
Supplementary Appendix (Not For Publication)

Omitted Proofs

Proof of Lemmas 1 and 3. We consider the model with one-sided commitment (Lemma

3). The proof of the two-sided commitment case (Lemma 1), which follows similar steps

but is simpler, is omitted.

Suppose the period-t self of the consumer offers a contract C ′t. Specifically, a contract

at time t, C ′t, specifies consumption on each possible state in each future time τ ≥ t.

Denote the set of possible states by Kt,τ , in which the first subscript corresponds to the

time in which the contract is offered and the second subscript corresponds to the decision-

making time τ . The contract specifies consumption for each different income states, so

the contracting space is generally greater than the space of income states. In addition,

perception-perfect equilibrium imposes no restrictions on Kt,τ , i.e., Kt,τ can be arbitrary.

To keep analysis tractable, we assume thatKt,τ has a product structure and only depends on

decision making time τ . Otherwise, we can always add more states that are never reached

so that it has a product structure and the resulting equilibrium is outcome-equivalent to

the original equilibrium. Specifically, we write Kt,τ = Sτ × Hτ , in which Hτ consists

of all the possible income-independent messages/actions that the agent can send at time

τ . The income-independent messages can be arbitrary. One of the reasons that an income-

independent message can arise is from the consumer’s different beliefs. Since we allow any

contracts, we cannot impose what types of income-independent messages the consumer

can send. For simplicity, we call Hτ the income-independent history. Without loss of

generality, H1 = ∅. Denote ht a generic element in Ht. We call ht an income-independent

message. Denote Hτ (ht) the states that can be reached at time τ from an earlier history

ht ∈ Ht for τ > t.

Fix a contract, we next write down the agent’s strategy profile. Consider an agent

who makes a decision at time τ . Suppose the income-independent messages that has been

reached is hτ−1, which is an element in Hτ−1. At time τ , the agent learns the income state,
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i.e., sτ is realized. The agent needs to decide which message aτ ∈ ∆(Hτ (hτ−1)) to send,

where ∆(·) represents the set of lotteries. If there is one-sided commitment, the agent also

needs to decide whether he will lapse or not, in which case, the strategy can be summarized

by a pair (dτ , aτ ), where dτ ∈ ∆({0, 1}). If dτ = 1 with probability 1, then the agent stays,

otherwise the contract is lapsed with a positive probability.

As described in the body of the paper, the perception-perfect equilibrium is solved

by treating the agent’s decisions in each period as if it were taken by a different player

(i.e., a different “self”). The main claim is that for any perception-perfect equilibrium, the

consumption vector must solve the program (P’).

For the ease of exposition, we say that two perception-perfect equilibria are equiva-

lent if all selves of the consumers have same actual and perceived consumption. We will

establish the result through two separate claims:

Claim 2. Fix a perception-perfect equilibrium. There exists an equivalent perception-

perfect equilibrium in which the agent never lapses (dτ = 1,∀τ ).

Proof. Consider a perception-perfect equilibrium in which the agent lapses in some period

dτ = 0 with a positive probability, replacing it with a contract C ′′τ from another firm. Since

the other firm cannot lose money by offering this new contract, the old firm could have

accepted a contract that substituted the terms of the old contract from this period on with

the terms of the new contract, and the agent would have accepted to remain with the old

firm. The constructed new contracts together with the agent’s optimal decision forms a

perception-perfect equilibrium that is equivalent to the original one.

Claim 3. Fix a perception-perfect equilibrium. There is an equivalent perception-perfect

equilibrium that offers two options following any history: #|Ht(ht−1)| ≤ 2, for all ht−1 ∈

Ht−1, t ≥ 2.

Proof. From the previous claim, we can restrict attention to equilibria in which the agent

never lapses. Suppose t1 < t2 < t3. Note that self t1’s prediction about self t3’s decision

coincides with self t2’s prediction about self t3’s decision. Restricting Ht(ht−1) to two
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messages – one that the agent will choose and another one that the agent thinks that he

will choose – does not affect the actual consumption or the perceived consumption. Put

differently, if Ht(ht−1) has at least three messages, then there is at least one of them that

the agent never sends and the agent never believes other selves would send. Therefore, we

can restrict the income-independent message space to be at most two: one that the agent

actually choose, and one that the agent thought he would choose.

Given these two claims, a contract offered by self t, C ′t, must maximize the agent’s

utility subject to the zero profits, incentive compatibility, perceived choice, and non-lapsing

constraints, concluding the proof of Lemma 3.

Proof of Lemmas 2 and 4. In the text, we presented the proof for the case with two-sided

commitment when there is no uncertainty and T = 4. Here, we consider the model with

one-sided commitment case (Lemma 4), still assuming no uncertainty and T = 4. The

proof for stochastic income and arbitrary T is presented in the supplementary appendix.

There are two ICs:

u(c2(A)) + β[δu(c3(A,B)) + δ2u(c4(A,B))] ≥ u(c2(B)) + β[δu(c3(B,B)) + δ2u(c4(B,B))],

(sA1)

u(c3(A,A)) + βδu(c4(A,A)) ≥ u(c3(A,B)) + βδu(c4(A,B)). (sA2)

First, note that (sA1) must bind at an optimum (otherwise, we can raise c4(B,B), giving the

agent a higher utility). Substitute the binding (sA1) in the objective to eliminate c4(B,B):

u(c1) + δu(c2(A)) + β[δ2u(c3(A,B)) + δ3u(c4(A,B))] + (β − 1)δu(c2(B)).

Similarly, (sA2) must bind (otherwise, we can raise c4(A,B), increasing the agent’s utility).
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Use the binding (sA2) to rewrite the objective as:

u(c1)+δu(c2(A))+δ2u(c3(A,A))+βδ3u(c4(A,A))−(1−β)[δu(c2(B))+δ2u(c3(A,B))].

Since β < 1, we should pick c2(B) and c3(AB) as small as possible subject to the con-

straints. Substituting c2(B) = c3(AB) = 0 back in this expression concludes the proof

of Lemma 2. For the proof of Lemma 4, it remains to be verified that the non-lapsing

constraints imply perceived non-lapsing constraints if we set c2(B) = c3(A,B) = 0.

Let ĉ denote a solution to the perceived outside option program, and let V̂ I
2 = u(ĉ2) +

β̂(δu(ĉ3(B)) + δ2u(ĉ4(B))). We will use binding ICs constraints to obtain a lower bound

on the perceived payoff of keeping the contract and show that is greater than the perceived

outside option V̂ I
2 . We first use the the binding IC for self 2 to rewrite the perceived payoff:

u(c2(B)) + β̂(δu(c3(BB)) + δ2u(c4(BB))

= u(0) +
β̂

β
β(δu(c3(B,B)) + δ2u(c4(B,B))

= u(0) +
β̂

β

[
u(c2(A)) + β(δu(c3(A,B)) + δ2u(c4(AB)))− u(0)

]
=

(
1− β̂

β

)
u(0) +

β̂

β

[
u(c2(A)) + β(δu(c3(A,B)) + δ2u(c4(AB)))

]
,

where the first equality follows from c2(B) = 0 and the second uses the binding IC

constraint (sA1). From the non-lapsing constraint at time 2, we know that u(c2(A)) +

β(δu(c3(A,B)) + δ2u(c4(AB) ≥ V I
2 , giving a lower bound to the perceived payoff.

u(c2(B)) + β̂(δu(c3(BB)) + δ2u(c4(BB)) ≥

(
1− β̂

β

)
u(0) +

β̂

β
V I
2 .

Since V I
2 is the best possible outside option at time 2, in particular, it is greater than or
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equal to the utility provided by the contract ĉ, implying

u(c2(B)) + β̂(δu(c3(BB)) + δ2u(c4(BB))

≥

(
1− β̂

β

)
u(0) +

β̂

β

[
u(ĉ2) + β(δu(ĉ3(B)) + δ2u(ĉ4(B))

]
.

Rearranging,

u(c2(B)) + β̂(δu(c3(BB)) + δ2u(c4(BB))

=

(
1− β̂

β

)
u(0) +

(
β̂

β
− 1

)
u(ĉ2) +

[
u(ĉ2) + β̂(δu(ĉ3(B)) + δ2u(ĉ4(B))

]
≥ u(ĉ2) + β̂(δu(ĉ3(B)) + δ2u(ĉ4(B))) = V̂ I

2 ,

where the inequality comes from ĉ2 ≥ 0 and β̂ ≥ β and the last line comes from the

definition of V̂ I
2 . This shows that the perceived non-lapsing constraints hold.

We next verify that all the perceived choice constraints hold. Notice that

u(c3(A,B)) + β̂δu(c4(A,B)) = u(0) + β̂δu(c4(A,B))

=

(
1− β̂

β

)
u(0) +

β̂

β
(u(c3(A,A)) + βδu(c4(A,A)))

=

(
1− β̂

β

)
u(0) +

(
β̂

β
− 1

)
u(c3(A,A)) + u(c3(A,A)) + β̂δu(c4(A,A))

≥ u(c3(A,A)) + β̂δu(c4(A,A)), (sA3)

where the first line uses u(c3(A,B)) = 0, the second line uses the self 3’s binding IC

constraint (sA2), the third line comes algebraic manipulations, and the last line uses β̂ > β
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and c3(A,A) ≥ 0. Similarly,

u(c2(B)) + β̂[δu(c3(B,B)) + δ2u(c4(B,B))]

= u(0) + β̂[δu(c3(B,B)) + δ2u(c4(B,B))]

= (1− β̂

β
)u(0) +

β̂

β

[
u(c2(A)) + β[δu(c3(A,B)) + δ2u(c4(A,B))]

]
≥ u(c2(A)) + β̂[δu(c3(A,B)) + δ2u(c4(A,B))], (sA4)

where the first line uses c2(B) = 0, the second line uses the self 2’s binding IC constraint

(sA1), and the last line uses β̂ > β and c2(A) ≥ 0. So the perceived choice constraints

hold.

So far, we have shown that c2(B) = c3(AB) = 0 under the equilibrium contract. We

also showed that we can disregard the perceived choice constraints and perceived non-

lapsing constraints. Recall that cEt denotes the consumption on the equilibrium path at time

t. Substituting the binding ICs, the non-lapsing constraints on the equilibrium path can be

simplified to u(cEt ) + δu(cEt+1) + · · ·+ βδt−4u(cE4 ) ≥ V I
t .

Therefore, the original program reduces to the auxiliary program:

max
(c1,c2,c3,c4)

u(c1) + δu(c2) + δ2u(c3) + βδ3u(c4), (sA5)

subject to

4∑
t=1

ct
Rt−1 =

4∑
t=1

w

Rt−1 , (sA6)

u(ct) + δu(ct+1) + · · ·+ βδ4−tu(c4) ≥ V I
t ,∀2 ≤ t ≤ 4. (sA7)

Proof of Corollary 1. We can focus on the auxiliary program. Let x(st) ≡ u(c(st)) denote
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the agent’s utility from the consumption he gets in state st. We study the dual program:

max
{x(st)}

T∑
t=1

∑
st∈St

p(st|s1)
w(st)− u−1 (x(st))

Rt−1 , (sA8)

subject to

T−1∑
t=1

∑
st∈St

δt−1p(st|s1)x(st) + β
∑
sT∈ST

δT−1p(sT |s1)x(sT ) ≥ u. (sA9)

This program corresponds to the maximization of a strictly concave function over a convex

set, so that, by the Theorem of the Maximum, the solution is unique. Moreover, the con-

sumption path is continuous in β ∈ (0, 1]. Finally, the program does not involve β̂, so the

consumption path is not a function of the consumer’s naiveté.

Once we pin down the unique consumption path, the baseline options are either zero

or determined by the binding IC constraints, which do not depend on β̂ (see the proof of

Lemma 2). So the equilibrium consumption vector is not a function of the consumer’s

naiveté.

Proof of Claim 1 (from the proof of Theorem 3). First, the time consistent agent’s welfare

is exactly given by the outside option,

ŴC
T (c) = E

T∑
t=1

δt−1u(c(st)).

The limit of ŴC
T (c) exists by the root test:

lim sup
T↗∞

T
√
δT−1|u(c(sT ))| ≤ δ < 1.

Second, we show the limit of ΠC
T (c) exists using the Cauchy convergence criterion. Specif-
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ically, we claim that for sufficiently large T ,

E
w(sT )− c(sT )

RT−1 ≤ ΠC
T (c)− ΠC

T−1(c) ≤ E
w(sT )

RT−1 +
2δT−1 max{|u(·)|}

u′(K)
. (sA10)

The claim follows from a revealed-preference argument. Suppose (c′1, · · · , c′(sT−1)) solves

the program ΠC
T−1(c). Then (c′1, · · · , c′(sT−1), c(sT )) is in the feasible set of the program

ΠC
T (c). By the revealed-preference argument, it immediately follows that

ΠC
T (c) ≥ E

w(sT )− c(sT )

RT−1 + ΠC
T−1(c).

Suppose (c∗1, · · · , c∗(sT )) solves the program ΠC
T (c). We show that

(
c∗1 +

2δT−1 max{|u(·)|}
u′(K)

, c∗(s2), · · · , c∗(sT−1)
)

(sA11)

is in the feasible set of the program ΠC
T−1(c). To see that, note that from the Lagrange’s

Mean Value Theorem, it follows that

u

(
c∗1 +

2δT−1 max{|u(·)|}
u′(K)

)
− u(c∗1) = u′(ξ)

2δT−1 max{|u(·)|}
u′(K)

, (sA12)

where ξ ∈ (c∗1, c
∗
1 + 2δT−1 max{|u(·)|}

u′(K)
). For sufficiently large T , c∗1 + 2δT−1 max{|u(·)|}

u′(K)
< K. So

u′(ξ) ≥ u′(K). Going back to equation (sA12) leads to

u

(
c∗1 +

2δT−1 max{|u(·)|}
u′(K)

)
− u(c∗1) ≥ 2δT−1 max{|u(·)|}. (sA13)
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Then,

u

(
c∗1 +

2δT−1 max{|u(·)|}
u′(K)

)
+ E

T−1∑
t=2

δt−1u(c∗(st))

≥ 2δT−1 max{|u(·)|}+ E
T−1∑
t=1

δt−1u(c∗(st))

≥ 2δT−1 max{|u(·)|}+ E
T∑
t=1

δt−1u(ct)− EδT−1u(c∗(sT ))

= E
T−1∑
t=1

δt−1u(ct) +
(
δT−1 max{|u(·)|} − EδT−1u(c∗(sT ))

)
+
(
δT−1 max{|u(·)|}+ EδT−1u(cT )

)
≥ E

T−1∑
t=1

δt−1u(ct),

where the first inequality comes from (sA13), the second comes from noting that (c∗1, · · · , c∗(sT ))

solves program ΠC
T (c), the equality comes from algebraic manipulations, and the last step

uses the boundedness of u. So we have shown that (sA11) is in the feasible set of ΠC
T−1(c).

A revealed-preference argument implies that

ΠC
T−1(c) ≥ E

T−1∑
t=1

w(st)− c∗(st)
Rt−1 − 2δT−1 max{|u(·)|}

u′(K)
.

Recall that ΠC
T (c) = E

∑T
t=1

w(st)−c∗(st)
Rt−1 . Substituting it back to the previous inequality, we

obtain

ΠC
T−1(c) ≥ ΠC

T (c)− Ew(sT )− c∗(sT )

RT−1 − 2δT−1 max{|u(·)|}
u′(K)

,

establishing the right-hand-side of (sA10) because of c∗(sT ) ≥ 0. SinceE
∑T

t=1
w(sT )−c(sT )

RT−1

exists and δ < 1, for ∀ε, we can find T0 such that ∀T1, T2 > T0, |ΠC
T1

(c) − ΠC
T2

(c)| < ε.

This establishes that {ΠC
T (c)} satisfies the Cauchy convergence criterion, therefore the limit

exists.

Proof of Proposition 2. Since c∗ maximizes the welfare function WH
T (c), it immediately
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follows that WH,I
T ≤ W ∗

T ,∀T . Thus,

lim sup
T↗∞

WH,I
T −W ∗

T

T
≤ 0. (sA14)

Denote dt,T = DT−1

DT−t
,∀t = 1, · · · , T . The objective function in the naive agent’s auxiliary

program becomes
T∑
t=1

dt,Tu(ct). (sA15)

It follows that

WH,I
T =

T∑
t=1

u(cHt ) =
T∑
t=1

[dt,Tu(cHt ) + (1− dt,T )u(cHt )]

≥
T∑
t=1

[dt,Tu(c∗t ) + (1− dt,T )u(cHt )],

where the first line comes from the definition and algebraic manipulations and the last step

comes from the fact that cH maximizes (sA15) and that c∗ is feasible. Rearranging,

WH,I
T ≥

T∑
t=1

[
u(c∗t ) + (1− dt,T )[u(cHt )− u(c∗t )]

]
=

T∑
t=1

[
u(c∗t ) +

k(t− 1)

1 + k(T − 1)
[u(cHt )− u(c∗t )]

]

= W ∗
T +

T∑
t=1

k(t− 1)

1 + k(T − 1)
[u(cHt )− u(c∗t )], (sA16)

where the first line comes from algebraic manipulations, the second line uses the definition

of dt,T , and the last line comes from the definition of W ∗
T .

We next show a series of lemmas to bound the second term. Let λH denote the La-

grangian multiplier from the zero-profit condition in the naive agent’s program, and let λ∗

denote the Lagrangian multiplier from the time-consistent agent’s program. Note that the

solution must be interior solution since limc↘0 u
′(0) = +∞.
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Lemma 10. There exist λ, λ ∈ (0,+∞) such that

λ ≤ min(λH , λ∗) ≤ max(λH , λ∗) ≤ λ.

Proof. From the first-order-condition, we know that

λH = u′(cH1 ), λ∗ = u′(c∗1).

Note that the first period consumption must be between 0 and
∑∞

t=1
w

Rt−1 = w
1−R . The

lemma follows immediately by letting λ = u′(0) and λ = u′
(

w
1−R

)
.

Lemma 11. There exists a constant A > 0 such that |t(u(cHt )− u(c∗t ))| < A,∀t,∀T .

Proof. From the first-order-condition, we know that

λHdt,T
Rt−1 = u′(cHt ),

λ∗

Rt−1 = u′(c∗t )

Denote g(·) = (u′)−1(·). Inverting above equations to solve for cHt and c∗t ,

cHt = g

(
λHdt,T
Rt−1

)
, c∗t = g

(
λ∗

Rt−1

)
.

Note that du(g(x))
dx

= x
u′′(g(x))

. Applying Lagrangian Mean Value Theorem, there exists η,

where min(λ∗,λHdt,T )

Rt−1 ≤ η ≤ max(λ∗,λHdt,T )

Rt−1 , such that

|t(u(cHt )− u(c∗t ))| = t

∣∣∣∣u(g(λHdt,TRt−1

))
− u

(
g

(
λ∗

Rt−1

))∣∣∣∣ (sA17)

= t

∣∣∣∣ η

u′′(g(η))

(
λHdt,T
Rt−1 −

λ∗

Rt−1

)∣∣∣∣ . (sA18)

Using a change of variable x = 1
Rt−1 , then

xλdt,T ≤ xmin(λ∗, λHdt,T ) ≤ η ≤ xmax(λ∗, λHdt,T ) ≤ xλ.
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So x ≥ η

λ
. Note that dt,T = 1+k(T−t)

1+k(T−1) ≥
1

1+k(t−1) . So,

x ≤ η

λdt,T
≤ η(1 + k(t− 1))

λ
=
η(1− k log(x)

logR
)

λ
≤
η(1− k log(η)−log(λ)

logR
)

λ
. (sA19)

We can rewrite (sA18) as

|t(u(cHt )− u(c∗t ))| ≤
(
− log x

logR
+ 1

) ∣∣∣∣ η

u′′(g(η))

∣∣∣∣ 2λ

Rt−1

=

(
− log x

logR
+ 1

) ∣∣∣∣ η

u′′(g(η))

∣∣∣∣ 2λx
≤ 2

λ

λ

(
− log η − log(λ)

logR
+ 1

)(
1− k log η − log λ

logR

)
η2

|u′′(g(η))|

≤ constant ∗ (log η)2η2

|u′′(g(η))|
,

where the first line uses t = − log x
logR

+ 1 and Lemma 10, the second line uses x = 1
Rt−1 ,

the third uses (sA19), and the last line collects the first-order terms. Let ξ = g(η) and use

Assumption 1, so there exists A > 0 such that |t(u(cHt )− u(c∗t ))| < A.

Lemma 12.
∑T

t=1
1
t
≥ log(T ) for any T ≥ 1.

Proof. Note that log(t + 1) − log(t) =
∫ t+1

t
1
θ
dθ ≤ 1

t
. Sum over t from 1 to (T − 1) to

obtain: log(T ) ≤
∑T−1

t=1
1
t
≤
∑T

t=1
1
t
.

Lemma 13. There exists a constant A′ > 0 such that

T∑
t=1

k(t− 1)

1 + k(T − 1)
|u(cHt )− u(c∗t )| < A′,∀T
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Proof. Using Lemma 11, it follows that

T∑
t=1

k(t− 1)

1 + k(T − 1)
[u(cHt )− u(c∗t )] ≤

T∑
t=1

k(t− 1)

1 + k(T − 1)

A

t

≤
T∑
t=1

k

1 + k(T − 1)
A+

T∑
t=1

−k
1 + k(T − 1)

A
1

t

≤ kAT

1 + k(T − 1)
+

−k
1 + k(T − 1)

A log(T ),

where the first line comes from the lemma 11, the second line comes from algebraic ma-

nipulations, and the last line comes from k ≥ 0 and lemma 12. Note that as T ↗ ∞, the

first term converges to A, and the second term converges to 0. So there exists a constant

A′ > 0 such that
T∑
t=1

k(t− 1)

1 + k(T − 1)
[u(cHt )− u(c∗t )] < A′,∀T.

Returning to (sA16), we have

lim inf
T↗∞

WH,I
T −W ∗

T

T
≥ − lim inf

T↗∞

A′

T
= 0. (sA20)

Together with (sA14), it implies that limT↗∞
WH,I
T −W ∗T
T

exists, and

lim
T↗∞

WH,I
T −W ∗

T

T
= 0.

Proof of Proposition 4. It is easy to construct off-path beliefs that support the full-

information allocation as an equilibrium. We need to show that no other allocation can

be supported as an equilibrium. Suppose there exists a type β̂0 that does not pick the full

information contract in equilibrium. There are two possibilities: (i) β̂0 is separated in equi-

librium (i.e., no other type picks the same contract at β̂0), or (ii) β̂0 is pooled in equilibrium
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(i.e. there exists another type that picks the same contract as β̂0).

Consider case (i) first. Since β̂0 is the only type picking its contract, that contract must

satisfy IC, PC, and zero profits. Recall that the full information contract is the unique con-

tract that maximizes self 1’s perceived utility subject to IC, PC, and zero profits. Consider

a deviation in which type β̂0 offers the full-information contract in all histories except in

period 1, where it offers a slightly lower consumption than with full information. Note

that lowering c1 does not affect IC and PC and, by taking c1 arbitrarily close to the full-

information consumption, we ensure that the consumer gets a strictly higher perceived

utility while leaving strictly positive profits to the firm, contradicting the assumption that

the original allocation was part of an equilibrium.

Next consider case (ii), so there are at least two types pooled at a contract different from

the full information contract. If the firm breaks even on each consumer, then by the same

argument as before, all consumers would strictly benefit from deviating to offering the full

information contract (with a slightly lower c1), which also gives strictly positive profits

for the firm. If instead there is a cross subsidy between types, a type that is providing

a positive profit can strictly benefit from deviating to the full information contract (with

a slightly lower c1). Moreover, by taking c1 close enough to one in the full-information

contract (which maximizes the perceived utility and leaves zero profits), we ensure that

deviation is profitable.

Proof of Proposition 5. Suppose we have an equilibrium in which at least one naive type

does not pick the full-information contract. Using the same argument as in Proposition 4,

that type cannot be separated or pooled with other naive types only. Therefore, the only

remaining case is one where at least one naive type pools with the sophisticated type.

But note that the contract that a sophisticated type would offer under full information of-

fers a fixed consumption in each period (no alternative options), maximizing his perceived

utility at time 1 under the zero profits constraint. Therefore, he must be cross subsidized

in order to choose another contract (i.e., the firm must make strictly negative profits from

serving him). But since the firm would not accept a contract that makes negative profits,
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this means that the firm must make strictly positive profits on some naive type that is pool-

ing with the sophisticated type. But then this naive type would strictly profit from deviating

to full information contract, which maximizes his perceived utility at time 1 subject to the

zero profits constraint.

Proof of Lemma 5. Without loss of generality, we use the following normalization u(0) =

0 in our analysis below. The proof follows by contradiction. Suppose there is an equilib-

rium in which two types, βL and βH > βL, offer their full information contracts, CL and

CH . We show that these contracts cannot be part of an equilibrium when T is large enough

since type βH would deviate and pick CL, leaving the firm with negative profits.

Note that, by the binding IC constraint for type βL, if type βH picks CL, he ends up

choosing B rather than A. In this case, the firm offering CL makes negative profits. To see

this, suppose instead that the firm makes a non-negative profit from this contract. But this

would mean that the non-flexible contract that gives only the baseline consumption would

also solve type βL’s program, which contradicts Corollary 1.

Type βH’s perceived utility from CL equals:

u(cL1 ) + βH

T∑
t=2

δt−1u(cLt (B, · · · , B))

=
βL − βH
βL

u(cL1 ) +
βH
βL
u(cL1 ) + βH

T∑
t=2

δt−1u(cLt (B, · · · , B))

=
βL − βH
βL

u(cL1 ) +
βH
βL

[
u(cL1 ) + βL

T∑
t=2

δt−1u(cLt (B, · · · , B))

]

=
βL − βH
βL

u(cL1 ) +
βH
βL

[
T−1∑
t=1

δt−1u(cLt (A, · · · , A)) + βLδ
T−1u(cLT (A, · · · , A))

]

=
βL − βH
βL

u(cL1 ) +
βH
βL

T−1∑
t=1

δt−1u(cLt (A, · · · , A)) + βHδ
T−1u(cLT (A, · · · , A))

= u(cL1 ) +
βH
βL

T−1∑
t=2

δt−1u(cLt (A, · · · , A)) + βHδ
T−1u(cLT (A, · · · , A))
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>

T−1∑
t=1

δt−1u(cHt (A, · · · , A)) + βHδ
T−1u(cHT (A, · · · , A))

= u(cH1 ) + βH

[
T∑
t=2

δt−1u(cHt (B, · · · , B))

]
.

where the second, third, fifth, and sixth lines follow from algebraic manipulations, the

fourth line substitutes the binding (IC) for the low type, and the last line uses the binding

(IC) for the high type. The strict inequality on the seventh line uses the following facts:

βH > βL, ut(A,A..., A) ≥ 0 with strict inequality for at least one t, and, from Theorem

1, the welfare of time-inconsistent consumers converge to the welfare of time-consistent

consumers

lim
T↗∞

T−1∑
t=1

δt−1u(cLt ) + βHδ
T−1u(cLT ) = lim

T↗∞

T−1∑
t=1

δt−1u(cHt ) + βHδ
T−1u(cHT ).

Therefore, for T sufficiently large, the βH consumer would have an incentive to deviate and

choose βL consumer’s full-information contract while taking the baseline option.

Proof of Lemma 6. We argue by contradiction. Fix an equilibrium in which βH does not

get his full-information contract. First, suppose that firms make non-negative profits from

βH . Suppose βH deviates and offers his full-information contract. By a single-crossing

argument, if type βL got βH’s full-information contract, he would always choose option A,

so the firm would break even on both types under type βH’s full-information contract. Since

the full-information contract maximizes βH’s perceived utility among those that make zero

profits, βH has an incentive to deviate to it.

Suppose, instead, that the firm makes strictly negative profits on type βH . Then firm

optimality requires that both types pool on the same contract C and the firm makes strictly

positive profits on type βL. To generate different profits, these two types must be getting

different allocations on the equilibrium path.

We will construct a deviation contract C(ε) such that whenever the βH consumer weakly

benefits from the deviation, the βL consumer strictly benefits from the deviation. By D1
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criteria, we should assign zero weight to the type βH and all the weight to the type βL

consumer. Given that firms make positive profits from the βL consumer’s equilibrium con-

tract, firms would charge a price such that the βL consumer are better off with C(ε) than the

contract C, a contradiction. Since both types have the same naiveté parameter β̂, they both

believe they will choose the same options. Let (ĉ2, · · · , ĉT ) denote their perceived con-

sumption stream. Construct a perturbation of the equilibrium contract, C(ε), by decreasing

the last-period perceived consumption by ε and adjusting the other options so that (IC) and

(PC) hold for both types. Upon observing contract C(ε), the firm must assign full weight to

type βL. This is because whenever βH benefits from deviating to this contract (i.e., when

the firm’s price is lower than −βHδT−1 u
′(cT )
u′(c1)

ε, βL also benefits from this deviation (i.e.,

when the firm’s price is lower than −βLδT−1 u
′(cT )
u′(c1)

ε. Therefore, this candidate equilibrium

does not satisfy D1.

Proof of Lemma 7. To show that the proposed equilibrium survives D1, we show that if

βL can benefit from a deviation to C ′, then βH strictly benefits from the deviation as well.

Recall that they have the same perceived time-consistency parameter β̂, so their per-

ceived consumption from the contract C ′ are the same, denoted as (c′1, c
′
2, · · · , c′T ). Suppose

βL can benefit from the deviation:

u(c1) + βL

T∑
t=2

δt−1u(ct(B, · · · , B)) < u(c′1) + βL

T∑
t=2

δt−1u(c′t). (sA21)

By a single-crossing argument, since c solves βL’s program (and therefore his IC must

bind), type βH’s IC cannot hold:

u(cH1 ) + βH

T∑
t=2

δt−1u(cHt (B, · · · , B)) < u(c′1) + βH

T∑
t=2

δt−1u(c′t), (sA22)

so βH also benefits from this deviation. According to D1, we must assign zero weight on

βL and full weight on βH . Because βH gets his full-information contract in any equilibrium
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satisfying D1 (Lemma 6), we must have

u(cH1 ) + βH

T∑
t=2

δt−1u(cHt (B, · · · , B)) ≥ u(c′1) + βH

T∑
t=2

δt−1u(c′t), (sA23)

a contradiction to (sA22). So we have

u(c1) + βL

T∑
t=2

δt−1u(ct(B, · · · , B)) ≥ u(c′1) + βL

T∑
t=2

δt−1u(c′t), (sA24)

showing that βL does not have a profitable deviation and the proposed equilibrium survives

D1.

Next, we show that in any equilibrium satisfying D1, the consumption path corresponds

to the least costly separating allocation. Suppose there exists another equilibrium that sur-

vives D1. As we showed above, βH gets his full-information contract. Let C ′ denote βL’s

equilibrium contract, and the contract is different from the leastly costly separation allo-

cation (A1). Suppose βL deviates and offers a contract that coincides with the solution to

(A1) except that it reduces consumption in the first period by a small ε > 0. By the IC

constraint, the βH consumer is strictly worse off by choosing this new contract instead of

his full-information contract. By D1, firms must assign full weight to βL. By choosing ε

small enough, βL strictly benefits from the deviation.

Proof of Proposition 6. From the previous lemmas, the equilibrium is given by the least-

costly separation. The equilibrium-path consumption for the low type solves the following

program:

maxu(c1) + l(c1),

subject to

u(c1) +
βH
βL
l(c1) = V H , (sA25)
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where l(·) is defined as

l(c1) = max
(c2,c3,··· ,cT )

T−1∑
t=2

δt−1u(ct) + βδT−1u(cT ).

subject to
T∑
t=2

ct
Rt−1 =

T∑
t=1

w

Rt−1 − c1.

Note that by substituting (sA25) to the objective function, maximizing u(c1) + l(c1) is

equivalent to maximizing c1. If βL’s full-information contract cannot be sustained in a

equilibrium (as must be the case if T is large), it means that

u(cL1 ) +
βH
βL
l(cL1 ) > V H . (sA26)

Evaluating c1 at
∑T

t=1
w

Rt−1 implies that the

u

(
T∑
t=1

w

Rt−1

)
+
βH
βL
δl

(
T∑
t=1

w

Rt−1

)
= u

(
T∑
t=1

w

Rt−1

)
< V H . (sA27)

By the intermediate value theorem, it follows that the maximal root of (sA25) must be

greater than the first period consumption in the full-information contract: c1 > cL1 . This

completes the first part of the proposition.

We next show that the welfare loss must be bounded below away from 0. We argue by

contradiction. Suppose there exists a subsequence {Tn : n ∈ N} such that limn↗∞(WC
Tn
−

WL
Tn

) = 0. To be clear that our variables now depends on Tn, we write variables as a
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function of Tn. Note that

lim
n↗∞

(WC
Tn −W

L
Tn) = lim

n↗∞
(V H(Tn)−WL

Tn)

= lim
n↗∞

(
V H(Tn)− u(c1(Tn))− l(c1(Tn))

)
= lim

n↗∞

(
V H(Tn)− u(c1(Tn))− (V H(Tn)− u(c1(Tn)))

βL
βH

)
= lim

n↗∞

(
V H(Tn)− u(c1(Tn))

)(
1− βL

βH

)
,

where the first equality comes from the vanishing inefficiency result for the βH consumer,

the second equality comes from the definition of l(c1) and (1 − β)δT−1u(c(sT )) → 0, the

third equality comes from (sA25), and the fourth equality comes from algebraic manipula-

tions.

It follows that limn↗∞
(
V H(Tn)− u(c1(Tn))

)
= 0. From the vanishing inefficiency

result for the βH consumer, it implies that

lim
n↗∞

(
WL
Tn − u(c1(Tn))

)
= lim

n↗∞

(
WC
Tn − u(c1(Tn))

)
= lim

n↗∞

(
V H(Tn)− u(c1(Tn))

)
= 0.

(sA28)

Note that WL
Tn

=
∑Tn

t=1 δ
t−1u(ct(Tn)). We obtain

lim
n↗∞

Tn∑
t=2

δt−1u(ct(Tn)) = 0.

Recall that we normalize u(0) = 0, so u(c) ≥ 0,∀c ≥ 0. We must have limn↗∞ ct(Tn) =

0,∀t. By the zero-profits condition, the βL consumer consumes everything in the first pe-

riod in the limit: limn↗∞ c1(Tn) =
∑∞

t=1
w

Rt−1 . This consumption stream cannot achieve

the first-best welfare (i.e., WC
T ), as shifting some consumption to future periods can strictly

improves welfare since limc↘0 u
′(c) = +∞. Specifically, fix a small ε0 > 0, it is straight-
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forward to show that

u

(
∞∑
t=1

w

Rt−1

)
< u

(
∞∑
t=1

w

Rt−1 − ε0

)
+ δu(Rε0) ≤ lim

T↗∞
WC
T .

This is a contradiction to (sA28) that limn↗∞
(
WC
Tn
− u(c1(Tn))

)
= 0.

So the welfare loss does not vanish as the contracting horizon grows: lim infT↗∞(WC
T −

WL
T ) > 0.

Proof of Lemma 8. To prove the lemma, we argue by contradiction. There exist two op-

tion history paths of consumption stream starting with (st, h
t) that have different expected

present discounted values. Without loss of generality, assume that one path, denoted as ĉ,

has a higher expected present value than the other path, denoted as c̃.

We note that since c is the equilibrium consumption vector, it must satisfy the no addi-

tional contracting constraints. Given that the present value of ĉ is higher than the present

value of c̃. There are two possibilities, either c̃ starts with the baseline option or c̃ starts

with the alternative option. In either case, we show that the no additional contracting con-

straints would be violated. First, suppose c̃ starts with the baseline option. In this case,

the baseline option would not be the consumer’s perceived consumption, because the con-

sumer perceives that he has an incentive to recontract with another firm, who can give the

consumer slightly higher consumption in the baseline option. Specifically, consider another

contract c′, which has the same term as c except that we increase ε in the consumption in

the baseline option of c̃. Similarly, if c̃ starts with the alternative option, the consumer can

recontract with another firm, who gives him slightly higher consumption in the alternative

option.

Proof of Proposition 7. Note first that uncertainty over states plays no role in the program

with non-exclusive contracts. Starting from any allocation in which consumption within a

period is random, the agent increase his perceived utility by signing a contract with another

firm to smooth consumption in that period. So we can without loss of generality substitute

each period’s income by its expected value. Using Lemma 8, we find that the program with
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non-exclusive contracts becomes identical to the consumption-savings problem.

Proof of Proposition 8. Consider a problem with a sophisticated consumer who has the

commitment power and whose time-consistency parameter is β

β̂
. Without loss of gener-

ality, we assume that there is no uncertainty. Recall that a1 is the PDV of income. The

sophisticate’s program is

cS = max
{c(·)}

u(c1) +
β

β̂

T∑
t=2

δt−1u(ct),

subject to
T∑
t=1

ct
Rt−1 = a1.

We claim that the welfare in the above program is an upper bound of the welfare in the

consumption-savings problem for the naive consumer. Let c1 denote the first-period con-

sumption in the consumption-savings problem. We will show that the naive agent consumes

strictly more than the sophisticated agent: c1 ≥ cS1 .

The proof proceeds through four lemmas. The first one adapts arguments from Harris

and Laibson (2001).

Lemma 14. The perceived consumption functions (ĉ2(·), · · · , ĉT (·)) satisfy:

(δR)t−1u′(ĉt) = (δR)tu′(ĉt+1)
[
1− ĉ′t+1(at+1) + β̂ĉ′t+1(at+1))

]
, ∀1 < t < T,

where at+1 = R(at − ĉt(at)).

Proof. The proof follows by induction, starting at period T − 1. The last period consump-

tion is cT (aT ) = aT . Consumption in the penultimate period is:

ĉT−1(aT−1) = arg max
c̃
{u(c̃) + β̂δu(ĉT (aT )) subject to aT = R(aT−1 − c̃)}.
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Since limc↘0 u
′(c) = +∞, the unique solution must be interior and satisfy the FOC:

u′(ĉT−1) = β̂δRu′(ĉT ).

Since ĉ′T (aT ) = 1, the statement in the lemma holds for t = T − 1.

Moving to the induction step, suppose the statement holds for τ < T and recall that:

ĉτ (aτ ) = arg max
c̃
{u(c̃) + β̂

T∑
t=τ+1

δt−τu(ĉt(at)) subject to (B2), (B3), and (B4)}.

The unique solution must be interior and satisfy the FOC:

u′(ĉτ ) + β̂
T∑

t=τ+1

δt−τu′(ĉt(at))
∂ĉt(at)

∂ĉτ
= 0.

Substitute

∂ĉt(at)

∂ĉτ
= ĉ′t(at)

∂at
∂ĉτ

= ĉ′t(at)
∂at
∂at−1

· · · ∂aτ+1

∂ĉτ

= −Rt−τ ĉ′t(at)(1− ĉ′t−1(at−1)) · · · (1− ĉ′τ+1(aτ+1)),

to rewrite the FOC as:

u′(ĉτ ) = β̂
T∑

t=τ+1

(δR)t−τu′(ĉt(at))ĉ
′
t(at)(1− ĉ′t−1(at−1)) · · · (1− ĉ′τ+1(aτ+1)).

The FOC at τ + 1 is:

u′(ĉτ+1) = β̂

T∑
t=τ+2

(δR)t−τ−1u′(ĉt(at))ĉ
′
t(at)(1− ĉ′t−1(at−1)) · · · (1− ĉ′τ+2(aτ+2)).

Multiply both sides by δR(1 − ĉ′τ+1(aτ+1)) and substitute back in the equation for u′(ĉτ )
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to verify that the statement in the lemma also holds for t = τ :

u′(ĉτ ) = β̂(δR)u′(ĉτ+1)ĉ
′
τ+1(aτ+1) + (δR)u′(ĉτ+1)[1− ĉ′τ+1(aτ+1)].

Lemma 15. The first-period consumption c1 satisfies:

u′(c1) = δRu′(ĉ2)
β

β̂

[
1− ĉ′2(a2) + β̂ĉ′2(a2)

]
,

where a2 = R(a1 − c1).

Proof. Similar to the proof of last lemma,

u′(c1) = β
T∑
t=2

(δR)t−1u′(ĉt(at))ĉ
′
t(at)(1− ĉ′t−1(at−1)) · · · (1− ĉ′2(a2)).

The FOC at t = 2 gives to

u′(ĉ2) = β̂
T∑
t=3

(δR)t−2u′(ĉt(at))ĉ
′
t(at)(1− ĉ′t−1(at−1)) · · · (1− ĉ′3(a3)).

Multiply by δR(1 − ĉ′2(a2)) on both sides, and substitute back to the equation for u′(c1),

then we obtain

u′(c1) = βδRu′(ĉ2)ĉ
′
2(a2) +

β

β̂
δRu′(ĉ2)(1− ĉ′2(a2)).

Lemma 16. (δR)t−1u′(ĉt(at)) ≥ β̂
β
u′(c1) for all t > 1.

Proof. It is straightforward to see that ĉ′t(at) ∈ [0, 1],∀t > 1. It follows that 1 − ĉ′t(at) +
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β̂ĉ′t(at) ∈ [β̂, 1]. From the previous two lemmas, we have

(δR)t−1u′(ĉt(at)) ≤ (δR)tu′(ĉt+1(at+1)),∀1 < t < T.

u′(c1) ≤
β

β̂
δRu′(ĉ2).

It immediately follows that (δR)t−1u′(ĉt(at)) ≥ β̂
β
u′(c1),∀t > 1.

Lemma 17. The naive agent consumes weakly more than the sophisticated agent in the

first period: c1 ≥ cS1 .

Proof. We argue by contradiction. Suppose c1 < cS1 . Then u′(c1) > u′(cS1 ). From the FOC

of the sophisticate’s problem, we know that

u′(cS1 ) =
β

β̂
(δR)t−1u′(cSt ).

Together with the previous lemma, we obtain

β

β̂
(δR)t−1u′(ĉt(at)) >

β

β̂
(δR)t−1u′(cSt ).

Thus, ĉt(at) < cSt , which is a contradiction because of the zero-profits condition

c1 +
T∑
t=2

ĉt(at)

Rt−1 = a1 =
T∑
t=1

cSt
Rt−1 .

We are now ready to show the proposition. Let c = (c1, · · · , cT ) denote the naive con-

sumer’s equilibrium allocation. Since c also satisfies the zero-profit condition, a revealed-

preference argument applied to the sophisticate’s program gives:

u(cS1 ) +
β

β̂

T∑
t=2

δt−1u(cSt ) ≥ u(c1) +
β

β̂

T∑
t=2

δt−1u(ct). (sA29)
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The naive consumer’s welfare is:

T∑
t=1

δt−1u(ct) =

(
1− β̂

β

)
u(c1) +

β̂

β
u(c1) +

T∑
t=2

δt−1u(ct)

=

(
1− β̂

β

)
u(c1) +

β̂

β

[
u(c1) +

β

β̂

T∑
t=2

δt−1u(ct)

]

≤

(
1− β̂

β

)
u(c1) +

β̂

β

[
u(cS1 ) +

β

β̂

T∑
t=2

δt−1u(cSt )

]

=

(
1− β̂

β

)
u(c1) +

β̂

β
u(cS1 ) +

T∑
t=2

δt−1u(cSt )

≤ u(cS1 ) +
T∑
t=2

δt−1u(cSt ),

where equalities come from algebraic manipulation, the first inequality comes from (sA29),

and the last inequality comes from the previous lemma c1 ≥ cS1 . So the naive consumer’s

welfare is bounded above by the sophisticate’s welfare, which does not converge to the

time-consistent consumer’s welfare (Proposition 9), establishing the result.

Proof of Proposition 9. We argue by contradiction. Suppose instead that

lim inf
T↗+∞

(
WC
T −W S

T

)
= 0,

so that there exists a subsequence {Tn : n ∈ N} with limn↗+∞
(
WC
Tn
−W S

Tn

)
= 0.

Let cS = (cS1 (T ), · · · , cS(sT , T )) denote the equilibrium consumption for the sophisti-

cated agent in the (truncation of the) model with T periods. Let cC = (cC1 (T ), · · · , cC(sT , T ))

denote the equilibrium consumption for the time-consistent agent in the (truncation of the)

model with T periods. Passing to subsequences, we can assume both limits limn↗∞ c
S
1 (Tn)

and limn↗∞ c
C
1 (Tn) exist.34

34That is, there exists a subsequence {Tnm
} of {Tn} such that the limit of cS1 (Tnm

) exists. Similarly, con-
sider the sequence {cC1 (Tnmk

)}. Again, pick a subsequence {Tnmo
} of {Tnm

} such that the limit cC1 (Tnmk
)

exists. For notational simplicity, and with no loss of generality, we can replace the original sequence {Tn}
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We first claim that the sophisticate consumes strictly more in the first period than the

time-consistent consumer in the limit: limn↗∞ c
S
1 (Tn) > limn↗∞ c

C
1 (Tn). Suppose instead

that limn↗∞ c
S
1 (Tn) ≤ limn↗∞ c

C
1 (Tn). The FOCs of the time-consistent consumer’s pro-

gram give:

u′(cC1 (Tn)) = (δR)t−1Eu′(cC(st, Tn)), u′(cS1 (Tn)) = β(δR)t−1Eu′(cS(st, Tn)).

We claim that lim infn↗∞(cS(st, Tn) − cC(st, Tn)) < 0,∀t > 1. Otherwise, there exists

t > 1 and lim infn↗∞(cS(st, Tn) − cC(st, Tn)) ≥ 0. Passing to subsequences, we can

assume that limn↗∞ c
S
t (st, Tn) and limn↗∞ c

C
t (st, Tn) exist.

It follows that

lim
n↗∞

(δR)t−1Eu′(cS(st, Tn)) > lim
n↗∞

β(δR)t−1Eu′(cS(st, Tn))

= lim
n↗∞

u′(cS1 (Tn))

≥ lim
n↗∞

u′(cC1 (Tn))

= lim
n↗∞

(δR)t−1Eu′(cC(st, Tn))

≥ lim
n↗∞

(δR)t−1Eu′(cS(st, Tn)),

where the first inequality is strict because of β < 1, the second equation comes from

the sophisticate’s FOC, the third comes from limn↗∞ c
S
1 (Tn) ≤ limn↗∞ c

C
1 (Tn), the fourth

comes from the time-consistent consumer’s FOC, the last comes from lim infn↗∞(cS(st, Tn)−

cC(st, Tn)) ≥ 0. This is a contradiction. So lim infn↗∞(cS(st, Tn)− cC(st, Tn)) < 0,∀t >

1. But then it violates the zero-profit condition since

0 = lim inf
n↗∞

Tn∑
t=1

E(cS(st, Tn)− cC(st, Tn))

Rt−1 < 0.

What we have shown now is that in the first period the sophisticate consume strictly more

with this last subsequence {Tnmo
}.
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than the time consistent consumer in the limit: limn↗∞ c
S
1 (Tn) > limn↗∞ c

C
1 (Tn).

Define lT (c1) as

lT (c1) = max
c(s2),··· ,c(sT )

T∑
t=2

δt−1u(c(st)),

subject to E
∑T

t=2
c(st)
Rt−1 = E

∑T
t=1

w(st)
Rt−1 − c1. We claim that l′′T (c1) < 0. Let λl denote the

Lagrangian on the zero-profit constraint.

lT (c1) =
T∑
t=2

δt−1u(c(st)) + λl

(
E

T∑
t=1

w(st)

Rt−1 − c1 − E
T∑
t=2

c(st)

Rt−1

)
.

Taking derivative with respect to c1: l′T (c1) = −λl. Then, l′′T (c1) = −λ′l.

Taking derivative on the both sides of FOC, δt−1u′(ct) = λl
Rt−1 , with respect to c1:

∂ct
∂c1

=
λ′l

(δR)t−1u′′(ct)
.

Taking derivative with respect to c1 on the zero-profit condition:

−1 =
T∑
t=2

∂ct
∂c1

Rt−1 =
T∑
t=2

λ′l
(δR)t−1u′′(ct)

.

Thus, λ′l > 0 because u′′ < 0. So l′′T (c1) = −λ′l < 0.

It implies that u(c1) + lT (c1) is a concave function of c1 for any T . Since u is bounded

and δ < 1, we can use dominated convergence theorem. Taking limit of T to infinity,

lim supT↗∞ u
′′(c1) + l′′T (c1) ≤ lim supT↗∞ u

′′(c1) < 0, since we assume strict concavity

of u. So limT↗∞[u(c1) + lT (c1)] is a strict concave function of c1. Together with our first

claim that limn↗∞(cS1 (Tn)−cC1 (Tn)) > 0 and the fact that cC1 (T ) maximizes u(c1)+lT (c1),

it follows that

lim
n↗+∞

(
u(cC1 (Tn)) + lT (cC1 (Tn))− u(cS1 (Tn))− lT (cS1 (Tn))

)
> 0,

i.e. limn↗+∞
(
WC
Tn
−W S

Tn

)
> 0, a contradiction. So the welfare loss for sophisticated
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agents is bounded below away from 0.

Proof of Lemma 9. We first show that the (IC) constraints for self-2 must be binding for

all m2 ∈ supp(σ2) and m′2 ∈ supp(σ̂2). We note that the (IC) must be binding for at least

onem′2, because otherwise we can increase consumption on the perceived path and increase

the self 1’s payoff. Now suppose there exists m2 ∈ supp(σ2) and m′′2 ∈ supp(σ̂2) such that

the corresponding (IC) is slack. In this case, we show that from self 1’s perspective, the

perceived path m′′2 gives a higher payoff than the perceived path m′2 (using a coefficient

of 1). To see that, notice that from (PC) constraint, the perceived self-2 is indifferent

between m′2 and m′′2 (using a coefficient of β̂), but self-2 strictly prefers m′2 over m′′2 (using

a coefficient of β). By the single crossing property, it implies that m′′2 gives a strictly higher

payoff than m′2 in calculating self 1’s perceived payoff (using a coefficient of 1). Then,

replacing terms in options m′2 with terms in options m′′2 would not affect any constraints,

but it would increase self 1’s perceived payoff, a contradiction to the optimality of the

original contract.

Next we show that c2(s2, m̂2) = 0,∀m̂2 ∈ supp(σ̂2). Otherwise, consider a pertur-

bation in which lowers u(c2(s2, m̂2)) by βε and increases u(cT (sT , m̂2, σ̂3, · · · , σ̂T−1)) by

ε. This perturbation preserves the IC constraints and maintains all other constraints, but

increases self 1’s perceived payoff.

Substituting the binding IC constraint into the objective function, we obtain (up to a

constant):

max
{c(st,ht)}

u(c(s1)) + δEu(c(s2, σ2)) + βE

[
T∑
t=3

δt−1u(c(st, σ2, σ̂3, ..., σ̂T−1))

]
.

Repeating the same analysis, we have a new program (up to a constant):

max
{c(st,ht)}

Eδt−1u(c(st, σ2, · · · , σT−1)) + βE
[
δt−1u(c(sT , σ2, σ3, ..., σT−1))

]
.

subject to the zero-profit condition.
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Our final step is showing that the equilibrium path σ2, σ3, ..., σT−1 involves only one

option. This is because of Jensen’s inequality and the strict concavity of u(·). If there

are multiple options in the στ , then merging those options can strictly increase self 1’s

perceived payoff. This completes the proof.

Proof of Lemma 2 for General Income Distributions and Arbitrary T

This appendix establishes the equivalence between the naive agent’s program and the aux-

iliary program for general income distributions and arbitrary T . As in the text, we consider

the one-sided commitment case. With two-sided commitment, one can ignore the non-

lapsing constraints in the proof below.

Recall that the naive agent’s program is

max
c(st,ht)

u(c(s1)) + βE

[
T∑
t=2

δt−1u(c(st, (B,B, ..., B)))

]
,

subject to
T∑
t=1

E

[
w (st)− c (st, (A,A, ..., A))

Rt−1

]
= 0, (Zero Profits)

u(c(sτ ,
(
hτ−1, B

)
)) + β̂E

[∑
t>τ

δt−τu
(
c
(
st,
(
hτ−1, B,B, ..., B

)))∣∣∣∣∣ sτ
]

(PCC)

≥ u(c(sτ ,
(
hτ−1, A

)
)) + β̂E

[∑
t>τ

δt−τu
(
c
(
st,
(
hτ−1, A,B, ..., B

)))∣∣∣∣∣ sτ
]
,

and

u(c(sτ ,
(
hτ−1, A

)
)) + βE

[∑
t>τ

δt−τu
(
c
(
st,
(
hτ−1, A,B, ..., B

)))∣∣∣∣∣ sτ
]

(IC)

≥ u(c(sτ ,
(
hτ−1, B

)
)) + βE

[∑
t>τ

δt−τu
(
c
(
st, (h

τ−1, B,B, ..., B)
))∣∣∣∣∣ sτ

]
,
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and non-lapsing constraints:

u
(
c(sτ , (h

τ−1, A))
)

+ βE

[∑
t>τ

δt−τu
(
c(st, (h

τ−1, A,B, ..., B))
)∣∣∣∣∣ sτ

]
≥ V (sτ ), ∀sτ ,

(NL)

and

u
(
c(sτ , (h

τ−1, B))
)

+ β̂E

[∑
t>τ

δt−τu
(
c(st, (h

τ−1, B,B, ..., B))
)∣∣∣∣∣ sτ

]
≥ V̂ (sτ ), ∀sτ .

(PNL)

We first note that the incentive compatibility constraints (IC) must be binding on the

equilibrium path, because otherwise we can increase c(sT , hτ , B,B, ..., B) without affect-

ing all other constraints while weakly increase the agent’s perceived utility. Given incentive

constraints are binding, we can simplify (PC) as

u(c(sτ , (h
τ−1, B))) ≤ u(c(sτ , (h

τ−1, A))). (sA30)

Substituting the binding IC constraints in the objective gives

E
T−1∑
t=1

δt−1u(c(st, A, · · · , A)) + βδT−1u(c(sT , A, · · · , A)) + (β − 1)δt−1u(c(st, A, · · · , A,B)).

Since β < 1, we want to choose c(st, A, · · · , A,B) as small as possible (subject to the

constraints). We now show that under the optimal contract, c(st, A, · · · , A,B) = 0. We

need to verify that setting c(st, A, · · · , A,B) = 0 would not violate all other constraints.

First, PC holds because (sA30) holds.

We then verify that PNL holds if NL holds. Suppose {ĉ(st, htτ ) : t ≥ τ} solves the

perceived outside option program V̂ I(sτ ). So we have

V̂ I(sτ ) = u(ĉ(sτ , h
τ
τ )) + β̂E[δt−τu(ĉ(st, (h

τ
τ , B, · · · , B)))|sτ ]. (sA31)

We next verify the perceived non-lapsing constraint at (sτ , (h
τ−1, B)) = (sτ , (A, · · · , A,B)).
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Other perceived non-lapsing constraints can be similarly verified. Note that

u(c(sτ , (h
τ−1, B))) + β̂E

[∑
t>τ

δt−τu(c(st, (h
τ−1, B, · · · , B)))

∣∣∣∣∣ sτ
]

=

(
1− β̂

β

)
u(0)) +

β̂

β
u(c(sτ , (h

τ−1, B))) + β̂E

[∑
t>τ

δt−τu(c(st, (h
τ−1, B, · · · , B)))

∣∣∣∣∣ sτ
]

(sA32)

=

(
1− β̂

β

)
u(0) +

β̂

β

(
u(c(sτ , (h

τ−1, A))) + βE

[∑
t>τ

δt−τu(c(st, (h
τ−1, A,B, · · · , B)))

∣∣∣∣∣ sτ
])

(sA33)

≥

(
1− β̂

β

)
u(0) +

β̂

β
V I(sτ ) (sA34)

≥

(
1− β̂

β

)
u(0) +

β̂

β

(
u(ĉ(sτ , h

τ
τ )) + βE

[∑
t>τ

δt−τu(ĉ(st, h
τ
τ , B, · · · , B))

∣∣∣∣∣ sτ
])
(sA35)

=

(
1− β̂

β

)
u(0) +

β̂

β
u(ĉ(sτ , h

τ
τ )) + β̂E

[∑
t>τ

δt−τu(ĉ(st, h
τ
τ , B, · · · , B))

∣∣∣∣∣ sτ
]

(sA36)

=

(
1− β̂

β

)
u(0) + (

β̂

β
− 1)u(ĉ(sτ , h

τ
τ )) + V̂ I(sτ ) (sA37)

≥ V̂ I(sτ ), (sA38)

where (sA32) follows from c(sτ , (h
τ−1, B)) = 0, (sA33) from (IC), (sA34) from the actual

non-lapsing constraints (NL), (sA35) follows from a revealed preference argument since ĉ

is also feasible in program V (sτ ), (sA36) follows from simple algebra, (sA37) uses (sA31),

and (sA38) follows from ĉ(sτ , h
τ
τ ) ≥ 0.

By the previous argument, the perceived choice constraints and the perceived non-

lapsing constraints can be ignored, so the program reduces to:

maxE
T−1∑
t=1

δt−1u(c(st, (A, · · · , A))) + βδT−1u(c(sT , (A, · · · , A))),
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subject to the zero-profit condition and the non-lapsing constraints. Since the objective is

the same as the utility of a dynamically consistent consumer, we can replace the non-lapsing

constraints by front-loading constraints. So c1E = c1A.

Corollary 1 with One-Sided Commitment

This appendix generalizes Corollary 1 for settings with one-sided commitment, as men-

tioned in footnote 18:

Corollary 2. Consider the model with one-sided commitment. There exists a perception-

perfect equilibrium that does not depend on the consumer’s naiveté β̂ ∈ (β, 1]. Moreover,

any perception-perfect equilibrium has the same consumption path, which is continuous in

β ∈ (0, 1].

Proof. By Lemma 4, we can focus on the auxiliary program with one-sided commitment.

Let x(st) ≡ u(c(st)) denote the agent’s utility from the consumption he gets in state st,

and consider the dual program:

max
{x(st)}

T∑
t=1

∑
st∈St

p(st|s1)
w(st)− u−1 (x(st))

Rt−1 , (sC1)

subject to

T−1∑
t=1

∑
st∈St

δt−1p(st|s1)x(st) + β
∑
sT∈ST

δT−1p(sT |s1)x(sT ) ≥ u, (sC2)

and

∑
t≥τ̃

∑
st∈St

δt−τ̃p(st|sτ̃ )x(st) + β
∑
sT∈ST

δT−τ̃p(sT |sτ̃ )x(sT ) ≥ V A
T (sτ̃ ) ∀sτ̃ ∈ Sτ̃ (sτ ), ∀τ,

(sC3)

This program corresponds to the maximization of a strictly concave function over a convex

set, so, by the Theorem of the Maximum, the solution is unique and continuous in β ∈
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(0, 1]. Moreover, since the program does not involve β̂, the equilibrium consumption path

is not a function of the consumer’s naiveté.

Once we pin down the unique consumption path, the baseline options are either zero

or determined by the binding IC constraints and non-lapsing constraints (See the proof of

Lemma 4). In particular, these constraints do not depend on the consumer’s naiveté. So the

equilibrium consumption vector is not a function of the consumer’s naiveté.

Removing Commitment Power

This appendix presents the formal analysis of the welfare effect of removing commitment

power, as described in Subsection 3.1. We show that, for a fixed contract length, removing

commitment power can make the consumer better off. To formalize the argument given

in the text, let VST denote the agent’s welfare from smoothing consumption perfectly in the

first T − 1 periods and consuming zero in the last period:

VST ≡ max
{c(st)}

T−1∑
t=1

E
[
δt−1u (c(st))

]
+ δT−1u(0),

subject to
T−1∑
t=1

E

[
c(st)

Rt−1

]
≤

T∑
t=1

E

[
w(st)

Rt−1

]
.

Let VNST denote the agent’s welfare from consuming the endowment in each state:

VNST ≡
T∑
t=1

E
[
δt−1u (w(st))

]
.

Proposition 10. Suppose agents are time inconsistent and VNST > VST . There exists β̄ > 0

such that if β < β̄, the welfare with one-sided commitment is greater than the welfare with

two-sided commitment.

Proof. First, note that the welfare with two-sided commitment approaches to VS as β ap-

proaches to zero. It suffices to show that the welfare with one-sided commitment is bounded
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below by VNS . In the remainder of the proof, we will therefore focus on the equilibrium

with one-sided commitment.

We claim that for β close to zero, the equilibrium consumption equals the endowment

in all last-period states: c(sT ) = w(sT ),∀sT ∈ ST (s1). To see this, consider a pertur-

bation that shifts consumption from a state in the last period to the preceding state, that

is, it increases c(sT−1) by ε > 0 and reduces c(sT ) by εR
p(sT |sT−1)

for some sT ∈ ST with

p(sT |sT−1) > 0. Let WsT denote the future value of all income up to state sT . The amount

WsT is how much the agent would be able to consume at state sT if he saves all his income

from all periods for the last one. It therefore gives an upper bound on how much the agent

can consume in the last period. Since there are finitely many states and WsT < ∞ for all

sT , we can take the uniform bound W ≡ maxsT WsT . This perturbation affects the LHS of

the non-lapsing constraint at state st by

p(sT−1|st) [u′(c(sT−1))− βRδu′(c(sT ))] δT−1−tε

> p(sT−1|st) [u′(0)− βRδu′(WsT )] δT−1−tε,

which is positive whenever
u′(0)

Rδu′(W )
> β. (sC1)

The perturbation has exactly the same effect on the objective function (scaled down by δt

and multiplied by the probability of reaching state sT−1). Thus, as long as β satisfies (sC1),

the equilibrium will have the smallest consumption possible in the last period, which is

determined by the non-lapsing constraint.

Substituting c(sT ) = w(sT ) in the auxiliary program, it becomes analogous to the

program of a time-consistent agent except that the contracting problem ends at period T−1

instead of period T :

max
{c(st)}

T−1∑
t=1

∑
st∈St(s1)

δt−1p(st|s1)u (c(st)) ,
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subject to
T−1∑
t=1

∑
st∈St(s1)

p(st|s1)
w(st)− c(st)

Rt−1 = 0,

and
T−1∑
t=τ̃

∑
st∈St(sτ̃ )

δt−τ̃p(st|sτ̃ )u (c(st)) ≥ (V ′)C(sτ̃ ) for all sτ̃ ,

for all τ̃ = 2, ..., T , where (V ′)C(sτ̃ ) denotes the outside option for the time-consistent

agent in this (T − 1)-period economy.

It is straightforward to verify that (V ′)C(s1) is bounded below by the utility from con-

suming the endowment in all states. If the endowment already satisfies the non-lapsing

constraints, then the result follows from revealed preference because the endowment also

satisfies zero profits. If the endowment does not satisfy the non-lapsing constraints, any

renegotiation of the endowment satisfies the zero-profits condition and gives the time-

consistent agent a strictly higher utility conditional on that state. So, replacing the en-

dowment by the solution of the continuation program in all states where the non-lapsing

constraints are violated leads to a profile of consumption that satisfies the constraints and

gives a utility greater than the utility of consuming the endowment in each period. It thus

follows by revealed preference that the solution of the program also gives a higher utility

than consuming the endowment in all states.

Since the solution of a naive agent coincides with the solution of this auxiliary program,

their welfare is also bounded below by the welfare from consuming their endowment in all

periods VNS when (sC1) holds. Therefore, by continuity, if VNS > VS , there exists β̄N

such that if β < β̄N , the welfare with one-sided commitment dominates the welfare with

two-sided commitment.

Notice that for generic endowment paths, the condition that VNST > VST fails when

T is large enough. So, as the contracting length grows, it becomes increasingly hard to

satisfy the conditions for the time-inconsistent consumer to obtain higher welfare without

commitment, as described in the text.
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Proof of Claim in Section 3.5

In this appendix, we establish that a naive agent saves more than a sophisticate in the first

period. Given a vector x = (x1, x2, · · · , xT ) with x1 = 1 consider the program:

max
(c1,··· ,cT )

T∑
t=1

xtu(ct), (sD1)

subject to
T∑
t=1

ct
Rt−1 =

T∑
t=1

w

Rt−1 . (sD2)

The first-order conditions of this program are:

Rt−1xtu
′(ct) ≤ λ, ∀t, (sD3)

where λ is the Lagrangian multiplier on the zero-profits condition (sD2). The inequality

becomes equality whenever ct > 0.

The consumption path of a naive agent solves this program for

xN =

(
1,
DT−1

DT−2
,
DT−1

DT−3
, · · · , DT−1

D1

, DT−1

)
,

whereas the consumption path of a sophisticated agent solves this program for vector

xS = (1, D1, D2, · · · , DT−1) .

Let λN and λS denote the Lagrangian multiplier in the case of a naive agent and a sophis-

ticated agent, respectively. Recall from equation (29), xNt ≥ xSt for all t = 2, · · · , T .

We argue by contradiction and suppose the naive agent consumes strictly more than the

sophisticate in the first period, i.e., cN1 > cS1 . We claim that cNt ≥ cSt ,∀t. Then the claim

together with cN1 > cS1 would violate the zero-profits condition.

To prove the claim, first note that the claim trivially holds if cSt = 0. Now suppose

cSt > 0, then Rt−1xSt u
′(cSt ) = λS ≥ u′(cS1 ). Since cN1 > cS1 ≥ 0, the FOC at cN1 is an
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equality: u′(cN1 ) = λN .

Note that for any t = 2, · · · , T ,

Rt−1xSt u
′(cSt ) = λS ≥ u′(cS1 ) ≥ u′(cN1 ) = λN ≥ Rt−1xNt u

′(cNt ) ≥ Rt−1xSt u
′(cNt ),

where the last inequality comes from xNt ≥ xSt . It follows that u′(cSt ) ≥ u′(cNt ), i.e., cNt ≥

cSt ,∀t = 2, · · · , T . Together with cN1 > cS1 , it contradicts to the zero-profits condition. As

a result, the naive agent must consume weakly less than the sophisticate in the first period

(i.e., the naive agent saves weakly more than the sophisticate in the first period).

Moreover, the naive agent must consume strictly less than the sophisticate in the first

period if limc↘0 u
′(c) = +∞. In this case, we have an interior solution, and (sD3) becomes

equality because consumption is always strictly positive. To see that cN1 < cS1 , we need

to show that there is a contradiction when cN1 = cS1 . We recall that xNt > xSt for all

t = 2, · · · , T − 1. Now for t = 2, · · ·T − 1,

Rt−1xSt u
′(cSt ) = u′(cS1 ) = u′(cN1 ) = Rt−1xNt u

′(cNt ) > Rt−1xSt u
′(cNt ),

which implies that cNt > cSt , for 2 ≤ t ≤ T −1. We still have cNT ≥ cST . Together, we have a

contradiction to the zero-profits condition. So if limc↘0 u
′(c) = +∞, the naive agent must

consume strictly less than the sophisticated agent in the first period.

38


