ = 2.25, and µ = 2.

the domain of gains, the marginal gain loss utility is constant (equal to 1). Therefore, in-
tertemporally shifting payments does not affect the gain-loss utility. Formally, the gain-loss
utility in the gains domain is

´ +∞
t2

exp (−µt)µ
(
µ
´ t

0
A (s) ds− A (t)

)
dt. Applying integra-

tion by parts, this term can be simplified to µ exp (−µt2)
´ t2

0
A (t) dt, which is not a function

of A(t) for t > t2. Thus, the gain-loss utility effect vanishes and the consumer maximizes
consumption utility.

In the domain of losses (t < t1), current marginal gain-loss utility (λ) is higher that
expected future marginal gain-loss utility (since there is a positive probability of reaching
the gains domain, where it equals 1 < λ). Therefore, the prospect of loosing money on
an uncollected annuity is particularly salient in the domain of losses, leading to under-
annuitization. Moreover, the chances of reaching the gains domain increases over time,
further reducing the amount of annuitization. At t = t1, the consumer reaches the kink,
where she chooses exactly the amount needed to avoid entering the domain of losses. In
order to do so, annuitization has to grow at rate µ.

As described in Section 2 (Puzzle 4), the vast majority of annuities have guarantee clauses
or refund options, which effectively reduce the coverage during the guarantee period. Consis-
tently with the hit-by-a-bus argument, Proposition 7 shows that prospect theory consumers
initially purchase small amounts of instantaneous annuities, which limits exposure in the
domain of losses. Thus, the model predicts an annuity path with a reduced initial coverage
(see Figure 3).

There is an important dynamic difference between annuities and life insurance when v
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is strictly concave. Seen as an investment, life insurance is “profitable” if the consumer does
not live for too long: payments start in the gains domain and eventually move into the
losses domain. Because the gain-loss utility is convex in the domain of losses, individuals
over-insure if they live for long enough. As an investment, an annuity is “profitable” if the
consumer lives for long enough: payments start in the losses domain and eventually reach the
domain of gains. Because the gain-loss utility is concave in the gains domain, the consumer
under-annuitizes even if she lives for long enough. The next proposition states this result
formally:

Proposition 7. Let v be strictly concave. There exist t̄ ≥ 0 such that AC (t) < Ā for all
t > t̄.

Propositions 5 and 7 show how the asymmetry between gains and losses in prospect
theory can account for the difference in how people treat annuities and life insurance. Life
insurance starts in the gains domain but eventually moves into the losses domain, where
people are risk seeking. Therefore, prospect theory predicts that individuals eventually over-
purchase life insurance (if they live for long enough). On the other hand, annuity payments
start in the losses domain and eventually reach the gains domain. Because individuals are
risk averse in the gains domain, they keep under-purchasing annuities, no matter how long
they live.47

6 Simultaneous Holding of Life Insurance and Annuities

As described previously, a substantial fraction of families that own voluntary annuities also
own life insurance policies (Puzzle 5). This is puzzling because any portfolio with positive
amounts of life insurance and annuities is first-order stochastically dominated by another
portfolio with a lower amount of both when either of them is not actuarially fair.

This section shows that, while an expected utility consumer will never simultaneously
hold life insurance and annuity policies, a prospect theory consumer may. It builds on the

47There are two effects from prospect theory on the demand for annuities in the gains domain. Loss
aversion makes people prefer to buy less annuities (as in Proposition 6), while convexity in the losses domain
makes people prefer to buy more annuities. As long as the gain-loss utility is “not too convex” in the losses
domain (relative to the loss aversion coefficient λ), people will always prefer to under-purchase annuities. In
fact, as I show in Section 7, prospect theory consumers prefer to buy zero annuities in all periods under the
usual coefficients from prospect theory and typical distributions of income and mortality. Similarly to life
insurance, the comparative statics in the gains domain allows us to distinguish between the myopic model
in which the individual does not take the effect of current purchases on future reference points (Subsection
3.3) and the model in which she takes this effect into account. In the myopic model, annuity purchases are
increasing over time in all regions (see Figure 1 for γ = 1). When she takes into account the effect of current
purchases on future reference points, coverage is decreasing in the gains domain.
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intuition that consumers with strictly convex gain-loss utility functions will be reluctant to
terminate their life insurance policies after having spent enough on life insurance. Then,
when the value of annuities is sufficiently high, they may purchase annuities but still keep
some life insurance. In particular, individuals who have purchased a large amount of life
insurance before retiring may choose to keep their life insurance policies after retirement
while, at the same time, purchasing annuities.

The model modifies the annuities framework from Section 5 in two ways. First, we need
to allow prices to be actuarially unfair to make the simultaneous holding of annuities and
life insurance non-trivial. I will assume that annuities and life insurance policies both have a
proportional loading factor l ∈ (0, µ). Second, I will assume that the individual has already
spent an amount XI > 0 on life insurance, but, as in Section 5, life insurance no longer
has value in terms of consumption utility: U ′a (Wa) > U ′d (Wd). It is therefore natural to
interpret this setting as the post-retirement continuation problem in a life cycle model. The
following proposition establishes that the consumer will simultaneously hold annuities and
life insurance as long as the loading factor is not too large and the consumer is sufficiently
loss averse:

Proposition 8. Let v be strictly concave with a bounded second derivative v′′. There exist
λ̄(XI , v) > 0 and l̄(XI , v) > 0 such that whenever λ > λ̄(XI , v) and l < l̄(XI , v), the solution
entails A(t) > 0 for almost all t and I(t) > 0 in a set with positive measure.

Simultaneously purchasing life insurance and annuities reduces consumption uniformly
by the insurance loads. For “small” insurance loads, the effect on consumption utility is
of lower order relative to the effect on gain-loss utility. Because the consumer has previ-
ously spent an amount XI > 0, life insurance payments are in the losses domain for “small”
amounts of insurance I. Thus, purchasing an infinitesimal amount of life insurance in-
creases gain-loss utility by an amount proportional to −λv′′ (µXI) > 0. Purchasing more
annuities in the domain of gains affects the gain-loss utility by an amount proportional to
v′′
(
µ
´ t

0
A (s) ds− A (t)

)
< 0. When λ is large enough, the gain from the life insurance

gain-loss utility exceeds the loss from the annuity gain-loss utility. As a result, the consumer
simultaneously holds both.48

48Because of the dynamic asymmetry between life insurance and annuities, the opposite pattern is never
optimal: prospect theory consumers who have previously purchased a large amount of annuities and currently
need life insurance do not find it optimal to simultaneously purchase both.
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7 Simulations

I now use actual data to simulate the demand for life insurance and annuities using an aug-
mented version of the model studied previously. Recall that Sections 4 and 5 abstracted
away from life cycle aspects by considering constant incomes, a memoryless mortality dis-
tribution, and no savings. Thus, any deviation from the constant policies that maximize
expected utility was unequivocally due to the prospect theory component of preferences. In
this section, I introduce these features in the model and show that it generates a dynamic
pattern of life insurance and annuity demands that approximates the empirical demands
quite closely.

Life Insurance Marketing Research Association (LIMRA), a large trade association rep-
resenting major life insurers, regularly surveys the U.S. population in order to study trends
in life insurance ownership and coverage. Table 1 presents the mean ownership and coverage
by age from their last survey, conducted in 2010. In order to contrast the predictions of
the model with the life insurance coverage data, I consider a 6-period model, each of them
corresponding to an age bracket. In each period t ∈ {1, ..., 6}, the head of the household
(“the consumer”) allocates an income wt between risk-free assets st ≥ 0, life insurance It ≥ 0,
and annuities At ≥ 0. Inflation and the interest rate on risk-free assets are set to zero. At the
end of each period, the consumer dies with probability pt. In case of death, her dependents
receive the household’s assets st, life insurance payments It, and a lifetime income from their
own labor. In case of survival, the consumer receives income wt, the household’s assets st,
and annuity payments At.

For the income path wt, I use head of the household mean income data from the 2011
Current Population Survey of the U.S. Census Bureau. For the dependent’s income, I use
the same path as the head of the household’s income wt with a lag of 30 years (i.e., I assume
that the average age between the head of the household and her dependents is 30 years, and
that dependents have the same expected income as the household head). Mortality rates are
calculated based on the Social Security Administration’s 2007 Period Life Table. I assume

Ages Percent Covered Mean Coverage
18-24 36 75,600
25-34 54 202,400
35-44 63 231,400
45-55 66 166,700
55-64 67 165,000

65 and older 54 92,300

Table 1: Life Insurance ownership and coverage by age. Source: LIMRA, 2011.
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Figure 4: Life insurance demand under Expected Utility (for θ = 1) and Prospect Theory
(for θ = .9) under different parameters α.

a 2% loading factor which, according to Hubener, Maurer, and Rogalla (2013), corresponds
to the explicit expense loadings reported by industry leaders. I assume that only individuals
who have been married have a bequest motive and use data from the 2008 Survey of Income
and Program Participation of the U.S. Census Bureau on the proportion of individuals who
have been married.

In order to remain as close as possible to the Macroeconomic literature, I assume a
state-dependent CRRA consumption utility specification:

uD (x) =

{
x1−θ−1

1−θ for 0 < θ 6= 1

lnx for θ = 1
, uA (x) = α× uD (x) ,

where α > 0 measures the importance of consumption relative to bequests and θ is the
coefficient of relative risk aversion (which equals the inverse of the elasticity of intertemporal
substitution). The literature suggests that, for expected utility, θ should lie between 1 and
2, with θ = 1 being the most common assumption. Accordingly, I will take θ = 1 for the
expected utility calculations in the main text. In the appendix, I show that the results
remain essentially unchanged for other parameter values.

Following Tversky and Kahneman (1992), the loss aversion parameter equals λ = 2.25.

For the gain-loss utility, I use a CARA value function: v (x) = 1 − exp (x) . This is the
most common functional form that satisfies our assumptions.49 Combining a logarithmic
consumption utility with a gain-loss utility function generates excessive risk aversion for

49As noted previously, the commonly used CRRA value function is has an infinite slope at zero, which
generates excessive loss aversion near zero.
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Figure 5: Life insurance demand under Prospect Theory (θ = .9, α = .25) and Expected
Utility (θ = 1, α = .75).

most lotteries. In order to select an appropriate parameter value for θ, I consider a lottery in
which one either gains or loses half of one’s income with equal probabilities. I then calculate
the coefficient under which someone with the average income has the same risk premium over
such lottery as in the original formulation of prospect theory with the parameters estimated
by Tversky and Kahneman (1992). The resulting coefficient is θ ≈ 0.9.

The only free parameter in the model is the importance of consumption relative to be-
quests α. Interestingly, for any α under which prospect theory consumers buy positive
amounts of life insurance, the demand for annuities is zero. This is consistent with the fact
that the vast majority of the U.S. population does not voluntarily purchase annuities.

Figure 4 shows the life insurance paths for the range of parameters α that fit the data
better. The graph on the left depicts the life insurance demand under expected utility.
Consistently with the arguments from the literature, expected utility consumers should be
buying significantly more coverage when young and should not be covered by life insurance
after age 55. Therefore, our basic model with expected utility generates Puzzles 2 and 3
discussed previously. In the Appendix, I present the same results for other inverse elasticities
of intertemporal substitution θ and show that the results remain qualitatively unaffected.
The graph on the right shows the life insurance demand when gain-loss utility is also taken
into account. The prospect theory model fits the data much better than the expected utility
specification. Consistently with the data, simulated demand is increasing until the 35-44 age
bracket and is positive in all brackets. Figure 5 contrasts the life insurance demands for the
parameters α that better fit the data in each case.
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8 The Puzzles Revisited

This section more directly relates the predictions of the model with the puzzles noted in
Section 2.

Puzzle 1. Insufficient Annuitization. Prospect theory consumers are reluctant to
purchase annuities (Proposition 3). Those who do buy annuities, choose an insufficient
amount in the losses domain (Proposition 6). Moreover, when the value function v is concave,
they also choose an inefficiently low level of coverage in the gains domain (Proposition 7).
Therefore, the model generates under-annuitization. In fact, the simulations from Section 7
generate zero annuitization even with actuarially fair policies.

Puzzle 2. Insufficient Life Insurance Among the Working-Aged. As in the case of
annuities, prospect theory consumers are reluctant to purchase life insurance (Proposition 3).
Furthermore, the ones who buy insurance initially choose an insufficient amount of coverage
(Proposition 5). As Figure 5 shows, the prospect theory model predicts substantially less
life insurance purchases than expected utility at earlier ages.

Puzzle 3. Excessive Life Insurance Among the Elderly. Life insurance payments
eventually lie in the domain of losses. When the value function v is concave, consumers
hold “too much” life insurance later in life (Proposition 5). Thus, the model predicts that
individuals will be initially reluctant to purchase life insurance but will later be unwilling to
get out of it. As Figure 5 shows, prospect theory generates considerably more life insurance
than expected utility at later ages.

Puzzle 4. Guaranteed Annuities. Annuities with guarantee clauses or refund options
have a reduced coverage during an initial period. Because of loss aversion, prospect theory
consumers demand annuity policies with this feature (Proposition 6).

Puzzle 5. Simultaneous Holding of Life Insurance and Annuities. Since buying a
life insurance policy is equivalent to selling an annuity, consumers should not demand both
of them at the same time. In contrast, the majority of families that own annuities also have
life insurance policies. Because prospect theory consumers who have purchased life insurance
are reluctant to get out of it, they demand both life insurance and annuities as long as they
are sufficiently loss averse and loads are not too large (Proposition 8).

9 Conclusion

This paper studies an insurance model based on prospect theory. The predictions of the
model differ from those of expected and standard non-expected utility models. In particular,
decision-makers may prefer to buy zero coverage even when policies are actuarially fair. I
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apply the model to a dynamic setting of mortality risk insurance, and show that it can shed
light on the five main empirical puzzles from life insurance and annuity markets.

There are several possible directions for future research. It would be interesting to test
whether differences in loss aversion can account for these puzzles empirically. While Brown,
Kling, Mullainathan, and Wrobel (2008), Gazzale and Walker (2009), and Knoller (2011)
present evidence for under-annuitization and the presence of annuity guarantees, the em-
pirical study of the other puzzles remains to be done. Additionally, this paper abstracted
from probability weighting for simplicity. Nevertheless, probability weighting may exacer-
bate the effects obtained here since mortality risk usually involves small probabilities, which
are overweighted in prospect theory.50

The model can also be applied more broadly. In particular, several recent attempts to
introduce new insurance products have consistently encountered remarkably low demands.
Karl Case, Robert Shiller, and Allan Weiss, for example, attempted to introduce home equity
insurance, which protects homeowners against declines in the prices of their homes. Because
residential equity is the single largest component of household wealth for most households
and tends to be extremely under-diversified, and because index policies are largely immune
from adverse selection and moral hazard concerns, they should be highly valuable. Very few
households, however, are willing to pay for them.51

A similar pattern is observed in development economics. Cole et al. (2013) document
an attempt to introduce a new rainfall insurance for Indian farmers. Although rainfall was
widely cited as the most significant source of risk, only 5-10 percent of households accepted to
purchase rainfall insurance. Stein and Tobacman (2011) present results from an experiment
in which individuals from Gujarat, India are offered rainfall insurance and savings products.
They find that individuals prefer either pure savings or pure insurance to mixes between the
two. This result is consistent with the model presented here, where loss aversion introduces
a kink at zero for both products. Bryan (2010) studies the low adoption of crop insurance
in India and limited liability credit insurance in Kenya.

In this paper, I have focused on the demand side, taking available insurance policies
as exogenous. In practice, however, policies are determined by insurance firms who are
largely aware of consumer biases. Another avenue for future research is to study the supply
of insurance policies when consumers behave according to prospect theory. One attempt

50Introducing probability weighting generates dynamic inconsistency, which complicates the analysis. How-
ever, it has been shown to generate interesting dynamic effects in other contexts – c.f., Barberis, Huang, and
Thaler (2006), Barberis (2012), or Ebert and Strack (2012).

51See Shiller (2008), who documents the attempt to commercialize these policies and also mentions that
prospect theory may help understand why it failed. Consistently with the model presented here, Kunreuther
and Pauly (2012) argue that the tendency to view insurance as an investment may explain the widespread
reluctance to purchase flood and earthquake insurance.
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in this direction is pursued by Gottlieb and Smetters (2011), who study the supply of life
insurance policies in a market where consumers frame their risks narrowly.

Finally, while the model seems to match the evidence for mortality risk insurance and
provides implications consistent with other insurance markets, there are some markets that
do not fit the predictions of the model. For example, although the model predicts that
individuals will be initially reluctant to purchase insurance, there are several markets in
which consumers seem to be “too eager” to purchase insurance. Examples include small
durable goods insurance (such as cell phones or DVD players), identity theft insurance,
and flight insurance.52 An analysis of which behavioral theories are more relevant to which
markets seems to be a particularly fruitful avenue for future research.

52See, for example, Cutler and Zeckhauser (2004) or Kunreuther and Pauly (2005). “Excessive” insurance
is consistent with a number of other models, including Koszegi and Rabin (2007) and, more broadly, the class
of non-expected utility theories displaying first-order risk aversion. One possible cause for this divergence
may be the effect of framing in different insurance markets, which could shift the reference point.
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Appendix

Other Simulations

Figure 4 presented the life insurance demands for expected utility under a unit elasticity of substi-
tution (θ = 1) for different parameters of importance of consumption relative to bequests α. Figure
6 depicts the demands under different inverse elasticities of substitutions θ. When consumption
is significantly more important than bequests (α is “large enough”), expected utility predicts zero
insurance for individuals over 45. When consumption is not very important relative to bequests (α
is “small enough”), the model predicts that young individuals would buy much more insurance than
what we observe in practice.

Figure 6: Life insurance demand under Expected Utility.

Figure 7 depicts the demand for life insurance in the prospect theory model for different pa-
rameters of importance of consumption relative to bequests α. When consumption is relatively
unimportant (α is “small”), the model predicts too much insurance relative to the observed data.
When it is sufficiently important (α is “sufficiently large”), the individual buys less insurance but
insurance is increasing after a certain age. The best fit is attained for parameters around α = 0.25.
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Figure 7: Life insurance demand under Prospect Theory.

Proof of Proposition 3

First, we reformulate the consumer’s problem in order to write it as an optimal control program.
Note that the piecewise linear gain-loss utility function can be written as V (x) = min {x, λx} .
Therefore, the expected gain-loss utility from life insurance equals

ˆ ∞
0

e−µt
[
min

{
I (t)− µ

ˆ t

0
I (s) ds, λ

(
I (t)− µ

ˆ t

0
I (s) ds

)}]
dt

=

ˆ ∞
0

e−µt
[
I (t)− µ

ˆ t

0
I (s) ds+ min

{
0, (λ− 1)

(
I (t)− µ

ˆ t

0
I (s) ds

)}]
dt.

Integration by parts establishes that
´∞

0 e−µt
[
I (t)− µ

´ t
0 I (s) ds

]
dt = 0. Thus, the expected gain-

loss utility from life insurance is equal to
´∞

0 e−µt min
{

0, (λ− 1)
(
I (t)− µ

´ t
0 I (s) ds

)}
dt. Anal-

ogously, the expected gain-loss utility from annuities equals

ˆ ∞
0

e−µt min

{
0, (λ− 1)

(
µ

ˆ t

0
A (s) ds−A (t)

)}
dt.

Let XI (t) ≡ µ
´ t

0 I (s) ds and XA (t) ≡ µ
´ t

0 I (s) ds denote the total expenditure in life insurance
and annuities up to time t, and introduce the following auxiliary variables:

LI (t) ≡ min {0, I (t)−XI (t)} , (6)

LA(t) ≡ min {0, XA (t)−A (t)} . (7)

In the remainder of the proof, I will omit the time argument to simplify notation. The consumer’s

33



program is equivalent to:

max
I,LI ,XI ,A,LA,XA

ˆ ∞
0

e−µt [ut (I −A) + µ (λ− 1) (LI + LA)] dt

subject to (6), (7), ẊI = µI, ẊA = µA, XI (0) = XA (0) = 0.
Note also that (6) can be written as LI ≤ 0 and LI ≤ I − XI with one of them holding with

equality. Similarly, (7) can be written as LA ≤ 0 and LA ≤ XA −A with one of them holding with
equality.

Consider the following program

max
I,LI ,XI ,A,LA,XA

ˆ ∞
0

e−µt [ut (I −A) + µ (λ− 1) (LI + LA)] dt (8)

subject to LI ≤ 0, LI ≤ I−XI , LA ≤ 0, LA ≤ XA−A, ẊI = µI, ẊA = µA, and XI (0) = XA (0) =

0.
Because the objective function is strictly increasing in LI , we cannot have a solution to this

program where neither LI ≤ 0 nor LI ≤ I−XI bind. Analogously, we cannot have a solution where
neither LA ≤ 0, nor LA ≤ XA −A bind. Therefore, the solution to program (8) coincides with the
solution to the consumer’s problem.

The Mangasarian sufficient conditions for a solution to (8) are:

e−µtu′t (I −A) + γIµ+ γ̇I ≤ 0 with = if I > 0, (9)

−e−µtu′t (I −A) + γAµ+ γ̇A ≤ 0 with = if A > 0, (10)

e−µtµ (λ− 1) ≥ γ̇I with = if LI < 0, (11)

e−µtµ (λ− 1) ≥ −γ̇A with = if LA < 0, (12)

min {γ̇I ; I −XI − LI} = min {−γ̇A; XA −A− LA} = 0, (13)

and transversality conditions limt→∞ γI ≥ 0, limt→∞ γA ≥ 0, and limt→∞ γIXI = limt→∞ γAXA =

0.

Let I = A = XI = XA = LI = LA = 0. Note that conditions (11)-(13) become:

e−µtµ (λ− 1) ≥ γ̇I ≥ 0, (14)

e−µtµ (λ− 1) ≥ −γ̇A ≥ 0. (15)

We proceed by verifying that there exist co-state variables γI and γA that satisfy the sufficient
conditions above. Take

γI (t) = e−µt
[
−Z −

ˆ t

0
u′s (0) ds

]
, γA (t) = e−µt

[
Z +

ˆ t

0
u′s (0) ds

]
,
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for a real number Z satisfying

λ− 1 + inf
t∈R

{
u′t (0)

µ
−
ˆ t

0
u′s (0) ds

}
≥ Z ≥ sup

t∈R

{
u′t (0)

µ
−
ˆ t

0
u′s (0) ds

}
. (16)

Such a Z exists because, by assumption,

λ− 1 ≥ sup
t∈R

{
u′t (0)

µ
−
ˆ t

0
u′s (0) ds

}
− inf
t∈R

{
u′t (0)

µ
−
ˆ t

0
u′s (0) ds

}
.

By construction, γI and γA satisfy (9) and (10) with equality. Moreover, they satisfy the
transversality conditions since limt→∞ e

−µt ´ t
0 u
′
s (0) ds = 0 and γIXI = γAXA = 0 for all t. The

only conditions that remain to be verified are (14) and (15).
Differentiating γI and substituting in (14), we obtain:

λ− 1 ≥ −u
′
t (0)

µ
+

ˆ t

0
u′s (0) ds+ Z ≥ 0.

Moreover, differentiating γA and substituting in (15) yields exactly the same condition. Adding
u′t(0)
µ −

´ t
0 u
′
s (0) ds to both sides yields

λ− 1 +
u′t (0)

µ
−
ˆ t

0
u′s (0) ds ≥ Z ≥ u′t (0)

µ
−
ˆ t

0
u′s (0) ds.

From the definition of Z (equation 16), this inequality is satisfied for all t. We have therefore verified
that conditions (14) and (15) both hold, concluding the proof.

Proof of Proposition 4

Following the same approach as in the proof of Proposition 3, the program can be written as

max
I,L,X

ˆ ∞
0

e−µt [u (I) + µ (λ− 1)L] dt (17)

subject to L ≤ 0, L ≤ I −X, Ẋ = µI, and X (0) = 0.
The Mangasarian sufficient conditions for a solution of this optimal control problem are:53

u′ (I) + eµt (γ̇ + µγ) ≤ 0 with = if I > 0, (I)

µ (λ− 1) ≥ eµtγ̇ with = if L < 0, (L)

min {I −X − L, γ̇} = 0 (CS)

lim
t→∞

γ = 0, lim
t→∞

γX = 0. (Tr)

53CS stands for complementary slackness and Tr stands for transversality.
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Let t1 and t2 > t1 be a solution to the system:

eµ(t1−t2)Ī

µ
=

ˆ t1

0
u′−1

(
eµ(t−t1)u′

(
eµ(t1−t2)Ī

))
dt, and (18)

u′
(
eµ(t1−t2)Ī

)
µ

+

ˆ t2

t1

u′
(
eµ(s−t2)Ī

)
ds = λ− 1. (19)

We will establish that such a solution exists later. Take the following candidate for a solution of
the program:

I (t) =


u′−1

(
eµ(t−t1)u′

(
eµ(t1−t2)Ī

))
if t < t1

eµ(t−t2)Ī if t1 ≤ t ≤ t2
Ī if t > t2

,

X (t) =


µ
´ t

0 u
′−1
(
eµ(t−t1)u′

(
eµ(t1−t2)Ī

))
if t < t1

eµ(t−t2)Ī if t1 ≤ t ≤ t2
[1 + µ (t− t2)] Ī if t > t2

,

L (t) =

{
0 if t ≤ t2

−µ (t− t2) Ī if t > t2
, and

γ (t) =


−e−µt1 u

′(eµ(t1−t2)Ī)
µ if t < t1

−e−µt
[
u′(eµ(t1−t2)Ī)

µ +
´ t
t1
u′
(
eµ(s−t2)Ī

)
ds

]
if t1 ≤ t ≤ t2

−e−µt (λ− 1) if t > t2

.

Note that I is a continuous function. For notational simplicity, let γ̄ ≡ − e−µt1u′(eµ(t1−t2)Ī)
µ < 0.

We need to verify that (i) the previous conditions are satisfied; (ii) Ẋ = µI; and (iii) the state
X and the co-state γ are continuous. We will proceed by a series of lemmata:

Lemma 1. Condition (I) is satisfied.

Proof. We will establish that u′ (I) + eµt (γ̇ + µγ) = 0 holds for all t. For t < t1, we have

u′ (I) + eµt (γ̇ + µγ) = −µeµtγ̄ + eµt (µγ̄) = 0.

Differentiating γ at t ∈ [t1, t2], yields

γ̇ = −µγ − e−µtu′
(
eµ(t−t2)Ī

)
∴ u′

(
eµ(t−t2)Ī

)
+ eµt (γ̇ + µγ) = 0.

For t > t2, we have

u′
(
Ī
)︸ ︷︷ ︸

0

+eµt (γ̇ + µγ) = eµt
(
µ (λ− 1) e−µt − µ (λ− 1) e−µt

)
= 0.
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Hence, the condition (I) is satisfied.

Lemma 2. Condition (L) is satisfied.

Proof. The condition holds with strict inequality at t < t1 (since γ̇ = 0) and with equality at t > t2.
For t ∈ [t1, t2], we have γ = eµ(t1−t)γ̄−e−µt

´ t
t1
u′
(
eµ(s−t2)Ī

)
ds. Differentiating with respect to time,

gives

γ̇ = e−µt
[
u′
(
e−µ∆Ī

)
− u′

(
eµ(t−t2)Ī

)]
+ µe−µt

ˆ t

t1

u′
(
eµ(s−t2)Ī

)
ds.

Substituting in the condition that needs to be verified, µ (λ− 1) ≥ eµtγ̇, we obtain:

µ (λ− 1) ≥ u′
(
eµ(t1−t2)Ī

)
− u′

(
eµ(t−t2)Ī

)
+ µ

ˆ t

t1

u′
(
eµ(s−t2)Ī

)
ds.

The left-hand side of this condition is constant in t, while the right-hand side is increasing since its
derivative is −u′′

(
eµ(t−t2)Ī

)
µeµ(t−t2)Ī + µu′

(
eµ(t−t2)Ī

)
> 0. Thus, condition (L) is satisfied if and

only if it is satisfied for t = t2. Evaluating it at t2, yields:

µ (λ− 1) ≥ u′
(
eµ(t1−t2)Ī

)
− u′

(
Ī
)︸ ︷︷ ︸

0

+µ

ˆ t2

t1

u′
(
eµ(s−t2)Ī

)
ds,

which is satisfied (with equality) by (19).

Lemma 3. Condition (CS) is satisfied.

Proof. We need to verify that min {I −X − L, γ̇} = 0. For t < t1, we have γ̇ = 0, and L = 0.

Therefore, we need to show that I − X = u′−1
(
−µeµtγ̄

)
− µ
´ t

0 u
′−1 (−µeµsγ̄) ds ≥ 0. Since this

expression is decreasing in t (recall that γ̄ < 0), it suffices to verify that limt↗t1 [I (t)−X (t)] ≥ 0,
which is true because both I and X are continuous at t1 and I (t1) = X (t1).

For t ∈ [t1, t2], we have I −X − L = 0. Therefore, we need to show that γ̇ ≥ 0. Differentiating
γ gives

γ̇ = e−µt
[
u′
(
e−µ∆Ī

)
− u′

(
eµ(t−t2)Ī

)]
+ µe−µt

ˆ t

t1

u′
(
eµ(s−t2)Ī

)
ds.

Note that the second term is positive. The first is also positive since

eµt1 ≤ eµt =⇒ eµ(t1−t2)Ī ≤ eµ(t−t2)Ī =⇒ u′
(
e−µ∆Ī

)
≥ u′

(
eµ(t−t2)Ī

)
, (20)

where the first inequality used the fact that t ≥ t1. Thus γ̇ ≥ 0.
For t > t2, we have I −X − L = 0 and γ̇ = µ (λ− 1) e−µt > 0, so that min {I −X − L, γ̇} =

0.

It is immediate to verify that the transversality condition (Tr) holds. It also follows directly
from inspection that Ẋ = µI. Therefore, all that remains to be checked is that the state and the
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co-state variables X and γ are continuous. Notice that, by construction, X is continuous at all
t 6= t1 and γ is continuous at all t 6= t2. Moreover, by condition (18), X is continuous at t1 and, by
condition (19), γ is continuous at t2. This establishes that our candidate indeed solves the program.

Before we conclude, let us establish that t1 and t2 > t1 implicitly defined as a solution to the
nonlinear system of equations (18)-(19) exist. It is simpler to work with the system written in terms
of t1 and ∆ ≡ t2 − t1. Then, we need to show that the following system:

e−µ∆Ī

µ
=

ˆ t1

0
u′−1

(
eµ(t−t1)u′

(
e−µ∆Ī

))
dt, and

u′
(
e−µ∆Ī

)
µ

+

ˆ t1+∆

t1

u′
(
eµ(s−t1−∆)Ī

)
ds = λ− 1,

has a strictly positive solution (t∗1,∆
∗) ∈ R2

++. As the claim below establishes, this is actually a
block-diagonal system. Let

M (x, y) ≡
u′
(
e−µy Ī

)
µ

+

ˆ x+y

x
u′
(
eµ(s−x−y)Ī

)
ds− (λ− 1) .

Claim 1. M (x0, y) = M (x1, y) for all x0, x1 ∈ R.

Proof. Differentiating M with respect to x, yields

∂M

∂x
(x, y) = −u′

(
e−µy Ī

)
−
ˆ x+y

x
u′′
(
eµ(s−x−y)Ī

)
µeµ(s−x−y)Īds,

where I have used the fact that u′
(
Ī
)

= 0. Note, however, that

d

ds

[
u′
(
eµ(s−x−y)Ī

)]
= µeµ(s−x−y)Īu′′

(
eµ(s−x−y)Ī

)
.

Substituting in the derivative of M and applying the Fundamental Theorem of Calculus, yields

∂M

∂x
(x, y) = −u′

(
e−µy Ī

)
− u′

(
Ī
)︸ ︷︷ ︸

0

+u′
(
e−µy Ī

)
= 0.

Therefore, M is constant in x. In particular, equation (19) can be rewritten as

M (0,∆) =
u′
(
e−µ∆Ī

)
µ

+

ˆ ∆

0
u′
(
eµ(s−∆)Ī

)
ds− (λ− 1) = 0.

Note that M (0, ·) is a continuous function, M (0, 0) = − (λ− 1) , and lim∆→∞M (0,∆) = +∞.
Therefore, there exists ∆∗ > 0 such that M (0,∆∗) = 0.
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Let L (t,∆) ≡ e−µ∆Ī
µ −

´ t1
0 u′−1

(
eµ(t−t1)u′

(
e−µ∆Ī

))
dt. We need to show that there exists t∗1

such that L (t∗1,∆
∗) = 0. Note that L (·,∆∗) is a continuous function, L (0,∆∗) = e−µ∆∗ Ī

µ > 0, and
limt1→∞ L (t1,∆) = −∞. Therefore, there exists such a t∗1 > 0. It thus follows that there exist
t∗1 > 0 and t∗2 ≡ t∗1 + ∆ > t∗1 that solve the system (18)-(19).

Proof of Proposition 5

The proof will follow a sequence of lemmata. To reduce notation, let us renormalize the value

function: w (x) ≡

{
µv (x) if x ≥ 0

λµv (x) if x < 0
, and let X(t) ≡ µ

´ t
0 I(s)ds denote the total amount spent

on insurance up to time t. Our first lemma establishes that I (t) = 0 for almost all t is not optimal:

Lemma 4. Let I be an optimal insurance path. Then, the set {t ∈ R : I (t) > 0} has positive mea-
sure.

Proof. If I = 0 for almost all t, the consumer’s total utility equals
´∞

0 e−µtu (0) dt = u(0)
µ . Suppose

the consumer buys a constant amount I (t) = ε for all t. Then, her total utility becomes

u (ε)

µ
+

ˆ ∞
0

e−µtµV (ε (1− µt)) dt.

Under this constant profile, she is in the losses domain if t > 1
µ and in the gains domain if t < 1

µ .
Substituting the value functions in each of these domains, we obtain:

u (ε)

µ
+

ˆ 1
µ

0
e−µtµv (ε (1− µt)) dt− λ

ˆ ∞
1
µ

e−µtµv (ε (µt− 1)) dt.

It suffices to show that the derivative of the total utility with respect to ε evaluated at ε = 0 is
strictly positive. Computing that derivative, yields

u′ (0)

µ
+ v′ (0)

[ˆ 1
µ

0
(1− µt) e−µtµdt+ λ

ˆ ∞
1
µ

(1− µt) e−µtµdt

]
,

which, after solving the integrals, becomes u′(0)
µ − v′ (0) (λ− 1) e−1. Thus, deviating to I (t) = ε

increases the consumer’s total utility for ε small enough if u
′(0)
µ > v′ (0) (λ− 1) e−1.

The next lemma obtains necessary conditions associated with the optimal insurance path.

Lemma 5. Let I be an optimal insurance path. Then,

İ = µ
u′ (I) + w′′ (I − µX) I

u′′ (I) + w′′ (I − µX)
. (21)

if I > µX,

İ = µ
u′ (I)− w′′ (µX − I) I

u′′ (I)− w′′ (µX − I)
(22)
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if I < µX, and İ = µI if I = µX.

Equations (21) and (22) are the Euler-Lagrange equations associated with the optimal insurance
path in the gains and losses domains, respectively.

Proof. The optimal insurance path solves

max
Ẋ,X

ˆ ∞
0

exp(−µt)
[
u
(
Ẋ
)

+ µV
(
Ẋ − µX

)]
dt.

The proof follows by applying a standard calculus of variations.
Let us consider the losses domain first. Let X be an optimal path, and let [a, b] be an interval

in the losses domain: Ẋ (t) < µX (t) for all t ∈ [a, b]. Consider the following perturbed path:
X̃ε ≡ X + εh, for a smooth function h : R+ → R+ such that h (t) = 0 for all t ∈ [0, a]

⋃
[b,+∞).

The objective function evaluated at the perturbed path equals

Wε :=

ˆ ∞
0

exp(−µt)
[
u
(
Ẋ + εḣ

)
− w

(
µ (X + εh)− Ẋ − εḣ

)]
dt.

Taking the derivative with respect to ε and evaluating at ε = 0 yields∣∣∣∣∂Wε

∂ε

∣∣∣∣
ε=0

=

ˆ b

a
exp(−µt)

{[
u′
(
Ẋ
)

+ w′
(
µX − Ẋ

)]
ḣ− w′

(
µX − Ẋ

)
µh
}
dt.

Applying integration by parts (and using the fact that h (a) = h (b) = 0), we can rewrite this
condition as∣∣∣∣∂Wε

∂ε

∣∣∣∣
ε=0

= −
ˆ b

a
exp(−µt)

{
u′′
(
Ẋ
)
Ẍ + w′′

(
µX − Ẋ

)(
µẊ − Ẍ

)
− µu′

(
Ẋ
)}

hdt.

The Fundamental Lemma of Calculus of Variations then yields:

u′′ (I) İ + w′′ (µX − I)
(
µI − İ

)
− µu′ (I) = 0.

Rearranging this condition establishes the Euler-Lagrange condition:

İ = µ
u′ (I)− w′′ (µX − I) I

u′′ (I)− w′′ (µX − I)
.

The condition for the gains domain is analogous. The kink is defined as points for which I = µX.
Thus, any interval of points at the kink must satisfy İ = µI, which establishes the last condition.

Lemma 6. There exists t0 such that µX > I for all t > t0.

Proof. Since X is increasing (Ẋ = I ≥ 0), there are two possibilities: either limt→∞X(t) = X∗ for
some X∗ ∈ R, or limt→∞X(t) = +∞.
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First, suppose limt→∞X(t) = X∗ for someX∗ ∈ R. Then, it must be the case that limt→∞ I(t) =

0. Since I (t) > 0 in a set of non-zero measure (by the previous lemma), it follows that X∗ > 0.
Thus, we must be in the losses domain for t large enough:

lim
t→∞

I − µX = −µX∗ < 0.

Now, suppose that limt→∞X(t) = +∞. Then, since I ≤ W
µ for all t, we must have

lim
t→∞

I − µX = −∞ < 0.

Lemma 7. limt→∞X (t) = +∞.

Proof. As in Lemma 6, note that becauseX is increasing, it must be the case that either limt→∞X (t) =

+∞, or limt→∞X (t) = X∗ for some X∗ ∈ R. Suppose, in order to obtain a contradiction, that
limt→∞X (t) = X∗ < ∞. Then, it must be the case that limt→∞ I (t) = 0. Moreover, by Lemma
6, there exists t̄ such that we are in the losses domain whenever t > t̄. Then, it must satisfy the
Euler-Lagrange condition on equation (22):

İ = µ
u′ (I)− w′′ (µX − I) I

u′′ (I)− w′′ (µX − I)
for t > t̄.

However, note that

lim
t→∞

u′ (I)− w′′ (µX − I) I

u′′ (I)− w′′ (µX − I)
=

u′ (0)

u′′ (0)− w′′ (µX∗)
> 0,

which is strictly positive since u′ (0) > 0 and, by Assumption 1, u′′ (0) < w′′ (µX∗). Thus,
limt→∞ İ (t) > 0, which contradicts limt→∞ I (t) = 0.

We are now ready to establish the main result:

Lemma 8. There exists t̄ such that I > Ī for all t > t̄.

Proof. From Lemma 6, we can without loss of generality suppose that t̄ is in the losses domain. In
order to obtain a contradiction, let t̂ > t̄ be such that I

(
t̂
)
≤ Ī (that is, u′

(
I
(
t̂
))
≥ 0). Then,

equation (22) yields

İ
(
t̂
)

= µ

+︷ ︸︸ ︷
u′
(
I
(
t̂
))
− w′′

(
µX

(
t̂
)
− I

(
t̂
))
I
(
t̂
)

u′′
(
I
(
t̂
))
− w′′

(
µX

(
t̂
)
− I

(
t̂
))︸ ︷︷ ︸

−

< 0,

so that I (t) ≤ Ī is strictly decreasing for all t > t̂.
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Since I is bounded below (I (t) ≥ 0) and decreasing, it converges: There exists I∗ ≥ 0 such that
limt→∞ I (t) = I∗. Thus, it must be the case that limt→∞ İ = 0, and, by equation (22),

lim
t→∞

u′ (I)− w′′ (µX − I) I

u′′ (I)− w′′ (µX − I)
= 0. (23)

From Assumption 1, it follows that for all Ĩ , X̃ ∈ R,

u′′
(
Ĩ
)
< u′′

(
Ĩ
)
− w′′

(
X̃
)
< 0.

Moreover, u′′ (I) is bounded below in the interval I ∈
[
0, Ī
]
.54 Thus, the denominator in (23) is

bounded and we must have
lim
t→∞

[
u′ (I)− w′′ (µX − I) I

]
= 0.

Since limt→∞ u
′ (I) = u′ (I∗) , it then follows that

lim
t→∞

w′′ (µX − I) I = u′ (I∗) . (24)

There are two possible cases: I∗ = 0, and I∗ > 0.
First, consider I∗ = 0. Then, because w′′ is bounded (Assumption 1), it follows that

u′ (I∗) = lim
t→∞

w′′ (µX − I) I = 0,

implying that I∗ = Ī > 0, which contradicts the assumption that I∗ = 0.

Next, suppose I∗ > 0. Then, we must have u′ (I∗) = I∗× limt→∞w
′′ (µX − I) . Since w′′

(
X̃
)
<

0 for all X̃, it follows that limt→∞w
′′ (µX − I) ≤ 0. Thus, u′ (I∗) ≤ 0 ∴ I∗ ≥ Ī , which contradicts

the fact that I (t) is strictly decreasing and I (t) < Ī for all t > t̂.

Proof of Proposition 6

The proof follows the same exact steps as Proposition 4 and is, therefore, omitted.

Proof of Proposition 7

To simplify notation, let ũ(A) ≡ Ua (Wa + µA) +µUd (Wd −A) denote the instantaneous consump-
tion utility from an instantaneous annuity purchase A, and let X(t) ≡ µ

´ t
0 A(s)ds denote the total

amount spent on annuities up to time t (so that Ẋ = A).

54Note that u′′ (I) = µ2U ′′a (Wa − µI) + µU ′′d (Wd + I) . Since Ī < Wa

µ (interior efficient coverage), and
U ′′d (Wd) > −∞ (because Wd > 0 and U is twice continuously differentiable), it follows that u′′ (I) > −∞
for all I.
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The optimal annuity path solves:

max
X,Ẋ

ˆ ∞
0

e−µt
[
ũ
(
Ẋ
)

+ µV
(
µX − Ẋ

)]
dt.

The result is immediate if the solution is at the boundary: Ẋ = 0 for (almost) all t. Therefore,
suppose the optimal annuity path is interior (A(t) > 0) in some time interval. Proceeding as in the
proof of Proposition 5, the necessary Euler-Lagrange condition for an optimal annuity path in the
gains domain (µX > A) is

Ȧ = µ
ũ′ (A) + µv′′ (µX −A)A

ũ′′ (A) + µv′′ (µX −A)
,

for all t where A is interior. We will use the following lemma:

Lemma 9. There exists t0 such that µX > A for all t > t0.

Proof. Since X is increasing (Ẋ = A ≥ 0), there are two possibilities: either limt→∞X(t) = X∗ for
some X∗ ∈ R, or limt→∞X(t) = +∞.

First, suppose limt→∞X(t) = X∗ for some X∗ > 0 (it has to be positive since X(t) > 0 for
some t – A(t) > 0 in a set with positive measure – and X is non-decreasing). Then, it must be
the case that limt→∞A(t) = 0 < µX∗, which establishes that we must be in the gains domain for t
large enough.

Next, suppose that limt→∞X(t) = +∞. Then, sinceA ≤Wd for all t, we must have limt→∞ µX−
A =∞ > 0.

We are now ready to establish the main result:

Proof of the Proposition. Let t0 be as defined by the lemma and take t ≥ t0. Suppose, in
order to obtain a contradiction, that A (t) ≥ Ā (so that ũ′(A) < 0). Then, by the Euler-Lagrange
equation,

Ȧ = µ
ũ′ (A) + µv′′ (µX −A)A

ũ′′ (A) + µv′′ (µX −A)
> 0,

which gives A (t) > Ā for all t > t0. Since A is bounded (by Wd), it must be the case that A
converges:

lim
t→∞

A = A∗ > Ā.

Thus, we must have Ȧ→ 0. Since ũ′′ (A) + µv′′ (µX −A) is a bounded function of A (follows from
the continuity of Ua and Ud, and the assumption that Wd and Wa are both strictly positive), we
have

lim
t→∞

ũ′ (A) + µv′′ (µX −A)A = 0.

But this requires
ũ′ (A∗) = − lim

t→∞
µv′′ (µX −A)A ≥ 0,

where the inequality follows from v′′(x) < 0 for all x. But this contradicts A (t) > Ā for all t.
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Proof of Proposition 8

An instantaneous annuity policy pays (µ− l) dt in case of survival and costs $1 in case of death; an
instantaneous life insurance policy costs (µ+ l) dt and pays $1 in case of death. Consumption in
each state equals Ca (t) = Wa(t)+µ [A(t)− I(t)]−l [A(t) + I(t)] , and Cd (t) = Wd(t)−[A(t)− I(t)] .

Notice that any path in which the set {t : I (t) > 0, A (t) > 0} has positive measure is first-order
stochastically dominated – reducing both A(t) and I(t) leaves Cd(t) unchaged but raises Ca(t) by
2l.

For notational simplicity, assume that the load equals zero l = 0; the result for positive loads
will follow from the continuity of the total utility function in l. Let A and I denote a solution to the
maximization of expected total utility. In order to obtain a contradiction, suppose that I (t) = 0

for almost all t.
By the Lemma 9, there exists tC2 such that µ

´ t
0 A(s)ds > A(t) for all t > tC2 (i.e., t > tC2 lies

in the gains domain). Fix t̄ > tC2 . Because µ
´ t

0 A (s) ds is a strictly increasing function of t, there
exists δ̄ > 0 such that µ

´ t̄
0 A(s)ds > A(t) + δ for all δ ∈ (0, δ̄). Consider a uniform increase in A (t)

and I (t) for all t > t̄ by an amount δ ∈ (0, δ̄). Consumption in each state remains unchanged. The
gain-loss utility conditional on dying before time t̄ also remains unchanged.

The gain-loss utility from life insurance conditional on dying at t ≥ t̄ is V (δ − µ [XI + δ (t− t̄)]) .
Note that all subsequent life insurance payments remain in the losses domain whenever δ < µXI

1+t̄µ .
Therefore, for δ small enough, this expression equals −λv (µX + δ [µ (t− t̄)− 1]).

The gain-loss utility from annuities conditional on dying at t ≥ t̄ is

V
(
µ

ˆ t

0
A (s) ds+ µ (t− t̄) δ −A (t)− δ

)
= v

(
µ

ˆ t

0
A (s) ds−A (t) + δ [µ (t− t̄)− 1]

)
,

where I used the fact that, by construction, t lies in the gains domain. Therefore, the change in
expected total utility equals:

ˆ ∞
t̄

exp (−µt)µ


[
v
(
µ
´ t

0 A (s) ds−A (t) + [µ (t− t̄)− 1] δ
)
− v

(
µ
´ t

0 A (s) ds−A (t)
)]

−λ [v (µXI + [µ (t− t̄)− 1] δ)− v (µXI)]

 dt.

Applying a second-order Taylor expansion, we obtain that this term is positive if the following
condition holds:

ˆ ∞
t̄

exp (−µt)µ [µ (t− t̄)− 1]2
{
v′′
(
µ

ˆ t

0
A (s) ds−A (t)

)
− λv′′ (µXI)

}
> 0.

Because exp (−µt)µ [µ (t− t̄)− 1]2 > 0 for all t > t̄, a sufficient condition is

v′′
(
µ

ˆ t

0
A (s) ds−A (t)

)
> λv′′ (µXI) .
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Let v̄ = sup {|v′′ (x)|} (which exists because v′′ is bounded). Setting λ (XI , v) ≡ v̄
v′′(µXI) concludes

the proof.
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Hirshleifer-Yaari Diagram (for online appendix)

For comparative purposes, it is helpful to represent preferences in the classic Hirshleifer-Yaari dia-
gram. Let CL = W − L+ (1− p− l) I and CNL = W − (p+ l) I denote consumption in the states
of loss and no loss. Total utility can be written in terms of state-dependent consumption and the
point of zero insurance (W − L,W ) as

pU (CL) + (1− p)U (CNL) + pV (CL − (W − L)) + (1− p)V (CNL −W ) .

Thus, under consumption utility only (expected utility), indifference curves are smooth, with slope
equal to − p

1−p
U ′(CL)
U ′(CNL) . In particular, the marginal rate of substitution at certainty (45 degree line)

equals the odds ratio: − p
1−p .

Figure 8: Hirshleifer-Yaari diagram. Indifference curves from consumption utility (smooth
curve) and total utility (kink at zero insurance).

Because of reference dependence, the same consumption profile is ranked differently if it is the
consumer’s original endowment or if it is obtained by acquiring insurance. Thus, an individual’s
preferences over consumption profiles depends on the point of zero insurance. Indifference curves in
the model with narrow framing and loss aversion have slope

dCNL
dCL

= − p

1− p
U ′ (CL) + V ′ (CL − (W − L))

U ′ (CNL) + V ′ (CNL −W )
.

The slope converges to − p
1−p

U ′(W−L)+v′(0)
U ′(W )+λv′(0) as I ↘ 0, and − p

1−p
U ′(W−L)+λv′(0)
U ′(W )+v′(0) as I ↗ 0. Thus, loss

aversion introduces a kink at the point of zero insurance.
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While indifference curves from standard non-expected utility models with first-order risk aversion

also have a kink, the kink is usually at the point of full insurance (45 degree line).55 Therefore,

they predict that consumers will over-insure relative to expected utility. In particular, they may

fully insure even if prices are not actuarially fair. Here, because the kink occurs at the point of zero

coverage, consumers are reluctant to buy any coverage.

55This class of models also includes prospect theory without narrow framing.
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