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a b s t r a c t 

This paper studies the value of more precise signals on agent performance in an optimal 

contracting model with endogenous effort. With limited liability, the agent’s wage is in- 

creasing in output only if output exceeds a threshold, else it is zero regardless of output. 

If the threshold is sufficiently high, the agent only beats it, and is rewarded for increas- 

ing output through greater effort, if there is a high noise realization. Thus, a fall in out- 

put volatility reduces effort incentives—inf ormation and effort are substitutes—offsetting 

the standard effect that improved information lowers the cost of compensation. We de- 

rive conditions relating the incentive effect to the underlying parameters of the agency 

problem. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Since the seminal contributions of Holmstrom

(1979) and Shavell (1979) , the moral hazard literature
� We thank an anonymous referee and the editor (Toni Whited) for ex- 

cellent suggestions that substantially improved the paper. We also thank 

Will Cong, Francesca Cornelli, Jean de Bettignies, Ohad Kadan, Andrey 

Malenko, Dmitry Orlov and seminar/conference participants at the AFA, BI 

Conference on Corporate Governance, Queen’s University, Risk Theory So- 

ciety, Washington University Conference on Corporate Finance, and Whar- 

ton for helpful comments, and Shiying Dong for excellent research assis- 

tance. This paper was previously circulated under the title “The Value of 

Information For Contracting.”
∗ Corresponding author at: London Business School, Regent’s Park, Lon- 

don NW1 4SA, UK. 

E-mail address: aedmans@london.edu (A. Edmans). 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.jfineco.2018.05.002 

0304-405X/© 2018 Elsevier B.V. All rights reserved. 
has shown that superior information on agent perfor-

mance can improve the principal’s payoff. This result has

implications for many contracting applications, such as

compensation, financing, insurance, and regulation. How-

ever, information is also costly. Thus, to determine whether

the principal should invest in information, we must an-

alyze what its benefits depend on—in particular, relate

them to the underlying parameters of the agency problem.

Doing so will identify the situations in which information

is most valuable and thus its acquisition most justified. 

Analyzing the benefits of information requires an op-

timal contracting approach. Assuming a particular con-

tracting form may lead to misleading results. For exam-

ple, when contracts are suboptimal, adding noise to the

contract may be desirable, suggesting that precision has

strictly negative value. As is well known, solving for the
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optimal contract in a general setting is highly complex 

(e.g., Grossman and Hart (1983) ). We consider the standard 

framework of risk neutrality and limited liability, originally 

analyzed by Innes (1990) and widely used in a number of 

settings (e.g., Biais et al. (2010) , Clementi and Hopenhayn 

(2006) , DeMarzo and Fishman (2007a) , DeMarzo and Fish- 

man (2007b) , DeMarzo and Sannikov (2006) ). This frame- 

work allows for an optimal contracting approach and in- 

volves the agent receiving a call option, as observed in 

practice. 1 

We model the option contract as based on output and 

information as affecting output volatility, but the model 

is virtually identical if the contract is instead based on a 

separate performance signal and information affects the 

volatility of this signal. We start by assuming a general 

output distribution and an endogenous implemented effort 

level. An increase in information precision (fall in volatil- 

ity), in the sense of a mean-preserving spread of output, 

has two effects, each with a clear economic interpretation. 

First, a fall in volatility reduces the value of the option 

and thus the expected wage: the direct effect. Second, it 

changes the agent’s effort incentives: the incentive effect. 

While the direction of the direct effect is unambiguous—

the standard intuition that information reduces the cost of 

contracting—the incentive effect can either be positive or 

negative, i.e., effort and precision can be complements or 

substitutes. The heart of this paper analyzes this incentive 

effect. Our most general result is to derive a condition that 

determines the sign of this effect and thus whether effort 

and precision are complements (precision increases incen- 

tives) or substitutes (precision decreases incentives). The 

condition is simple and easy to check, as we show with 

a simple example. 

We then consider the common case of output distribu- 

tions with a location parameter, i.e., effort shifts the loca- 

tion of the distribution without affecting its shape, as in 

the normal and uniform distributions. This allows us to re- 

late the sign of the incentive effect to the strike price of 

the option. We show that the incentive effect is positive 

if and only if the strike price is below a threshold, and 

negative otherwise. The intuition is as follows. Since the 

wage is positive only if output exceeds the strike price, in- 

creasing effort increases the wage only if output ends up 

higher than the strike price—if output still ends up below, 

the agent receives zero, regardless of output and thus his 

effort. Increasing precision moves probability mass from 

the tails toward the center of the distribution. If the strike 

price is low, this change moves mass from below to above 

the strike price, increasing the probability that output ex- 

ceeds it. In simple language, the agent thinks “If I work 

harder, I’ll get paid more unless I get so unlucky that out- 

put falls below the target. Now that precision is higher, 

I’m unlikely to suffer bad enough luck, so it’s worth it for 

me to work harder.” Thus, effort and precision are comple- 

ments, and so the principal’s benefit from increasing preci- 

sion is even higher than when focusing on the direct effect 
alone. 

1 While options are not the only instruments used in practice, 

Dittmann and Maug (2007) find that the payoff structure provided by a 

CEO’s overall compensation package resembles an option. 
On the other hand, if the strike price is high, increas- 

ing precision shifts mass from above to below the strike 

price, reducing the probability that output exceeds it. In 

simple language, the agent thinks “The target is so high 

that even if I did work, I wouldn’t meet it unless I also 

got lucky. Now that precision is higher, I’m unlikely to get 

lucky enough to meet the target, so there’s no point in 

working.” Thus, effort and precision are substitutes, and so 

the principal’s benefit from increasing precision is lower 

than when focusing on the direct effect alone. As a result, 

the net benefit of precision may be insufficient to justify 

its cost. 

Since the strike price is endogenous, we next relate the 

incentive effect to the underlying parameters of the agency 

problem—specifically the cost function. In any contracting 

setting, the effect of the cost function on the strength of 

incentives (here, captured by the option’s delta and thus 

the strike price) depends on whether the implemented ef- 

fort level is fixed or endogenous. With endogenous effort, 

a less convex cost of effort typically leads to the princi- 

pal implementing a higher effort level and thus offering 

stronger incentives; with fixed effort, a lower cost of effort 

means that weaker incentives are needed to implement 

the given effort level. We therefore analyze both cases. 

Where effort is endogenous, the sign of the incentive effect 

depends on the convexity of the cost function. If the cost 

function is sufficiently convex, inducing effort is costly and 

so the principal implements a low effort level. As a result, 

the strike price is high relative to the effort level, and so 

precision reduces incentives. This result contrasts intuition 

that information should be more valuable when the agency 

problem is strong. In addition, an analysis focusing only on 

the direct effect of precision, and ignoring the incentive ef- 

fect, would suggest that the value is highest when the op- 

tion is at the money, i.e., a moderate initial strike price and 

a moderate agency problem. 

A fixed effort level arises with a binary effort space, 

which is often used for tractability. In addition to being 

tractable, a fixed effort level is also realistic if the bene- 

fits of effort are large relative to the costs, as with CEOs of 

large firms ( Edmans and Gabaix, 2011 ), because the princi- 

pal always wishes to implement full productive efficiency. 

The sign of the incentive effect depends on the cost of ef- 

fort: where the cost is high, the principal must give the 

agent strong incentives to induce effort. These incentives 

are provided by a low strike price, and so precision in- 

creases incentives. 

It is limited liability, and not risk neutrality, that is key 

to our results. We show that the incentive effect simi- 

larly depends on the strike price when the agent is risk 

averse. Regardless of whether the agent is risk neutral or 

risk averse, when there is limited liability, the optimal con- 

tract pays the agent zero when output is below a thresh- 

old. Thus, he is only rewarded for marginal increases in 

effort if output exceeds the threshold, the probability of 

which depends on output volatility. 

We also analyze the case in which the principal can 

renege on any preannounced level of precision after the 

agent has exerted effort. Then, there is no incentive effect 

(the agent ignores the initial announcement when select- 

ing effort), and so the principal only considers the direct 
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effect when choosing the final level of precision. Thus, her

benefit from increasing precision is higher ex ante than ex

post if and only if the incentive effect is positive. In this

case, she may wish to commit to a high level of precision

ex ante. We also show that the level of precision chosen

by the principal generally differs from the socially optimal

level and may exceed it. This result suggests that regula-

tions to increase information disclosure may move us fur-

ther from the social optimum. In addition, if the agent had

bargaining power and chose precision, he would typically

select a different level from the principal, so control rights

matter for efficiency. 

Our results have a number of implications for compen-

sation contracts. Most importantly, they highlight that in-

formation may not improve incentives, contrary to conven-

tional wisdom that more precise signals make incentive

provision easier. They also identify the settings in which

investing in information is optimal for the principal. Us-

ing the fixed effort model as an example, when incentives

are strong (weak) to begin with, e.g., for CEOs (rank-and-

file managers), an increase in precision increases (reduces)

incentives. One way in which the principal can invest in

information is to engage in relative performance evalua-

tion (RPE). There is very little evidence that RPE is used for

rank-and-file managers and only modest evidence of its us-

age for CEOs. 2 Bebchuk and Fried (2004) interpret this rar-

ity as evidence that CEO contracts are inefficient. However,

to evaluate this argument, we need to identify the settings

in which the value of information is smallest and compare

them to the cases in which RPE is particularly absent in

reality. That RPE is more common for CEOs than managers

is consistent with the above prediction. 

In addition to the gains from precision, our analysis

also studies the impact of exogenous changes in precision,

such as changes in stock market efficiency. For example,

an increase in volatility raises (lowers) the incentives of

agents with out-of-the-money (in-the-money) options. If

firms recontract in response, CEOs with in-the-money op-

tions should receive the highest increase in incentives. 

As Innes (1990) shows, in addition to compensation, the

model can also be applied to a financing setting where

the agent (entrepreneur) raises financing from the princi-

pal (investor), in which case the contract is risky debt, and

the strike price represents its face value. Our model sheds

light on the settings in which the investor’s incentive to re-

duce output volatility is highest. As with investing in infor-

mation, doing so is potentially costly—implementing a risk

management system is expensive, and imposing covenants

can stifle investment. An analysis based on the direct ef-

fect would suggest that risk management is most valuable

for firms at the bankruptcy threshold, as then the value of

debt is most sensitive to volatility. This is consistent with

standard intuition that risk management incentives are in-

creasing in loan size (up to the bankruptcy threshold), be-

cause the lender has more at stake. This intuition is in-

complete because it ignores the incentive effect. When the
2 While Aggarwal and Samwick (1999) and Murphy (1999) document 

almost no use, more recent evidence by Albuquerque (2009) , Gong et al. 

(2011) , and De Angelis and Grinstein (2018) find evidence of RPE. See 

Edmans et al. (2017) for a review of the evidence on RPE. 

 

 

 

face value of debt is low, equity is in the money and the

incentive effect is positive. As a result, risk management

raises effort incentives, further increasing its value over

and above the direct effect. Thus, surprisingly, risk man-

agement may be more valuable for firms that are some

distance from bankruptcy, and when the investor has lit-

tle debt at stake. Separately, the model suggests that the

entrepreneur’s initial wealth affects the value of precision.

Where wealth is low, the entrepreneur needs to raise debt

with a high face value which, as is known, reduces effort

incentives. Our results suggest that increases in precision

may further exacerbate the incentive problems originating

from low initial wealth, since the incentive effect is then

negative. 

Dittmann et al. (2013) also consider the effect on effort

when analyzing a specific form of increased precision—

indexing stock and options—and similarly show that in-

dexation may weaken incentives. They use a quite differ-

ent setting, reflecting the different aims of each paper.

Their goal is to calibrate real-life contracts, and so they fix

the implemented effort level, restrict the contract to com-

prising salary, stock, and options, and hold stock constant

when changing the contract to restore the agent’s incen-

tives upon indexation. They acknowledge that the actual

savings from indexation will be different if the principal

recontracts optimally. Our primary goal is theoretical. We

take an optimal contracting approach, where the contract

adjusts optimally to changes in precision, and the imple-

mented effort level is endogenous. 

The interaction between effort and (mean-preserving)

risk has been studied by other papers. In Holmstrom and

Milgrom (1987) , risk has no direct effect on effort (un-

like in our paper), but greater risk reduces the optimal

pay-performance sensitivity and thus incentives. In this

sense, precision always increases effort, unlike in our pa-

per. Gjesdal (1982) shows that incentives can increase with

a different type of risk—giving the agent a stochastic con-

tract where, for a given output level, the agent receives a

lottery rather than a wage. If the agent’s utility is nonsep-

arable in the wage and his action, higher effort may di-

rectly reduce the agent’s risk aversion; giving him a lot-

tery incentivizes him to exert effort to reduce his aversion

to the lottery. In our paper, a deterministic contract is op-

timal (as is common in reality) and risk instead involves

changing the precision of the performance measure, allow-

ing our model to apply to risk management and monitor-

ing. The channel through which risk affects effort is also

very different. 

This paper proceeds as follows. Section 2 presents the

model. The main results are presented in Section 3 , where

we study the effects from increased signal precision and

relate the incentive effect to the underlying parameters of

the agency problem. Section 4 discusses applications and

alternative modeling assumptions, and Section 5 concludes.

The proofs are presented in Appendix A . 

2. The model 

We consider a standard principal-agent model with risk

neutrality and limited liability, as in Innes (1990) . At time

t = −1 , the principal offers a contract to the agent. At
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t = 0 , the agent chooses effort e from a nonempty, com- 

pact subset of the real line E . The agent’s cost of exert- 

ing effort e is C ( e ), where C ( · ) is continuous and increas- 

ing. As is standard, effort can refer not only to working 

rather than shirking, but also to choosing projects to max- 

imize firm value rather than private benefits or not divert- 

ing cash flows. We normalize the lowest effort level to 0 

and its cost to C(0) = 0 . At t = 1 , output q is realized. 

The principal does not observe the agent’s effort, but 

observes the realization of output. Output is continuously 

distributed according to a cumulative distribution function 

(CDF) F θ ( q | e ) with a continuous probability density func- 

tion (PDF) f θ ( q | e ) that satisfies the monotone likelihood ra- 

tio property (MLRP): for any e H > e L and any θ , 
f θ (q | e H ) 
f θ (q | e L ) 

is strictly increasing in q . 3 Intuitively, MLRP means that 

higher outputs indicate higher effort. 

To ensure existence of an optimal contract, we assume 

that output has a finite mean E θ [ q | e ] < ∞ , and the integral∫ ∞ 

X q f θ (q | e ) dq is a continuous function of e for each X ∈ 

R . Moreover, to simplify notation, we assume that the CDF 

F θ ( q | e ) is differentiable with respect to θ . 

The parameter θ orders the precision of the output dis- 

tribution in the sense of a mean-preserving spread (MPS). 

Formally, for any θ ≥ θ ′ , E θ [ q | e ] = E θ ′ [ q | e ] , and 

F θ (q | e ) 
{

≤
≥

}
F θ ′ (q | e ) for q 

{
< 

> 

}
q e , (1) 

for some q e . 
4 Since a higher θ removes noise from the dis- 

tribution of output without affecting its mean, θ represents 

how informative output q is about effort e . The precision 

parameter θ may be chosen by the principal or result from 

exogenous changes such as a reduction in economic uncer- 

tainty. Our goal is to analyze the value of information and 

its effect on incentives, which applies to either setting. 5 

The agent is paid a “wage” W θ ( q ) and the principal re- 

ceives a “profit” R θ ( q ) = q − W θ ( q ) . The agent is risk neu- 

tral and so maximizes his expected wage 

E θ [ W θ ( q ) | e ] = 

∫ ∞ 

−∞ 

W θ ( q ) f θ ( q | e ) dq , (2) 

less the cost of effort. His reservation utility is zero, and 

there is no discounting. 

Following Innes (1990) , we make two assumptions on 

the set of feasible contracts. First, there is a limited liability 

constraint on the agent: 

 θ (q ) ≥ 0 ∀ q. (3) 
3 Note that MLRP implies first-order stochastic dominance (FOSD): 

F θ ( q | e ) is strictly decreasing in e for each fixed ( θ , q ). Thus, throughout 

the paper, we use “effort increases output” as a shorthand for “effort im- 

proves the distribution of output in the sense of FOSD.”
4 This definition follows Machina and Rothschild (2008) and states that 

the distributions differ by a single MPS. This notion implies second-order 

stochastic dominance (SOSD), which allows distributions to differ by a se- 

quence of MPSs. 
5 While we consider the effect of changing the volatility of output, 

Chaigneau et al. (2018) derive necessary and sufficient conditions for 

whether the addition of a new signal has strictly positive value under 

contracting constraints. 
Second, a monotonicity constraint ensures the principal’s 

payoff is nondecreasing in output: 

η ≥ W θ (q + η) − W θ (q ) , (4) 

for all η > 0. Innes (1990) justifies this constraint on two 

grounds. First, if it did not hold, the principal would have 

incentives to sabotage output. Second, if it did not hold, 

the agent would gain more than one-for-one for increases 

in output. Thus, he would have incentives to borrow on his 

own account to increase output. 

The principal wishes the agent to exert effort level e ∗, 

and so the contract must satisfy the following incentive 

compatibility constraint: 

e ∗ ∈ arg max 
e 

E θ [ W θ ( q ) | e ] − C(e ) . (5) 

Following standard arguments, the participation constraint 

will be slack and can be ignored in the analysis that fol- 

lows. The principal is also risk neutral and thus chooses 

a contract W θ ( q ) and an effort level e ∗ to maximize her

expected profit R θ ( q ) subject to the limited liability (3) , 

monotonicity (4) , and incentive (5) constraints. 

We discuss three features of our modeling setup. First, 

following Innes (1990) , the principal contracts on output q , 

and so changes in the precision of the performance mea- 

sure change the volatility of output, as with risk man- 

agement. We have also analyzed a model in which q is 

noncontractible, as in Baker (1992) . For example, the prin- 

cipal may not have a contractible objective (e.g., a non- 

profit firm or government agency, or a private firm with 

no traded stock); the agent may be only one employee in a 

team and only the team’s output is observable (e.g., a pub- 

lic firm where the employee has very little effect on the 

stock price); effort may contribute to a long-term project 

such as Research and Development where, by the time ver- 

ifiable output is fully realized, the agent may no longer 

be with the firm; or the effort may have nonquantifiable 

outcomes, such as corporate social responsibility initiatives 

or actions with externalities on other divisions (see also 

Malenko (2018) ). In this model, there is a separate signal 

s = q + η on which contracts could be written. Thus, the 

precision of the signal s could be affected without chang- 

ing output volatility, and so this model applies to improv- 

ing monitoring technology or filtering out noise. 6 All re- 

sults continue to hold (because of risk neutrality, chang- 

ing the volatility of output has no effect), but the nota- 

tion is more complex due to the introduction of an addi- 

tional variable. Internet Appendix B analyzes an alternative 

framework where both output q and a separate signal s are 

contractible, and changes in precision change the volatility 

of s but not q . In the core model, since the “signal” equals 

“output,” we will use these terms interchangeably. 

Second, in Innes (1990) , the agent offers the contract 

and maximizes his utility subject to the principal’s partic- 

ipation constraint. Since it is the principal who will typi- 

cally invest in information, we model her as offering the 
6 In that model, there is a similar justification for the monotonicity 

constraint (4) . Rather than borrowing on his own account to increase 

the signal, the agent could exert effort to manipulate the signal. If the 

marginal cost of increasing the signal by 1 is μ, the contract slope will 

equal μ (any greater slope will induce manipulation). Thus, all the results 

will hold except that the contract slope is now μ rather than 1. 
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contract so that she captures the surplus and thus the

benefits from precision. Internet Appendix F considers the

agent offering the contract and choosing precision. 

Third, while Innes (1990) assumes continuous effort

and the first-order approach (FOA), we do not impose any

such structure on effort for our most general results. 

2.1. The optimal contract 

This section solves for the optimal contract holding pre-

cision θ fixed. The analysis is similar to Innes (1990) . Our

main results will come in Section 3 , which analyzes the

gains from increasing θ . 

Lemma 1 below establishes that the optimal payment

to the agent W θ ( · ) is a call option on q with strike price

X θ . Alternatively, the optimal payment to the principal

R θ ( · ) is risky debt with face value X θ . 

Lemma 1 (Optimal contract) . For each θ , there exists an op-

timal contract with 

 θ (q ) = max { 0 , q − X θ } , (6)

R θ ( q ) = min { q, X θ } , (7)

for some X θ . 

As in Innes (1990) , the intuition is as follows. The ab-

solute value of the likelihood ratio is highest in the tails of

the distribution of q , so output is most informative about

effort in the tails. The principal cannot incentivize the

agent in the left tail by giving negative wages (due to lim-

ited liability), and so she incentivizes him in the right tail

by giving high wages. With an upper bound on the slope,

the optimal contract involves call options on q with the

maximum feasible slope, i.e., 
∂W θ
∂q 

(q ) = 1 . Since the agent’s

positive wage for high output cannot be offset by a nega-

tive wage for low output, his expected wage E θ [ W θ ( q ) | e ]
strictly exceeds his reservation utility of zero, and so he

enjoys rents. 

Substituting the contract (6) into the incentive con-

straint (5) , the effort that the agent chooses when offered

a contract with strike price X θ is given by 

e θ (X θ ) ∈ arg max 
e 

∫ ∞ 

X θ

(q − X θ ) f θ (q | e ) dq − C(e ) . (8)

In general, e θ ( X θ ) may not be single-valued. Whenever this

is the case, we follow the standard approach of choosing

the effort level preferred by the principal. 

3. The value of information 

This section calculates the value of information to the

principal by studying the effect of changes in signal preci-

sion on the principal’s profits. Section 3.1 shows that the

total effect of precision contains both a direct and incen-

tive effect, and provides a condition that determines the

sign of the incentive effect that holds for all output dis-

tributions. Section 3.2 shows that, for distributions with a

location parameter, the sign of the incentive effect depends

on the strike price of the option. Section 3.3 relates the ini-

tial strike price of the option—and thus the incentive effect
and the value of information—to the underlying parame-

ters of the agency problem. 

3.1. The incentive effect 

We initially assume that the effort function e θ ( X θ ) is

differentiable with respect to θ . This is for simplicity of

exposition and transparency of intuition; we drop this as-

sumption later. 

Differentiating the principal’s expected profits with re-

spect to precision yields: 

Total effect ︷ ︸︸ ︷ 
d 

dθ
E θ [ R θ (q ) | e θ (X θ ) ] = 

Direct effect ︷ ︸︸ ︷ 
∂ 

∂θ
E θ [ R θ ( q ) | e θ (X θ ) ] 

+ 

d 

dX θ
E θ [ R θ ( q ) | e θ (X θ ) ] ︸ ︷︷ ︸ 

Zero by envelope theorem 

∂X θ

∂θ

+ 

∂ 

∂e 
E θ [ R θ ( q ) | e θ (X θ ) ] 

∂e θ (X θ ) 

∂θ︸ ︷︷ ︸ 
Incentive effect 

. 

(9)

The first term is the direct effect . Holding constant the

strike price and effort level, an increase in output preci-

sion reduces the value of the agent’s option W and in-

creases the principal’s expected profit R . Due to limited li-

ability, the principal’s profit, min { q, X θ }, is concave in q ;

the agent’s option, max { 0 , q − X θ } , is conv ex in q . Since θ
orders the distribution of q in terms of SOSD, the expected

profit (wage) is increasing (decreasing) in θ . This reduction

in pay is the benefit of precision highlighted by Bebchuk

and Fried (2004) in their argument that the lack of RPE is

inefficient. In the Holmstrom (1979) setting of a risk-averse

agent, an increase in precision reduces the risk borne by

the agent and thus allows the principal to lower the ex-

pected wage. In our setting of risk neutrality and limited

liability, precision directly reduces the expected wage by

lowering the value of the option. 

The second term is the effect of reoptimizing the strike

price on profits, which is zero by the envelope theorem—

the principal had already optimized it for the initial level

of precision. The third term is the incentive effect , which

arises because the increase in precision affects the agent’s

incentive to exert effort. An increase in effort raises profits

( ∂ 
∂e 

E [ R θ ( q ) | e θ (X θ ) ] > 0 ), but whether precision increases

or decreases effort is ambiguous. Our goal is to analyze the

determinants of this effect and relate them to the underly-

ing parameters of the agency problem. 

Even when 

∂e θ (X θ ) 

∂θ
< 0 and the incentive effect coun-

teracts the direct effect, it can never outweigh it. The to-

tal effect is always weakly negative from revealed prefer-

ence: if reducing precision reduced the principal’s profit,

she would have added in randomness to the contract, and

so the initial contract would not have been optimal. 

For a given contract, if the agent’s effort level increases

(decreases) with precision, we say that the incentive effect

is positive (negative), and effort and precision are comple-

ments (substitutes). Differentiating the incentive constraint

(5) with respect to e and θ , the incentive effect is positive



296 P. Chaigneau et al. / Journal of Financial Economics 130 (2018) 291–307 

 

 

 

 

if and only if 

∂ 2 

∂ e∂ θ
E θ [ W θ ( q ) | e ] ≥ 0 , (10) 

and negative if the reverse inequality holds. 

Integrating by parts, we can rewrite the agent’s ex- 

pected wage as follows: 

E [ W θ ( q ) | e, θ ] = E [ q | e ] − X θ + 

∫ X θ

−∞ 

F θ (q | e ) dq. (11)

Precision does not affect the mean output E [ q | e ] , and ef- 

fort does not affect the strike price X θ . Thus, only the 

cross-partial of the third term on the right-hand side (RHS) 

of Eq. (11) is nonzero. Therefore, precision increases (de- 

creases) effort, i.e., effort and precision are complements 

(substitutes), if 

∂ 2 

∂ θ∂ e 

∫ X 

−∞ 

F θ (q | e ) dq ≥ ( ≤) 0 ∀ e, X. (12) 

We now formalize the above argument and general- 

ize it to cases where the effort function is not differen- 

tiable with respect to precision. 7 To allow for this case, and 

thus to accommodate situations where the FOA fails or the 

effort space is discrete, Definition 1 replaces the deriva- 

tives that determine the total and direct effects by their 

discrete counterparts. Let �(θ ) ≡ E θ [ R θ (q ) | e θ (X θ )] denote 

the principal’s expected profit when precision equals θ . 

Definition 1 . The incentive effect of precision is positive at 

θ if 

�(θ ′ ) − �(θ ) 

θ ′ − θ
≥ E θ ′ [ R θ (q ) | e θ (X θ )] − E θ [ R θ (q ) | e θ (X θ )] 

θ ′ − θ
, 

(13) 

for all θ ′ > θ in an open neighborhood of θ , and negative 

at θ if 

�(θ ′ ) − �(θ ) 

θ ′ − θ
≤ E θ ′ [ R θ (q ) | e θ (X θ )] − E θ [ R θ (q ) | e θ (X θ )] 

θ ′ − θ
, 

(14) 

for all θ ′ < θ in an open neighborhood of θ . 

The left-hand side (LHS) of Eqs. (13) and (14) corre- 

spond to the total effect: the total change in profits when 

precision changes from θ to θ ′ . The RHS is the direct ef- 

fect: the change in profits when when precision changes 

from θ to θ ′ , but we hold the strike price and effort fixed. 

The incentive effect is the difference. Definition 1 is analo- 

gous to the decomposition in Eq. (9) , except that it con- 

siders sub- and super-gradients to incorporate situations 

where e θ ( X θ ) is not differentiable. 

Proposition 1 generalizes the conditions in Eq. (12) , for 

the incentive effect to be positive and negative, without as- 

suming a differentiable effort function: 

Proposition 1 . (Effect of precision on incentives). The incentive 

effect of precision is positive if, for all e H > e L and all X , 

∂ 

∂θ

∫ X 

−∞ 

[ F θ (q | e H ) − F θ (q | e L ) ] dq ≥ 0 . (15) 
7 Since the envelope theorem only holds at differentiability points of 

the value function, the decomposition (9) may not be well defined if the 

agent’s effort e θ ( X θ ) is not differentiable in θ . 
The incentive effect of precision is negative if, for all e H > e L 
and all X , 

∂ 

∂θ

∫ X 

−∞ 

[ F θ (q | e H ) − F θ (q | e L ) ] dq ≤ 0 . (16) 

Proposition 1 provides a sufficient condition for the 

incentive effect to be positive that is both general and 

simple. 8 The condition is general: it can be applied un- 

der any output distribution and any assumption about the 

effort space. In particular, we do not require the first- 

order approach to hold or the effort space to be an inter- 

val. The condition is also simple and thus easy to check: 

while the expected wage contains several terms ( Eq. (11) ), 

Proposition 1 requires us to check only one term. Internet 

Appendix B provides an analogous condition for the case in 

which both output and a separate signal are contractible, 

and changes in precision affect the distribution of the sig- 

nal rather than output. 

Example 1 illustrates the results from Proposition 1 in 

a simple case where effort has a closed-form solution: 

Example 1. Suppose the cost of effort is quadratic C(e ) = 

e 2 

2 and that output belongs to a linear distribution family 

( Hart and Holmstrom, 1987 ): 

F θ (q | e ) = eF H θ (q ) + ( 1 − e ) F L θ (q ) , e ∈ [0 , 1] , (17)

where F H 
θ

(q ) and F L 
θ
(q ) are CDFs. In this case, we can write

the agent’s optimal effort in closed form, 

e θ ( X ) = E [ q | e = 1] − E [ q | e = 0] + 

∫ X 

−∞ 

[
F H θ (q ) −F L θ (q ) 

]
dq, 

(18) 

which allows us to obtain the conditions from 

Proposition 1 directly: 

∂e θ ( X θ ) 

∂θ
= 

∫ X θ

−∞ 

∂ 

∂θ

[
F H θ (q ) − F L θ (q ) 

]
dq. (19) 

3.2. The incentive effect and the strike price 

Proposition 1 gives sufficient conditions for the incen- 

tive effect to be positive or negative regardless of the strike 

price of the option. An important limitation, however, is 

that for most distributions, ∂ 
∂θ

∫ X 
−∞ 

[ F θ (q | e H ) − F θ (q | e L ) ] dq 

is positive for some values of X and negative for other val- 

ues of X , and so neither Eq. (15) nor Eq. (16) holds. In these

cases, the sign of the incentive effect will depend on the 

strike price. This section relates the incentive effect to the 

strike price for output distributions with a location param- 

eter. 

We henceforth decompose output as follows: 

q = e + ε, (20) 

where ε is continuously distributed according to a PDF g θ
and CDF G θ with full support on an interval of the real line. 

Eq. (20) is without loss of generality, since we can always 
8 Formally, condition (15) states that 
∫ X 
−∞ F θ (q | e ) is supermodular in ( e, 

θ ), whereas Eq. (16) states that it is submodular in ( e, θ ). As usual, super- 

modularity (submodularity) can be interpreted as e and θ being comple- 

ments (substitutes). 
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define “noise” ε as the difference between effort and out-

put. In practice, noise can result from a market or industry

shock, the contribution of other agents, or measurement

error. 

When output has a location parameter, the noise dis-

tribution g θ is not a function of e : exerting effort shifts

the distribution of output rightward without affecting its

shape. As a result, distributions with a location parameter

are commonly used in agency settings; examples include

the normal, uniform, logistic, and Laplace distributions.

Then, f θ (q | e ) ≡ g θ (q − e ) and F θ (q | e ) ≡ G θ (q − e ) denote

the PDF and CDF of output conditional on effort e . As be-

fore, we assume that effort increases output in the sense

of MLRP, and θ orders the precision of output in terms

of a MPS. For distributions with a location parameter, the

former entails that for any e H > e L and any θ , 
g θ (q −e H ) 

g θ (q −e L ) 
is

strictly increasing in q . The latter entails that the mean of

ε is the same for all θ , and that there exists ̂ ε such that 

∂G θ

∂θ
( ε ) 

{
≤
≥

}
0 for ε 

{
< 

> 

}̂ ε . (21)

For tractability, we assume that the FOA is valid: the

effort space is an interval and that the agent’s incentive

constraint (8) can be replaced by its first-order condition: 9

d 

de 
E θ [ W θ ( q ) | e ] = C ′ (e ) . (22)

With the FOA, the agent’s effort, implicitly defined by Eq.

(22) , is a differentiable function of θ , which simplifies the

analysis of the impact of θ on effort. 

Proposition 2 shows that the sign of the incentive effect

depends on whether the strike price of the option is above

or below a fixed threshold. 

Proposition 2 (Effect of information on the strike

price) . Suppose the FOA is valid. There exists ̂ X , independent

of θ , such that: 

(i) if X θ < ̂

 X , effort and precision are complements, and

the incentive effect of precision is positive; 

(ii) if X θ > ̂

 X , effort and precision are substitutes, and the

incentive effect of precision is negative. 

The intuition is as follows. The agent’s marginal ben-

efit of effort is its positive effect on the value of his op-

tion. When output has a location parameter, an increase

in effort by one unit shifts the distribution of output by

$1. Since the agent receives a positive wage if and only

if q ≥ X θ , increasing effort only increases the wage if out-

put ends up higher than the strike price. If output still

ends up below the strike price, then he receives no re-

turn for his effort. Recall that increasing precision moves

probability mass from the tails toward the center of the

distribution. If X θ is low, raising θ shifts mass from below

to above X θ , increasing the probability that output exceeds

the strike price. On the other hand, if X θ is high, raising θ
9 To verify the validity of the FOA, it suffices to check that, at the strike 

price chosen by the principal under this relaxed program, the agent’s pay- 

off is a single-peaked function of effort. A sufficient condition for the va- 

lidity of FOA in our setting is sup ε { g θ (ε) } < inf e { C ′′ (e ) } , which we will 

assume throughout this section. 
shifts mass from above to below X θ , reducing the probabil-

ity that output exceeds the strike price. 

Importantly, the threshold is independent of θ . The

threshold will depend on the effort level that the princi-

pal wishes to implement; hypothetically, this effort level

might depend on θ . However, effort is a smooth function

of θ . Since the threshold separates the areas where effort

is increasing and decreasing in θ , effort is constant in θ
at the threshold, and so the threshold is independent of

θ . This independence is important to allow us to sign the

incentive effect as precision changes. 10 

Internet Appendix C shows that similar results hold

when the agent is risk averse, and so the driver of our

results is limited liability, rather than risk aversion. With

limited liability, regardless of whether the agent is risk

neutral or risk averse, the optimal contract pays zero when

output is below a threshold (regardless of the level of out-

put) and a positive amount, increasing in output, when

output exceeds the threshold. (The only difference is that,

with risk aversion, the contract may not be linear above

the threshold, and so the contract may not be an option.)

Thus, regardless of the agent’s utility function, he is only

rewarded for marginal increases in output if output ends

up greater than the threshold, as only then is his wage

strictly increasing in output. As a result, precision affects

incentives by affecting the likelihood that output exceeds

the threshold. 

3.3. The incentive effect and the cost of effort 

Proposition 2 has shown that the sign of the incentive

effect depends on the strike price X θ . This result is par-

ticularly useful since it is often difficult to solve agency

models, i.e., obtain the optimal contract and effort level as

functions of the exogenous parameters. Proposition 2 al-

lows us to understand the incentive effect—and in partic-

ular the intuition for why it depends on the strike price—

without fully solving for these quantities. 

One limitation is that because the strike price X θ is en-

dogenous, Proposition 2 does not relate the incentive ef-

fect to the underlying parameters of the agency problem.

We now relate the incentive effect to the cost of effort.

Before doing so, we note that the strike price X θ reflects

the strength of incentives: a lower X θ corresponds to a

higher option delta and thus stronger incentives. Gener-

ally, the link between the strength of incentives and the

cost of effort depends on whether the implemented effort

level is endogenous or fixed (see the survey of Edmans and

Gabaix (2016) , Section 3.3 ). When the implemented effort

level is endogenous, a less convex cost of effort means that

it is cheaper to provide incentives; as a result, the prin-

cipal typically induces higher effort and raises incentives

to do so (see, e.g., Holmstrom and Milgrom (1987) ). When

the implemented effort level is fixed, a lower cost of effort

means that fewer incentives are needed to implement this

effort level. 
10 For example, suppose precision increased and we observed that the 

strike price rose. If the original incentive effect were negative, we can 

conclude that it remains negative, but we would be unable to do so if the 

threshold depended on θ . 
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11 The principal wishes to implement high effort if X θ − ∫ X θ
−∞ F θ (q | e ) dq ≥

E [ q | e ] , where the strike price X θ is implicitly determined by the incentive 

constraint: E [ q | e ] − E [ q | e ] + 

∫ X θ
−∞ [ F θ (q | e ) − F θ (q | e ) ] dq = C. 

12 With endogenous effort, d 
dX θ

E [ R θ ( q ) | e ] = 0 : a higher strike price re- 

duces the value of the option and increases the expected profit, but also 

reduces effort and reduces the expected profit. By the envelope theorem, 

these two effects cancel out. With fixed effort, the second effect does not 

exist. 
Both the endogenous and fixed effort level may be ap- 

propriate in different circumstances. For example, Edmans 

and Gabaix (2011) show that if the agent is a CEO who 

has a multiplicative impact on firm value and the firm is 

large, the benefits of effort (increased firm value) swamp 

the costs (increased incentives) since firm value is much 

larger than the CEO’s salary. In this case, the fixed effort 

level corresponds to full productive efficiency (taking all 

value-adding projects) and the principal wishes to imple- 

ment it regardless of the cost of effort. Moreover, a fixed 

effort level arises in binary effort models, which are of- 

ten used for tractability. We thus study both frameworks, 

starting with the endogenous effort model that we have 

analyzed thus far. 

3.3.1. Endogenous effort level 

When effort is endogenous, the key feature of the 

cost of effort function is its convexity. This convexity 

parametrizes the severity of the agency problem: the 

higher the convexity, the more rapidly the marginal cost of 

effort rises with the level of effort and so the greater the 

incentives the principal must provide to increase effort. 

Let κ parametrize the convexity of the cost of effort, 
∂ 3 C 

∂ e 2 ∂ κ
(e ;κ) > 0 . A typical example is the case of quadratic 

costs C(e ;κ) = 

κe 2 

2 , where ∂ 2 C 
∂e 2 

(e ;κ) = κ . We now index 

the strike price by X θ , κ and the effort level by e θ , κ . 

Proposition 3 shows that the incentive effect is positive 

if and only if convexity κ is below a threshold. 

Proposition 3 . (Effect of cost function on incentive effect, en- 

dogenous effort). Suppose the FOA is valid. There exists κ̄ such 

that the incentive effect is positive (negative) if κ < (> ) ̄κ. 

The intuition for Proposition 3 is as follows. Recall that ̂ ε is the inflection point of 
∂G θ
∂θ ( ε ) defined in Eq. (21) . If 

X θ,κ − e θ,κ ≤ ̂ ε , precision increases incentives by moving 

mass from below the strike price to above it; if X θ,κ −
e θ,κ ≥ ̂ ε , precision reduces incentives by moving mass 

from above the strike price to below it. Thus, to determine 

the effect of convexity κ on effort incentives, we must 

determine how it affects the difference between the ini- 

tially optimal strike price and the initially optimal effort: 

X θ,κ − e θ,κ . 

An increase in convexity κ directly reduces the effort 

chosen by the agent e θ , κ . The effect on the optimal strike 

price X θ , κ is ambiguous: since it is more costly to provide 

incentives when effort costs are more convex, the principal 

may reduce incentives by increasing the strike price, or she 

may compensate for the decrease in effort by providing 

higher incentives through a lower strike price. Even if the 

principal chooses to reduce the strike price, the increase 

in incentives is always outweighed by the direct reduction 

in effort from an increase in convexity; if it were not, the 

principal should have chosen a lower strike price before, 

when the incentive effect of doing so was higher since the 

cost of effort was less convex. The proof also shows that 

the fall in effort exceeds any fall in the strike price. Thus, 

when convexity is high, X θ,κ − e θ,κ ≥ ̂ ε , and so precision 

reduces incentives. 

Example 2 below illustrates this intuition in a simple 

model that admits a closed-form solution: 
Example 2. Suppose the cost function is quadratic C(e ) = 

κe 2 

2 , and that noise ε is uniformly distributed in [ − 1 
θ
, 1 

θ
] 

so that ̂  ε = 0 . The first-order condition that determines the 

agent’s effort choice yields: 

e = 

1 − θX 

2 κ − θ
, (23) 

and the second-order condition is satisfied as long as 

θ < 2 κ . Suppose this inequality holds so that the FOA is 

valid. Substituting Eq. (23) into the principal’s profit func- 

tion and maximizing with respect to the strike price, we 

obtain the optimal strike price and effort: 

X 

∗
θ,κ = 

1 

θ
− 1 

κ
+ 

θ

2 κ2 
, e ∗θ,κ = 

θ

2 κ2 
. (24) 

Note that while effort is always decreasing in κ , the strike 

price is not monotonic: it decreases (increases) in κ if 

κ ≤ ( ≥ ) θ . Nevertheless, X ∗
θ,κ

− e ∗
θ,κ

= 

1 
θ

− 1 
κ is increasing in 

κ . Setting X ∗
θ,κ

− e ∗
θ,κ

equal to ̂ ε = 0 , we find that, consis- 

tent with Proposition 3 , the incentive effect is positive if 

κ ≤ θ and negative if κ ≥ θ . 

3.3.2. Fixed effort level 

We now relate the incentive effect to the cost of effort 

in the case of a fixed effort level. Formally, suppose the ef- 

fort space is E = { e , e } , where e = e (“shirking”) costs zero

and e = e (“working”) costs C > 0. The principal wishes to 

implement e = e . 11 

The incentive constraint is now 

E [ W θ ( q ) | e ] − E [ W θ ( q ) | e ] ≥ C, (25) 

and we refer to the LHS of Eq. (25) as effort incentives. Re- 

call that, from Lemma 1 , the optimal contract is an option. 

Differentiating the principal’s expected profits with re- 

spect to precision yields: 

d 

dθ
E [ R θ ( q ) | e ] = 

∂ 

∂θ
E [ R θ ( q ) | e ] ︸ ︷︷ ︸ 

Direct effect 

+ 

d 

dX θ
E [ R θ ( q ) | e ] ∂X θ

∂θ︸ ︷︷ ︸ 
Incentive effect 

. 

(26) 

The direct effect is unchanged, but the incentive ef- 

fect is different from the case where effort is endoge- 

nous. Since effort is now fixed at e , the principal in- 

stead responds to a change in precision by changing the 

strike price. Intuitively, when precision reduces effort in- 

centives, i.e., it tightens the incentive constraint (25) , the 

principal must lower the strike price to increase the delta 

and restore incentives ( 
dX θ
dθ

≤ 0 ). This lower strike price 

increases the expected wage and lowers the principal’s 

profit ( d 
dX θ

E [ R θ ( q ) | e ] > 0 ). 12 Conversely, when precision in- 

creases incentives (i.e., it relaxes the incentive constraint), 
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13 It is well known that for lognormal distributions, the vega is highest 

for at-the-money options (as maturity approaches zero). Claim 1 extends 

this result to all distributions with a location and scale parameter. 
14 The difference is that the vanna is defined for local changes in output 

q , but Eq. (28) concerns potentially nonlocal changes in effort and thus 

output. 
the principal can increase the strike price without violat-

ing incentive compatibility ( 
dX θ
dθ

≥ 0 ), thus reducing the ex-

pected wage. The incentive effect is thus now the effect

of precision on profits through changes in the strike price,

rather than changes in the effort level. 

As in the general model of Section 3.1 , the direct effect

is always positive, but the incentive effect is ambiguous.

We again relate it to the severity of the agency problem.

With continuous effort, this severity was parametrized by

the convexity of the cost function. With binary effort, this

severity is captured by the cost of effort C . Lemma 2 below

shows that the strike price falls with C . Intuitively, when

effort is costly, a high option delta is needed to induce ef-

fort, which corresponds to a low strike price. 

Lemma 2 (Effect of effort cost on strike price) . The strike price

X θ is strictly decreasing in the cost of effort C. 

Recall that Proposition 2 established that the incentive

effect is positive if X θ < ̂

 X and negative if X θ > ̂

 X (while

derived for the case of endogenous effort s, it is straightf or-

ward to verify the result for fixed efforts). Thus, the incen-

tive effect is positive when the strike price is low, i.e., in-

centives are strong. In turn, Proposition 3 showed that, for

an endogenous effort level, incentives are strong when the

agency problem is mild (the cost of effort is less convex).

Lemma 2 now shows that for a fixed effort level, incentives

are strong when the agency problem is severe (the cost of

effort C is high). Thus, the incentive effect is positive when

the agency problem is severe. Proposition 4 states this re-

sult formally. 

Proposition 4 (Effect of cost function on incentive effect, fixed

effort) . Ther e exists a constant ̂ C such that, if C > (< ) ̂  C , the

incentive effect of precision is positive (negative) and 
dX θ
dθ

>

( < ) 0 . 

While Proposition 2 guarantees that a single cutoff X̂ 

separates the regions where the incentive effect is positive

and negative (for continuous effort), we do not know in

general where this cutoff lies. A benefit of the fixed effort

model is that since we know the implemented effort level,

we can relate the cutoff to it. Indeed, Corollary 1 shows

that when the distribution is symmetric (as with the nor-

mal, uniform, logistic, and Laplace distributions), ̂ X lies

halfway between the expected output when the agent

works e and the expected output when he shirks e , i.e.,̂ X = 

e + e 
2 . Thus, we do not need to solve for the optimal

strike price as a function of the exogenous parameters of

the model and take derivatives with respect to θ to sign

the incentive effect. It is sufficient to observe whether the

strike price is above or below the threshold 

e + e 
2 : the strike

price is a “sufficient statistic” for the direction of the in-

centive effect. 

Corollary 1 (Symmetric distributions) . Suppose that G θ is

symmetric around zero. Then, the incentive effect is positive

(negative) if X θ < (> ) e + e 2 . 

We now discuss the intuition using symmetric distribu-

tions in the location-scale family, that is, output distribu-

tions with a CDF that can be written as F σ (q | e ) = G 

(
q −e 
σ

)
.

Examples include the normal, uniform, and logistic distri-
butions. Such distributions clarify the intuition since preci-

sion θ can be parametrized by volatility σ = 

1 
θ
, which al-

lows us to discuss the intuition using the familiar concept

of the option “vega” : the sensitivity of its value to σ . 

The agent’s effort incentives stem from the difference

in the value of two options. If he works, he receives an

option-when-working worth E [ W σ ( q ) | e ] ; if he shirks, he

receives an option-when-shirking worth E [ W σ ( q ) | e ] . His

effort incentives are given by the difference, i.e., 

E [ W σ ( q ) | e ] − E [ W σ ( q ) | e ] . (27)

Thus, the incentive effect of increasing volatility σ (reduc-

ing precision θ ) is given by 

∂ 

∂σ
{ E σ [ W ( q ) | e ] − E σ [ W ( q ) | e ] } ∣∣

W (q )= W σ (q ) 
. (28)

An increase in volatility raises the value of each option,

because the vega of an option is positive, but does so to

different degrees since the options have different vegas.

The incentive effect of increasing volatility is thus the vega

of the option-when-working, ∂ 
∂σ

E σ [ W ( q ) | e ] , minus that of

the option-when-shirking, ∂ 
∂σ

E σ [ W ( q ) | e ] . 
The vega of an option is highest for an at-the-money

option (see Claim 1 in Internet Appendix D 

13 ), and it de-

clines when the option moves either in or out of the

money. Thus, the vega of the option-when-working is

highest at X = e , and the vega of the option-when-shirking

is highest at X = e . If the initial strike price is X σ = ̂

 X =
e + e 

2 , both options are out of the money by e −e 
2 . They thus

have the same vega (see Claim 2 in Internet Appendix D),

and so effort incentives are independent of σ . We thus

have dX σ
dσ

= 0 . 

When X σ < ̂

 X , the option-when-shirking is closer to at

the money, and so it has a higher vega. An increase in σ
raises the value of the option-when-shirking more than the

option-when-working and thus reduces effort incentives.

Thus, the strike price must be lowered to restore effort in-

centives, and so dX σ
dσ

< 0 . When X σ > ̂

 X , the option-when-

working is closer to at the money than the option-when-

shirking. An increase in σ raises effort incentives, and so
dX σ
dσ

> 0 . 

Note that the LHS of Eq. (28) is related to the option’s

vanna. 14 The vanna of an option is given by 
∂ 2 E [ W ] 
∂ q∂ σ

—the

cross-partial of its value with respect to both output q

and volatility σ , or alternatively the derivative of its delta

( 
∂E [ W ] 

∂q 
) with respect to volatility σ . When an option is in

the money, its vanna is negative. Its delta—and thus the

agent’s effort incentives—decreases with volatility and thus

increases with precision: effort and precision are comple-

ments. In contrast, when an option is out of the money,

its vanna is positive, and so effort and precision are substi-

tutes. 
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Fig. 1. Total and partial derivative of expected pay with respect to volatility σ for a range of values of the strike price X , for e = 0 , e = 1 , and σ = 1 . 

15 By backwards induction, the principal will select a strike price that 

induces the agent to work given the precision level that he will choose 

ex post. 
Graphical illustration. We now demonstrate graphically 

the direct and incentive effects to illustrate the importance 

of taking the incentive effect into account when calculating 

the value of information. We consider the common case 

of a normal distribution, which is symmetric. Fig. 1 illus- 

trates how the direct and incentive effects change with the 

severity of the moral hazard problem (parametrized by C ). 

As is standard for graphs of option values, the figure con- 

tains the strike price X on the x-axis; since X is strictly 

decreasing in C ( Lemma 2 ), there is a one-to-one mapping 

between X and C . 

To understand Fig. 1 , the direct effect, 
∂E [ W σ ( q ) | e ] 

∂σ
, is the 

vega of the option-when-working. It tends to zero as the 

strike price approaches either −∞ or ∞ , and it is greatest 

when the option is at the money, i.e., X = 1 . The incen- 

tive effect, 
∂E [ W σ ( q ) | e ] 

∂X σ

dX σ
dσ

, is positive for X < ̂

 X and there- 

after negative; when X crosses above ̂ X it becomes increas- 

ingly negative but then returns to zero. The total effect 
dE [ W σ ( q ) | e ] 

dσ
combines these effects. While the direct effect 

is initially increasing in X , this is outweighed by the fact 

that the incentive effect is initially decreasing in X . Thus, 

in Fig. 1 , the total gains from precision are monotonically 

decreasing in X . 

An analysis focusing purely on the direct effect would 

suggest that the value of information is greatest when 

the initial option is at the money, which corresponds to 

a moderate strike price and a moderate cost of effort. In 

contrast, considering the total effect shows that for a fixed 

effort level, the value of information is monotonically in- 

creasing in the severity of the agency problem. Internet 

Appendix E shows analytically that this monotonic effect 

is general to the normal distribution, rather than applying 

only to the specific parameter values chosen in Fig. 1 . 

Ex ante and ex post incentives. We end this section by 

contrasting the principal’s ex ante and ex post incentives to 

invest in precision. Our analysis thus far assumes that the 
principal chooses precision ex ante, i.e., before the agent 

chooses effort, and can commit to this choice. She thus 

takes into account the effect of precision on both the value 

of the agent’s option (the direct effect) and his effort (the 

incentive effect). We now consider the case in which the 

principal cannot commit to an initial level of precision but 

instead chooses precision ex post, i.e., after the agent has 

exerted effort but before output is realized. Any level of 

precision announced before the agent has exerted effort is 

not credible, as the agent will rationally anticipate that the 

principal will change precision to the level that maximizes 

her payoff ex post, and so any pre-announced level is irrel- 

evant. 

When precision is chosen ex post, the principal’s 

marginal benefit of precision corresponds to the direct ef- 

fect only, since the strike price and the agent’s effort have 

already been chosen. 15 Thus, the difference between the 

principal’s ex ante and ex post benefits from precision is 

given entirely by the incentive effect. If the incentive ef- 

fect is positive, the principal would choose a higher level of 

precision when the choice is made ex ante than ex post. In 

this case, the principal would like to commit to a high level 

of precision if such commitment is possible. Conversely, if 

the incentive effect is negative, the principal would like to 

commit to a low level of precision. 

4. Discussion 

4.1. Applications 

This section discusses applications of our results, start- 

ing with compensation contracts. Most importantly, our re- 
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terpretation of our model, the principal continues to hold the bargaining 

power so that she captures the surplus and has incentives to invest in 

precision. (Internet Appendix F analyzes the case in which the agent has 

bargaining power and chooses precision). 
18 The proof of Lemma 1 can be adapted by letting the initial non-option 

contract also satisfy the agent’s participation constraint. Then the corre- 

sponding option contract constructed in the proof has the same expected 

value as the initial non-option contract, and it leaves both the princi- 

pal’s and agent’s objective functions unchanged since the effort level is 

the same. Because the agent chooses effort optimally and can achieve the 

same expected utility by choosing the same effort level under the new 
sults show that when employers decide whether to in-

crease the precision with which they monitor agent per-

formance, they should consider the effect on the agent’s

incentives. This effect can be positive or negative, and so

the total benefits of precision can be markedly higher or

lower than an analysis focused on the direct effect alone.

For all output distributions with a location parameter, and

regardless of whether the effort level is fixed or endoge-

nous, the incentive effect is positive when the strike price

is low. In turn, this threshold is low when the effort level

is fixed and agency problems are severe, or when the effort

level is endogenous and agency problems are mild. 

Thus, the model provides guidance on where the prin-

cipal should invest in precision within a firm. For example,

if the fixed effort model applies, agents with high-powered

incentives (such as CEOs) should be evaluated more pre-

cisely than those with low-powered incentives (such as

rank-and-file managers). Relatedly, the model has implica-

tions for the optimality of RPE, which is costly as it in-

volves forgoing the benefits of pay for luck documented

by prior research (e.g., Oyer (2004) , Axelson and Baliga

(2009) , Gopalan et al. (2010) , Hoffmann and Pfeil (2010) ,

Hartman-Glaser and Hébert (2018) ). The results suggest

that RPE need not be optimal, as it can reduce effort in-

centives. This effect is particularly likely where incentives

are low powered to begin with, consistent with RPE being

even rarer for rank-and-file managers than for executives. 

In addition, Proposition 2 suggests that exogenous

changes in volatility (see Gormley et al. (2013) and De An-

gelis et al. (2017) , for natural experiments) or stock mar-

ket efficiency will have different effects on the incentives

of agents depending on the moneyness of their outstand-

ing options. This result applies both within a firm and

across firms. In particular, increases in precision will lower

(raise) the incentives of CEOs with out-of-the-money (in-

the-money) options. Thus, where CEOs have out-of-the-

money options, firms may wish to reduce the strike prices

to restore incentives. Option repricing is documented em-

pirically by Brenner et al. (20 0 0) , although they do not

study if it is prompted by falls in volatility. 16 Relatedly,

Bebchuk and Fried (2004) advocate out-of-the-money op-

tions because they only reward a manager upon good per-

formance. It is already known that a disadvantage of such

options is that they provide weaker incentives compared to

in-the-money options due to their lower deltas; our model

shows that this disadvantage is increasing in the level of

precision. 

A second application is to financing contracts, where

the principal (investor) receives debt with face value of

X θ , and the entrepreneur (agent) holds equity—a call op-

tion on firm value with a strike price equal to the face

value of debt. This application is relevant for both ma-

ture firms and also young firms since they frequently raise

debt and the entrepreneur holds levered equity, as shown

by Robb and Robinson (2014) . 17 Our results shed light on
16 Acharya et al. (20 0 0) also study the repricing of options theoretically, 

although in responses to changes in the mean rather than volatility of the 

signal. 
17 This is the original interpretation of the contract in Innes (1990) . In 

his model, the agent has the bargaining power; under the financing in- 
the investor’s incentives to reduce output volatility via risk

management. Such risk management has several interpre-

tations: the investor can implement risk management her-

self since she retains control rights on output; she stipu-

lates in the contract that the entrepreneur implement the

above measures; or she has a menu of projects that she

can finance and thus can choose project risk. Standard in-

tuition would suggest that these incentives are increasing

in the size of her debt claim and thus her value-at-risk, but

this intuition ignores the effect of risk management on ef-

fort. If the initial face value is low ( X θ < ̂

 X ), a fall in output

volatility raises effort incentives. This reinforces the direct

effect of risk management: that it increases the value of

the investor’s risky debt due to its concave payoff. Thus,

surprisingly, risk management may be more valuable for

firms that are some distance from bankruptcy and when

the investor has little debt at stake. In contrast, if the ini-

tial face value is high ( X θ > ̂

 X ), risk management reduces

effort incentives, offsetting the direct effect. 

4.2. Binding participation constraint 

In the core model, the agent’s participation constraint

is slack and he earns rents. The direct effect arises because

information reduces the value of the option and thus the

agent’s rents. This section considers the case in which the

agent’s participation constraint binds, and so the principal

must restore the value of the option (by reducing the strike

price) to maintain the agent’s participation following an in-

crease in precision. Even though the direct effect is fully

offset by the reduction in the strike price, we will show

that the total effect of information is typically nonzero. 

Now assume that the agent’s reservation utility is given

by U rather than zero. As in the core model, the optimal

contract is an option, 18 and so the agent’s participation

constraint is now given by ∫ ∞ 

X θ

( q − X θ ) f θ (q | e ∗) dq ≥ U + C(e ∗) . (29)

An increase in precision reduces the value of the agent’s

option on the LHS of the participation constraint (29) .

When the participation constraint is binding, the princi-

pal must reduce X θ to maintain the agent’s participation. 19

This reduction must fully offset the direct effect so that
option contract as under the initial contract, he is better off under the 

option contract with the higher effort level than under the initial contract 

with the initial effort level. Thus, with a binding participation constraint, 

the initial non-option contract remains dominated by an option contract. 
19 Since the agent chooses effort optimally, we know from the envelope 

theorem that the total effect of a change in X θ on the agent’s expected 

utility net of effort cost is simply equal to the partial effect, holding effort 

constant. 
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20 Unlike in the fixed effort case, it is possible for an increase in preci- 

sion to augment the agent’s utility. This may occur if it is optimal for the 

principal to significantly reduce the strike price to implement a higher 

effort level. 
the participation constraint continues to hold with equal- 

ity, i.e., 
∂X θ
∂θ

must satisfy 

d 

dX θ
E θ [ W θ ( q ) | e θ (X θ ) ] 

∂X θ

∂θ
= − ∂ 

∂θ
E θ [ W θ ( q ) | e θ (X θ ) ] , 

(30) 

where the RHS is the direct effect in Eq. (9) . Indeed, if 

the effort level were fixed ( e ∗ = e ), the value of informa- 

tion to the principal would be exactly zero. Total surplus 

is constant at E [ q | e ] , since effort is constant. With a bind- 

ing participation constraint, the agent’s utility is constant 

at U + C( e ) . Since the principal’s profit equals total sur- 

plus minus the agent’s utility, it would also be constant. 

Intuitively, when the agent’s participation constraint binds, 

precision cannot be used to reduce the cost of compensa- 

tion and so has no value to the principal. 

However, when the implemented effort level is endoge- 

nous, the value of information is typically nonzero. The fall 

in the strike price required to maintain the agent’s partic- 

ipation increases the option’s delta and thus effort incen- 

tives. We call this the “participation effect.” The total value 

of information to the principal in Eq. (9) is now given by: 

d 

dθ
E θ [ R θ (q ) | e θ (X θ) ] ︸ ︷︷ ︸ 

Total effect 

= 

∂ 

∂e 
E θ [ R θ ( q ) | e θ (X θ) ] 

∂e θ (X θ) 

∂θ︸ ︷︷ ︸ 
Incentive effect 

+ 

∂ 

∂e 
E θ [ R θ (q ) | e θ (X θ)] 

∂e θ (X θ) 

∂X θ

∂X θ

∂θ︸ ︷︷ ︸ 
Participation effect 

.

(31)

There is no longer a direct effect. When the agent’s par- 

ticipation constraint is binding, the value of information 

to the principal stems entirely from its effect on effort—it 

cannot be used to reduce the agent’s rents. 

The “effort effect” de 
dθ

now has two components. These 

can be more clearly seen as follows: 

de 

dθ
= 

∂e 

∂θ
+ 

∂e 

∂X 

∂X 

∂θ
. (32) 

First, as in the core model, there is the “incentive ef- 

fect” ∂e 
∂θ

, which can be positive or negative depending 

on whether effort and precision are complements or sub- 

stitutes. Second, there is an additional “participation ef- 

fect,” which is strictly positive: since ∂X 
∂θ

< 0 and 

∂e 
∂X 

< 0 , 
∂e 
∂X 

∂X 
∂θ

> 0 . Thus, if effort and precision are not substitutes, 

the incentive effect is nonnegative, and so precision in- 

creases effort due to the positive participation effect. Even 

if effort and precision are substitutes, effort can still rise if 

the negativity of the incentive effect is outweighed by the 

positivity of the participation effect. 

Note that a similar result holds if we instead assume 

Nash bargaining, where the agent captures a fraction α of 

the total surplus. The participation effect is replaced by a 

“bargaining effect” : following an increase in precision, the 

strike price falls to maintain the agent’s share of total sur- 

plus, which in turn increases effort incentives. 

Internet Appendix F studies the opposite case in which 

the principal’s participation constraint binds. Specifically, 

the agent (entrepreneur) has full bargaining power and 
chooses precision. He raises an amount I > 0 from the prin- 

cipal (investor) to fund a project that produces output q , 

and so the principal’s expected payoff must equal I . There 

is a similar participation effect to this section, and the 

value of information again stems entirely from its effect on 

effort, which remains Eq. (32) . 

In addition to demonstrating robustness, the analysis 

delivers two additional results. First, the value of precision 

depends on the entrepreneur’s initial wealth. The amount 

I can be thought of as the amount of new financing that 

the entrepreneur must raise, net of his initial wealth. Thus, 

if wealth is low, I is high, which leads to a high face value

of debt. It is already known that this reduces effort incen- 

tives, since part of the gains from effort go to the investor. 

Internet Appendix F shows that increases in precision can 

further exacerbate the incentive problems originating from 

low initial wealth, since the incentive effect is then nega- 

tive. In contrast, firms with abundant internal wealth have 

high incentives to increase precision. Second, the level of 

precision will be different than when it is chosen by the 

principal. The party that chooses precision internalizes the 

change in effort triggered by an increase in precision only 

to the extent that it affects him/her, depending on the ini- 

tial contract. For example, with a low face value of debt 

X θ , the principal has close-to-safe debt and so benefits lit- 

tle from changes in effort, while the agent is close to the 

residual claimant. Thus, the agent is affected more by the 

effort effect (32) than the principal. As a result, if the effort 

effect is positive, he will choose a higher level of precision. 

Due to these differential benefits from precision, control 

rights matter—the chosen level of information depends on 

which party has bargaining power and chooses precision. 

4.3. Social welfare and regulation 

Internet Appendix G analyzes the effect of precision 

on social welfare and, in particular, whether the principal 

overinvests or underinvests relative to the social optimum. 

Total surplus depends only on effort; the wage is a pure 

transfer from the principal to the agent with no effect on 

total surplus. Since the principal does not take the agent’s 

utility into account when choosing the level of precision, 

she typically does not choose the socially optimal level. 

This has implications for the optimality of regulation. 

For example, when effort is fixed, total surplus is in- 

dependent of precision. Nevertheless, the principal has an 

incentive to increase precision to reduce the agent’s wage, 

and so she always overinvests in precision compared to the 

social optimum. This result is interesting since most regu- 

lation increases the precision of performance metrics, such 

as reporting and disclosure requirements or mandatory au- 

dits. When effort is endogenous, the principal overinvests 

in precision relative to the social optimum whenever pre- 

cision reduces the agent’s utility and underinvests in pre- 

cision whenever it increases the agent’s utility. 20 
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5. Conclusion 

This paper uses an optimal contracting model to study

the value of information—a more precise signal of agent

performance—to the principal. We show that increasing

signal precision has two effects on the principal’s profit.

The first is the direct effect: reducing signal volatility low-

ers the value of the agent’s option and unambiguously

increases profit. This is the standard effect of precision

considered by arguments that information is valuable to

the principal. Our paper focuses on a second, indirect ef-

fect: reducing signal volatility changes the agent’s effort in-

centives. Crucially, this effect may be negative and harm

the principal—effort and precision may be substitutes—

offsetting the benefits of the direct effect. 

We derive a general condition that determines whether

effort and precision are complements or substitutes, and

thus the sign of the incentive effect, that holds for

any output distribution and does not assume the first-

order approach. When the output distribution has a loca-

tion parameter, and the first-order approach is valid, we

show that this condition is satisfied—precision increases

incentives—if and only if the strike price of the option is

low. We then relate the strike price of the option—and thus

the incentive effect of effort—to the underlying parameters

of the agency problem to determine the conditions under

which information is most valuable to the principal. When

the effort level is endogenous, the principal will choose a

low effort level and thus a high strike price (relative to this

effort level) when the cost of effort is sufficiently convex—

i.e., the agency problem is severe—as then incentive provi-

sion is difficult. When the effort level is fixed, as may be

the case for CEOs of large firms, the strike price is high

when the cost of effort is low—i.e., the agency problem

is mild—as then weak incentives are needed to implement

the fixed effort level. 

In a compensation setting, our results have implications

for the situations in which information on agent perfor-

mance is most valuable, and how firms should recontract

in response to changes in signal precision. In a financing

setting, they have implications for the value of risk man-

agement. In particular, the incentives to manage risk may,

surprisingly, be high when the face value of debt is low.

Even though the investor has little skin in the game, risk

management is especially valuable due to its positive effect

on the agent’s incentives. 

Appendix A. Proofs 

Proof of Lemma 1. The proof adopts Lemma 1 from

Matthews (2001) to a setting with a continuum of sig-

nals and general supports. Let ( W 

∗, e ∗) be a feasible con-

tract and consider the option contract W 

O = max { 0 , q − X} ,
where the strike price X is chosen so that both contracts

have the same expected payment under effort e ∗: 

∫ ∞ 

−∞ 

W 

∗(q ) f (q | e ∗) dq = 

∫ ∞ 

−∞ 

W 

O (q ) f (q | e ∗) dq. (33)
It is straightforward to show that the contract W 

O exists

and is unique. We will show that replacing W 

∗ by W 

O in-

creases effort and raises the principal’s expected profit. 

Let e O be an optimal effort f or the agent when he is

offered the option contract: 

e O ∈ arg max 
e ∈E 

∫ ∞ 

−∞ 

W 

O ( q ) f ( q | e ) dq − C ( e ) . 

Since the agent chooses e ∗ when offered W 

∗ and e O when

offered W 

O , we must have: ∫ ∞ 

−∞ 

W 

O (q ) f (q | e O ) dq −C(e O ) ≥
∫ ∞ 

−∞ 

W 

O (q ) f (q | e ∗) dq −C(e ∗) ,

and ∫ ∞ 

−∞ 

W 

∗(q ) f (q | e ∗) dq −C(e ∗) ≥
∫ ∞ 

−∞ 

W 

∗(q ) f (q | e O ) dq −C(e O ) .

Combining these two inequalities, we obtain ∫ ∞ 

−∞ 

[
W 

O (q ) − W 

∗(q ) 
][

f (q | e O ) − f (q | e ∗) ]dq ≥ 0 . (34)

Since both contracts have the same expected value un-

der effort e ∗, and the option contract pays the lowest fea-

sible amount for q < X and has the highest possible slope

for q > X , there exists q̄ ≥ X such that 

 

O (q ) 

{
≤
≥

}
W 

∗(q ) for all q 

{
≤
≥

}
q̄ . (35)

We will now show by contradiction that e ∗ ≤ e O . Sup-

pose that e ∗ > e O . Then: 

0 ≤
∫ ∞ 

−∞ 

[
W 

O (q ) − W 

∗(q ) 
][ f (q | e O ) 

f (q | e ∗) − 1 

]
f (q | e ∗) dq 

= 

∫ ∞ 

−∞ 

[
W 

O (q ) − W 

∗(q ) 
] f (q | e O ) 

f (q | e ∗) f (q | e ∗) dq 

−
∫ ∞ 

−∞ 

[
W 

O (q ) − W 

∗(q ) 
]

f (q | e ∗) dq ︸ ︷︷ ︸ 
0 

= 

∫ q̄ 

−∞ 

[
W 

O (q ) − W 

∗(q ) 
] f (q | e O ) 

f (q | e ∗) f (q | e ∗) dq 

+ 

∫ ∞ 

q̄ 

[
W 

O (q ) − W 

∗(q ) 
] f (q | e O ) 

f (q | e ∗) f (q | e ∗) dq 

< 

∫ q̄ 

−∞ 

[
W 

O (q ) − W 

∗(q ) 
] f ( ̄q | e O ) 

f ( ̄q | e ∗) f (q | e ∗) dq 

+ 

∫ ∞ 

q̄ 

[
W 

O (q ) − W 

∗(q ) 
] f ( ̄q | e O ) 

f ( ̄q | e ∗) f (q | e ∗) dq 

= 

f ( ̄q | e O ) 
f ( ̄q | e ∗) 

∫ ∞ 

−∞ 

[
W 

O (q ) − W 

∗(q ) 
]

f (q | e ∗) dq = 0 , 

where the first line divides and multiplies the expression

inside the integral in Eq. (34) by f ( q | e ∗); the second line

adds a term that equals zero (due to Eq. (33) ); the third

line splits the integral between outputs lower and higher

than q̄ ; and the fourth line uses MLRP and Eq. (35) . These

inequalities give us a contradiction (0 < 0), showing that

e ∗ ≤ e O . 
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To conclude the proof, we need to show that the princi- 

pal’s profits from offering the option contract ( W 

O , e O ) are 

higher than with the original contract ( W 

∗, e ∗): ∫ [
q − W 

O ( q ) 
]

f 
(
q | e O )dq ≥

∫ 
[ q − W 

∗( q ) ] f ( q | e ∗) dq. 

Subtracting 
∫ [

q − W 

O ( q ) 
]

f ( q | e ∗) dq from both sides, 

gives: ∫ [
q − W 

O ( q ) 
][

f 
(
q | e O ) − f ( q | e ∗) ]dq 

≥
∫ [

W 

O ( q ) − W 

∗( q ) 
]

f ( q | e ∗) dq = 0 , 

where the expression on the RHS equals zero by Eq. (33) . 

Rearranging this expression, it follows that the principal 

profits from the replacement if ∫ [
q − W 

O ( q ) 
]

f 
(
q | e O )dq ≥

∫ [
q − W 

O ( q ) 
]

f ( q | e ∗) dq, 

which is true because q − W 

O (q ) = min { q, X} is an increas- 

ing function of q , and f ( q | e O ) first-order stochastically dom- 

inates f ( q | e ∗) ( e O ≥ e ∗ and FOSD is implied by MLRP). 

Proof of Proposition 1. We start with two auxiliary lem- 

mas that will be useful for the main proof. Lemmas 3 and 

4 show that the incentive effect is positive if e θ ( X θ ) is in- 

creasing in θ and negative if e θ ( X θ ) is decreasing in θ . The 

principal’s program is: 

 (θ ) ≡ max 
X θ

R (X θ , θ ) , (36) 

where R (X θ , θ ) ≡ X θ − ∫ X θ−∞ 

F θ (q | e θ (X θ )) dq. Let X ∗
θ

∈ 

arg max X θ R (X θ , θ ) . 

Lemma 3 . Suppose e θ ( X ) is a nondecreasing function of θ at 

X = X ∗
θ

in an interval [ θ, θ + 
) . Then, 

V (θ ′ ) − V (θ ) 

θ ′ − θ
≥ −

∫ X ∗
θ−∞ 

[
F θ ′ (q | e θ ′ (X 

∗
θ
)) − F θ (q | e θ ′ (X 

∗
θ
)) 

]
dq 

θ ′ − θ
,

(37) 

for all θ ′ ∈ [ θ, θ + 
) . Moreover, if V ( θ ) is right-hand differ- 

entiable, then V ′ (θ+) ≥ − ∫ X ∗
θ−∞ 

∂F θ
∂θ

(q | e θ (X ∗
θ
)) dq. 

Proof of Lemma 3. Since X ∗
θ

is solution of program (36) , 

V (θ ′ ) ≥ R (X ∗
θ
, θ ′ ) and V (θ ) = R (X ∗

θ
, θ ) . Therefore, for any

θ ′ > θ , 

V (θ ′ ) − V (θ ) 

θ ′ − θ
≥ R (X 

∗
θ
, θ ′ ) − R (X 

∗
θ
, θ ) 

θ ′ − θ
. (38) 

Substituting the expression for R , we have 

R (X 

∗
θ , θ ′ ) − R (X 

∗
θ , θ ) 

= 

∫ X ∗
θ

−∞ 

[
F θ (q | e θ (X 

∗
θ )) − F θ ′ (q | e θ ′ (X 

∗
θ )) 

]
dq 

= 

∫ X ∗
θ

−∞ 

⎡ 

⎣ F θ (q | e θ (X 

∗
θ )) − F θ (q | e θ ′ (X 

∗
θ )) ︸ ︷︷ ︸ 

+ 

+ F θ (q | e θ ′ (X 

∗
θ )) 

− F θ ′ (q | e θ ′ (X 

∗
θ )) 

⎤ 

⎦ dq 
≥ −
∫ X ∗

θ

−∞ 

[
F θ ′ (q | e θ ′ (X 

∗
θ )) − F θ (q | e θ ′ (X 

∗
θ )) 

]
dq, 

where the inequality used the fact that F θ ( q | e ) is decreas-

ing in e (FOSD) and e θ (X ∗
θ
) ≤ e θ ′ (X ∗

θ
) . Substituting back in

Eq. (38) establishes Eq. (37) . For the second claim, take the 

limit as θ ′ ↘ θ . �

Lemma 4 . Suppose e θ ( X ) is a nonincreasing function of θ at

X = X ∗
θ

in an interval (θ − 
, θ ] . Then, 

V (θ ′ ) −V (θ ) 

θ ′ − θ
≤ −

∫ X ∗
θ−∞ 

[
F θ (q | e θ ′ (X 

∗
θ
)) − F θ ′ (q | e θ ′ (X 

∗
θ
)) 

]
dq 

θ ′ − θ
, 

(39) 

for all θ ′ ∈ (θ − 
, θ ] . Moreover, if V ( θ ) is left-hand differen-

tiable, then V ′ (θ−) ≤ − ∫ X ∗
θ−∞ 

∂F θ
∂θ

(q | e θ (X ∗
θ
)) dq. 

Proof of Lemma 4. Since X ∗
θ

solves the maximization 

program in (36) , V (θ ′ ) ≥ R (X ∗
θ
, θ ′ ) , and V (θ ) = R (X ∗

θ
, θ ) .

Therefore, for any θ ′ < θ , 

V (θ ′ ) − V (θ ) 

θ ′ − θ
≤ R (X 

∗
θ
, θ ′ ) − R (X 

∗
θ
, θ ) 

θ ′ − θ
. (40) 

From the definition of R , we have 

R (X 

∗
θ , θ ′ ) − R (X 

∗
θ , θ ) 

= 

∫ X ∗
θ

−∞ 

[
F θ (q | e θ (X 

∗
θ )) − F θ ′ (q | e θ ′ (X 

∗
θ )) 

]
dq 

= 

∫ X ∗
θ

−∞ 

⎡ 

⎣ F θ (q | e θ (X 

∗
θ )) − F θ (q | e θ ′ (X 

∗
θ )) ︸ ︷︷ ︸ 

+ 

+ F θ (q | e θ ′ (X 

∗
θ )) 

− F θ ′ (q | e θ ′ (X 

∗
θ )) 

⎤ 

⎦ dq 

≥ −
∫ X ∗

θ

−∞ 

[
F θ (q | e θ ′ (X 

∗
θ )) − F θ ′ (q | e θ ′ (X 

∗
θ )) 

]
dq, 

where we used FOSD and e θ ′ (X ) ≥ e θ ( X θ ) to establish 

that F θ (q | e θ (X ∗
θ
)) ≥ F θ (q | e θ ′ (X ∗

θ
)) . Substituting in Eq. (40)

establishes Eq. (39) . The second claim takes the limit as 

θ ′ ↗ θ . �
The full proof of Proposition 1 now follows. The agent’s 

best-response correspondence is 

e θ ( X θ ) ≡ arg max 
e 

∫ ∞ 

X θ

(q − X θ ) f θ (q | e ) dq − C(e ) . (41)

By the maximum theorem, e θ ( X θ ) is nonempty and com- 

pact valued. Recall that the agent chooses the effort pre- 

ferred by the principal whenever e θ ( X θ ) is not single val-

ued. We now show that the principal will strictly prefer 

the highest one. To see this, recall from Eq. (11) that ex- 

pected wage can be written: 

E [ W θ ( q ) | e, θ ] = E [ q | e ] − X θ + 

∫ X θ

−∞ 

F θ (q | e ) dq. (42)

Suppose the agent is indifferent between effort s e H > e L . 

Then, 

E [ q | e H ] − E [ q | e L ] 
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= 

∫ X θ

−∞ 

[ F θ (q | e L ) − F θ (q | e H ) ] dq + C(e H ) − C(e L ) > 0 , 

where the inequality follows from e H > e L , C 
′ > 0, and FOSD.

Using this inequality, we obtain 

E θ [ R θ ( q ) | e H ] = X θ−
∫ X θ

−∞ 

F θ (q | e H ) dq > X θ−
∫ X θ

−∞ 

F θ (q | e L ) dq 

= E θ [ R θ ( q ) | e L ] , 
showing that the principal has a higher profit under e H
than under e L . 

Using the expression for the agent’s wage from Eq. (42) ,

the agent’s effort is the largest element of 

arg max 
e 

E [ q | e ] − X θ + 

∫ X θ

−∞ 

F θ (q | e ) dq − C(e ) . 

The result then follows from Topkis’s theorem, since the

objective function satisfies increasing (decreasing) differ-

ences if ∂ 2 

∂ θ∂ e 

[ ∫ X 
−∞ 

F θ (q | e ) dq 

] 
≥ (≤)0 for all e, X . 

Proof of Proposition 2. With a location parameter,

F θ ( q | e ) ≡ G θ ( ε-e). Plugging this into Eq. (11) yields 

E θ [ W θ ( q ) | e ] = E [ q | e ] − X θ + 

∫ X θ −e 

−∞ 

G θ (ε ) dε . (43)

Maximizing with respect to effort, we can rewrite the first-

and second-order conditions as: 

1 − G θ (X − e θ (X )) = C ′ (e θ (X )) , (44)

g θ (X − e θ (X )) − C ′′ (e θ (X )) < 0 . (45)

Applying the implicit function theorem to Eq. (44) , it

follows that ∂ 
∂X 

e θ (X ) ≤ 0 , and, by MPS ( 
∂G θ
∂θ

(ε) ≤ (≥)0

for ε < (> ) ̂  ε ), ∂ 
∂θ

e θ (X ) ≥ (≤)0 if X − e θ (X ) < (> ) ̂  ε . Since

lim X↘−∞ 

X − e θ (X ) = −∞ , lim X↗ + ∞ 

X − e θ (X ) = + ∞ , and

X − e θ (X ) is a strictly increasing and continuous function

of X , if follows that there exists a unique ̂ X θ that solves 

̂ X θ − e θ ( ̂  X θ ) = ̂

 ε . (46)

Totally differentiating Eq. (46) gives: 

d ̂  X θ

dθ

[
1 − ∂e θ

∂X 

( ̂  X θ ) 

]
= 

∂e θ
∂θ

( ̂  X θ ) . 

Since 
∂e θ
∂X 

( ̂  X θ ) ≤ 0 and 

∂e θ
∂θ

( ̂  X θ ) = 0 , it follows that 
d ̂  X θ
dθ

=
0 , and so ̂ X θ is constant in θ . 

Proof of Proposition 3. The agent’s expected payoff

equals: 

E [ W (q ) | e, θ ] − C(e ;κ) = e − X + 

∫ X−e 

−∞ 

G θ (ε) dε − C(e ;κ)

so the agent’s optimal effort is given by the following first-

order condition: 

1 − G θ (X − e ) − ∂C 

∂e 
(e ;κ) = 0 . 

The principal’s profits equal 

X −
∫ X −e θ,κ (X ) 

−∞ 

G θ (ε) dε. 
We introduce the “distance from 

̂ ε ” variable Z ≡ X − e . As

seen in the proof of Proposition 2 , for the location fam-

ily, 
∂e θ
∂θ

≥ (≤)0 if Z ≤ (≥) ̂  ε . It suffices to show that the dis-

tance from 

̂ ε chosen by the principal, Z ∗
κ,θ

= X ∗
κ,θ

− e ∗
κ,θ

, is

increasing in κ . 

We can rewrite the principal’s profits in terms of ( Z, e )

instead of ( X, e ) , i.e., 

�(Z;κ) ≡ Z + e ∗θ,κ (Z) −
∫ Z 

−∞ 

G θ (ε) dε

where e ∗
θ,κ

(Z) is implicitly determined by: 

1 − G θ (Z) − ∂C 

∂e 
(e ;κ) = 0 . 

Total differentiation of the previous equality establishes

that: 

∂e ∗
θ,κ

(Z) 

∂Z 
= − g θ (Z) 

∂ 2 C 
∂e 2 

(e ;κ) 
< 0 , 

∂e ∗
θ,κ

(Z) 

∂κ
= 

− ∂ 2 C 
∂ e∂ κ

(e ;κ) 
∂ 2 C 
∂e 2 

(e ;κ) 
> 0 .

Note that the principal’s profit �( Z, κ) has increasing dif-

ferences, since 

∂ 2 �

∂ Z∂ κ
(Z;κ) = 

g θ (Z) [
∂ 2 C 
∂e 2 

(e ;κ) 
]2 

∂ 3 C 

∂ e 2 ∂ κ
( e ;κ) > 0 . 

By Topkis’s theorem, the solution Z ∗
κ,θ

= X ∗
κ,θ

− e ∗
κ,θ

is in-

creasing in κ . 

Proof of Lemma 2. The agent works if the incentive con-

straint holds: 

E [ W θ ( q ) | e ] − E [ W θ ( q ) | e ] ≥ C. (47)

We define X θ implicitly by the binding incentive con-

straint: 

∫ ∞ 

X θ

(q − X θ ) [ f θ (q | e ) − f θ (q | e ) ] dq = C. (48)

It is straightforward to show that X θ exists and is unique.

By the implicit function theorem, 

dX θ

dC 
= 

1 

F θ (X θ | e ) − F θ (X θ | e ) < 0 . 

Proof of Proposition 4. As discussed in the main text,

the only term in the decomposition of the expected wage

(11) with a nonzero cross-partial is 
∫ X θ−∞ 

F θ (q | e ) dq . Using

the incentive constraint in Eq. (25) , precision and incen-

tives are complements (substitutes) if and only if 

∂ 

∂θ

∫ X θ

−∞ 

[ F θ (q | e ) − F θ (q | e ) ] dq > (< )0 . (49)
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Since F θ (q | e ) = G θ ( q − e ) , we have 

∂ 

∂θ

∫ X θ

−∞ 

[ F θ ( q | e ) − F θ ( q | e ) ] dq 

= 

∂ 

∂θ

{∫ X θ −e 

−∞ 

G θ ( ε ) dε −
∫ X θ −e 

−∞ 

G θ ( ε ) dε 

}

= −
∫ X θ −e 

X θ −e 

∂G θ

∂θ
( ε ) dε. (50) 

Therefore, precision and incentives are complements (sub- 

stitutes) if and only if the expression in equation (50) is 

positive (negative). In addition, using Eq. (11) we get 

∂ 

∂X θ
{ E [ W θ (q ) | e ] − E [ W θ (q ) | e ] } 

= 

∂ 

∂X θ

∫ X θ

−∞ 

[ F θ (q | e ) − F θ (q | e ) ] dq = F θ (X θ | e ) − F θ (X θ | e ) , 
which is negative for any X θ by FOSD, and so incentives are 

decreasing in the strike price. In sum, if precision and in- 

centives are complements (substitutes), then X θ as defined 

in Eq. (48) must be increased (decreased) following a rise 

in θ , i.e., 
dX θ
dθ

≥ (≤)0 . 

From the definitions of a MPS in Eq. (1) and of G θ , 

we know that 
∂G θ
∂θ

alternates signs only once, and 

∂G θ
∂θ

≤
( ≥ ) 0 for q small (large) enough. Therefore, there exists ̂ X such that − ∫ X θ −e 

X θ −e 

∂G θ
∂θ ( ε ) dε is nonnegative for X θ < ̂X 

and nonpositive for X θ > ̂

 X . In sum, precision increases in- 

centives and 

dX θ
dθ

≥ 0 if X θ < ̂

 X , while precision decreases 

incentives and 

dX θ
dθ

≤ 0 if X θ > ̂

 X . Finally, we know from 

Lemma 2 that the initial strike price X θ is decreasing in 

C , which completes the proof. 

Proof of Corollary 1. Recall that the strike price X θ is im- 

plicitly defined as the solution to 

e − e −
∫ X−e 

X−e 

G θ (ε) dε = C. 

By the implicit function theorem, 

dX θ

dθ
= 

∫ X θ −e 

X θ −e 
∂G θ
∂θ

(ε) dε 

G θ (X θ − e ) − G θ (X θ − e ) 
. (51) 

The denominator is negative; so 
dX θ
dθ

≥ (≤)0 if ∫ X θ −e 

X θ −e 

∂G θ
∂θ ( ε ) dε ≤ (≥) 0 . 

Since G θ is symmetric for any θ , G θ (ε) = 1 − G θ (−ε) 

for any θ , ε. In particular, 

∂G θ

∂θ
(ε) = −∂G θ

∂θ
(−ε) . 

so, by MPS, 
∂G θ
∂θ

(x ) ≥ 0 ⇔ x ≥ 0 . 

Evaluating at X θ = 

e + e 
2 , gives ∫ e −e 

2 

− e −e 
2 

∂G θ

∂θ
(ε) dε = 0 . 

Note that 
dX θ
dθ

≤ 0 whenever X > e , since, in that case, 
∂G θ
∂θ

(ε) ≥ 0 for all ε ∈ (X − e , X − e ) . Similarly, 
∂G θ
∂θ

(ε) ≤ 0 

whenever X < e . Finally, for e ≤ X ≤ e , we have 

d 

dX 

[∫ X−e 

X−e 

∂G θ

∂θ
(ε ) dε 

]
= 

∂G θ

∂θ
(X − e ) − ∂G θ

∂θ
(X − e ) ≥ 0 , 
where the inequality follows from the fact that X − e ≥ 0 ≥
X − e implies 

∂G θ
∂θ

(X − e ) ≥ 0 and 

∂G θ
∂θ

(X − e ) ≤ 0 . There- 

fore, the numerator in Eq. (51) is increasing in X . 
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