Supplementary Appendix (Not For Publication)

Omitted Proofs

Proof of Lemmas 1 and 3. We consider the model with one-sided commitment (Lemma
3). The proof of the two-sided commitment case (Lemma 1), which follows similar steps
but is simpler, is omitted.

Suppose the period-t self of the consumer offers a contract C;. Specifically, a contract
at time t, C;, specifies consumption on each possible state in each future time 7 > t.
Denote the set of possible states by K, in which the first subscript corresponds to the
time in which the contract is offered and the second subscript corresponds to the decision-
making time 7. The contract specifies consumption for each different income states, so
the contracting space is generally greater than the space of income states. In addition,
perception-perfect equilibrium imposes no restrictions on K, i.e., K, , can be arbitrary.
To keep analysis tractable, we assume that K - has a product structure and only depends on
decision making time 7. Otherwise, we can always add more states that are never reached
so that it has a product structure and the resulting equilibrium is outcome-equivalent to
the original equilibrium. Specifically, we write K;, = S; x H,, in which H. consists
of all the possible income-independent messages/actions that the agent can send at time
7. The income-independent messages can be arbitrary. One of the reasons that an income-
independent message can arise is from the consumer’s different beliefs. Since we allow any
contracts, we cannot impose what types of income-independent messages the consumer
can send. For simplicity, we call H, the income-independent history. Without loss of
generality, H; = (). Denote h; a generic element in H;. We call h; an income-independent
message. Denote H,(h;) the states that can be reached at time 7 from an earlier history
h; € H, for ™ > t.

Fix a contract, we next write down the agent’s strategy profile. Consider an agent
who makes a decision at time 7. Suppose the income-independent messages that has been

reached is h,_1, which is an element in H,_;. At time 7, the agent learns the income state,



i.e., s, is realized. The agent needs to decide which message a, € A(H,(h,_1)) to send,
where A(-) represents the set of lotteries. If there is one-sided commitment, the agent also
needs to decide whether he will lapse or not, in which case, the strategy can be summarized
by a pair (d., a,), where d, € A({0,1}). If d, = 1 with probability 1, then the agent stays,
otherwise the contract is lapsed with a positive probability.

As described in the body of the paper, the perception-perfect equilibrium is solved
by treating the agent’s decisions in each period as if it were taken by a different player
(i.e., a different “self”’). The main claim is that for any perception-perfect equilibrium, the
consumption vector must solve the program (P’).

For the ease of exposition, we say that two perception-perfect equilibria are equiva-
lent if all selves of the consumers have same actual and perceived consumption. We will

establish the result through two separate claims:

Claim 2. Fix a perception-perfect equilibrium. There exists an equivalent perception-

perfect equilibrium in which the agent never lapses (d, = 1,V1).

Proof. Consider a perception-perfect equilibrium in which the agent lapses in some period
d. = 0 with a positive probability, replacing it with a contract C” from another firm. Since
the other firm cannot lose money by offering this new contract, the old firm could have
accepted a contract that substituted the terms of the old contract from this period on with
the terms of the new contract, and the agent would have accepted to remain with the old
firm. The constructed new contracts together with the agent’s optimal decision forms a

perception-perfect equilibrium that is equivalent to the original one. 0

Claim 3. Fix a perception-perfect equilibrium. There is an equivalent perception-perfect
equilibrium that offers two options following any history: #|H(h;_1)| < 2, forall hy_ €
H, 1, t>2.

Proof. From the previous claim, we can restrict attention to equilibria in which the agent
never lapses. Suppose t; < t2 < t3. Note that self ¢, s prediction about self ¢3’s decision

coincides with self ¢,’s prediction about self ¢3’s decision. Restricting H;(h;_1) to two

2



messages — one that the agent will choose and another one that the agent thinks that he
will choose — does not affect the actual consumption or the perceived consumption. Put
differently, if H,(h;_1) has at least three messages, then there is at least one of them that
the agent never sends and the agent never believes other selves would send. Therefore, we
can restrict the income-independent message space to be at most two: one that the agent

actually choose, and one that the agent thought he would choose. [

Given these two claims, a contract offered by self ¢, C;, must maximize the agent’s
utility subject to the zero profits, incentive compatibility, perceived choice, and non-lapsing
constraints, concluding the proof of Lemma 3.

]

Proof of Lemmas 2 and 4. In the text, we presented the proof for the case with two-sided
commitment when there is no uncertainty and 7' = 4. Here, we consider the model with
one-sided commitment case (Lemma 4), still assuming no uncertainty and 7" = 4. The
proof for stochastic income and arbitrary 7" is presented in the supplementary appendix.

There are two ICs:

u(ca(A)) + Blou(es(A, B)) + 6%u(ca(A, B))] > u(ca(B)) + Blou(cs(B, B)) + 6*u(ca(B, B))],
(sA1)

u(cs(A, A)) + Boulcs(A, A)) > u(cs(A, B)) + Bou(cs(A, B)). (sA2)

First, note that (sA1) must bind at an optimum (otherwise, we can raise c4(B, B), giving the

agent a higher utility). Substitute the binding (sA1) in the objective to eliminate c4(B, B):
u(cy) + du(ca(A)) + Bl0%u(cs(A, B)) + 8*u(cy(A, B))] + (B — 1)du(cz(B)).

Similarly, (sA2) must bind (otherwise, we can raise c4( A, B), increasing the agent’s utility).



Use the binding (sA2) to rewrite the objective as:
u(cy) +ou(ca(A))+0%u(es(A, A))+ B8 u(cy(A, A)) — (1—B)[0u(ca(B)) +0%u(cs(A, B))).

Since # < 1, we should pick c2(B) and c3(AB) as small as possible subject to the con-
straints. Substituting co(B) = ¢3(AB) = 0 back in this expression concludes the proof
of Lemma 2. For the proof of Lemma 4, it remains to be verified that the non-lapsing
constraints imply perceived non-lapsing constraints if we set co(B) = c3(A4, B) = 0.

Let ¢ denote a solution to the perceived outside option program, and let ‘721 = u(és) +
B(6u(és(B)) + 6%u(é¢4(B))). We will use binding ICs constraints to obtain a lower bound
on the perceived payoff of keeping the contract and show that is greater than the perceived

outside option 1721 . We first use the the binding IC for self 2 to rewrite the perceived payoff:

u(es(B)) + B(6u(cs(BB)) + 6*u(ca(BB))

= u(0) + gﬁ(éu(Cg,(B, B)) + 6*u(cs(B, B))
= u(0) + g [u(c2(A)) + B(0u(es(A, B)) + 6*u(ca(AB))) — u(0)]
= (1 — g) u(0) + 3 [u(c2(A)) + B(0ulcs(A, B)) + 6*u(ca(AB)))]

where the first equality follows from c3(B) = 0 and the second uses the binding IC
constraint (sAl). From the non-lapsing constraint at time 2, we know that u(cy(A)) +

B(du(cs(A, B)) + 6*u(cy(AB) > V], giving a lower bound to the perceived payoff.

u(cy(B)) + B(u(cs(BB)) + 6%u(cy(BB)) > (1 - g) u(0) + gVQI

Since V! is the best possible outside option at time 2, in particular, it is greater than or



equal to the utility provided by the contract ¢, implying

+ B(6u(cs(BB)) + 6*u(cs(BB))

Q|Q>

(V4
/\

) (é2) + B(0ul(és(B)) + 0*u(és(B))] -

Rearranging,

B 3 ~ ~ A ~ 2 /A
=|1- B) u(0) + <B — 1) u(ée) + [U(CQ) + B(0u(és(B)) + 07 u(éq(B))
&) +

where the inequality comes from ¢, > 0 and B > [ and the last line comes from the
definition of \721 . This shows that the perceived non-lapsing constraints hold.

We next verify that all the perceived choice constraints hold. Notice that

u(es(A, B)) + Bou(cs(A, B)) = u(0) + Béu(ca(A, B))

u(cs(A, A)) + Boulca(A, A)))

ey
ﬁ
) —|_ (g > C3 A A)) + U(Cg(A, A)) + BéU(QL(Av A))

> u(e3(A, A)) + 6(5u ca(A (sA3)

where the first line uses u(c3(A, B)) = 0, the second line uses the self 3’s binding IC

constraint (sA2), the third line comes algebraic manipulations, and the last line uses B > f



and c3(A, A) > 0. Similarly,
u(es(B)) + Blules(B, B)) + 6%u(es(B, B)))

= u(0) + B[su(cs(B, B)) + 6*u(ca(B, B))]

~

> u(ca(A)) + Bloules(A, B)) + 8u(ca(A, B))],

[U(CQ(A)> + Blou(cs(A, B)) + 6%u(ca(A, B))]]

(sAd)

where the first line uses co(B) = 0, the second line uses the self 2’s binding IC constraint

(sA1), and the last line uses 5 > 3 and c2(A) > 0. So the perceived choice constraints

hold.

So far, we have shown that co(B) = ¢3(AB) = 0 under the equilibrium contract. We

also showed that we can disregard the perceived choice constraints and perceived non-

lapsing constraints. Recall that c© denotes the consumption on the equilibrium path at time

t. Substituting the binding ICs, the non-lapsing constraints on the equilibrium path can be

simplified to u(cf’) + du(cfy) + -+ + B8 u(cf) > V5.

Therefore, the original program reduces to the auxiliary program:

max u(c1) + 0u(cz) + 6°u(cs) + B6%u(cq),

(c1,c2,¢3,c4)

subject to
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t=1 t=1

u(ey) + oulcer) + -+ B8 u(ey) > VI V2 <t < 4

(sAS5)

(sA6)

(sA7)

]

Proof of Corollary 1. We can focus on the auxiliary program. Let x(s;) = u(c(s;)) denote



the agent’s utility from the consumption he gets in state s;. We study the dual program:

subject to

max Z Z p(5t|31)w<st) _};_1 <x(8t)), (sA8)

e} 7 oS,

Z 5 (sy|s1)x(s) + B Z 6T tp(sp|s))x(sr) > u. (sA9)

This program corresponds to the maximization of a strictly concave function over a convex

set, so that, by the Theorem of the Maximum, the solution is unique. Moreover, the con-

sumption path is continuous in 3 € (0, 1]. Finally, the program does not involve B so the

consumption path is not a function of the consumer’s naiveté.

Once we pin down the unique consumption path, the baseline options are either zero

or determined by the binding IC constraints, which do not depend on B (see the proof of

Lemma 2). So the equilibrium consumption vector is not a function of the consumer’s

naiveté.

]

Proof of Claim 1 (from the proof of Theorem 3). First, the time consistent agent’s welfare

is exactly given by the outside option,

WE(e) = B0 ule(s.)).

The limit of W, (¢) exists by the root test:

limsup /07 u(c(sr))] <6 < 1.
T /Soo

Second, we show the limit of I1(¢) exists using the Cauchy convergence criterion. Specif-



ically, we claim that for sufficiently large 7',

w(sr) = ¢(st) w(sr) | 207" max{[u(-)[}

E——r— < % (e) —II7_,(c) < E R (K (sA10)
The claim follows from a revealed-preference argument. Suppose (¢}, - -, (sp—1)) solves
the program I1$_,(¢). Then (¢}, - ,c/(sp_1),c(s7)) is in the feasible set of the program
I1$ (¢). By the revealed-preference argument, it immediately follows that
w(sy) — c(sr)
17 (e) > E——pg — + 17 (e).
Suppose (c%, - -+, c*(sr)) solves the program I1$(¢). We show that
267 max{|u(-
<c*{+ u’(K{)’ ()|},C*(52),~~ ,c*(sTl)) (sAl11)

is in the feasible set of the program II$_(c). To see that, note that from the Lagrange’s

Mean Value Theorem, it follows that

2T (a0 207 ma ()] S

where § € (¢}, ¢} + %) For sufficiently large T', ¢} + W < K. So

u' (&) > v/(K). Going back to equation (sA12) leads to

. 20T Y max{|u(-)[} —_ T=1 ascd - s
¢ (Cl+ w(K) ) D=2 oA



Then,

o 200 max{u(")[} -1,
u(cl+ o (K) )+EZ<§

> 267 max{|u(-) }—i—EZ(St !
> 267 max{|u(-) }—i—EZét Yu(e,) — E6" tu(c* (7))

= EZét Yule,) + (6" max{|u()|[} — E6T u(c*(s7))) + (67 max{|u(-)|} + BT u(cr))

Z E Z 5t_1u(gt)7
t=1

where the first inequality comes from (sA13), the second comes from noting that (cj, - - - , ¢*(s7))
solves program II (c), the equality comes from algebraic manipulations, and the last step
uses the boundedness of u. So we have shown that (sA11) is in the feasible set of IS, (c).

A revealed-preference argument implies that

< (s) 26" max{|u()|}
Z Rtl a u' (K) ‘

Recall that 11 (¢) = E ZtT:1 % Substituting it back to the previous inequality, we

obtain
w(sr) —c*(sp) 26Tt max{|u(-)|}

7 (¢) 2 M) — B o - S

establishing the right-hand-side of (sA10) because of ¢*(s7) > 0. Since £, %
exists and 6 < 1, for Ve, we can find Tj such that VT3, T > Ty, [T, (¢) — II, (¢)| < e.
This establishes that {I1$ (c)} satisfies the Cauchy convergence criterion, therefore the limit

exists. O]

Proof of Proposition 2. Since ¢* maximizes the welfare function W/ (c), it immediately



follows that W' < W, VT. Thus,

W Wy
lim sup —T < 0. (sAl4)
T /o0 T
Denote d;r = gf: ,Vt =1,---,T. The objective function in the naive agent’s auxiliary
program becomes

T
> dirulcr). (sA15)

t=1

It follows that
T T
= u(ef") = ldyrule’) + (1 — dyr)u(c])]
t=1

T
ZdtTU (ci) + (1 —dr)u(c H)]7
t=1

where the first line comes from the definition and algebraic manipulations and the last step

comes from the fact that ¢/ maximizes (sA15) and that c* is feasible. Rearranging,

H,I
Wy

IV

> [uled) + (1 = dur)[u(ef") = u(c})]

T
t=1
T

k(t—1 . .
Z{ 1+(]€(T ) >[U<Ct )_u(ct)]

t=1

T

= Wi Y T H g lutelh) = u(ep) (sAL6)

=1

where the first line comes from algebraic manipulations, the second line uses the definition
of d; 7, and the last line comes from the definition of W7.

We next show a series of lemmas to bound the second term. Let A\¥ denote the La-
grangian multiplier from the zero-profit condition in the naive agent’s program, and let \*
denote the Lagrangian multiplier from the time-consistent agent’s program. Note that the

solution must be interior solution since lim\ o u/(0) = +o0.
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Lemma 10. There exist A\, \ € (0, +00) such that
A < min(A7, \*) < max(\F,\) <\
Proof. From the first-order-condition, we know that
M=/ (e, N =/ ().

Note that the first period consumption must be between 0 and ) ., 71 = 1-5- The

lemma follows immediately by letting A = v/(0) and A = v’ (15). O

Lemma 11. There exists a constant A > 0 such that |t(u(c) — u(c}))| < A, Vt,VT.

Proof. From the first-order-condition, we know that

M d A X
Rt_tiT =u'(c}), = u'(cf)

Denote g(-) = (u’)7(-). Inverting above equations to solve for ¢ and ¢},

I M dy p . A
“ =9I\ = )04 T I\ e )

Note that du(gy)) = = (;”(x)). Applying Lagrangian Mean Value Theorem, there exists 7,
where %’W <n< %ﬁ{dm, such that
. N, A*
atet - )l =t (s (5 ) ) = (o (5 (sA17)
Ly (M N A8
et VR T R (AL

Using a change of variable © = %, then

2 Adyr < xmin(A\*, )\HdtyT) < n < zmax(\, )\Hd,xT) <z

11



n _ 14k(T-?) 1
Sox > <. Note that d; 7 = ToR(T—1) > TR So,

log(z) log(n) —log(\)
n n(1+k(t—1)) (1_klogR> 77( —k log R )
< < = < : Al
r= Ader — A A - A (A1)

We can rewrite (sA18) as

logx 2\
H *
flulet) = i) < (125 +1) | |
log _
= 2\
( log R ) ’ !
_ | oy )
< 2& logn —log(A) log + ] logn log A n
A\ logR log R [u”(g(n))]
lo
< constant * (”gﬁ,
u”(g(n))]
where the first line uses ¢ = llog = 4+ 1 and Lemma 10, the second line uses z = R}_l,

the third uses (sA19), and the last line collects the first-order terms. Let £ = g(n) and use

Assumption 1, so there exists A > 0 such that |t(u(c) — u(c}))| < A. O
Lemma 12. Zthl + > log(T) for any T > 1.

Proof. Note that log(t 4+ 1) — log(t ) = f:“ 5df < 1. Sum over ¢ from 1 to (T'— 1) to
obtain: log(7T) < 32— 1< ST 3 O

Lemma 13. There exists a constant A’ > 0 such that

)3 %W(d{) —u(cf)| < A VT

12



Proof. Using Lemma 11, it follows that

T T
k(t — 1) (t—1) A
B S _ ] < il
Zl+k(T—1)[u(Ct u(ct) _ZlJrk )1

0 "
g T-1) +Z1+k: —1 t

< k:AT N —k
T14kT-1) 14+kT-1)

| A

Alog(T),

where the first line comes from the lemma 11, the second line comes from algebraic ma-
nipulations, and the last line comes from &£ > 0 and lemma 12. Note that as 7' " oo, the
first term converges to A, and the second term converges to 0. So there exists a constant

A’ > 0 such that

Tok(t—1)
> el ~ uteh)] < AT
t=1
O
Returning to (sA16), we have
W — Wx A
lim inf —T > —liminf — = 0. (sA20)
T /oo T/ o0 T
H,I 1%
Together with (sA14), it implies that lim7 Wy 7 Wr exists, and
W —w
e
O

Proof of Proposition 4. It is easy to construct off-path beliefs that support the full-
information allocation as an equilibrium. We need to show that no other allocation can
be supported as an equilibrium. Suppose there exists a type Bo that does not pick the full
information contract in equilibrium. There are two possibilities: (1) Bo is separated in equi-

librium (i.e., no other type picks the same contract at fo), or (ii) Bo is pooled in equilibrium

13



(i.e. there exists another type that picks the same contract as BO).

Consider case (i) first. Since Bo is the only type picking its contract, that contract must
satisfy IC, PC, and zero profits. Recall that the full information contract is the unique con-
tract that maximizes self 1’s perceived utility subject to IC, PC, and zero profits. Consider
a deviation in which type BO offers the full-information contract in all histories except in
period 1, where it offers a slightly lower consumption than with full information. Note
that lowering c¢; does not affect IC and PC and, by taking c; arbitrarily close to the full-
information consumption, we ensure that the consumer gets a strictly higher perceived
utility while leaving strictly positive profits to the firm, contradicting the assumption that
the original allocation was part of an equilibrium.

Next consider case (ii), so there are at least two types pooled at a contract different from
the full information contract. If the firm breaks even on each consumer, then by the same
argument as before, all consumers would strictly benefit from deviating to offering the full
information contract (with a slightly lower c¢;), which also gives strictly positive profits
for the firm. If instead there is a cross subsidy between types, a type that is providing
a positive profit can strictly benefit from deviating to the full information contract (with
a slightly lower ¢;). Moreover, by taking c; close enough to one in the full-information
contract (which maximizes the perceived utility and leaves zero profits), we ensure that

deviation is profitable. U

Proof of Proposition 5. Suppose we have an equilibrium in which at least one naive type
does not pick the full-information contract. Using the same argument as in Proposition 4,
that type cannot be separated or pooled with other naive types only. Therefore, the only
remaining case is one where at least one naive type pools with the sophisticated type.

But note that the contract that a sophisticated type would offer under full information of-
fers a fixed consumption in each period (no alternative options), maximizing his perceived
utility at time 1 under the zero profits constraint. Therefore, he must be cross subsidized
in order to choose another contract (i.e., the firm must make strictly negative profits from

serving him). But since the firm would not accept a contract that makes negative profits,

14



this means that the firm must make strictly positive profits on some naive type that is pool-
ing with the sophisticated type. But then this naive type would strictly profit from deviating
to full information contract, which maximizes his perceived utility at time 1 subject to the

zero profits constraint. 0

Proof of Lemma 5. Without loss of generality, we use the following normalization u(0) =
0 in our analysis below. The proof follows by contradiction. Suppose there is an equilib-
rium in which two types, 3;, and By > [3r, offer their full information contracts, C* and
CH . We show that these contracts cannot be part of an equilibrium when 7' is large enough
since type 3z would deviate and pick C*, leaving the firm with negative profits.

Note that, by the binding IC constraint for type f3;, if type S5 picks C%, he ends up
choosing B rather than A. In this case, the firm offering C* makes negative profits. To see
this, suppose instead that the firm makes a non-negative profit from this contract. But this
would mean that the non-flexible contract that gives only the baseline consumption would
also solve type (31,’s program, which contradicts Corollary 1.

Type By ’s perceived utility from C* equals:

)+ Bu Yy 6 u(et (B, , B))

=2
T
_ o 5_L6H-u(cf) + %U(Cf) + By 8 ulef (B, B))
t=2
- T
= BBty 0 o)+ 5,3 kB B)
| =2
_ B - BHU(CL) i Bu -Tizl ST u(el (A, - A)) + BTt u(ck(A, - - A))
B ! AL t=1 o | " o |
T-1
= Bty 1 B ST (A, A 4 BT A, - A)
L L=

T—1
= U(Cf) + g_H Z 5t71u(CtL(A7 T >A)) + 5H5T71U(C§‘(A7 T >A))
L
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T-1
> D 0 el (A A)) + Bl (A A))
t=1

T
- u(c{{) + BH Zét_lu(cf(‘Bu e 7B))
t=2
where the second, third, fifth, and sixth lines follow from algebraic manipulations, the
fourth line substitutes the binding (IC) for the low type, and the last line uses the binding
(IC) for the high type. The strict inequality on the seventh line uses the following facts:
B > Br, uy(A, A...; A) > 0 with strict inequality for at least one ¢, and, from Theorem

1, the welfare of time-inconsistent consumers converge to the welfare of time-consistent

consumers
-1 -1
i t—1, (L T—1,,000) — 1i t—1, ( H T—1,,(HY
Jimn 2 8" uley) + Bud” ulcr) T%O;(S u(c;) + Bud” " u(cr)

Therefore, for T" sufficiently large, the S5 consumer would have an incentive to deviate and

choose 37, consumer’s full-information contract while taking the baseline option. [

Proof of Lemma 6. We argue by contradiction. Fix an equilibrium in which Sy does not
get his full-information contract. First, suppose that firms make non-negative profits from
Bu. Suppose By deviates and offers his full-information contract. By a single-crossing
argument, if type 5y, got Sy ’s full-information contract, he would always choose option A,
so the firm would break even on both types under type 3 ’s full-information contract. Since
the full-information contract maximizes S ’s perceived utility among those that make zero
profits, 5 has an incentive to deviate to it.

Suppose, instead, that the firm makes strictly negative profits on type Sy. Then firm
optimality requires that both types pool on the same contract C and the firm makes strictly
positive profits on type ;. To generate different profits, these two types must be getting
different allocations on the equilibrium path.

We will construct a deviation contract C(¢) such that whenever the 55 consumer weakly

benefits from the deviation, the 3, consumer strictly benefits from the deviation. By D1
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criteria, we should assign zero weight to the type Sy and all the weight to the type [,
consumer. Given that firms make positive profits from the 5 consumer’s equilibrium con-
tract, firms would charge a price such that the §;, consumer are better off with C(¢) than the
contract C, a contradiction. Since both types have the same naiveté parameter B , they both
believe they will choose the same options. Let (¢o, -+, ¢ér) denote their perceived con-
sumption stream. Construct a perturbation of the equilibrium contract, C(¢), by decreasing
the last-period perceived consumption by € and adjusting the other options so that (IC) and
(PC) hold for both types. Upon observing contract C(¢), the firm must assign full weight to

type 5. This is because whenever [ benefits from deviating to this contract (i.e., when

the firm’s price is lower than —ﬁHéT_l%e, (1, also benefits from this deviation (i.e.,
when the firm’s price is lower than —(3 0T 1 Zl/((‘g)) e. Therefore, this candidate equilibrium

does not satisfy D1. U

Proof of Lemma 7. To show that the proposed equilibrium survives D1, we show that if

(1, can benefit from a deviation to C’, then By strictly benefits from the deviation as well.
Recall that they have the same perceived time-consistency parameter B , so their per-

ceived consumption from the contract C" are the same, denoted as (¢, ¢, - - - , ¢/). Suppose

(1, can benefit from the deviation:
T T
u(@) + By 0@ (B, B)) <uldh) + By 6 u(d). (sA21)
t=2

t=2

By a single-crossing argument, since ¢ solves (;’s program (and therefore his IC must

bind), type Sy’s IC cannot hold:

T T
u(e!) + B >0 u(e/ (B, -+, B)) < u(d) + Bu Y _ 6" ulc)), (sA22)
t=2 t=2

so [y also benefits from this deviation. According to D1, we must assign zero weight on

B, and full weight on S. Because Sy gets his full-information contract in any equilibrium

17



satisfying D1 (Lemma 6), we must have

T T
u(ct) + Bu Z 8" tulef (B, -, B)) > u(c)) + fu Z 5 tu(c}), (sA23)
t=2 t=2

a contradiction to (SA22). So we have

T T
u(e) + Br Z 8 tu(e (B, -, B)) > u(d) + Bz Z 6 tu(c), (sA24)
t—2 t—2

showing that 3, does not have a profitable deviation and the proposed equilibrium survives
Dl1.

Next, we show that in any equilibrium satisfying D1, the consumption path corresponds
to the least costly separating allocation. Suppose there exists another equilibrium that sur-
vives D1. As we showed above, Sy gets his full-information contract. Let C' denote 3;’s
equilibrium contract, and the contract is different from the leastly costly separation allo-
cation (A1). Suppose (3, deviates and offers a contract that coincides with the solution to
(A1) except that it reduces consumption in the first period by a small € > 0. By the IC
constraint, the Sy consumer is strictly worse off by choosing this new contract instead of
his full-information contract. By D1, firms must assign full weight to 5. By choosing ¢

small enough, 3, strictly benefits from the deviation. 0

Proof of Proposition 6. From the previous lemmas, the equilibrium is given by the least-

costly separation. The equilibrium-path consumption for the low type solves the following

program:
max u(cy) + l(c1),
subject to
Bu _ oy H
u(cy) + ﬁ—l(cl) =V, (sA25)
L
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where [(-) is defined as

T-1
l(er) = max )Zét Yu(cr) + BT M uler)
2,C3, cT =9

subject to

t=2 t=1
Note that by substituting (sA25) to the objective function, maximizing u(c;) + I(¢y) is
equivalent to maximizing ¢;. If ;’s full-information contract cannot be sustained in a

equilibrium (as must be the case if 7" is large), it means that

P,

I(ch) > VH, (sA26)
Br

uler) + o+

Evaluating ¢, at Zthl wit implies that the

(i ) + —5l (é R&) =u (i Ri‘;) < VA (sA27)

By the intermediate value theorem, it follows that the maximal root of (sA25) must be
greater than the first period consumption in the full-information contract: ¢, > cl'. This
completes the first part of the proposition.

We next show that the welfare loss must be bounded below away from 0. We argue by
contradiction. Suppose there exists a subsequence {7}, : n € N} such that lim,, /OO(W%; —

WTLn) = 0. To be clear that our variables now depends on 7;,, we write variables as a
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function of 7;,. Note that

lim (Wf — W) = lim (V*(T,) — Wi)

n ‘oo n,/'oo
_ nh/‘nolo (VA(T,) — u(@(T,)) — U(@(Th)))
e Hpy o B
~im (v (1) — u(@r(T)) = (VH(T) — u(ea(T)) ﬂH)
s " _ B
_Jg&o/(ﬂg—u@ﬂﬂ0»<l—ﬁH),

where the first equality comes from the vanishing inefficiency result for the S5 consumer,
the second equality comes from the definition of /(c;) and (1 — 8)67 'u(¢(sr)) — 0, the
third equality comes from (sA25), and the fourth equality comes from algebraic manipula-
tions.

It follows that lim,, ~. (V#(T},) — u(¢:(T5,))) = 0. From the vanishing inefficiency

result for the 3y consumer, it implies that

T (WE = u(e(T) = T (WS~ u(@(T) = lm (V¥(T) - u(@(T,)) =
(sA28)

Note that Wi = ST 6 (G (Th,)). We obtain

Tn

lim Y 6" u(@(T,)) = 0.
n /oo P

Recall that we normalize 4(0) = 0, so u(c) > 0, Ve > 0. We must have lim,, » ¢(7},) =
0, Vt. By the zero-profits condition, the 5, consumer consumes everything in the first pe-
riod in the limit: lim,, ~o €1 (T) = > ,°; f=r. This consumption stream cannot achieve
the first-best welfare (i.e., WIQ ), as shifting some consumption to future periods can strictly

improves welfare since lim.\ o u'(c) = +o00. Specifically, fix a small ¢, > 0, it is straight-
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forward to show that

o0

0 w w .
u( D ) <u | D0 per e )+ dulBe) < Jim W
t=1

t=1

This is a contradiction to (sA28) that lim,, o (W§ — u(21(T,))) = 0.
So the welfare loss does not vanish as the contracting horizon grows: lim inf, oo (WTC —

WE) > 0. O

Proof of Lemma 8. To prove the lemma, we argue by contradiction. There exist two op-
tion history paths of consumption stream starting with (s;, ') that have different expected
present discounted values. Without loss of generality, assume that one path, denoted as ¢,
has a higher expected present value than the other path, denoted as ¢.

We note that since c¢ is the equilibrium consumption vector, it must satisfy the no addi-
tional contracting constraints. Given that the present value of ¢ is higher than the present
value of ¢. There are two possibilities, either ¢ starts with the baseline option or ¢ starts
with the alternative option. In either case, we show that the no additional contracting con-
straints would be violated. First, suppose ¢ starts with the baseline option. In this case,
the baseline option would not be the consumer’s perceived consumption, because the con-
sumer perceives that he has an incentive to recontract with another firm, who can give the
consumer slightly higher consumption in the baseline option. Specifically, consider another
contract ¢/, which has the same term as ¢ except that we increase € in the consumption in
the baseline option of ¢. Similarly, if ¢ starts with the alternative option, the consumer can
recontract with another firm, who gives him slightly higher consumption in the alternative

option. [

Proof of Proposition 7. Note first that uncertainty over states plays no role in the program
with non-exclusive contracts. Starting from any allocation in which consumption within a
period is random, the agent increase his perceived utility by signing a contract with another
firm to smooth consumption in that period. So we can without loss of generality substitute

each period’s income by its expected value. Using Lemma 8, we find that the program with
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non-exclusive contracts becomes identical to the consumption-savings problem. O

Proof of Proposition 8. Consider a problem with a sophisticated consumer who has the

commitment power and whose time-consistency parameter is 2. Without loss of gener-

B
ality, we assume that there is no uncertainty. Recall that a; is the PDV of income. The

sophisticate’s program is

T
s B i1
¢ =maxu(c) + = 0" u(cy),
masu(en) + 5 326

subject to
T
Ct .

Rt—l = aj.

t=1

We claim that the welfare in the above program is an upper bound of the welfare in the
consumption-savings problem for the naive consumer. Let ¢; denote the first-period con-
sumption in the consumption-savings problem. We will show that the naive agent consumes
strictly more than the sophisticated agent: ¢, > c;.

The proof proceeds through four lemmas. The first one adapts arguments from Harris

and Laibson (2001).

Lemma 14. The perceived consumption functions (Co(-), -+ , ér(+)) satisfy:
(5R)t—1u/(ét) = (5R)tu’(ét+1) [1 — é;H(atH) + Bé;f-l,-l ((Zt+1)) ,Vl <t< T,

where a;1 = R(a; — ¢(ay)).

Proof. The proof follows by induction, starting at period 7" — 1. The last period consump-

tion is ¢y (ar) = ap. Consumption in the penultimate period is:

¢y (ar_1) = arg max{u(¢) + fou(ér(ar)) subject to ap = R(ap_; — é)}.
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Since lim\ o v'(¢) = +o00, the unique solution must be interior and satisty the FOC:
W' (ér_y) = BORY (ér).

Since & (ar) = 1, the statement in the lemma holds for ¢t = 7" — 1.

Moving to the induction step, suppose the statement holds for 7 < 7" and recall that:

T
¢-(ay) = arg max{u(é) + Z 6" u(éi(ay)) subject to (B2), (B3), and (B4)}.

t=7+1

The unique solution must be interior and satisfy the FOC:

a 9éy(ay)
1A 3 t—7, 1A t\at)
w(e)+ B Y 0 u@ﬁ@)a@ = 0.
t=7+1
Substitute
0¢(ay) day oa, 01

= —R7¢(a)(1 = ¢ (a)) - (1= &y (arn)),

to rewrite the FOC as:
T

U (E) =5 Y (OR) T (@an)é(an) (1 = &y (ar)) -+ (1= &y (ars))-

t=7+1

The FOC at 7 + 1 is:

W(era) =B ) (OR) M (&(an)é(a)(1 = &y (ar-1)) -+ (1 = & 5(arsa)).

t=71+42

Multiply both sides by 6 R(1 — ¢/, (a,+1)) and substitute back in the equation for u’'(¢;)
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to verify that the statement in the lemma also holds for t = 7:

W (Er) = BOR (641 (arsn) + ORI (Ers)[L = &y (ars)]

Lemma 15. The first-period consumption ¢, satisfies:

U,(El) = 6RU/<62>§ 1-— é/Q(CLQ) + Bé;((lg)] s

where ay = R(a; — ¢).

Proof. Similar to the proof of last lemma,

(OR)" ™/ (e(ar))y(ar) (1 = ¢y (a-1)) - (1 = &(az)).

[M] =

u'(¢1) =B

I
[\

The FOC at t = 2 gives to

(OR)"*u/ (¢e(ar))y(ar) (1 — ¢y (a-1)) -+ (1 — &(as))-

]~

w(é) = f

t

Il
w

Multiply by dR(1 — ¢,(az)) on both sides, and substitute back to the equation for u/(¢;),

then we obtain

u'(C1) = BORU (¢2) ¢ (as) + g&Ru’(ég)(l — y(ag)).

Lemma 16. (6R)" '/ (¢4(as)) > gu’(él)for allt > 1.

Proof. Tt is straightforward to see that ¢;(a;) € [0,1],V¢t > 1. It follows that 1 — ¢&(a;) +
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3¢ (a,) € [3,1]. From the previous two lemmas, we have

(OR)' (¢(ar)) < (OR)' (G (aisr)), V1 < t < T.

U,(El> S géRu/(ég)

It immediately follows that (JR)* v/ (¢,(ay)) > 20/ (1), ¥t > 1. O

QIQ

Lemma 17. The naive agent consumes weakly more than the sophisticated agent in the

first period: ¢, > cf.

Proof. We argue by contradiction. Suppose ¢; < ¢;. Then «/(¢;) > /(c7). From the FOC

of the sophisticate’s problem, we know that

(0R)"M/(c)).

u(01>

Q>|Q

Together with the previous lemma, we obtain

(SR) M/ (¢p(ay)) > Z(OR) 1/ ().

Wl ™
ol @

Thus, ¢(a;) < ¢, which is a contradiction because of the zero-profits condition

T CS
61+Z Rtl - ZRtt—l'
=1

]

We are now ready to show the proposition. Let € = (¢4, - - - , ¢r) denote the naive con-
sumer’s equilibrium allocation. Since ¢ also satisfies the zero-profit condition, a revealed-
preference argument applied to the sophisticate’s program gives:

T

T
ﬁz %) > u(e) + gzy Lu(@). (sA29)
t=2

t=2
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The naive consumer’s welfare is:

- B
;at—lu(at) = (1 -5

L t=2
~ A T
A ST B S
B p s
T
<u(c)) + Z 0" tu(e}),
t=2

where equalities come from algebraic manipulation, the first inequality comes from (sA29),
and the last inequality comes from the previous lemma ¢; > ¢;. So the naive consumer’s
welfare is bounded above by the sophisticate’s welfare, which does not converge to the

time-consistent consumer’s welfare (Proposition 9), establishing the result.

]
Proof of Proposition 9. We argue by contradiction. Suppose instead that
liminf (Wf —W7) =0
iy fnf (Wi = W) =0,
so that there exists a subsequence {7}, : n € N} with lim,, ~,o (WS — W7 ) = 0.
Let ¢® = (c{(T),---,c%(sp,T)) denote the equilibrium consumption for the sophisti-
cated agent in the (truncation of the) model with 7" periods. Let ¢ = (¢{'(T), -+ ,c%(sp, T))

denote the equilibrium consumption for the time-consistent agent in the (truncation of the)
model with T" periods. Passing to subsequences, we can assume both limits lim,, 5o, ¢7 (7},)

and lim,, o ' (T,) exist.™

34That is, there exists a subsequence {7}, } of {T},} such that the limit of ¢{ (T}, ) exists. Similarly, con-

sider the sequence {cf(Tnmk )}. Again, pick a subsequence {T5,,, } of {T},,, } such that the limit cf(Tan)
exists. For notational simplicity, and with no loss of generality, we can replace the original sequence {7}, }

26



We first claim that the sophisticate consumes strictly more in the first period than the
time-consistent consumer in the limit: lim,, ~o ¢ (7},) > lim,, o ¢§ (T,). Suppose instead
that lim,, ~ ¢ (T5,) < lim, » ¢ (T7,). The FOCs of the time-consistent consumer’s pro-

gram give:
(e (Tn)) = OR) T B/ (¢ (s, Th)), ' (c/(Th)) = BOR)' ™ Bu'(c* (50, T))-

We claim that lim inf,, o (c®(s¢, T;,) — ¢%(s4,T,)) < 0,V¢ > 1. Otherwise, there exists
t > 1 and liminf,, ~(c%(s;, T,) — ¢“(s,T,)) > 0. Passing to subsequences, we can
assume that lim,, ~ ¢} (s, T5,) and lim,, o ¢ (¢, T},) exist.

It follows that

T}i}go (SR) ™ Eu' (% (s, T))) > J}n;o BSR) B/ (c® (s, T},))
= ,}i}f}o u'(e7 (1))
> gi/rgo u'(e1 (T))
= lim (6R) 7 B/ (% (51, Thy))

n /oo

> lim (OR)" ™ B (¢ (s¢, Tn)),

where the first inequality is strict because of 5 < 1, the second equation comes from
the sophisticate’s FOC, the third comes from lim,, o ¢7(7},) < lim,, oo ¢§ (T5,), the fourth
comes from the time-consistent consumer’s FOC, the last comes from lim inf,, 7 (CS (8¢, Th)—
¢“(st,T,,)) > 0. This is a contradiction. So liminf, ~oo(c®(s¢, T5,) — ¢ (54, Ty,)) < 0, Vt >

1. But then it violates the zero-profit condition since

T,
" B(cS(s, T,) — (51, T,
0= limjnf ) (s, f)it— ClenTn))

1
t=1

What we have shown now is that in the first period the sophisticate consume strictly more

with this last subsequence {7,,, }.
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than the time consistent consumer in the limit: lim, ~o ¢7 (T,,) > lim,, 7o ¢§ (T5,).

Define I7(c1) as
T

Ir(c1) = max )Z5t_1u(0(5t))7

c(sa), elsr) =

subject to £ S, 4 = pS°T W) ¢ We claim that I%(c;) < 0. Let \; denote the

Lagrangian on the zero-profit constraint.

T

Ir(er) = 6" ulc(s +>\l< Z

t=2

ZT c(s1)
t
— C1 — E Rtl) .
t=2

Taking derivative with respect to ¢1: I/:(c;) = —A;. Then, I}.(c1) = —\].

Taking derivative on the both sides of FOC, 6~ 'u/(¢;) = with respect to ¢;:

A\
Rt— Rt—1>
Oa _ A
dcr (OR)(¢;)’

Taking derivative with respect to c; on the zero-profit condition:

T et T \
—1 = 861 = —l
Rt—l tg; (6R)t—1u//(ct)

t=2

Thus, A} > 0 because v’ < 0. So I7.(c;) = —A; < 0.

It implies that u(c;) + I7(c1) is a concave function of ¢; for any 7'. Since u is bounded
and 4 < 1, we can use dominated convergence theorem. Taking limit of 7" to infinity,
im supy s, u”(c1) + I7(c1) < limsupy o, u”(c1) < 0, since we assume strict concavity
of u. So limp soo[u(ci) + Ip(c1)] is a strict concave function of ¢;. Together with our first
claim that lim,, ~(c7(T5,) —¢§'(T,,)) > 0 and the fact that ¢{’ (T") maximizes u(cy) +1r(c1),

it follows that

i (u(e(Tn)) + l(e (Tn)) = (e (Ta) = (e (1)) > 0,

ie. lim, o (WTC,n — Wrﬁn) > 0, a contradiction. So the welfare loss for sophisticated
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agents is bounded below away from O. [l

Proof of Lemma 9. We first show that the (IC) constraints for self-2 must be binding for
all my € supp(oy) and m), € supp(d2). We note that the (IC) must be binding for at least
one mj,, because otherwise we can increase consumption on the perceived path and increase
the self 1’s payoff. Now suppose there exists mq € supp(os) and mj € supp(d2) such that
the corresponding (IC) is slack. In this case, we show that from self 1’s perspective, the
perceived path m/ gives a higher payoff than the perceived path m/, (using a coefficient
of 1). To see that, notice that from (PC) constraint, the perceived self-2 is indifferent
between m/, and m/ (using a coefficient of (), but self-2 strictly prefers m/, over m/ (using
a coefficient of ). By the single crossing property, it implies that m/ gives a strictly higher
payoff than m/, in calculating self 1’s perceived payoff (using a coefficient of 1). Then,
replacing terms in options m/, with terms in options m/ would not affect any constraints,
but it would increase self 1’s perceived payoff, a contradiction to the optimality of the
original contract.

Next we show that cy(s2,719) = 0,Vmy € supp(ds). Otherwise, consider a pertur-
bation in which lowers u(cy(sg,m2)) by e and increases u(cr (s, Mg, &3, -+ ,07-1)) by
e. This perturbation preserves the IC constraints and maintains all other constraints, but
increases self 1’s perceived payoff.

Substituting the binding IC constraint into the objective function, we obtain (up to a

constant):

T
{ fnaig)} u(c(s1)) + 0Eu(c(sq, 02)) + BE Z 5" u(c(sy, 09,63, .y 67-1))
c(St, i—3

Repeating the same analysis, we have a new program (up to a constant):
max B 'u(c(sy, 09, ,or-1)) + BE [ u(c(sr, 02,03, ..., 07-1))] -

{e(st,h?)}

subject to the zero-profit condition.
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Our final step is showing that the equilibrium path o9, 03, ..., or—1 involves only one
option. This is because of Jensen’s inequality and the strict concavity of u(-). If there
are multiple options in the 0., then merging those options can strictly increase self 1’s

perceived payoff. This completes the proof. 0

Proof of Lemma 2 for General Income Distributions and Arbitrary 7'

This appendix establishes the equivalence between the naive agent’s program and the aux-
iliary program for general income distributions and arbitrary 7". As in the text, we consider
the one-sided commitment case. With two-sided commitment, one can ignore the non-
lapsing constraints in the proof below.

Recall that the naive agent’s program is

max u(c(sy)) + BF

c(st,ht) ’

Z 5" u(c(sy, (B, B, ..., B)))

subject to
T
ZE {w (50) = C(St’EA’A’ ’A))] =0, (Zero Profits)
Ri-1
t=1
u(ce(sy, (hT_l, B))) + BE Zét_Tu (c (st, (hT_l, B, B, ..., B))) sT] (PCC)
t>T1
> u(c(sy, (hf_l,A + BE Z(St T st, hT 1A B,. B))) sT] ,
t>T1
and
u(c(sT,(hTfl,A )+ BE Z(St st, hT 1 A B,. B))) sT] 10
t>1

> u(c(sy, (W', B))) + BE Z 6" Tu (c (s, (W', B,B,...,B)))

t>T1

sT] :
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and non-lapsing constraints:

U(C(ST,(hT_l,A + BE Z 6 (c(sy, (KT A, B, ,B)))

t>T1

(NL)
and
Sy 2‘7(57), Vs, .

u (c(sT, (h™ 1, B))) + BE Z 8 (c(st, (b '.B,B, ..., B)))

t>1

(PNL)

We first note that the incentive compatibility constraints (IC) must be binding on the
equilibrium path, because otherwise we can increase c(sr, h”, B, B, ..., B) without affect-
ing all other constraints while weakly increase the agent’s perceived utility. Given incentive

constraints are binding, we can simplify (PC) as
u(c(sr, (771, B))) < u(c(s-, (A7, A))). (sA30)

Substituting the binding IC constraints in the objective gives
EZ(V Yu(e(sy, A, -+, A)) + BT u(e(sp, A, -+ A)) + (B — 1)8  u(c(sy, A, -+ , A, B

Since § < 1, we want to choose ¢(s;, A, -+ , A, B) as small as possible (subject to the
constraints). We now show that under the optimal contract, c(s;, A,--- , A, B) = 0. We
need to verify that setting c(s;, A, -+ , A, B) = 0 would not violate all other constraints.
First, PC holds because (sA30) holds.

We then verify that PNL holds if NL holds. Suppose {¢(s;, h) : ¢ > 7} solves the

perceived outside option program V(s ). So we have

~

VI(s,) = u(é(sy, hT)) + BE[Ou(é(sy, (BT, B,- -, B)))|s,). (sA31)
We next verify the perceived non-lapsing constraint at (s, (h" !, B)) = (s,, (4, -+ , A, B)).
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Other perceived non-lapsing constraints can be similarly verified. Note that

Zét oy (hr 1 B, - B)))

t>T1

u(c(s-, ("', B))) + BE | > 6 u(c(s,, ("', B, -+, B)))

t>1

)+ gu( (ST,(hT_l,B) —I—BE

> 6 ule(s, (W', A, B, -+ | B)))

t>T1

(sA32)

Q|Q>

(u(c(sT, (™71, A))) + BE

(sA33)

> 6" Tu(é(sy, b, B, -+, B))

t>7

Sr

)

(sA35)

> 6" u(é(s, kL, B, -+, B)) (sA36)

Sy

(g — Du(é(sr, hT)) + V(s,) (sA37)

5 o) B S
> | 1- B) 5‘/ (sr) (sA34)

I (sA38)

where (sA32) follows from c(s,, ("1, B)) = 0, (sA33) from (IC), (sA34) from the actual
non-lapsing constraints (NL), (sA35) follows from a revealed preference argument since ¢
is also feasible in program V' (s, ), (sA36) follows from simple algebra, (sA37) uses (sA31),
and (sA38) follows from ¢é(s,, A7) > 0.

By the previous argument, the perceived choice constraints and the perceived non-

lapsing constraints can be ignored, so the program reduces to:

maxEZ(St Yule(se, (A, -+ L A)) + BT ule(sr, (A, -+, A))),
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subject to the zero-profit condition and the non-lapsing constraints. Since the objective is
the same as the utility of a dynamically consistent consumer, we can replace the non-lapsing

constraints by front-loading constraints. So ¢! = ¢4, O

Corollary 1 with One-Sided Commitment

This appendix generalizes Corollary 1 for settings with one-sided commitment, as men-

tioned in footnote 18:

Corollary 2. Consider the model with one-sided commitment. There exists a perception-
perfect equilibrium that does not depend on the consumer’s naiveté B € (5, 1]. Moreover,

any perception-perfect equilibrium has the same consumption path, which is continuous in

g e (0,1].

Proof. By Lemma 4, we can focus on the auxiliary program with one-sided commitment.
Let z(s;) = u(c(s;)) denote the agent’s utility from the consumption he gets in state s;,

and consider the dual program:

max Z Z p(st|31)w(8t> —u <$(St)), (sCl)

t—1
{x(St)} t=1 s4€S; R

subject to

Z 5 p(sy|s1)x(s) + B Z T p(sp|s))x(sp) > u, (sC2)

t=1 s:€S; STEST

and

Z Z 6" Tp(sy|s:)x(s,) + B Z 6T Tp(spls:)x(sr) > Vi (sz) Vsz € Sa(s,), VT,
t>T s:€St STEST
(sC3)
This program corresponds to the maximization of a strictly concave function over a convex

set, so, by the Theorem of the Maximum, the solution is unique and continuous in 3 &€
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(0, 1]. Moreover, since the program does not involve B , the equilibrium consumption path
is not a function of the consumer’s naiveté.

Once we pin down the unique consumption path, the baseline options are either zero
or determined by the binding IC constraints and non-lapsing constraints (See the proof of
Lemma 4). In particular, these constraints do not depend on the consumer’s naiveté. So the

equilibrium consumption vector is not a function of the consumer’s naiveté. [

Removing Commitment Power

This appendix presents the formal analysis of the welfare effect of removing commitment
power, as described in Subsection 3.1. We show that, for a fixed contract length, removing
commitment power can make the consumer better off. To formalize the argument given
in the text, let V3 denote the agent’s welfare from smoothing consumption perfectly in the

first 7" — 1 periods and consuming zero in the last period:

subject to

Let VX denote the agent’s welfare from consuming the endowment in each state:

T

VIS = Z E 6" u(w(s,))]

t=1

Proposition 10. Suppose agents are time inconsistent and VX° > V3. There exists 3 > 0
such that if B < 3, the welfare with one-sided commitment is greater than the welfare with

two-sided commitment.

Proof. First, note that the welfare with two-sided commitment approaches to Vs as (3 ap-

proaches to zero. It suffices to show that the welfare with one-sided commitment is bounded
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below by Vygs. In the remainder of the proof, we will therefore focus on the equilibrium
with one-sided commitment.

We claim that for /3 close to zero, the equilibrium consumption equals the endowment
in all last-period states: c(sp) = w(sr),Vsr € Sr(s1). To see this, consider a pertur-
bation that shifts consumption from a state in the last period to the preceding state, that

is, it increases c¢(sp_1) by € > 0 and reduces c(s7) by ( for some s € S with

m
p(sr|sr—1) > 0. Let W, denote the future value of all income up to state sy. The amount
W, i1s how much the agent would be able to consume at state s if he saves all his income
from all periods for the last one. It therefore gives an upper bound on how much the agent
can consume in the last period. Since there are finitely many states and W, < oo for all

s, we can take the uniform bound W = max;, Wj,.. This perturbation affects the LHS of

the non-lapsing constraint at state s; by

p(sr-1lse) [ (c(s7-1)) — BROW (c(s7))] 8"~ e
> p(sr-1lse) [u/(0) — BROW (W,)] 0~ e,

which is positive whenever /
% > 8. sC1)
The perturbation has exactly the same effect on the objective function (scaled down by &'
and multiplied by the probability of reaching state sr_;). Thus, as long as  satisfies (sC1),
the equilibrium will have the smallest consumption possible in the last period, which is
determined by the non-lapsing constraint.
Substituting ¢(sy) = w(sy) in the auxiliary program, it becomes analogous to the

program of a time-consistent agent except that the contracting problem ends at period 7' — 1

instead of period 7"

maxz > 0 p(silsu(e(sy)

c(st)
(e t 1 s4€S¢(s1)
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subject to
wise) —e(s)

Ri-1 =0,

p(St‘Sl)
t=1 StESt(S1)

and
T—1

Z Z 8" Tp(selsz)u (c(s)) = (V') (s7) forall sz,

t=T 51€S¢(s7)
for all 7 = 2,...,T, where (V')%(s;) denotes the outside option for the time-consistent
agent in this (7" — 1)-period economy.

It is straightforward to verify that (V)¢ (s;) is bounded below by the utility from con-
suming the endowment in all states. If the endowment already satisfies the non-lapsing
constraints, then the result follows from revealed preference because the endowment also
satisfies zero profits. If the endowment does not satisfy the non-lapsing constraints, any
renegotiation of the endowment satisfies the zero-profits condition and gives the time-
consistent agent a strictly higher utility conditional on that state. So, replacing the en-
dowment by the solution of the continuation program in all states where the non-lapsing
constraints are violated leads to a profile of consumption that satisfies the constraints and
gives a utility greater than the utility of consuming the endowment in each period. It thus
follows by revealed preference that the solution of the program also gives a higher utility
than consuming the endowment in all states.

Since the solution of a naive agent coincides with the solution of this auxiliary program,
their welfare is also bounded below by the welfare from consuming their endowment in all
periods Vg when (sC1) holds. Therefore, by continuity, if Vyg > Vg, there exists Bn
such that if 5 < [y, the welfare with one-sided commitment dominates the welfare with

two-sided commitment. L]

Notice that for generic endowment paths, the condition that VY > V7 fails when
T is large enough. So, as the contracting length grows, it becomes increasingly hard to
satisfy the conditions for the time-inconsistent consumer to obtain higher welfare without

commitment, as described in the text.
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Proof of Claim in Section 3.5

In this appendix, we establish that a naive agent saves more than a sophisticate in the first

period. Given a vector © = (x1, X9, - ,xp) with 1 = 1 consider the program:
T
max ziu(cy), sD1
(); wulcr) (sD1)
subject to
T o¢ Tow
t
R-1 Z Ri-1° (sD2)

t=1 t=1

The first-order conditions of this program are:
R aa () < N, VA, (sD3)

where A is the Lagrangian multiplier on the zero-profits condition (sD2). The inequality
becomes equality whenever c¢; > 0.

The consumption path of a naive agent solves this program for

Dy Dy Do
xN:<17L7 TI,...7L7DT1>,
Dr_y" Dr_3 D,

whereas the consumption path of a sophisticated agent solves this program for vector
2% = (1, Dy, Dy, -+, Dr_y).

Let AV and \° denote the Lagrangian multiplier in the case of a naive agent and a sophis-
ticated agent, respectively. Recall from equation (29), ¥ > a7 forallt = 2,--- | T.

We argue by contradiction and suppose the naive agent consumes strictly more than the
sophisticate in the first period, i.e., ¢ > ¢f. We claim that ¢ > ¢, Vt. Then the claim
together with ¢V > ¢ would violate the zero-profits condition.

To prove the claim, first note that the claim trivially holds if ¢ = 0. Now suppose

¢? > 0, then R 'zdu/(c]) = N > /(c}). Since ¢¥ > ¢f > 0, the FOC at ¢ is an
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equality: u'(c)) = AV,
Note that forany t = 2,--- [T,

RS/ (¢F) = X > /() >/ (e)) = AV > Rl () > Rl (),

where the last inequality comes from z¥ > z7. It follows that v/(c]) > u/(cl), i.e., c¥ >

c?,Vt = 2,--- ,T. Together with ¢ > ¢, it contradicts to the zero-profits condition. As
a result, the naive agent must consume weakly less than the sophisticate in the first period
(i.e., the naive agent saves weakly more than the sophisticate in the first period).
Moreover, the naive agent must consume strictly less than the sophisticate in the first
period if lim.\ o v/(¢) = +o0. In this case, we have an interior solution, and (sD3) becomes

N S

equality because consumption is always strictly positive. To see that ¢;* < c¢;, we need

to show that there is a contradiction when ¢ = c¢f. We recall that ¥ > z7 for all

t=2,---,T—1. Nowfort=2,---T —1,
R () = u/(ef) = u/(ey) = R/ () > R Maf(cf)),

which implies that c¥ > ¢7, for2 <t < T —1. We still have ¢¥ > ¢7. Together, we have a
contradiction to the zero-profits condition. So if lim. o u/(c) = 400, the naive agent must

consume strictly less than the sophisticated agent in the first period.
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