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Abstract

This paper presents a repeated model of selective awareness and studies implica-

tions for information processing. A person receives a sequence of signals before mak-

ing a decision and interprets each signal selectively. In any equilibrium, the person

disregards all information after a certain number of observations. As a consequence,

learning is always incomplete. Additionally, the equilibrium behavior displays pat-

terns consistent with observed biases in information processing. The person displays

a tendency to interpret information in ways that support original beliefs and at-

taches a disproportionately large weight to initial observations (confirmation bias).

She also updates beliefs in the right direction, but in insufficient amount compared to

the update derived by Bayes’ rule (conservatism bias). The model’s implications for

learning about one’s self control and for the design of incentives to collect information

are discussed.
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sylvania, Washington University at St. Louis, the Wharton School, the Behavioral Economics Annual Meeting
(Cornell), and the Murray S. Johnson Memorial Conference (UT Austin) for comments. Kenneth Zhang provided
outstanding research assistance.

i

mailto:dgott@wharton.upenn.edu


Contents

1 Introduction 1

2 The Model 5

2.1 Continuum of Actions . . . . . . . . . . . . . . . . . . . 14

2.2 Finitely many Actions . . . . . . . . . . . . . . . . . . 15

2.3 Markovian Equilibria . . . . . . . . . . . . . . . . . . . 16

3 Uniform-Quadratic Model 17

3.1 Continuous Actions . . . . . . . . . . . . . . . . . . . . 18

3.2 Binary Actions . . . . . . . . . . . . . . . . . . . . . . 19

4 Applications 20

4.1 Persistence of Naiveté . . . . . . . . . . . . . . . . . 21

4.2 Incentives to Collect Information . . . . . . . . . . . . 22

5 Conclusion 23

References 24

Appendix 28

I. Equivalence of Informational Structures . . . . . . . . . . 28

II. Anticipatory Utility . . . . . . . . . . . . . . . . . . . 29

III. Persistence of Naiveté . . . . . . . . . . . . . . . . . 30

IV. Known Terminal Period . . . . . . . . . . . . . . . . . . 32

V. Multiple Signals and Non-Stationary Environments . . . . . 34

VI. Behavioral Strategies . . . . . . . . . . . . . . . . . . 38

VII. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 39

ii



1 Introduction

Economists typically model humans as statisticians who collect information in an unbiased

manner and make impartial inferences. The psychological evidence, however, suggests that we

behave more like unscrupulous statisticians, who collect and interpret information guided less by

a concern with accuracy than by a desire to feel competent. Sedikides, Green, and Pinter (2004,

pp. 165), for example, describe people as “striving for a positive self-definition or the avoidance

of a negative self-definition [...] at the expense of accuracy and truthfulness.” Practitioners also

claim that biases in information processing distort learning. Montier (2007), for example, argues

that “the major reason we don’t learn from our mistakes [...] is that we simply don’t recognize

them as such. We have a gamut of mental devices all set up to protect us from the terrible truth

that we regularly make mistakes.”

This paper studies how biases in information processing arise and persist when people have

selective awareness. I consider an infinitely lived person who receives a sequence of binary

signals. Each signal provides information about the state of the world. A state of the world may

correspond to the person’s skills or some other feature that affects payoffs through anticipatory

utility. The acquisition of information ends in each period with some positive probability. Then,

the person has to take an action from a set that may be either continuous or discrete. The payoff

from each action depends on the state of the world.

In choosing how to interpret each signal, the person faces a trade-off between optimism and

improved decision making. I show that, both with discrete and with continuous actions, the gain

from optimism decreases to zero at a slower rate than the cost of distorting actions. When the

action space is discrete, the person becomes increasingly convinced about which action to take

as more signals are interpreted correctly. Then, the probability that each additional signal will

affect her choice becomes small and so does the cost of misinterpreting the signal. When the

action space is continuous, each individual signal may affect the person’s decision; however, small

distortions close to the optimum have second-order costs. Hence, the person always rationalizes

away negative information after a sufficiently large number of observations. Individuals thus

never learn the true state.

In the past decade, many researchers in economics and finance have begun to model agents

with biased beliefs, such as optimism or overconfidence. Two questions inevitably arise from these

models: “In which domains should we expect these biases to be more prevalent?” and “Should

we expect people to learn from their mistakes over time, leading to a progressive elimination of

bias?”. Models that exogenously assume a bias are unable to address these questions adequately.

This paper draws on a more recent class of models that consider agents for whom biased

beliefs arise endogenously, in response to some “need” (e.g. desire for self-esteem, anticipatory

utility, motivation). Such needs are balanced – consciously or, more likely, unconsciously –

against the costs of making worse decisions through explicit processes of information acquisition,
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interpretation, or recall. Examples include Akerlof and Dickens’s (1982) seminal article on

cognitive dissonance, Bodner and Prelec’s (1995) model of self-signaling, and Brunnermeier and

Parker’s (2005) model of optimal expectations. The model considered in this paper has been used

to provide theories of personal motivation (Benabou and Tirole, 2002); redistributive policies

(Benabou and Tirole, 2006a); political attitudes towards reforms (Levy, 2012); groupthink and

ideologies (Benabou, 2008, 2011); endowment, sunk cost effects, and some other deviations from

expected utility theory (Gottlieb, 2014); preferences for increasing payments (Smith, 2009a,

2009b); and fear of death as an explanation for puzzles in health and savings behavior (Kopczuk

and Slemrod, 2005).2

Although most papers in this literature study decisions that are faced repeatedly over time,

they all assume that there is a single opportunity to manipulate beliefs. This simplifying as-

sumption precludes the analysis of how individuals would update beliefs if they had not just

one, but many signals to process. Furthermore, it is often argued that the Bayesian updating

assumption embedded in this framework would lead individuals to eventually learn the truth;

therefore, departures from rationality would vanish in the long-run. More specifically, since

there is usually a probability bounded away from zero that signals are interpreted correctly in

the static equilibrium of these models, standard asymptotic results would imply that beliefs

converge to the truth.3

This paper challenges that argument. I demonstrate that, in any equilibrium of the repeated

model, all information is disregarded after a certain number of observations (i.e., repeatedly

playing the static equilibrium is not an equilibrium of the repeated model). Learning is thus

always incomplete, and departures from rationality persist even when the decision problem is

repeated infinitely many times.4

2Bernheim and Thomadsen (2005) use a similar model to show why individuals may cooperate in a prisoner’s
dilemma game. Other papers featuring belief manipulation include Schelling (1985); Kuran (1993); Rabin (1994);
Carrillo and Mariotti (2000); Bodner and Prelec (2002); and Karlsson, Loewenstein, and Seppi (2009).

3For example, in the models of Benabou and Tirole (2006) and Benabou (2008), there are two stable pure
strategy equilibria – one in which information is interpreted realistically and one in which it is ignored – and one
unstable mixed-strategy equilibrium. If the individual repeatedly plays either the realistic or the mixed-strategy
recollection, she eventually learns the truth and the effects captured in their papers (differences in political
ideology, redistribution, labor supply, aggregate income, and popular perceptions of the poor) vanish. Likewise,
the predictions from the optimal expectations model would converge to the ones from rational expectations
models if individuals observe a large number of signals after initial beliefs are chosen; by Doob’s Consistency
Theorem, under mild conditions, beliefs asymptotically converge to the truth regardless of the prior distribution
chosen. See the Online Appendix for a formalization of this argument and how it relates to each specific model.

4This paper is related to the literature on experimentation, which started with Rothschild’s (1974) analysis of
two-armed bandits. In models in that literature, there is a fixed cost of experimentation. Since the benefits from
learning tend to zero with the number of observations, learning eventually stops. Here, there is no exogenous
cost of learning (the ex-ante optimal strategy involves complete learning). Instead, there is an endogenous cost
of learning that arises from the strategic desire to improve one’s self-image. While this endogenous cost also
tends to zero as the number of informative periods rises, it does so more slowly than the benefit. Moreover,
because the cost of learning is endogenous in my model, the comparative statics are also quite different from
what one would get in a standard bandit model. The paper is also related to Ali (2011), which studies conditions
for Bayesian individuals to learn their degree of self control (see Section 4). There is also a parallel between
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The model predicts a tendency to interpret information in ways that support original beliefs.

Individuals with a favorable initial streak of information are beguiled by optimistic beliefs and

subsequently disregard negative information; those with a negative initial streak of information

are stuck in pessimistic traps, and subsequently disregard positive information. This result is

consistent with evidence on the confirmation bias. In the words of Oswald and Grosjean (2004,

pp. 79):

“Confirmation bias” means that information is searched for, interpreted, and re-

membered in such a way that systematically impedes the possibility that the hy-

pothesis could be rejected – that is, it fosters the immunity of the hypothesis.

Psychologists have extensively studied the confirmation bias.5 The evidence from this literature

suggests that, as people become more convinced of their hypotheses, they disregard conflicting

information.

A related finding from psychology is the disproportionate effect of first impressions. Indi-

viduals excessively weight initial observations in sequences of exchangeable information. The

Markovian equilibria of the model have this property. Individuals interpret initial signals real-

istically and update their beliefs according to Bayes’ rule. However, after a certain number of

periods, they discard additional information and, therefore, do not update beliefs. The model

also predicts an updating bias known as conservatism. Conservatism posits that individuals

update beliefs in the right direction, but by too little relative to Bayesian updating (Edwards,

1968).6

The model generates new comparative statics results. It predicts that the ability to learn de-

creases in the self-image component of the information and increases in the value of information.

Both predictions are consistent with a literature in psychology that documents how preferences

affect beliefs.7 For example, biased beliefs seem to be more prevalent for traits and behaviors

that individuals regard as important.8 Bahrick, Hall, and Berger (1996) study distortions in

college students’ memory of their high school grades. They find that accuracy of recollections

declines monotonically in the students’ letter grades (from 89% for grades of A to 29% for grades

the learning failure in the model and the one from the social-learning literature (Banerjee, 1992; Bikhchandani,
Hirshleifer, and Welch 1992). In models of social learning, equilibria are inefficient because individuals fail to
account for the information externality from their actions; here, a self that rationalizes a bad signal away also
causes an externality on other selves by making them more suspicious of the reliability of a good signal.

5Indeed, Evans (1989, pp. 41) argues that “[c]onfirmation bias is perhaps the best known and most widely
accepted notion of inferential error to come out of the literature on human reasoning.” See Rabin and Schrag
(1999) for a survey of the confirmation bias literature.

6Barberis, Shleifer, and Vishny (1998) argue that the conservatism bias may explain the underreaction of
stock prices to news.

7See Kunda (1990) and Helzer and Dunning (2012) for a summaries of the literature, including its relationship
with the confirmation bias. The model also predicts that the ability to learn is decreasing in how much information
one expects to receive when the value of information is uniform. I am unaware of any experiments that test this
prediction.

8See, e.g., MacDonald and Ross (1999), or Sanbonmatsu et al. (1987).
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of D). As the authors interpret this finding, “[d]istortions are attributed to reconstructions in a

positive, emotionally gratifying direction.” Likewise, Greene (1981) argues that a desire to see

oneself as an accurate decision-maker in fact biases one’s beliefs towards confirming previous

decisions.

Relatedly, many studies show that information disclosed before an individual makes a deci-

sion is processed differently from information disclosed after the decision has been made. Since

information is only valuable when it can affect decisions, the model predicts that belief distor-

tions should be less prevalent when one has to decide which decision to make. Accordingly,

psychologists find that individuals who are actively considering which decision to make follow a

“deliberative mindset,” which is marked by a relatively open-minded processing of information.

On the other hand, those who cannot affect the decision follow an “implemental mindset,” which

is characterized by overly positive self-perceptions (Taylor and Gollwitzer, 1995).9

The predictions of the model are also supported by recent studies in experimental economics

that compare how individuals process information that bears on their self-esteem with how they

process more neutral information. Eil and Rao (2011), for example, document differences in

how subjects process information about their own intelligence (as measured by IQ) and beauty,

versus how they process neutral information about randomly generated numbers. In the realm

of neutral information, they find no significant deviation from Bayes’ rule. In the realm of

intelligence and beauty, however, they find that good news is processed quite differently from

bad news, producing a pattern of confirmation bias. In a similar experiment, Möbius, Niederle,

Niehaus, and Rosenblat (2011) test how subjects update beliefs when given information about

their scores in an IQ test relative to neutral information. Consistently with the predictions from

my model, they find significant evidence of confirmation bias for information about IQ, but not

for more neutral information. Moreover, they find much stronger evidence for conservatism when

updating information about IQ than for neutral information.10 Mijovic-Prelec and Prelec (2010)

find evidence of self-serving belief manipulations in a categorization test; although subjects were

incentivized for accurate predictions of their performance, they change their answers based on

their (non-contingent) financial stakes in the outcome.

This paper is related to a theoretical literature that models biases in information processing,

9See Gollwitzer and Bayer (1999) for a survey of this literature.
10Kuhnen (2012) studies how individuals learn from financial news when they actively invest in certain assets

compared to when they passively observe information about those assets. She finds that individuals learn passive
information more accurately. Moreover, consistent with the anticipatory utility formulation of my model, she
finds that asset payoffs affect how much individuals learn: individuals with payoffs in the gains domain learn
significantly better than those with payoffs in the losses domain. Hales (2007) also studies how individuals
randomly assigned to different financial positions interpret news. He finds that subjects are more willing to agree
with information suggesting that they will make money on their investment and to disagree with information
suggesting that they will lose money. Choi and Lou (2010) find evidence of self-serving, asymmetric updating
by mutual fund managers, whereas Goetzman and Peles (1997) show that individual investors display a similar
asymmetric pattern in their recollections of past portfolio performance. In turn, Wiswall and Zafar (2011) find
that college students asymmetrically update beliefs about future earnings in self-serving way.
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especially the seminal work of Rabin and Schrag (1999).11 Rabin and Schrag present a model

of confirmatory bias in which individuals misinterpret signals that conflict with their current

beliefs with a fixed probability. They show that this updating rule generates overconfidence

and that individuals may eventually believe in an incorrect hypothesis with near certainty.

My model might be seen as endogeneizing their misrepresentation mechanism. In doing so,

it generates predictions about the environments in which we should expect biased beliefs to

be more prevalent, and the directions that the bias will take. I do not claim that motivated

reasoning accounts for all of the evidence identified with the confirmation bias or other violations

of Bayes’ rule; a large literature finds departures from Bayesian updating in ego-independent

environments (c.f., Fischhoff and Beyth-Marom, 1983; Rabin, 1998; or Benjamin, Rabin, and

Raymond, 2013). Nevertheless, the evidence contrasting the confirmation bias in ego-related

with ego-independent environments suggests that motivated reasoning is an important part of

it.

The structure of the paper is as follows. Section 2 presents the general model. In Subsection

2.1, I describe the main results when there is a continuum of actions; Subsection 2.2 considers

a discrete action space. Section 3 illustrates the equilibria of the model in the special case of

quadratic payoffs and uniform distributions. Section 4 discusses new economic applications, and

Section 5 concludes. Several extensions, including the analysis of anticipatory utility, different

timings, and multiple non-stationary signals are presented in the appendix.

2 The Model

There is a single individual who must eventually take an action. The optimal action depends on

her skills θ, which lie in a compact non-empty interval of the real line Θ = [θ, θ̄]. The individual

does not know her own skills with certainty; her prior beliefs about θ are represented by a thrice

11Most models in this literature focus on identifying certain biases and exploring how these biases affect the
conclusions of standard economic models. See, e.g., Gennaioli and Shleifer (2010), Madarász (2012), Schwartzstein
(2014), and Benjamin, Rabin, and Raymond (2013). This paper is also related to Wilson (2014), which presents
a model featuring the same information structure as the one in Section 2 and also examines biases in information
processing. Our work is complementary since we focus on different memory limitations; Wilson considers an
unbiased but limited memory, consisting of a finite number of states. This restriction precludes the individual from
conditioning the action on the whole sequence of signals (or any sufficient statistic), which makes it impossible for
the true state to eventually be learned. By contrast, in the model in this paper, the individual can, in principle,
condition actions on the whole history of signals. The choice of not doing so arises endogenously through either
the desire to improve one’s self-image or to enjoy anticipatory utility. Although it is hard to dispute that human
memory is limited, unbiased decision makers may sometimes be able to keep a record of their observations (say,
by writing them or some sufficient statistic down) or search for evidence if needed. By contrast, the individuals
considered in this paper would write down inaccurate observations, interpret them incorrectly, delete their records,
or choose not to look at them. Alternatively, Brocas and Carrillo (2012) propose a neuroeconomic model that also
generates biases in information processing. Köszegi (2006) studies an individual who derives utility from believing
to be able to perform a certain task and shows that the individual may become overconfident. In contrast, the
utility of decision makers here are linear in probabilities, and so they are indifferent between irrelevant signals.
Preferences for information are determined by the decision makers’ memory imperfection.
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Figure 1: Informational Structure

continuously differentiable density ρ with full support on Θ.

There is an information process that ends with a constant probability η ∈ (0, 1) in each

period. When it ends, the individual must select an action a from a compact non-empty subset

of the real line A.12 While active, the process generates a new signal in each period. Signals

can be either high or low: σt ∈ {H,L}. Conditionally on skills, signals are independent and

identically distributed. Let p (θ) denote the conditional probability of a high signal, where

p : Θ → (0, 1) is a strictly increasing and twice continuously differentiable function. Because p

is increasing, a high signal is good news about the individual’s skills in the sense of first-order

stochastic dominance.13 These assumptions ensure that Bayesian posteriors converge to the true

parameter as the number of signals increase. Thus, a Bayesian individual would eventually learn

her true skill.

After observing each signal, the individual decides how to encode it. She may choose to

interpret it realistically σ̂t = σt or to rationalize it as a different signal σ̂t 6= σt (see Figure 1).

I refer to σ̂t as the recollection of signal σt. Because she remembers her interpretation of each

signal but not the signal itself, a period-t history is a vector of recollections up to period t:

ht = {σ̂1, σ̂2, ..., σ̂t−1} . The initial history is the null set: h1 = ∅. Let Ht := {L,H}t−1 denote

the set of period-t histories, and let H :=
∞⋃

t=1

Ht denote the set of all possible histories. For any

τ ≤ t, the vector hτ = {σ̂1, σ̂2, ..., σ̂τ−1} is called a subhistory of ht = {σ̂1, σ̂2, ..., σ̂t−1} . We write

hτ ⊂ ht if hτ is a subhistory of ht.

12As Wilson (2014) argues, this setup captures an environment in which someone expects to obtain a sequence
of information but is unsure about when a decision will have to be made. In Appendix IV, I assume that the
person observes a fixed number of signals and takes an action after the last observation. That setup represents
an environment in which one is certain about when the decision will have to be made and how much information
he or she will acquire before then. The results remain virtually unchanged in both setups (as well as in mixtures
between them).

13From a statistical perspective, the assumption that p is strictly increasing ensures that θ is identified. If p
were not a one-to-one function, it would be impossible for an individual to learn the true parameter θ regardless
of the number of observations.
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The individual has strictly increasing preferences over her perceived skills θ (“self-image”).14

Without loss of generality, skills can be normalized to be measured in payoff units up to a

parameter α > 0 that captures the importance of self-image. In each period before the process

ends, the individual’s payoff equals her expected skills conditional on her recollections: αE [θ|ht] .

When the information process ends, an individual with skill θ0 who selects action a gets a payoff

from actions V (a, θ0) , where V : A×Θ → R is a continuous function. There is no discounting.

A strategy is a function (σ̂L, σ̂H , a) : H → {L,H}2 × A that specifies how each signal is

interpreted if the information process does not end and which action is taken if the process ends.

That is, σ̂L(h
t) ∈ {L,H} and σ̂H(h

t) ∈ {L,H} specify how the individual interprets low and

high signals after history ht. The functions σ̂L and σ̂H are called interpretation strategies and

a is called an action strategy. Let µ (.|ht) denote the individual’s posterior beliefs about θ given

ht and let Eµ [.|ht] denote the expectation operator with respect to µ (.|ht) .

Any triple (σ̂L, σ̂H , µ) induces a probability measure over the space of histories H, which

specifies the probability of reaching each history if the information process does not end. For

example, if σ̂L (h
1) = σ̂H (h1) = H , then the probability of reaching h2 = {L} is zero, and

the probability of reaching h2 = {H} is one. Let E(σ̂L,σ̂H ,µ) [·|ht] denote the expectation with

respect to this measure. Similarly, let Pr (ht|σ̂L, σ̂H) denote the probability of reaching history

ht conditional on the interpretation strategy (σ̂L, σ̂H) and prior distribution ρ.

The expected payoff from strategy (σ̂L, σ̂H , a) under belief µ is

∞∑

t=0

(1− η)tE(σ̂L,σ̂H ,µ)

{
α (1− η)

[
Eµ

[
θ|ht

]
+ ηV

(
a
(
ht
)
, θ
)]}

. (1)

This payoff function is based on two assumptions that simplify notation but are not important

for my results. First, it assumes that the probability of termination η is constant. It is easy,

although notationally cumbersome, to generalize my results to time-varying termination proba-

bilities. Similarly, any impatience about the future can be incorporated into the probability of

termination. Second, this specification assumes that the game ends after the individual takes the

action. The analysis would remain unchanged if we assumed that the individual keeps receiving

a payoff equal to her expected skills after the action is taken.15

14This assumption was previously adopted by Benabou and Tirole (2006b, 2009) and Gottlieb (2014). There
are several reasons why people may value believing that they have higher skills. First, they may simply like
to think that they have these attributes (see, e.g., Schelling, 1985). Second, people may benefit from having
overconfident beliefs in situations in which emotions affect performance (Compte and Postlewaite, 2004). Third,
there may be a motivational value of belief manipulation: individuals with time-inconsistent preferences value
overconfident beliefs when effort and skills are complementary (Benabou and Tirole, 2002). Preferences over
skills can be derived as a reduced form of the models of Benabou and Tirole (2002) and Compte and Postlewaite
(2004). Moreover, although it is natural to interpret θ as representing the individual’s skills, it can be any
payoff-relevant characteristic that is positively correlated with the payoff from the action. The assumption that
individuals care directly about self-image can be replaced by anticipatory utility preferences (see Appendix II).

15The assumption of separability between the payoff from self views and the payoff from actions is not important
for my results. Separability states that payoff from actions are “objective” in the sense that individuals cannot
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The individual faces a decision problem with imperfect recall. I follow Piccione and Ru-

binstein (1997) in modeling such a decision problem as a game between different “selves.” In

each period before information acquisition ends, a new self receives a signal and chooses how to

interpret it. When the process ends, a new self takes an action. The decision is modeled as the

Perfect Bayesian Equilibrium (PBE ) of this multiself game:

Definition 1 A PBE of the game is a strategy profile (σ̂∗
L, σ̂

∗
H , a

∗) and posterior beliefs µ such

that, for all ht ∈ H,

1. Each interpretation maximizes the expected continuation payoff: For all σ ∈ {L,H},

σ̂∗
σ

(
ht
)
∈ arg max

s∈{L,H}

∞∑

τ=t

(1− η)τ−tE(σ̂∗

L,σ̂
∗

H ,µ)

{
α (1− η) [Eµ [θ| {ht, s, σ̂t+1, ...σ̂τ}]]
+ηV (a ({ht, s, σ̂t+1, ...σ̂τ}) , θ)

∣∣∣∣∣
(
ht, σ

)
}
;

2. Each action maximizes the expected payoff when the process ends:

a∗
(
ht
)
∈ argmax

a∈A

{
Eµ

[
V (a, θ) |ht

]}
;

3. Posterior beliefs µ (.|ht) are obtained by Bayes’ rule if Pr (ht|σ̂∗
L, σ̂

∗
H) > 0.

Conditions 1 and 2 are perfection conditions: 1 requires each self to choose the interpretation

strategy that maximizes her expected stream of payoffs given the interpretation and action

strategies of other selves; 2 requires actions to maximize the expected payoff in each terminal

history. Condition 3 requires beliefs to satisfy Bayes’ rule given the equilibrium strategies. We

say that beliefs µ are consistent with interpretation strategies (σ̂L, σ̂H) if they satisfy Condition

3, and we say that an action strategy a is consistent with beliefs µ if Condition 2 holds. Given

a PBE, we say that history ht is on the equilibrium path if Pr (ht|σ̂∗
L, σ̂

∗
H) > 0.

Because in the main text I will only consider pure strategy equilibria, there is no loss of

generality in assuming that high signals are always interpreted realistically (up to a relabeling of

interpretations).16 Thus, we can assume that all high signals are interpreted truthfully σ̂H(h
t) =

H , whereas low signals are either interpreted realistically σ̂L(h
t) = L or rationalized as a high

signal σ̂L(h
t) = H (see Figure 2). Because high signals are always assigned to a high recollection,

we can omit the subscript L and take the interpretation strategy to be a mapping σ̂ : H →
{L,H} that specifies how to interpret a low signal. This reformulation of the model leads to

the information processing framework from Benabou and Tirole (2002, 2004, 2006a, 2006b)

and Benabou (2008, 2011). It is easier to work with this reformulation because interpretation

strategies become a single function, which reduces the set of possible deviations.

manipulate it only by changing their beliefs.
16See Appendix I for a formal proof of this claim as well as the formal definition of the PBE of this modified

game. Appendix VI considers equilibria in mixed and behavioral strategies.
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In equilibrium, the individual knows her interpretation strategy and, by consistency of be-

liefs, the law of iterated expectations holds on all histories on the equilibrium path. Thus,

in equilibrium, misinterpreting information does not affect the expected payoff from skills:

E [θ] = E [E [θ|ht]] for all ht on the equilibrium path. Rationalizing a low signal away raises

the payoff conditional on that signal. However, it lowers the payoff conditional on a high signal

by making the individual less convinced about its reliability. In expectation, these two effects

exactly cancel out. Since more information leads to (weakly) better decision making, the in-

dividual would be better off if she could commit not to misinterpret any information. As we

will see, interpreting all information realistically is not an equilibrium of the game. Thus, no

equilibrium maximizes the individual’s ex-ante expected payoff.17

Since Condition 3 does not restrict beliefs on histories off the equilibrium path, any belief

is allowed in histories that are never reached. Definition 1 is therefore a very weak definition

of PBE; it does not even require subgame perfection in games of complete information. Game

theorists often impose additional restrictions on posterior beliefs to reduce the multiplicity of

equilibria.18 I will not do so for two reasons. First, since my results hold for all PBE, it suffices

to work with this less restrictive definition. Second, the equivalence between the equilibria of

the games with the information structures from Figures 1 and 2 typically fails if one imposes

additional restrictions on beliefs. Since I want to obtain results that apply to both formulations,

I cannot restrict beliefs off the equilibrium path.19

Suppose the individual rationalizes every low signal away, assigns the same posterior as her

prior distribution to all histories, and chooses a preferred action given her initial beliefs. Because

posteriors are not affected by her recollections, both the interpretation strategy and the action

strategy are optimal given her beliefs. Moreover, since recollections are uninformative, posterior

beliefs are consistent with Bayes’ rule. Hence, there always exists a PBE in which the individual

rationalizes every low signal away:

Proposition 1 There exists a PBE in which σ̂∗ (ht) = H for all ht ∈ H.

17This result relies on the linearity of the expected utility function in probabilities. If payoffs were nonlinear
functions of probabilities – as, for example, in the model of confidence-enhanced performance of Compte and
Postlewaite (2004) or the time-inconsistency model of Benabou and Tirole (2002) – the law of iterated expectations
would no longer apply and rationalization could be ex-ante beneficial. The individual’s time inconsistency is
generated by what Piccione and Rubinstein (1997) refer to as the absentmindedness property.

18See, e.g., Fudenberg and Tirole, 1991 pp. 331-333.
19For example, in the structure from Figure 2, a low recollection is only possible if a low signal is observed.

Therefore, any reasonable selection criterion should require the individual to assign probability one to σt = L
if she recalls σ̂t = L. On the other hand, in the information structure from Figure 1, both recollections can
be reached after each signal. Since, holding beliefs fixed, the cost choosing high and low recollections is the
same for both signals, standard selection criteria (such as the Intuitive or Divinity Criteria) do not rule out any
equilibrium. One reasonable refinement in this framework assumes that beliefs remain unchanged in off-path
histories. However, this condition does not restrict much the set of PBE. The main new property gained with
this refinement is that the comparative statics on the set of equilibria (Proposition 2) hold for all histories (and
not only those on the equilibrium path).
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Figure 2: Revised Informational Structure (Benabou-Tirole)

For given posterior beliefs µ and a history ht, we say that the recollection σ̂t is informative

if it modifies the posterior:

µ
(
θ|ht, σ̂t

)
6= µ

(
θ|ht

)
.

Notice that informativeness is defined relative to posterior beliefs and histories. A recollection

σ̂t may be informative in some histories and uninformative in others.

For histories on the equilibrium path, belief consistency requires the individual to update

beliefs only when low and high signals are interpreted differently. Since high signals are always

interpreted as high, this is only possible when low signals are interpreted as low. Hence, a

recollection σ̂t after history ht is informative if and only if σ̂∗ (ht) = L. The following lemma

states this result formally:

Lemma 1 Fix an interpretation strategy σ̂∗ : H → {L,H} and let µ be posterior beliefs consis-

tent with it. Let ht ∈ H be a history on the equilibrium path. A recollection σ̂t at history ht is

informative if and only if σ̂∗ (ht) = L.

For any history ht on the equilibrium path, either both high and low recollections will be

informative (if σ̂∗ (ht) = L), or they will both be uninformative (if σ̂∗ (ht) = H). We can, there-

fore, refer to the informativeness of a period rather than the informativeness of each recollection.

We say that history ht has n informative periods if beliefs were modified in n of its subhistories:

#
{
(hτ , σ̂τ ) ⊂ ht : µ (θ|hτ , σ̂τ ) 6= µ (θ|hτ )

}
= n.

We say that a history ht has k successes in n informative periods if, among the n periods in

which beliefs were modified, there were k high recollections:

#
{
(hτ , H) ⊂ ht : µ (.|hτ , H) 6= µ (.|hτ )

}
= k.

Hence, over such a history, the individual revised her beliefs upwards (in the sense of first-order

10



stochastic dominance) k times and downwards n − k times. The following examples illustrate

these definitions:

Example 1 Let σ̂∗ (ht) = H and let posterior beliefs be equal to the prior distribution for all

histories. Only high recollections happen with positive probability. Furthermore, for any t, history

ht = {H, ..., H} has 0 successes in 0 informative periods.

Example 2 Let σ̂∗ (ht) = L for all histories and let µ be beliefs consistent with this interpreta-

tion strategy. Since every recollection is informative, a history ht features k = # {σ̂τ ∈ ht : σ̂τ = H}
successes in n = t− 1 informative periods.

Example 3 Let σ̂∗ (h1) = L and σ̂∗ (ht) = H for all ht 6= h1. Let µ be beliefs consistent with this

interpretation strategy. Then, history {H,L, L, L..., L} has 1 success in 1 informative period,

and history {L, L, L, ..., L} has 0 successes in 1 informative period.

For a given prior ρ, the number of successes and informative periods fully identifies posterior

beliefs along the equilibrium path. More specifically, let ht be a history on the equilibrium path

with k successes in n informative periods. The posterior distribution of θ at ht has density

µ (θ|k, n) = p (θ)k [1− p (θ)]n−k ρ (θ)
´

Θ
p (θ)k [1− p (θ)]n−k ρ (θ) dθ

.

The key difference between the model of selective awareness and other models of non-Bayesian

learning is the context-dependence of biases. In order to derive testable implications, we need

to understand how changes in the self-image content of signals affect how they are interpreted.

There are two ways to derive comparative statics results when there are multiple equilibria.

One possibility is to apply a selection criterion. For example, we could select the most efficient

equilibrium. A more robust approach, which I pursue here, is to establish set monotonicity (with

respect to the inclusion order).

I will say that the equilibrium set is decreasing in the importance of self-image if the set

of interpretations and actions on the equilibrium path is decreasing in α. More formally, the

equilibrium set is decreasing in the importance of self-image if, for any α1 > α0, whenever

(σ̂∗
1, a

∗
1, µ

∗
1) is the PBE of the game under parameter α1, there exists a PBE of the game under

α0, (σ̂
∗
0, a

∗
0, µ

∗
0), such that σ̂∗

0 (h
t) = σ̂∗

1 (h
t) , a∗0 (h

t) = a∗1 (h
t) , and µ∗

0 (θ|ht) = µ∗
1 (θ|ht) for all

histories with Pr (ht|σ∗
1) > 0.20

Proposition 2 (Comparative Statics) The equilibrium set is decreasing in the importance

of self-image. Moreover:

20Notice that requiring that σ̂∗

0
and σ̂∗

1
coincide in all histories on the equilibrium path induced by σ̂∗

1
implies

that the set of histories on the equilibrium paths of both σ̂∗

0
and σ̂∗

1
must also coincide.

11



1. There exists ᾱ ∈ R+ such that, in any PBE, σ̂∗ (ht) = H for all ht on the equilibrium path

whenever α > ᾱ.

2. Let N ∈ N. Suppose argmaxaE [V (a, θ) |k, n] * argmaxaE [V (a, θ) |k − 1, n] for all

(k, n) ∈ {(k, n) : 1 ≤ k ≤ n < N}. Then, there exists a PBE in which σ̂ (ht) = L for all ht

and t < N whenever α < α for some α ∈ R++.

In order to sustain an equilibrium in which a signal is interpreted realistically, we must

ensure that the individual will not prefer to interpret a low signal as high. Since the incentive to

rationalize low signals away is increasing in the importance of self-image α, the set of equilibria

that can be sustained decreases in α. In particular, when the importance of self-image is high

enough, the individual cannot commit not to rationalize any low signal away. Then, there is no

learning in any equilibrium (Part 1). Conversely, there exists an equilibrium with some learning

if the importance of self image is low enough and misinterpreting a signal can reduce the payoff

from actions (Part 2).

Remark 1 (Preferences affect Beliefs) Proposition 2 shows that individuals with the same

prior beliefs and subject to the same information may hold systematically different posterior

beliefs if they have different payoffs from self-image. In particular, the amount of information

that can be learned is decreasing in the importance of self-image. This result is consistent with

the evidence described in the introduction.

The conservatism bias states that individuals update beliefs in the right direction, but by too

little relative to the Bayesian update. The individual in this model always displays conservatism.

When the equilibrium assigns a low interpretation to a low signal σ̂∗ (ht) = L, the interpretation

fully reveals which signal was observed and beliefs about θ are updated according to Bayes’ rule.

However, when the equilibrium assigns a high interpretation to a low signal σ̂∗ (ht) = H, the

individual’s recollection is uninformative and, therefore, she does not update her beliefs. Hence,

selective interpretation introduces additional noise in the individual’s recollections of signals,

which causes her to update beliefs in the same direction as the Bayesian update conditional on

the realized signals, but at a slower rate.

Let θBt denote the expected value of θ obtained by Bayes’ rule conditional on the sequence of

observed signals {σ1, ..., σt−1}, and let θ̂t denote the expected value of θ calculated according to

the individual’s beliefs µ (i.e., conditional on the sequence of the individual’s interpretations).

The following proposition establishes that the individual displays conservatism: Posterior expec-

tations move in the same direction, but are “less variable” (in the sense of second-order stochastic

dominance) than the expectations obtained by Bayes’ rule.21

21In Appendix VI, I generalize Proposition 3 to behavioral strategies, leading to a smoother, more realistic
version of conservatism.
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Proposition 3 (Conservatism) Let σ̂∗ be an interpretation strategy and let µ be posterior

beliefs consistent with this strategy. For any history ht such that Pr (ht|σ̂∗) > 0,

θBt > θBt−1 =⇒ θ̂t ≥ θ̂t−1, and

θBt < θBt−1 =⇒ θ̂t ≤ θ̂t−1.

Furthermore, θ̂t second-order stochastically dominates θBt .

Consider an equilibrium in which the individual interprets signals realistically at a history

with k successes in n informative periods. Deviating and interpreting a low signal as high

increases the payoff from self views in the current period by

α {E [θ|k + 1, n+ 1]−E [θ|k, n+ 1]} . (2)

This is a lower bound on the total gain from the deviation. Since the individual will believe to

have observed one more high signal than she really did in all subsequent periods, future payoffs

from self image are also increased.

In order to obtain results that hold for any prior distribution, we need an approximation of the

conditional expectation E [θ|k, n] that is independent of the prior. This will be established using

a method originally developed by Laplace (1774), who showed that conditional expectations

pile up near the maximum likelihood estimator.22 Since maximum likelihood estimators do not

depend on the prior distribution, this approximation will allow us to obtain uniform results. Let

s ≡ {σ̂1, σ̂2, ...} ∈ {L,H}∞ denote an infinite sequence of informative recollections. The following

lemma establishes that we can write the conditional expectation in terms of the maximum

likelihood estimator p−1
(
k
n

)
plus terms of higher order:

Lemma 2 There exist C and Ns such that, for all n > Ns,

∣∣∣∣E [θ|k, n]− p−1

(
k

n

)
− ξ

(
k

n

)
1

n

∣∣∣∣ ≤
C

n2
(3)

for almost all s (under the true θ), where

ξ (x) :=

√
x (1− x)

p′ (p−1 (x))

{
2 [p′ (p−1 (x))]

3
(1− 2x)

[x (1− x)]2
− 3p′ (p−1 (x)) p′′ (p−1 (x))

x (1− x)
+

ρ′ (p−1 (x))

ρ (p−1 (x))

}
.

Using Lemma 2, we can then estimate the improvement in self-image from one additional

success when the number of informative periods n is large:

22Laplace only considered uniform priors. Among the many generalizations of his result, I will follow the
approach of Johnson (1970).
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Proposition 4 There exist C and Ns such that, for all n > Ns,

∣∣∣∣∣E [θ|k + 1, n]−E [θ|k, n]− 1

p′
(
p−1

(
k
n

)) 1
n

∣∣∣∣∣ ≤
C

n2

for almost all s (under the true θ).

Since p′
(
p−1

(
k
n

))
→a.s. p

′ (θ) > 0, the improvement in self image is O
(
1
n

)
. I will consider

the cost of the deviation for continuous and discrete action spaces separately.

2.1 Continuum of Actions

This subsection obtains a finite bound on the number of informative periods for continuous

action spaces. Recall that the action space A is a non-empty compact subset of the real line. I

will assume that it is also convex:

Assumption 1. A is a compact interval of the real line.

Consider, for instance, a quadratic loss function:

V (a, θ) = −κ (a− θ)2 . (4)

The parameter κ > 0 captures the importance of taking the correct action. Let A = Θ be the

action space, and let ak,n denote the optimal action in a history with k successes in n informative

periods. Under quadratic loss, the optimal action is the mean of the posterior: ak,n = E [θ|k, n].
Suppose the individual interprets a low signal realistically after history ht and consider a

deviation to σ̂t = H . From Proposition 4, the increase in self-image is bounded below by a term

of order 1
n
. If the game ends in a history with k̃ successes in ñ > n informative periods, the

individual will choose action ak̃+1,ñ instead of ak̃,ñ. The cost of this deviation is

E
[
V (ak̃,ñ, θ)− V (ak̃+1,ñ, θ)|k, n

]
= κ

{
E
[
θ|k̃ + 1, ñ

]
− E

[
θ|k̃, ñ

]}2

,

which, by Proposition 4, is of order 1
ñ2 . Hence, the cost of the deviation converges to zero faster

than the benefit. Therefore, the individual prefers to rationalize low signals away in any PBE

after a sufficiently informative history.

The result from the quadratic model can be substantially generalized. Assume that the payoff

from actions is a sufficiently smooth function, which is concave in actions:

Assumption 2. V is twice continuously differentiable. For each θ ∈ Θ, ∂2V
∂a2

(a, θ) < 0.

Strict concavity implies that the optimal action for each skill, a (θ) := argmaxa∈A {V (a, θ)} , is

unique. Assume that it is also interior:

14



Assumption 3. For almost all θ, a (θ) is an interior point of A.

Assumptions 2 and 3 ensure that distortions close to the optimal action have second-order costs.

As a result, the cost of distorting self-image is of lower order of magnitude than 1
n
, implying

that the individual will prefer to rationalize low signals away in any PBE when n is large. The

following theorem establishes this result formally:

Theorem 1 (Confirmation Bias for Continuous Actions) Suppose Assumptions 1, 2, and

3 are satisfied. There exists n ∈ N such that, in any PBE, almost every history on the equilibrium

path has at most n informative periods.

The proof has two main steps. First, we apply an asymptotic expansion to ak̃,ñ to verify

that the distortion in actions from misinterpreting a signal is bounded. Second, we apply a

Taylor expansion to the expected payoff from actions around the optimal action ak̃,ñ. Since the

first-order term is zero due to the optimality of ak̃,ñ and the distortion is bounded, only terms

with order of magnitude lower than 1
n

remain.

Theorem 1 shows that the individual’s beliefs (almost) never converge to the truth. Therefore,

selective awareness imposes a limit to learning. Not only is there always an equilibrium in

which no learning ever occurs (Proposition 1); learning is incomplete in any equilibrium. By

Proposition 2, the amount of learning that can be sustained in equilibrium is decreasing in the

importance of self image α.

2.2 Finitely many Actions

This subsection considers the model with a finite action space:

Assumption 4. A is a finite set.

The next assumption, which is generic, states that the optimal action is globally unique except

at a finite number of skills θ:

Assumption 5. argmaxa∈A {V (a, θ)} is a singleton except at a finite set.

Assumption 5 allows us to partition the type space into a finite number of intervals, with types in

the interior of each interval having a strictly preferred action. It is automatically satisfied under

the standard assumption that V has either strictly increasing or strictly decreasing differences.

In the continuous-action case, the smoothness of V and the interiority of the solution ensured

that small distortions had second-order costs. When actions are finite, this is not true since any

distortion that affects actions will necessarily cause a discrete loss. However, for any contin-

uation strategy, the probability that one particular signal affects the optimal action decreases

exponentially as the number of informative periods grows. Since the maximal loss from making
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an incorrect decision is bounded and the probability of affecting the decision decreases exponen-

tially (which converges to zero faster than 1/n), the benefit from distorting the signal eventually

exceeds its cost. At that point, the individual must ignore every additional information in every

equilibrium. Thus, as in the continuous-action case, beliefs (almost) never converge to the truth:

Theorem 2 (Confirmation Bias for Finite Actions) Suppose Assumptions 4 and 5 are sat-

isfied. For almost all θ, there exists nθ such that, in any PBE, almost all histories on the

equilibrium path have at most nθ informative periods.

2.3 Markovian Equilibria

A strategy is Markovian if it depends on payoff-relevant information only. In this model, histories

affect payoffs only through beliefs about skills. Hence, a Markovian strategy space partitions

the set of histories based on beliefs about skills.23 A Markovian Perfect Bayesian Equilibrium is

a PBE in which strategies are Markovian:

Definition 2 A Markovian Perfect Bayesian Equilibrium (MPBE) is a PBE (σ̂, a, µ) in which,

for any histories ht and hτ ′,

µ
(
θ|ht

)
= µ

(
θ|hτ ′

)
=⇒ a

(
ht
)
= a

(
hτ ′
)

and σ̂
(
ht
)
= σ̂

(
hτ ′
)
.

Let (σ̂, a, µ) be an MPBE and let ht be a history on the equilibrium path with k successes

in n informative periods. Suppose the individual interprets a low signal realistically at ht, i.e.,

σ̂∗ (ht) = L. If the information process does not end at ht, the individual either observes a

high signal at t + 1, thereby moving to a history with k + 1 successes in n + 1 informative

periods, or she observes a low signal at t + 1, moving instead to a history with k successes in

n + 1 informative periods. Therefore, histories in which the individual interprets a low signal

realistically are associated with transient Markovian states. Conversely, suppose the individual

rationalizes a low signal as high in history ht, i.e., σ̂∗ (ht) = H . Because both signals are

interpreted equally, a high recollection is not informative and the individual’s beliefs remain

unchanged: ht is associated with an absorbing Markovian state. Therefore, in an MPBE, once

the individual rationalizes a signal away, she will keep rationalizing every future signal away.

In Markovian equilibria, histories on the equilibrium path can be split into two stages. In

the first stage, signals are interpreted correctly and beliefs evolve according to Bayes’ rule condi-

tional on the observed signals; in the second stage, signals are misinterpreted and beliefs remain

unchanged. Consequently, the individual attaches a disproportionately high weight to initial

information. The following corollary states this result formally:

23This definition follows Maskin and Tirole (2001) in excluding the history length from the state space. Some
authors refer to these strategies as stationary Markovian strategies.
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Corollary 1 (First Impressions Matter) Fix an MPBE. For any history ht on the equilib-

rium path, there exists Tht ≤ t such that a period τ ≤ t is informative if and only if τ < Tht .

Moreover:

• If Assumptions 1-3 are satisfied, there exists n ∈ N such that Tht ≤ n for almost every

history ht on the equilibrium path.

• If Assumptions 4-5 are satisfied, for almost all θ, there exists nθ ∈ N such that Tht ≤ nθ

for almost every history on the equilibrium path.

Recall that the individual would prefer, ex-ante, to interpret as many signals realistically as

possible. Hence, the least efficient PBE is the equilibrium in which all signals are rationalized

away, which is Markovian. Moreover, because the game ends with probability η every period,

she would prefer to interpret signals realistically as early as possible. Thus, the most efficient

PBE is an equilibrium in which the individual interprets signals realistically whenever possible.

This is also a Markovian equilibrium.24 Therefore, Markovian equilibria provide bounds on

the amount of inefficiency that may result in any equilibrium of the model. Moreover, if one

is willing to adopt a selection criterion that picks an efficient equilibrium, one will necessarily

select a Markovian equilibrium.

3 Uniform-Quadratic Model

This section illustrates the theory with a specific formulation of the model. In this formulation,

the payoff from actions is determined by the quadratic loss function (4), skills are uniformly

distributed, and the probability of a high signal is uniformly distributed on the unit interval:

p(θ) =
θ − θ

θ̄ − θ
, and θ ∼ U [θ, θ̄].

From Bayes’ rule, the posterior probability of a high signal and the expected skill conditional

on k successes in n informative periods equal

E[p|k, n] = k + 1

n+ 2
, and E [θ|k, n] = θ +

(
θ̄ − θ

)(k + 1

n + 2

)
. (5)

In Proposition 4, we saw that misinterpreting a low signal as high in a history with n informative

periods raises expected skills by an order of magnitude 1
n
. Here, we can calculate this effect in

closed form:

E [θ|k + 1, n]− E [θ|k, n] = θ̄ − θ

n+ 2
.

24See the Online Appendix for a formal proof.
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For general distributions, the benefit from rationalizing low signals away depends on the number

of successes k. In the uniform model, however, the effect of misinterpreting a signal on the

expectation of skills does not depend on the number of successes. Therefore, the benefit from

rationalizing low signals away is the same in all histories with the same number of informative

periods.

3.1 Continuous Actions

As in Subsection 2.1, let A = Θ be the action space, and let ak,n = E [θ|k, n] denote the optimal

action in a history with k successes in n informative periods. Misinterpreting a low signal as

high induces future selves in histories with k̃ successes in ñ informative periods to pick actions

as if there were k̃ + 1 successes instead. The cost of doing so equals

E
{
V
(
E
[
θ|k̃, ñ

]
, θ
)
− V

(
E
[
θ|k̃ + 1, ñ

])
|k̃, ñ

}
= κ

(
θ̄ − θ

ñ+ 2

)2

.

As we saw in Subsection 2.1, the cost of distorting an action close to the optimum is of

second order. When the payoff from actions is quadratic, the cost of distorting an action is of

second order everywhere (even away from the optimum). Because misinterpreting a signal raises

expected skills by θ̄−θ
n+2

, the cost of such a distortion is proportional to
(

θ̄−θ
n+2

)2
, which does not

depend on k.

Since both the benefit and the cost of misinterpreting a signal depend on the number of

informative signals n but not on the number of successes k, the largest number of realistic

interpretations does not depend on k. Let ⌊.⌋ denote the floor function. The next proposition,

whose proof is in the Online Appendix, obtains a closed-form solution for the maximum number

of informative periods:

Proposition 5 (Uniform-Quadratic Continuous) In any PBE, any strategy on the equilib-

rium path has at most max
{⌊

ηκ θ̄−θ
α

− 2
⌋
, 0
}

informative periods and the bound is tight.

In particular, an interpretation strategy is part of an MPBE if and only if the individual

interprets at most n̄ := max
{⌊

ηκ θ̄−θ
α

− 2
⌋
, 0
}

periods realistically and stops learning whenever

she interprets a low signal as high. In the MPBE with the highest number of informative periods

– the most efficient PBE –, learning ends after a constant number of periods n̄ regardless of the

history. Since the incentive to rationalize low signals away is increasing in the importance of

self-image and decreasing in the cost of making an incorrect decision, the amount of realism that

can be sustained in equilibrium decreases in α and increases in κ (consistently with Proposition

2). Figure 3 depicts this MPBE for n̄ = 4.

Proposition 5 also implies that there is no learning in any PBE if η < 3α

κ(θ̄−θ)
. Since the

expected number of signals is 1
η
, the individual does not learn any information in any period

18



Figure 3: Markovian interpretation strategies in the most efficient MPBE for a uniform-quadratic
model with continuous actions in which n̄ = 4. White circles represent absorbing states.

if she expects information to arrive for a sufficiently long time. When the individual takes the

action far enough in the future, a deviation raises self-image for a longer time. As a result, and

somewhat paradoxically, the greater the number of signals she expects to receive, the less she is

able to learn.

3.2 Binary Actions

In this subsection, we assume that, instead of picking an action in the entire interval of types,

the individual must pick one of its endpoints: A = {θ, θ̄}. It is optimal to choose the high action

in a history with k successes in n informative periods if the proportion of successes exceeds the

unconditional mean:

ak,n =

{
θ̄ if k

n
≥ 1

2

θ if k
n
≤ 1

2

.

Proceeding as in the proof of Theorem 2 establishes that, for all θ 6= p−1
(
1
2

)
, there exists nθ such

that, in any PBE, all histories on the equilibrium path have at most nθ informative periods.25

When deciding whether to interpret a low signal as high, the individual balances the gain

from having a higher self-image against the cost of possibly taking a worse action. Deviating

from a realistic interpretation is only costly if it affects the action taken in some continuation

history (i.e., the deviation is “pivotal” in the decision). Hence, a low signal must be rationalized

away at ht if none of the continuation histories following ht are pivotal. As a result, it is harder

to sustain realism in extreme histories than in intermediate ones. Let ⌈.⌉ denote the ceiling

function. The following proposition establishes this result formally:

25Theorem 2 required p (θ) > 0 and p
(
θ̄
)
< 1 to justify the asymptotic expansions of the posterior mean and

the payoff from actions. Since we are able to compute the posterior mean and the payoff from actions in closed
form in the uniform model, we do not need this assumption. The rest of the proof remains unchanged.
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Figure 4: Markovian interpretation strategies in the most efficient MPBE for a uniform-quadratic
model with binary actions in which n̄θ = 4. White circles represent absorbing states.

Proposition 6 (Uniform-Quadratic Binary) Let θ 6= p−1
(
1
2

)
, fix a PBE, and let nθ be the

largest number of informative periods in this PBE. Then, any history on the equilibrium path

has at most
⌈
nθ

2

⌉
successes and at most

⌈
nθ

2

⌉
+ 1 failures.

Figure 4 illustrates the result from Proposition 6. The two horizontal lines delineate the

regions in which the high and the low actions are strictly preferred (k > n
2

and k < n
2
, respec-

tively), and the states where both actions have the same expected payoff (k = n
2
). Since the

individual must prefer to interpret low signals realistically in any transient state, there must

be a path from every transient state to a state in which the individual picks a different action;

otherwise, rationalizing a low signal away is costless. In the figure, (1, 3) is the last state in

which a signal can affect actions (the individual picks a = 1 at state (2, 4) and a = 0 at (1, 4)).

Thus, once a state with 2 successes or 3 failures is reached, there is no cost of rationalizing low

signals away and learning stops.

4 Applications

The selective awareness model studied here has many applications in economics and finance. As

described in the introduction, versions of the model with a single period of distortion have been

applied to a large variety of contexts, including personal motivation (Benabou and Tirole, 2002),

redistributive policies (Benabou and Tirole, 2006a), political attitudes towards reforms Levy

(2012), groupthink in organizations and contagious exuberance in markets (Benabou, 2008),

ideologies (Benabou, 2011), preferences for increasing wages (Smith, 2009a, 2009b), and fear

of death as an explanation for puzzles in health and savings behavior (Kopczuk and Slemrod,

2005). A related model, which also assumes that all manipulation happens at a single (ex-ante)
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period, has been used to explain preference for skewness, overconfidence, and overoptimism

(Brunnermeier and Parker, 2005), lack of diversification (Brunnermeier, Gollier, and Parker,

2007), and behavior among individuals at risk for Huntington’s disease (Oster, Shoulson, and

Dorsey, 2013). This paper complements this literature by showing that these biases persist even

if individuals obtain an arbitrarily large amount of feedback about the environment and by

deriving the testable predictions from repeated versions of these models.

The model studied here can also be directly applied to study the persistence of optimism.

There is a very large literature that studies implications of optimism to economics and finance.26

Most theoretical models, however, assume that individuals start with an optimistic prior and

update their beliefs according to Bayes’ rule. These assumptions imply that, under minor

conditions, beliefs converge to the truth as the number of observations grows. Empirically,

however, most studies suggests that optimism persists with experience.27 The model presented

here is consistent with this empirical pattern. Moreover, and consistently with the evidence

described in the introduction, the model predicts that failure to learn is more common for traits

and behaviors that individuals regard as important.

In the remainder of this section, I discuss two new applications of the theory.

4.1 Persistence of Naiveté

An important literature in behavioral economics studies individuals with imperfect knowledge

of their own self control – c.f. O’Donoghue and Rabin (1999, 2001). Papers in this literature

treat beliefs as exogenously given. Consequently, individuals may repeatedly fail to account for

their lack of self control.

Ali (2011) studies learning about one’s own self control using a model of experimentation.

Decisions in each period are made through the conjunction of two separate systems: a (long-run)

planner and a (short-run) doer. In each period, the planner decides between exposing herself

to temptation or not. If she exposes herself to temptation, the doer chooses between resisting

or succumbing to it. The planner does not know the doer’s ability to resist temptation and,

instead, learns from the doer’s choices. If the doer repeatedly succumbs to temptation, the

planner eventually decides that the doer is unable to resist temptation and, therefore, decides

to no longer expose herself. Thus, the only individuals who continue to expose themselves to

temptation are the ones who are able to resist it.

In Appendix III, I embed Benabou and Tirole’s (2004) model of willpower in this experimen-

26Camerer and Lovallo (1999), for example, experimentally argue that optimism explains the high rate of
business failure. Malmendier and Tate (2005) show that CEO optimism is an important predictor of corporate
investment distortions.

27See, for example, Glaser, Langer, and Weber (2005); Brozynski, Menkhoff, and Schmidt (2006); Deaves,
Lüders, and Schröder (2010) and references therein. Glaser and Weber (2007) show that investor optimism is
related to biased recollections of past performance.

21



tation framework.28 The key difference with respect to Ali’s (2011) model is that the planner

can selectively interpret the outcome from exposing herself to temptation. In addition to the

payoff from the tempting activity, the planner has preferences over her perceived self control.

These preferences may be due to self-image concerns or from anticipatory utility.

As in Ali (2001), individuals who believe they have low enough self control stop experimenting

and, therefore, fail to learn their true parameters. However, conditionally on exposing oneself

to temptation, the effect of distorting an interpretation is O( 1
n
), whereas the cost of doing so

decreases exponentially in n (as in Theorem 2). Thus, because of selective awareness, even

those who keep exposing themselves to temptation eventually stop learning. Moreover, there

is a positive probability that individuals repeatedly succumb to temptation while disregarding

their lapses. The model, therefore, provides a motivated-reasoning rationale for individuals who

continue to expose themselves to temptation while frequently succumbing to it.

4.2 Incentives to Collect Information

Next, I discuss an application for the theory of organizations. As I show in Appendix II,

the anticipatory utility interpretation of the model implies that workers with a higher stake

in a company are less capable of processing information objectively. Therefore, tying (either

explicitly or implicitly) the compensation of an employee to the performance of the firm reduces

the employee’s ability to provide accurate evaluations.

The predictions from the model contrast with those from the theory of advocates, which is

based on the need to provide incentives to collect information (Dewatripont and Tirole, 1999).

In the theory of advocates, assigning a particular cause to an agent and offering a compensation

strongly aligned with her defense of that cause is an efficient way to encourage the agent to

gather information. In the presence of selective awareness, the opposite is true: incentivizing an

agent to defend a particular cause reduces the agent’s ability to provide accurate information.

In fact, absent moral hazard concerns, the optimal compensation scheme is completely inflexible

to the information provided. With moral hazard, the benefit from incentivizing effort has to be

weighted against the bias induced by the agent’s compensation.

Some researchers have argued that selective awareness is often a much larger problem than

the standard conflicts of interest due to moral hazard. For example, starting with Bazerman,

Morgan, and Loewenstein (1997), a few papers have documented how selective awareness af-

fects the performances of auditors. As Bazerman, Loewenstein, and Moore (2002) describe it:

“Psychological research shows that our desires powerfully influence the way we interpret infor-

mation, even when we’re trying to be objective and impartial. When we are motivated to reach

a particular conclusion, we usually do.” In the words of Moore et al. (2006):

28Benjamin, Rabin, and Raymond (2013) model the persistence of naiveté as a consequence of non-belief in
the law of large numbers rather than motivated reasoning.
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Putting the most Machiavellian fringes of professional communities aside, [...] the ma-

jority of professionals are unaware of the gradual accumulation of pressures on them

to slant their conclusions — a process we characterize as moral seduction. Most pro-

fessionals feel that their professional decisions are justified and that concerns about

conflicts of interest are overblown by ignorant or demagogic outsiders who malign

them unfairly. Given what we now know generally about motivated reasoning and

self-serving biases in human cognition, and specifically about the incentive and ac-

countability matrix within which auditors work, we should view personal testimonials

of auditor independence with skepticism.

The endogenous effects of compensation on beliefs are supported by the recent work of Cheng,

Raina, and Xiong (2014), who study beliefs during the housing bubble of 2004-2006. They show

that securitization managers, whose future income was directly linked to the performance of the

housing market, were actually more likely to buy houses in the period relative to individuals

with no private information and, as a result, they obtained a significantly worse performance on

their home portfolio.

5 Conclusion

Several papers have recently used the selective awareness framework proposed by Benabou and

Tirole to provide explanations for departures from rational decision making. However, it is often

argued that the Bayesian updating assumption embedded in this framework combined with the

repeated nature of the decisions being modeled would lead individuals to eventually learn the

truth and departures from rationality would vanish in the long-run.

This paper formally studied this issue by considering a repeated version of the selective

awareness model of Benabou and Tirole (2002, 2004) and Benabou (2008, 2011). It showed

that all information is disregarded after a certain number of observations. Therefore, learning

is always incomplete, and the departures from rationality presented in the static models in the

literature do not disappear even when the decision problem is repeated infinitely many times.

The model predicts a behavior that is consistent with some biases in information process-

ing studied by psychologists. Individuals attribute a disproportionately large weight to initial

information. After becoming sufficiently convinced of which action to take, they do not change

their beliefs (confirmation bias). They also update beliefs in the right direction, but in insuf-

ficient amount compared to the Bayesian updating rule (conservatism bias). The model has

implications for learning about one’s self control and for the design of incentives for gathering

information.
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Appendix

I. Equivalence of Information Structures

Let σ̂H
(
ht
)
∈ {L,H} and σ̂L

(
ht
)
∈ {L,H} denote the interpretations associated with a high and a low

signal after history ht. In this appendix, we will establish that, up to a relabeling of interpretations σ̂t,

there is no loss of generality in assuming that the individual always assigns a high interpretation to a

high signal.

Because recollections have no intrinsic meaning, for any separating equilibrium (i.e., an equilibrium

in which σ̂H
(
ht
)
6= σ̂L

(
ht
)
), there exists an equivalent equilibrium that associates the opposite message

to each signal. Moreover, for any pooling equilibrium (i.e., an equilibrium in which σ̂H
(
ht
)
= σ̂L

(
ht
)
),

there exists an an equivalent equilibrium that associates the other message to both signals.

In order to deal with this uninteresting multiplicity, I will adopt the following relabeling conditions.

Whenever we have a separating equilibrium, I will allocate each signal to its own interpretation:

σ̂∗
H

(
ht
)
6= σ̂∗

L

(
ht
)

=⇒ σ̂∗
H

(
ht
)
= H and σ̂∗

L

(
ht
)
= L.

Moreover, whenever we have a pooling equilibrium, I will allocate the high recollection to both signals:

σ̂∗
H

(
ht
)
= σ̂∗

L

(
ht
)

=⇒ σ̂∗
H

(
ht
)
= σ̂∗

L

(
ht
)
= H.

For notational clarity, I will refer to the games associated with the information structures from

Figures 1 and 2 as Game 1 and Game 2. We start with the formal definition of a PBE of Game 2:

Definition 3 A PBE of the game is a strategy profile (σ̂∗, a∗) : H → {L,H} × A and posterior beliefs

µ such that, for all ht ∈ H,

1. σ̂∗ (ht
)
∈ argmaxS∈{L,H}

∞∑
τ=t

(1− η)τ−tE(σ̂∗,µ)

{
α (1− η)Eµ [θ|hτ ] + ηV (a (hτ ) , θ)|

(
ht, S

)}
;

2. a∗
(
ht
)
∈ argmax

a∈A

{
Eµ

[
V (a, θ) |ht

]}
; and

3. Posterior beliefs µ
(
.|ht
)

are obtained by Bayes’ rule if Pr
(
ht|σ̂∗) > 0.

Note that this definition does not require the individual to assign probability 1 to signal σ = L upon

observing σ̂ = L when the equilibrium strategy assigns σ̂∗ = H since the consistency requirement only

applies to actions on the equilibrium path. The following proposition, whose proof is presented in the

online appendix, states that the PBE of Game 1 satisfying the relabeling conditions are equivalent to

the PBE of Game 2:

Proposition 7 Let σ̂∗ be an interpretation strategy from Game 2 and let σ̂∗
L

(
ht
)

= σ̂∗ (ht
)

and

σ̂∗
H

(
ht
)
= H. Then, (σ̂∗, a∗, µ) is a PBE of Game 2 if and only if (σ̂∗

L, σ̂
∗
H , ã∗, µ̃) is a PBE of Game 1

satisfying the relabeling conditions, for actions ã∗ and beliefs µ̃ that coincide with a∗ and µ along the

equilibrium path.
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It follows directly from the equilibrium definition that a PBE of Game 1 satisfying the relabeling

conditions is also a PBE of Game 2. The long but tedious proof of Proposition 7 uses a constructive

argument to establish that for any PBE of Game 2, we can find a PBE of Game 1 satisfying the

relabeling conditions that coincides with it except for beliefs off the equilibrium path.

II. Anticipatory Utility

In the main text, a state of the world θ represented the individual’s skills. Signals were informative

about θ and, therefore, provided information about the appropriate action to be taken. In this appendix,

I assume instead that the individual has anticipatory utility.29

For simplicity, suppose the payoff from actions is

V (a, θ) = θ − κ (θ − a)2 .

As in the standard quadratic loss function, the optimal action equals the mean of the posterior: ak,n =

E [θ|k, n]. The additive term θ gives an additional payoff that is independent of actions. The key aspect

of this payoff function is that the state of the world θ not only determines the appropriate action; it

also provides a payoff independent of the action chosen. For example, suppose θ is the overall state of

the economy and a is an investment decision. Then, this payoff function assumes that a high state not

only increases the return on new investments, but also increases the return on previously owned assets.

(Following the same steps as Theorem 1, it is possible to generalize the results from this appendix for

payoff functions satisfying Assumptions 1-3 as well as ∂V
∂θ > 0).

Let µ denote the individual’s posterior beliefs about the state of the world θ. When deciding how to

interpret a low signal after a history ht, the current self takes two terms into account. First, she considers

the expected payoff from actions Eµ

[
V
(
a
(
hτ̃
)
, y
)
|ht, L

]
, where hτ̃ denotes the (random) history in

which the information acquisition process ends. Second, she takes into account the anticipatory utility

Eµ

[
V
(
a
(
hτ̃
)
, y
)
|ht, σ̂t

]
, where σ̂t is her interpretation of the period-t signal. The individual chooses

the interpretation σ̂t ∈ {L,H} that maximizes

∞∑

s=1

(1− η)s
{
αE

[
Eµ

[
V
(
a
(
hτ̃
)
, y
)
|ht+s

]
|ht, σ̂t

]
+ ηEµ

[
V
(
a
(
hτ̃
)
, y
)
|ht, L

]}
, (6)

where α captures the relative importance of future anticipatory utility. The PBE definition is analogous

to the one from Definition 1, with the substitution of the utility function by (6).

In the model of Section 2, each self balanced the gains from higher self-views with the expected

costs of making worse decisions when choosing how to interpret each signal. Then, when the individual

was sufficiently confident of which action to take, the self-views effect dominated and she always chose

to rationalize low signals away. The anticipatory utility model features a similar trade-off. Each self

balances the anticipatory utility gain from believing in a better state of the world with the expected

29The concept of anticipatory utility was formally introduced by Loewenstein (1987) and Caplin and Leahy
(2001). It is used in the selective awareness models of Benabou (2008, 2011), Benabou and Tirole (2009), and
Levy (2012).
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cost of making worse decisions. As in the self-views model, when the individual is sufficiently confident

of which action to take, the anticipatory utility effect dominates and low signals are rationalized away.

Suppose the individual interprets a low signal realistically after history ht and consider a deviation

to σ̂t = H. As shown in Proposition 4, the increase in the expected state is of order 1
n . If the game

ends in a history with k̃ successes in ñ > n informative periods, the individual will choose action ak̃+1,ñ

instead of ak̃,ñ. The cost of the deviation is then

E
[
V (ak̃,ñ, θ)− V (ak̃+1,ñ, θ)|k, n

]
= κ

{
E
[
θ|k̃ + 1, ñ

]
− E

[
θ|k̃, ñ

]}2
,

which is of order 1
ñ2 . Therefore, as in the model of self-views, the individual prefers to rationalize low

signals away in any PBE after a sufficiently informative history:

Proposition 8 In the anticipatory utility model, there exists nκ,α ∈ N such that, in any PBE, any

history on the equilibrium path has at most n informative periods. Moreover, nκ,α is increasing in κ and

decreasing in α.

III. Persistence of Naiveté

This appendix formalizes the discussion from Section 4 about learning one’s time inconsistency. The

model embeds Benabou and Tirole’s (2004) model of imperfect willpower in Ali’s (2011) planner-doer

learning framework. A decision maker has an unknown degree of self control θ. His prior beliefs about

θ are represented by a thrice continuously differentiable density ρ with full support on [0, 1]. There

are infinitely many periods, indexed by n = 1, 2, .... In each period, the decision maker must choose

between whether or not to expose herself to a tempting activity.

This decision problem is modeled as a game between a long-run player (“planner”) and a sequence

of identical short-run players with degree of self control θ (“doers”). Each period is composed of three

subperiods, indexed by t = 1, 2, 3. The timing of each period is as follows:

t=1. The planner chooses between exposing herself to temptation (“risky activity”) or avoiding temp-

tation (“safe activity”). Avoiding temptation gives a constant payoff normalized to 1.

t=2. If the planner chose the risky activity at t = 1, a doer chooses whether to resist or succumb to

temptation:

• Resisting temptation entails a present cost c and an expected future benefit B at the end of

the period. The present cost c is drawn from a twice continuously differentiable cumulative

distribution distribution G with full support on [0, c̄], where c̄ > B.

• Succumbing to temptation gives present benefit b < 1 and zero future payoff.30

30Zero is a normalization; the relevant assumption here, which is what makes the activity tempting, is that the
future payoff from succumbing to temptation is lower than then future expected payoff from resisting temptation
B.
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Thus, a doer with self-control parameter θ gets payoff θB − c from resisting temptation and b

from succumbing to temptation. The planner gets payoff B− c if the doer resists temptation and

b if the doer succumbs to temptation.

t=3. If the planner chose the risky activity, she decides how to interpret the doer’s action.

In addition to the payoffs from the tempting activity described above, the planner also derives utility

from beliefs she has about her self control. Formally, in each period, the planner gets utility Eµ [u (θ)]

from her posterior beliefs µ about θ, where u is a strictly increasing, twice continuously differentiable

function. This utility may be due to a direct self-image concern, or due to (unmodeled) anticipatory

utility concerns. The planner discounts future payoffs at rate β ∈ [0, 1).

If the planner picks the safe activity at t, she does not observe whether the doer would have resisted

temptation. The outcome is then σt = Safe, which is always encoded as σ̂t = Safe. However, if she picks

the risky activity at t, the doer either resists temptation (σt = H), or succumbs to temptation (σt = L).

She then decides whether to interpret the outcome realistically (σ̂t = σt) or to rationalize it away

(σ̂t 6= σt). As before, a period-t history is a vector of recollections up to period t: ht = {σ̂1, σ̂2, ..., σ̂t−1} .
As in the main text, interpretation strategies can be normalized so that resisting temptation is

always interpreted realistically. The interpretation strategy, then, determines whether a lapse σt = L

is interpreted realistically σ̂t = L or rationalized away σ̂t = H. Beliefs on the equilibrium path are

characterized by the number of times the doer resisted temptation in periods in which the planner

would have interpreted a lapse realistically. On the equilibrium path, beliefs remain unchanged in

commitment periods. As before, we say a period is informative if its recollection modifies the posterior.

The doer resists temptation if θ ≥ b+c
B , which happens with probability

Pr (σt = H|θ) = Pr (θB − b ≥ c) = G (θB − b) .

Therefore, as in the model in the text, resisting temptation (σt = H) is “good news” about the doer’s

self control in the sense of first-order stochastic dominance. Conditional on the self control parameter

θ, the planner’s payoff from the risky activity is

ˆ θB−b

0
(B − c) dG (c) + [1−G (θB − b)] b,

which is strictly increasing in θ. Since the planner’s payoff from the safe activity is constant (1), there

exists a threshold level θ̄ below which it is optimal to pick the safe action.

Following the same argument as in Theorem 2, it follows that, in any equilibrium, the planner

eventually stops learning:

Proposition 9 (Imperfect Learning about Self Control) For almost all θ, there exists nθ such

that, in any PBE, almost all histories on the equilibrium path have at most nθ informative periods.

The proof of the proposition is on the online appendix. The key idea is that the probability that

a deviation affects the optimal experimentation decision converges to zero exponentially whereas the
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gain from the deviation is O(1/n). Hence, in any path converging to the true parameter, the planner

eventually has an incentive to manipulate her recollections into forgetting lapses. Such manipulations,

however, prevent her from learning her true self control. Therefore, the planner eventually stops learning

about her self control even when she keeps choosing the risky activity.

As in Ali (2011), planners who are convinced to have sufficiently low levels of self control choose to

commit and no longer learn. However, even those who do not think they have low self control eventually

stop learning. In fact, learning in equilibrium can be very limited. As the following example shows,

it is possible to construct equilibria in which the individual frequently succumbs to temptation and

nevertheless keeps choosing the risky alternative:

Example 4 Let (θ, c) be uniformly distributed on [0, 1] × [0, 2]. Let B = 4 and b = 1
2 . The planner’s

expected payoff from the risky action under the prior distribution is

´ 1
0

´ θB−b
0 (θB − c) dcdθ +

´ 1
0

´ 2
θB−b bdcdθ

2
=

67

48
> 1,

which exceeds her payoff from the safe action. Moreover, as in the main text, interpreting all signals as

high can be supported in equilibrium by setting posteriors equal to the prior. Therefore, there exists a

PBE in which the individual always picks the risky action and never updates her beliefs. Moreover, the

individual succumbs to temptation with probability 1
4 in each period under the prior distribution.

As shown in the text, the amount of learning that can be sustained in equilibrium depends on the

importance of self views and the cost of succumbing to temptation.

IV. Known Terminal Period

In the main text, we considered a setup in which the information collection process ended randomly.

That setup captures an environment in which an individual expects to obtain a sequence of information

before making a decision but is unsure about when the decision will have to be made. In this appendix,

we consider the polar opposite setup, where information collection ends deterministically after a fixed

number of signals. This setup captures situations in which one is certain about when the decision will

have to be made and how much information he or she will be able to acquire before then.

Let T ∈ N denote the number of signals the individual observes before choosing an action a ∈ A.

As in the main text, the individual derives utility from her perceived self image in each period. As in

the game with random termination, the individual obtains a payoff from self image in each period and a

payoff from actions when the information collection ends. Let β ∈ [0, 1) denote the individual’s discount

factor.31

31With random termination, the positive probability of termination η ensured that the sum of the discounted
expected utility from self views converged. In that setup, any discounting could be introduced through a renor-
malization of the termination probability. When termination is deterministic, we need to explicitly introduce
discounting in order to ensure that the discounted sum of expected utility from self views converges as the number
of signals T grows. The results from the model with deterministic termination do not require the discounting of
payoff from actions; it is straightforward to generalize them to setups in which payoff from actions are discounted
at a rate δ ∈ (0, 1].
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An individual with skill θ and chooses actions a
(
hT
)

gets expected payoffs

E(σ̂L,σ̂H ,µ)

{
T∑

t=0

βtαEµ

(
θ|ht

)
+ βT+1V

(
a
(
ht
)
, θ
)
}
. (7)

I make the same assumptions on the prior distribution ρ, the conditional probability p, and the payoff

from actions V as in Section 2. The equilibrium definition is the same as Definition 3, with the

appropriate replacement of the utility function by (7).

When the termination date is deterministic, the individual may become convinced of which action

to take before the information collection process ends. At that point, no additional signal would affect

the action and, therefore, all future signals would be uninformative. In this case, however, ignoring

information is not very interesting as it does not reduce payoffs. In this section, I obtain bounds on the

number of informative periods that hold uniformly in the number of signals T . Since they hold for an

arbitrarily large number of signals, ignoring information must entail a payoff loss.

Recall the argument behind the incomplete learning results from Theorems 1 and 2. Deviating from a

low to a high interpretation raises the posterior mean by a term of order 1
n . When actions are continuous,

distortions close to the optimum have second-order costs. Then, the cost of the deviation has order

of magnitude o
(
1
n

)
, implying in the existence of a finite bound on the number of informative periods.

When actions are discrete, the probability that each signal affects actions decreases exponentially. Then,

since the cost from making incorrect decisions is bounded, all signals are also eventually rationalized

away. As the proofs of these theorems did not use the assumption that the process ends with a constant

probability η, it is immediate to adapt them to the case of a known terminal period:

Corollary 2 Consider the model with a known terminal period and suppose Assumptions 1, 2, and 3

are satisfied. There exists n such that, in any PBE, almost every history on the equilibrium path has at

most n informative periods for any T .

Corollary 3 Consider the model with a known terminal period and suppose Assumptions 4 and 5 are

satisfied. For almost all θ, there exists nθ such that, in any PBE, almost all histories on the equilibrium

path have at most nθ informative periods for any T .

Importantly, the bounds on the number of informative periods in both corollaries (n and nθ, respec-

tively) are independent of the number of periods T .

In many situations, a person can choose when to stop gathering information and take the action. Since

the model predicts that individuals with selective memory disregard information after a certain number

of periods, one might expect them to choose to stop gathering information before a Bayesian individual

would. In the online appendix, I show that, although this is not true in all equilibria of the model, it

is true in Markovian equilibria. Since there always exist equilibria in which the individual ignores any

arbitrary number of signals before starting to learn, there may exist equilibria in which the individual

with selective memory collects more signals than a Bayesian would.
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V. Multiple Signals and Non-Stationary Environments

In the main text, we studied a model with binary signals under arbitrary payoff from actions. The binary

signal structure, which is a natural generalization of the framework of Benabou and Tirole (2002, 2004,

2006a, 2006b) and Benabou (2008, 2011), is tractable enough to allow us to obtain results that hold

under very general prior distributions, action spaces, and payoff functions. This appendix substantially

relaxes the assumption of identically distributed binary signals, but instead focuses on the model with

a quadratic loss function.

I establish two main results. First, I generalize the incomplete learning result in the model with

continuous actions (Theorem 1). This generalization shows that introducing richer signal structures does

not overturn the main conclusion from the model with identically distributed binary signals. Second, I

show that models with binary actions and multiple signals can naturally produce a ‘belief polarization’

phenomenon, where two individuals with different priors update their beliefs in the direction of their

priors when given the same information.

For simplicity, I consider the model with a known terminal period (Appendix IV). There are T + 1

periods. In the last period, the individual chooses an action a from the compact set A. In each of the

first T periods, the individual observes the realization of an independent, non-identically distributed

signal σ ∈ S, where S ≡ {1, 2, ..., S} denotes the set of possible signals, S ≥ 2. The probability of signal

σ in period t is pt (σ, θ) ≡ Pr (σt = σ|θ) .
After observing the signal, the individual chooses how to interpret it. As in Figure 1, each signal

can be interpreted as any other signal: σ̂t ∈ {1, ..., S}. A history is a vector of interpretations: ht =

{σ̂1, σ̂2, ..., σ̂t}. Let Ht := {1, 2, ..., S}t denote the set of period-t histories, and let H :=
T⋃

t=1

Ht denote

the set of all possible histories.

An interpretation strategy is a mapping σ̂ : H → {1, ..., S}, where σ̂ ({σ1, ..., σt}) specifies how

signal σt is interpreted at history ht−1 = {σ1, ..., σt−1}. An action strategy is a mapping a : HT+1 → A

specifying which action to take when the information process ends. Let µ
(
.|ht
)

denote the individual’s

posterior beliefs about θ given ht and let Eµ

[
.|ht
]

denote the expectation operator with respect to

µ
(
.|ht
)
. The definition of PBE is analogous to the one from Appendix IV, with the replacement of each

signal σ ∈ {L,H} by σ ∈ {1, ..., S}. As in Section 3, the payoff from actions is quadratic (4) and actions

are continuous A = Θ. Thus, the optimal action equals the posterior mean: a∗
(
ht
)
= Eµ

[
θ|ht

]
.

Let P (S) denote the power set of S. Note that the prior distribution ρ induces a probability dis-

tribution over sets of signals. Let Eρ

[
θ|st
]
≡ Eρ

[
θ|ht ∈ st

]
denote the expectation operator associated

with it. Let

d (t) ≡ max
{∣∣Eρ

[
θ|sts

]
− Eρ

[
θ|sts′

]∣∣ : st ∈ St, s, s′ ∈ S
}

denote the maximum absolute deviation of posterior means in period t. Notice that d depends only on

the prior distribution ρ and the conditional distribution of signals pt (σ, θ), which are fundamentals of

the model.

Definition 4 The distribution of signals is regular if Prρ (limt→∞ d (t) = 0) = 1.

Regularity is a very weak requirement, which states that, with probability one, the effect of a new
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signal eventually converges to zero as the number of signals goes to infinity. Without regularity, even

a Bayesian individual might not be able to learn the true parameter. By Doob’s consistency theorem,

regularity is always satisfied if signals are identically distributed. More generally, regularity holds as long

as the posterior mean follows an active supermartingale (Fudenberg and Levine, 1992). In the uniform

binomial model from Section 4, for example, the maximum absolute deviation of posterior means is

d (t) = 1
t+2 , which converges to zero everywhere.

Let hthτ denote the history obtained by concatenating hτ = {σ̂τ
1 , ..., σ̂

τ
τ−1, σ̂

τ
τ } after ht = {σ̂t

1, ..., σ̂
t
t−1, σ̂

t
t}:

hthτ ≡
{
σ̂t
1, ..., σ̂

t
t , σ̂

τ
1 , ..., σ̂

τ
τ

}
. (8)

Similarly, let htσ̂hτ denote the successive concatenation of ht, σ̂, and hτ :

htσ̂hτ ≡
{
σ̂t
1, ..., σ̂

t
t , σ̂, σ̂

τ
1 , ..., σ̂

τ
τ

}
. (9)

Before presenting the proof of the proposition, I will establish two auxiliary results.

As before, we say that a history ht is informative if Eµ

[
θ|ht

]
6= Eµ

[
θ|htσ̂t+1

]
for some history

htσ̂t+1. We say that ht is a last history on the equilibrium path if all the continuation histories of ht

on the equilibrium path are uninformative. Formally, ht is a last informative history on the equilibrium

path if

• E
[
θ|ht

]
6= E

[
θ|htσ̂t+1

]
for some history htσ̂t+1 on the equilibrium path; and

• For all continuation histories of ht on the equilibrium path (htσ̂t+1h
s ⊃ ht), E

[
θ|htσ̂t+1

]
=

E
[
θ|htσ̂t+1h

s
]
.

It is straightforward to show that every history on the equilibrium path has a continuation history that

is a last informative history on the equilibrium path (see Lemma 10).

The following lemma shows that posterior beliefs in any last informative history on the equilibrium

path cannot be “too concentrated”:

Lemma 3 Let (σ̂∗, a∗, µ∗) be a PBE. Let ht be a last informative history on the equilibrium path. Then,∣∣Eµ∗

[
θ|htσ̂t+1

]
− Eµ∗

[
θ|htŝt+1

]∣∣ > α
βκ for all histories htσ̂t+1 and htŝt+1 on the equilibrium path.

Let ht be a last informative history on the equilibrium path and let n be its number of informative

periods. By the previous lemma, d(n) ≥ α
βκ .

Let n∗
α,β,κ ≡ sup

{
n ∈ N : d (n) ≥ α

βκ

}
. Assuming that the distribution of signals is regular, d (n)

converges to zero. Therefore, for any ǫ > 0 there exists n̄ǫ such that n > n̄ǫ implies d(n) < ǫ. Taking

ǫ = α
βκ establishes that d(n) < α

βκ . Setting n∗
α,β,κ = n̄ α

βκ
, therefore, establishes that n∗

α,β,κ is finite.

Thus, any last informative history on the equilibrium path has at most n∗
α,β,κ informative periods.

Since every informative history on the equilibrium path has a continuation history that is a last

informative history on the equilibrium path, it follows that any such history has at most n∗
α,β,κ infor-

mative periods. Moreover, any terminal history has at most n∗
α,β,κ + 1 informative periods. We have,

therefore, established the following result:
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Proposition 10 Suppose the distribution of signals is regular. There exists nα,β,κ ∈ N such that, in

any PBE, every history on the equilibrium path has at most nα,β,κ informative periods.

Importantly, the maximum number of informative periods nα,β,κ is not a function of the number of

signals T . Therefore, beliefs do not converge as the number of signals grows.

Next, we turn to an example of how belief polarization may naturally occur when actions are binary

and there are more than two signals. In their classic work, Lord, Ross, and Lepper (1979) describe the

phenomenon as follows:32

Our thesis is that belief polarization will increase, rather than decrease or remain un-

changed, when mixed or inconclusive findings are assimilated by proponents of opposite

viewpoints. This “polarization hypothesis” can be derived from the simple assumption that

data relevant to a belief are not processed impartially. Instead, judgments about the valid-

ity, reliability, relevance, and sometimes even the meaning of proffered evidence are biased

by the apparent consistency of that evidence with the perceiver’s theories and expectations.

For simplicity, consider a one-signal model (T = 1). Actions are binary A = {0, 1}. There are two

individuals, A and B. They both have the same payoff from skills and the same quadratic loss function.

The two individuals have different prior distributions:

ρA (θ) = (1 + δ) θδ, ρB (θ) = (1 + δ) (1− θ)δ ,

where δ > 0 parametrizes the strength of each individual’s beliefs.33 Notice that A has a higher prior

than B in the sense of first-order stochastic dominance.

Recall that the optimal action is a = 1 if E[θ] ≥ 1
2 and a = 0 if E[θ] ≤ 1

2 . The means of the

individuals’ prior beliefs are:

EA (θ) =
1 + δ

2 + δ
>

1

2
, EB (θ) =

1

2 + δ
<

1

2
.

Therefore, person A initially favors the high action (a = 1) whereas person B initially favors the low

action (a = 0).

There are three possible signals, H, M, and L, with conditional probabilities

Pr (σ = s|θ) =





γθ if s = H

1− γ if s = M

γ (1− θ) if s = L

,

where γ ∈ (0, 1). In this model, a high signal (s = H) is good news about θ, a low signal (s = L)

is bad news about θ, and a medium signal (s = M) is neutral in that it does not affect the posterior

distribution of θ. While this particular distribution simplifies the calculations, it can be substantially

32See Rabin and Schrag (1999) for a detailed description of the literature.
33Notice that, if δ is an integer, ρA corresponds to the posterior distribution of someone with a uniform prior

conditional on δ high signals. Symmetrically, ρB corresponds to the posterior distribution of someone with a
uniform prior conditional on δ low signals.
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generalized. The key assumption is that distribution of signals satisfies the monotone likelihood ratio

property: a high signal is a strong indicator of the appropriateness of a high action; a low signal is a

strong indicator of the appropriateness of a low action; whereas a medium signal is a weak indicator of

which action to take.

As in the main model, there always exists an equilibrium in which the signal is uninformative

(Proposition 1). Here, I will study equilibria in which the signal is informative. Because person A

chooses a high action if she observes either a high or a medium signal, she cannot commit not to

reinterpret a medium signal as high. Hence, there is no equilibrium in which person A interprets high

and medium signals differently: the only possible equilibrium in which the signal is informative is the

one in which medium and high signals are “pooled” and the low signal “separates.” In this equilibrium,

person A updates her beliefs upwards after a medium signal. Formally, her posterior distribution after

observing a medium signal is

ρA (θ|σ ∈ {M,H}) = (1 + δ) θ1+δ + (1 + δ) θδ
´

(1 + δ) θ1+δ + (1 + δ) θδdθ
,

which dominates the prior distribution ρA(θ) in terms of the monotone likelihood ratio property (and,

therefore, in terms of first-order stochastic dominance).

Conversely, person B chooses a low action if she observes either a low or a medium signal and,

therefore, cannot commit not to reinterpret a low signal as medium. Hence, the only possible equilibrium

for person B in which the signal is informative is the one in which low and medium signals are pooled and

the high signal separates. In this equilibrium, person B revises her beliefs downwards after a medium

signal since her posterior distribution after observing a medium signal is

ρB (θ|σ ∈ {M,H}) = (1 + δ) (1− θ)1+δ + (1 + δ) (1− θ)δ
´

(1 + δ) (1− θ)1+δ + (1 + δ) (1− θ)δ dθ
,

which is dominated by the prior distribution ρB (θ) in terms of the monotone likelihood ratio property.

Thus, in the equilibria in which the signal is informative, the intermediate signal induces individuals

A and B to update their beliefs in opposite directions. Person A, whose prior distribution dominated by

Person B’s prior, revises her beliefs upwards. Person B, on the other hand, revises her beliefs downwards

after observing the intermediate signal.

As in Section 2, the equilibria in which the signal is informative exist if and only if the importance

of self views is small enough or the importance of actions is large enough. As I show in the online

appendix, the informative equilibrium for person A exists if and only if

α

κβ
≤ 1 + δ

3 + δ
× 1

2− γ + δ
.

Person B, the informative equilibrium exists if and only if

α

βκ
≤

(
3+δ
2+δ

)2
−
(
1+δ+2γ
2+δ−γ − 1+δ

2+δ

)2

(3 + δ)
(
2− 1+δ+2γ

2+δ−γ

) .
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More generally, in any equilibrium, the individual cannot interpret two signals differently if they

are associated with the same action. Then, for individuals with a low prior distribution, intermediate

signals do not affect the optimal action and must, therefore, be pooled with low signals. Those with a

high prior pool intermediate signals with high signals. Consequently, individuals with a low prior revise

their beliefs downwards after an intermediate signal whereas those with a high prior revise their beliefs

upwards.

VI. Behavioral Strategies

So far, we have focused on pure strategy equilibria. This appendix considers strategies in which the indi-

vidual randomizes. Since this is a game with imperfect recall, mixed strategies are no longer equivalent

to behavioral strategies (i.e., Kuhn’s Theorem does not hold). A mixed strategy randomizes over pure

strategies only at the outset: the individual randomizes over pure strategies before the game starts and

follows the realized pure strategy throughout the game. As a result, in this game, any pure strategy in

the support of a mixed strategy equilibrium must be a pure strategy equilibrium. Moreover, no mixed

strategy equilibrium can dominate all pure strategy equilibria.

With behavioral strategies, the randomization occurs at each history. As Piccione and Rubinstein

(1997) show, in decision problems with imperfect recall, behavioral strategy equilibria may dominate

all pure strategy equilibria. Accordingly, this appendix studies equilibria in behavioral strategies and

establishes two main results. First, it extends the conservatism result from Proposition 3 to behavioral

strategy equilibria, allowing for a smoother, more realistic version of conservatism in which updates are

partial (in pure strategies, updates are either fully Bayesian or completely uninformative). Second, it

establishes a uniform bound on learning for the model with a quadratic payoff from actions. Hence,

allowing for behavioral strategies does not overturn the incomplete learning result from the text.

When we allow for behavioral strategies, the equivalence between the decision problem from Figure

1 and the Benabou and Tirole model (Figure 2) no longer holds. When the individual can play a strictly

mixed behavioral strategy after observing a high signal, we can no longer relabel the recollection chosen

after σ = H as σ̂ = H. In this appendix, I consider the Benabou and Tirole model. The same arguments,

however, can be applied to the decision problem from Figure 1. For simplicity, I assume a deterministic

number of signals T as in Appendix IV.

As in the rest of the paper, the prior density function ρ is a thrice continuously differentiable with

full support on Θ = [θ, θ̄] and the conditional probability of a high signal p : Θ → (0, 1) is a strictly

increasing and twice continuously differentiable function. A period-t history is a vector of recollections

up to period t: ht = {σ̂1, σ̂2, ..., σ̂t−1} . Let Ht := {L,H}t−1 denote the set of period-t histories, and let

H :=
T+1⋃

t=1

Ht denote the set of all possible histories.

A behavioral strategy is a pair of mappings λ : H → [0, 1] and γ : HT+1 → ∆(R) , where λ
(
ht
)

assigns the probability of playing σ̂ = H after observing a low signal given history ht, and γ
(
hT+1

)

assigns the probability of playing each action a ∈ R at terminal history hT+1. As usual, the utility

function is extended to random interpretations and actions by taking expectations. As in Definition 3,

a PBE is a triple (λ, γ, µ) in which interpretation and action strategies maximize the expected payoffs
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of each self and beliefs satisfy Bayes’ rule on histories on the equilibrium path.

Before imposing additional assumptions, we generalize Proposition 3 to equilibria in behavioral

strategies. As in the main text, let θBt denote the expected value of θ obtained by Bayes’ rule con-

ditional on the sequence of observed signals {σ1, ..., σt−1}, and let θ̂t denote the expected value of θ

calculated according to the individual’s beliefs µ (i.e., conditional on the sequence of the individual’s

interpretations). The following proposition, whose proof is in the online appendix, generalizes the

conservatism bias for equilibria in behavioral strategies:

Proposition 11 (Conservatism) Let λ be an interpretation strategy and let µ be posterior beliefs

consistent with this strategy. For any history ht such that Pr
(
ht|λ

)
> 0,

θBt > θBt−1 =⇒ θ̂t ≥ θ̂t−1, and

θBt < θBt−1 =⇒ θ̂t ≤ θ̂t−1.

Furthermore, θ̂t second-order stochastically dominates θBt .

Next, we turn to the result on the failure of learning. Consider the continuous action model with

quadratic payoffs:

V (a, θ) = −κ (a− θ)2 ,

where a ∈ (θ, θ̄) and p (θ) = θ. Let γ
(
ht
)
= δa denote the strategy that assigns probability one to action

a. Under quadratic losses, the optimal action corresponds to the mean of the posterior: γ∗
(
ht
)
= δE[θ|ht].

Thus, the action strategy in any PBE is a pure strategy.

With behavioral strategies, however, the Bayesian updates depend not only on whether the signal

is informative but also on the specific mixing probability in each history. Thus, we cannot use the

asymptotic expansions derived in the text. Nevertheless, with quadratic loss functions, we do not need

to derive the specific asymptotic expansions to show that learning is incomplete. With quadratic loss

functions, the benefit in self-image is proportional to difference in the posterior mean of θ, whereas

the cost of distorting the action is proportional to the square of the difference. Then, if beliefs are

sufficiently concentrated, the individual cannot commit not to misinterpret a low signal as high.

Note that, for a fixed prior distribution ρ, any interpretation strategy λ determines the prior prob-

ability of reaching each terminal history. Formally, the interpretation strategy λ induces a probability

distribution Pλ over the power set of HT+1.

Proposition 12 For each T ∈ N, let (λ∗
T , γ

∗
T , µ

∗
T ) be a PBE of the game with T signals. Then,

Pλ∗

T

(
lim
T→∞

Eµ

[
θ|hT+1

]
= θ

)
= 0.

VII. Proofs

Proof of Proposition 1. For all histories ht, let σ̂∗
t

(
ht
)
= H, a∗

(
ht
)
∈ argmaxa

´

Θ V (a, θ) dθ,

and µ
(
θ|ht

)
= ρ (θ) . Since the interpretation strategy does not affect beliefs and actions, it satisfies
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Condition 1 from Definition 1. By construction, a∗
(
ht
)

satisfies Condition 2. Moreover, because there

all signals are rationalized as σ̂ = H, consistency requires the posterior distribution to be equal to the

prior distribution on the equilibrium path. Hence, Condition 3 holds. �

Proof of Proposition 2. Before presenting the proof, it is helpful to introduce some notation. Given

an action strategy a : H → A and posterior beliefs µ, let Ṽ
(
a;ht, ĥt

)
denote the expected payoff

from actions conditional on history ht when the individual follows the actions prescribed by a in the

continuation histories following history ĥt :

Ṽ
(
a;ht, ĥt

)
= η

∞∑

s=0

(1− η)sEµ

[
V
(
a
(
ĥt+s

)
, θ
)
|ht
]
.

Let (σ̂∗, a∗, µ∗) be a PBE for the game with parameter α1 and let α0 < α1. I will construct an

equilibrium of the game with parameter α0 that coincides with (σ̂∗, a∗, µ∗) for all histories ht in which

Pr
(
ht|σ̂∗) > 0.

For all histories on the equilibrium path (under σ̂∗), pick the same strategies and beliefs as in the

original equilibrium. For any history ht off the equilibrium path (under σ̂∗), set µ∗
0

(
θ|ht

)
= µ∗

0

(
θ|ht−1

)

and choose a∗0 consistent with these beliefs. Then, the individual is indifferent between any interpretation

at ht. In particular, we can pick the same interpretation as the original one σ̂∗
0

(
ht
)
= σ̂∗ (ht

)
. We will

show that this is a PBE of the game with parameter α0.

Let ht be a history on the equilibrium path and let k and n denote the number of high recollections

and informative periods in it. First, we show that we can sustain the same interpretation strategies σ∗ for

all histories on the equilibrium path. Then, since µ∗ is uniquely determined by Bayes’ rule given σ∗ for

histories on the equilibrium path (and it does not depend on α) and a∗
(
ht
)
∈ argmaxaEµ

[
V (a, θ) |ht

]

(which also does not depend on α), the same beliefs µ∗ and action strategy a∗ can also be sustained

along the equilibrium path.

If σ̂∗ (ht
)
= L, Bayesian updating requires beliefs to be updated to the distribution of θ conditional

on k high recollections in n + 1 informative periods. There is no profitable deviation from picking

σ̂t+1 = L if the expected discounted benefit from self image,

α

∞∑

s=0

(1− η)s
{
E
[
Eρ

[
θ|ht,H, σ̂t+1, σ̂t+2, ..., σ̂t+s

]
− Eρ

[
θ|ht, L, σ̂t+1, σ̂t+2, ..., σ̂t+s

]
|ht, L

]}
. (10)

does not exceed its expected cost, Ṽµ

(
a∗;
(
ht, L

)
,
(
ht, L

))
− Ṽµ

(
a∗;
(
ht, L

)
,
(
ht,H

))
. All histories in

the summation above are on the equilibrium path, since they are obtained by following either (ht, L) or

(ht,H) along the equilibrium interpretation strategy σ̂∗. Since, by assumption, ht is on the equilibrium

path and σ̂∗ (ht
)
= L, it follows that both (ht, L) and (ht,H) are also on the equilibrium path. Because

σt = H is good news and σt = L is bad news about θ, each term in the summation in (10) is positive.

Hence, the benefit from the deviation is increasing in α, while the cost is not a function of it. Since this

condition is satisfied for α1, it must be satisfied for any α0 < α1.

If σ̂∗ (ht
)
= H, Bayesian updating requires beliefs to remain unchanged after σ̂t+1 = H: µ0

(
θ|ht,H

)
=

µ0

(
θ|ht

)
. Moreover, history (ht, L) is off the equilibrium path. By construction, µ∗

0

(
θ|ht, L

)
= µ∗

0

(
θ|ht

)
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(i.e., beliefs are also unresponsive to σ̂t+1 = L). Thus, σ̂∗ (ht
)
= H is (weakly) optimal for any α. Fur-

thermore, a∗0
(
ht,H

)
is consistent with µ∗

0 (by construction).

Now, let ht be a history off the equilibrium path. Since beliefs are unresponsive, each self is indifferent

between all possible interpretation actions. Hence, any σ̂∗(ht) is a best response. By construction,

a∗0(h
t) is consistent with beliefs µ∗

0. Moreover, Bayes’ rule does not constrain beliefs µ∗
0. Thus, we have

constructed an equilibrium (σ̂∗
0, a

∗
0, µ

∗
0) of the game with parameter α0 that coincides with (σ̂∗, a∗, µ∗)

on the equilibrium path.

Next, we establish the proofs of the numbered claims:

1. Suppose that there is a PBE in which at least one signal is interpreted correctly, and let t be

the first period where this happens. That is, the only period-t history on the equilibrium path is

ht = (H,H, ...,H) and σ̂∗ (ht
)
= L. Consider a deviation to σ̂t+1 = H in period t. The benefit from

this deviation in terms of self image is bounded below by the benefit in the period t:

α {E [θ|1, 1] −E [θ|0, 1]} > 0.

The loss from the deviation is bounded above by

max
a∈A

Eρ [V (a, θ)]−min
a∈A

Eρ [V (a, θ)] ≥ 0,

which exists (since E [V (a, θ)] is a continuous function of a and A is compact). Letting

ᾱ :=
maxa∈A Eρ [V (a, θ)]−mina∈A Eρ [V (a, θ)]

E [θ|1, 1]− E [θ|0, 1] ≥ 0

concludes the proof.

2. Fix an equilibrium in which all low signals until period N − 1 are interpreted as low, and all low

signals in periods t ≥ N are interpreted as high. Consider a deviation at a history ht to σ̂t = H, where

t < N . Let k denote the number of successes in history ht (the number of informative periods is t− 1

since all previous periods were informative). The gain from the deviation is bounded above by

∞∑

τ=t

(1− η)τ−t α {E [θ|k + 1, t− 1]− E [θ|k, t− 1]} =
α

η
{E [θ|k + 1, t− 1]− E [θ|k, t− 1]} .

(This bound is tight if the individual stops learning in the following period. Otherwise, it is not tight

because the expectations follow a supermartingale after a deviation: a self who deviates expects posterior

means to decrease, on average, in all informative periods). For each (k, n), pick

ak,n ∈ argmax
a

E [V (a, θ) |k, n] \ argmax
a

E [V (a, θ) |k − 1, n] .

Because ak,n /∈ argmaxaE [V (a, θ) |k − 1, n],

vk−1,n := E [V (ak−1,n, θ)− V (ak,n, θ) |k − 1, n] > 0.
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Let vn = min{vk,n : k ∈ {0, 1, ..., n}}, which exists and is strictly positive because it is the minimum of

a finite set composed of strictly positive elements. The expected cost from the deviation equals

N∑

τ=t+1

(1− η)τ−t−1 ηvτ +

∞∑

τ=N+1

(1− η)τ−t ηvN

= (1− η)N+1−t vN +

N∑

τ=t+1

(1− η)τ−t−1 ηvτ .

The deviation is not profitable as long as

α

η
{E [θ|k + 1, t− 1]−E [θ|k, t− 1]} ≤ (1− η)N+1−t vN +

N∑

τ=t+1

(1− η)τ−t−1 ηvτ

The left hand side is strictly positive for all t < N . Therefore, setting

α =

(1− η)N+1−t vN +
N∑
τ=t

(1− η)τ−t ηvt

E [θ|k + 1, t− 1]− E [θ|k, t− 1]
> 0

concludes the proof. �

Proof of Proposition 3. The proposition will be established by a sequence of lemmata.

Claim. σt = H implies θBt > θBt−1 and σt = L implies θBt < θBt−1.

Proof. Let f denote the posterior density conditional on the vector of true signals up to period t− 1.

After a high signal at t, the posterior distribution conditional of the sequence of true signals changes

from f(θ)
´

f(θ)dθ
to p(θ)f(θ)
´

p(θ)f(θ)dθ
. The posterior at t (i.e., after the high signal) dominates the distribution at

t− 1 (i.e., before that signal) in the sense of monotone likelihood ratio property if, for any x > y,

p(x)f(x)
´

p(x)f(x)dx

p(y)f(y)
´

p(y)f(y)dy

>

f(x)
´

f(x)dx

f(y)
´

f(y)dy

.

Rearranging this expression, we obtain p (x) > p (y), which is true since p is strictly increasing. Then,

it follows from Milgrom (1981, Proposition 2) that

θBt =

´

θp (θ) f (θ) dθ
´

p (θ) f (θ) dθ
>

´

θf (θ) dθ
´

f (θ) dθ
= θBt−1

when σt = H. By the exact same argument, θBt−1 > θBt when σt = L.

Claim. σt = H implies θ̂t ≥ θ̂t−1 and σt = L implies θ̂t ≤ θ̂t−1.

Proof. Let g denote the individual’s posterior distribution conditional on the recollections up to t− 1:

σ̂1, ..., σ̂t−1. The individual may observe a low or a high signal, and she may interpret low signals

realistically or not.
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First, suppose she interprets low signals realistically. If she observes a low signal, the posterior

mean changes from θ̂t−1 =
´

θg(θ)dθ
´

g(θ)dθ
to θ̂t =

´

θ[1−p(θ)]g(θ)dθ
´

[1−p(θ)]g(θ)dθ
. Again, using the monotone likelihood ratio

property, establishes that θ̂t < θ̂t−1. Analogously, if she observes a high signal, the posterior mean

increases from θ̂t−1 =
´

θg(θ)dθ
´

g(θ)dθ
to θ̂t =

´

θp(θ)g(θ)dθ
´

p(θ)g(θ)dθ
> θ̂t−1. Now, suppose she interprets low signals

as high. Then, her posterior remains equal to the prior distribution regardless of the observed signal:

θ̂t−1 = θ̂t.

Recall that θBt second-order stochastically dominates θ̂t if and only if we can express θBt as a mean-

preserving spread of θ̂t. Posteriors remain unchanged in all histories in which low signals are interpreted

as high. Let st ≡ {σ1, ..., σt−1} denote a vector of true signals up to period t. Let the space of all

possible vectors of signals and recollections Ω ≡
∞⋃

t=1

{
Ht ×Ht

}
denote the sample space. An element

(st, ht) of Ω is, therefore, a vector of histories and recollections with the same length.

Construct the vector φ(st) ≡
{
φ1(s

t), φ2(s
t), ..., φt−1(s

t)
}

inductively:

φ1(s
t) =

{
H if σ̂∗ (∅) = H

σ1 if σ̂∗ (∅) = L
,

φ2(s
t) =

{
H if σ̂∗ ({φ1

(
st
)})

= H

σ2 if σ̂∗ ({φ1

(
st
)})

= L
,

...

φt−1(s
t) =

{
H if σ̂∗ ({φ1

(
st
)
, ..., φt−2

(
st
)})

= H

σt−1 if σ̂∗ ({φ1

(
st
)
, ..., φt−2

(
st
)})

= L
.

The vector φ(st) is the history of recollections in period t when the individual observed the vector of

true signals st. Hence, the vector of true signals st is a filtration of the vector of recollections φ
(
st
)
= ht.

Let

ǫ
(
st
)
≡ E

[
θ|st
]

︸ ︷︷ ︸
θBt

−E
[
θ|φ
(
st
)]

︸ ︷︷ ︸
θ̂t

.

By the law of iterated expectations and the fact that st is a filtration of ht, we have

E
[
ǫ
(
st
)
|ht
]
= E

[
E
[
θ|st
]
|ht
]
− E

[
θ|ht

]
= E

[
θ|ht

]
− E

[
θ|ht

]
= 0.

Thus, E
[
θ|st
]
= θBt is a mean-preserving spread of θ̂t. �

Proof of Lemma 2. Let {xn} =: s be a sequence of independent Bernoulli random variables

with parameter p (θ) . Each random variable is distributed according to the probability mass func-

tion f (x|θ) = p (θ)x [1− p (θ)]1−x , x ∈ {0, 1} . From Johnson (1970, Theorem 3.1)34, there exist C and

34It is immediate to verify that Assumptions 1-9 from Johnson (1970) are satisfied. The theorem then requires

that
´ θ

θ
|θ| ρ (θ) dθ < ∞, which is true because

´ θ

θ
|θ| ρ (θ) dθ ≤ θ̄ < ∞.
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Ns such that, for all n > Ns,

∣∣∣∣∣∣
E [θ|x1, x2, ..., xn]− θ̂ − 1

b
(
θ̂, x1, ..., xn

)


6a

(
θ̂, x1, ..., xn

)
+

ρ′
(
θ̂
)

ρ
(
θ̂
)


 1

n

∣∣∣∣∣∣
≤ C

n2
, (11)

where θ̂ is the maximum likelihood estimator (MLE) of θ,

a (θ, x1, ..., xn) :=
1

6n

n∑

i=1

∂3

∂θ3
log f (xi|θ) , and (12)

b (θ, x1, ..., xn) :=

√√√√− 1

n

n∑

i=1

∂2

∂θ2
log f (xi|θ).

The MLE of p (θ) is p̂ (θ) =
∑n

i=1
xi

n ; from the invariance property, θ̂ = p−1
(∑n

i=1
xi

n

)
. Let the random

variable k :=
∑n

i=1 xi denote the number of successes. Using the expressions for f and θ̂ and substituting

in equations (12), we obtain:

a
(
θ̂, x1, ..., xn

)
=

1(
1− k

n

)
k
n

{[
p′
(
p−1

(
k
n

))]3

3

(
1
k
n

− 1

1− k
n

)
− p′

(
p−1

(
k
n

))
p′′
(
p−1

(
k
n

))

2

}
,

and

b
(
θ̂, x1, ..., xn

)
=

p′
(
p−1

(
k
n

))
√

k
n

(
1− k

n

) .

Plugging back in equation (11), establishes that, for n > Ns,

∣∣∣∣∣E [θ|x]− p−1

(
k

n

)
− ξ

(
k
n

)

n

∣∣∣∣∣ ≤
C

n2
,

where ξ (x) :=

√
x(1−x)

p′(p−1(x))

{
2[p′(p−1(x))]

3
(1−2x)

[x(1−x)]2
− 3p′(p−1(x))p′′(p−1(x))

x(1−x) +
ρ′(p−1(x))
ρ(p−1(x))

}
. �

Proof of Proposition 4. Let s and s
′ be two infinite sequences of informative recollections that

coincide except at one index (say, j): sj = L, s′j = H, and si = s′i for all i 6= j. Since the posterior

depends only on the number of successes and informative recollections (k, n), posteriors are the same

for any j ∈ N.

From inequality (3), there exist C1, N1,s, and N1,s′ , such that

∣∣∣∣E [θ|k, n]− p−1

(
k

n

)
− ξ

(
k

n

)
1

n

∣∣∣∣ ≤
C1

n2
, and

∣∣∣∣E [θ|k + 1, n]− p−1

(
k + 1

n

)
− ξ

(
k + 1

n

)
1

n

∣∣∣∣ ≤
C1

n2

for all n > max
{
N1,s, N1,s′

}
. Notice that N1,s′ can be written as a function of s only since it does not
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depend on the index in which s
′ and s differ, j. By the triangle inequality,

∣∣∣∣∣E [θ|k + 1, n]− E [θ|k, n]− p−1

(
k + 1

n

)
+ p−1

(
k

n

)
− ξ

(
k+1
n

)
− ξ

(
k
n

)

n

∣∣∣∣∣ ≤
2C1

n2
. (13)

From Taylor’s theorem,

p−1

(
k + 1

n

)
= p−1

(
k

n

)
+

1

n

1

p′
(
p−1

(
k
n

)) + 1

2n2

p′′
(
p−1

(
k
n + δ

))
[
p′
(
p−1

(
k
n + δ

))]3

for δ ∈ [0, 1
n ]. Since p is twice continuously differentiable and p′ is bounded away from zero, there exist

N2 and C2 such that ∣∣∣∣∣p
−1

(
k + 1

n

)
− p−1

(
k

n

)
− 1

n

1

p′
(
p−1

(
k
n

))
∣∣∣∣∣ ≤

C2

n2
(14)

for all n > N2 on an almost sure set.

Since p (θ) is bounded away from zero and one, ξ is continuously differentiable in its entire domain.

Applying Taylor’s theorem, we obtain

ξ
(
k+1
n

)
− ξ

(
k
n

)

n
=

1

n2
ξ′
(
k

n
+ ǫ

)

for some ǫ ∈ [0, 1
n ].

By the uniform strong law, k
n converges almost surely to p (θ). Since ξ is continuously differentiable,

ξ′
(
k
n + δ0

)
converges uniformly almost surely to ξ′ (θ) . Thus, there exist constants N3 and C3 such that

∣∣∣∣∣
ξ
(
k+1
n

)
− ξ

(
k
n

)

n

∣∣∣∣∣ ≤
C3

n2
(15)

for all n > N3.

Combining (14) and (15) with inequality (13) (using the triangle inequality), we obtain, for all n > Ns,

∣∣∣∣∣E [θ|k + 1, n]− E [θ|k, n]− 1

n

1

p′
(
p−1

(
k
n

))
∣∣∣∣∣ ≤

C

n2

on an almost sure set, where Ns := max
{
N1,s, N1,s′ , N2, N3

}
and C := 2C1 + C2 + C3. �

Proof of Theorem 1

Before presenting the proof of the theorem, it is helpful to simplify the notation. Note that any distri-

bution over skills θ induces a distribution over signal structures p (θ). For notational simplicity, I will

work with the distribution over signal structures π = p (θ) rather than the distribution over skills θ.

This is without loss of generality here because p (θ) is a strictly increasing function (this is a standard

maneuver in probability theory, known as the “change of variables” or the “push out” method). For any

π ∈ p (Θ), let µ (π) := ρ
(
p−1 (π)

)
denote the prior distribution over the space of probabilities of a high
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signal π.

The posterior distribution of θ,

ρ (θ|k, n) = p (θ)k [1− p (θ)]n−k ρ (θ)
´

Θ p (θ)k [1− p (θ)]n−k ρ (θ) dθ
,

can be written in terms of the posterior distribution of π,

µ (π|k, n) = πk (1− π)n−k µ (π)
´

Θ πk (1− π)n−k µ (π) dπ
.

Let W (a, π) := V
(
a, p−1 (π)

)
denote the payoff from action a when the individual has the skill param-

eter θ = p−1 (π).

Let γ := k
n , denote the proportion of successes, which is also the maximum likelihood estimator of

π. I abuse of notation by letting

a (π) := argmax
a∈A

W (a, π)

denote the optimal action for “probability type” π. Let

ãn (γ) := argmax
a∈A

ˆ

W (a, π)µ (π|γn, n) dθ, (16)

denote the optimal action conditional on the proportion γ of successes in n observations. It is nonempty

since the objective function is continuous and A is compact; it is unique because the objective function

is strictly concave and A is convex. The following lemma shows that ãn (γ) converges pointwise to a (γ).

Lemma 4 limn→∞ ãn (γ) = a (γ) for all γ ∈ [π, π̄].

Proof. Since µ (π|γn, n) converges to a mass point at γ and W (a, ·) is a continuously differentiable

(and, therefore, absolutely continuous) function,

lim
n→∞

ˆ

W (a, π)µ (π|γn, n) dπ = W (a, γ) .

Suppose, in order to obtain a contradiction, that {ãn (γ)}∞n=1 does not converge to a (γ). Then, there

exists ǫ > 0 and subsequence {ãni
(γ)}∞i=1 such that

|ãni
(γ)− a (γ)| ≥ ǫ (17)

for all ni. Since {ãni
(γ)} is in the compact set A ∈ R, it follows from the Bolzano-Weierstrass theorem

that it has a converging subsequence
{
ãnij

}
; let a∗ to denote its limit. Because ãnij

(γ) maximizes
´

W (a, π)µ
(
π|γnij , nij

)
dθ, we must have

ˆ

W
(
ãnij

(γ) , π
)
µ
(
π|γnij , nij

)
dπ ≥

ˆ

W (a (γ) , π)µ
(
π|γnij , nij

)
dπ ∀nij .
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Since

lim
n→∞

ˆ

W (a, π)µ (π|γn, n) dπ = W (a, π) ,

and limnik
→∞ ãnik

(γ) = a∗, it follows that

W (a∗, γ) ≥ W (a (γ) , γ) .

Thus, a∗ maximizes W (a, π). Since, by Assumption 2, a (γ) is the unique maximizer of W (a, γ), we

must have a∗ = a (γ), which contradicts (17).

Substituting the posterior distribution in (16) and noting that the denominator is positive and it is

not a function of a, yields

ãn (γ) = argmax
a∈A

Vn (a, γ) ,

where Vn (a, γ) ≡
´

W (a, π)
[
πγ (1− π)1−γ

]n
µ (π) dπ. Since a (γ) is in the interior of A and ãn (γ)

converges to a (γ), an (γ) must also be in the interior of A for large n. Thus, it must satisfy the

following first order condition:
∂Vn

∂a
(an (γ) , γ) = 0.

Since ∂Vn

∂a is strictly decreasing and continuously differentiable, the implicit function theorem ensures

that an (γ) is a continuously differentiable function and

a′n (γ) = −
∂2Vn

∂a∂γ (an (γ) , γ)

∂2Vn

∂a2
(an (γ) , γ)

. (18)

Our next lemma shows that {a′n (γ)} is bounded:

Lemma 5 For each γ, there exist constants Nγ and Kγ such that |a′n (γ)| < Kγ for all n > Nγ.

Proof. The second derivatives are

∂2Vn

∂a∂γ
(a, γ) = n

ˆ

ln

(
π

1− π

)
∂W

∂a
(a, π)

[
πγ (1− π)1−γ

]n
µ (π) dπ,

and
∂2Vn

∂a2
(a, γ) =

ˆ

∂2W

∂a2
(a, π)

[
πγ (1− π)1−γ

]n
µ (π) dπ.

Substituting these expressions in (19), yields

a′n (γ) = −
n
´

ln
(

π
1−π

)
∂W
∂a (an (γ) , π)

[
πγ (1− π)1−γ

]n
µ (π) dπ

´

∂2W
∂a2

(an (γ) , π)
[
πγ (1− π)1−γ

]n
µ (π) dπ

. (19)

Recall that an(γ) converges pointwise to a(γ). Since ∂2W
∂a2

and µ are continuous and π is bounded away
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from 0 and 1, this expression has the same limit as

−
n
´

ln
(

π
1−π

)
∂W
∂a (a (γ) , π)

[
πγ (1− π)1−γ

]n
µ (π) dπ

´

∂2W
∂a2 (a (γ) , π)

[
πγ (1− π)1−γ

]n
µ (π) dπ

.

Since a (γ) maximizes W (a, γ) and a (γ) is interior, it satisfies the first-order condition: ∂W
∂a (a (γ) , γ) =

0. Applying a Taylor expansion to ∂W
∂a (a (γ) , π) at π = γ, we obtain

∂W

∂a
(a (γ) , π) =

∂W

∂a
(a (γ) , γ)

︸ ︷︷ ︸
0

+
1

2

∂2W

∂a2
(a (γ) , γ) (π − γ) +R (π − γ) ,

where limh→0
R(h)
h = 0. Substituting in (19), gives

a′n(γ) = −
n
´

ln
(

π
1−π

) [
1
2
∂2W
∂a2

(a (γ) , γ) +R (π − γ)
]
(π − γ)

[
πγ (1− π)1−γ

]n
µ (π) dπ

´

∂2W
∂a2

(a (γ) , π)
[
πγ (1− π)1−γ

]n
µ (π) dπ

= −
n
´

ln
(

π
1−π

) [
1
2
∂2W
∂a2

(a (γ) , γ) +R (π − γ)
]
(π − γ)

[
πγ (1− π)1−γ

]n
µ (π) dπ

´

[
πγ (1− π)1−γ

]n
µ (π) dπ

×
´

[
πγ (1− π)1−γ

]n
µ (π) dπ

´

∂2W
∂a2

(a (γ) , π)
[
πγ (1− π)1−γ

]n
µ (π) dπ

.

The second term,

´

[
πγ (1− π)1−γ

]n
µ (π) dπ

´

∂2W
∂a2

(a (γ) , π)
[
πγ (1− π)1−γ

]n
µ (π) dπ

=
1

E
[
∂2W
∂a2

(a (γ) , π) |γ, n
] ,

converges in probability to 1
∂2W

∂a2
(a(γ),γ)

since W is twice continuously differentiable and E
[
∂2W
∂a2 (a (γ) , π) |γ, n

]

converges in probability to ∂2W
∂a2

(a (γ) , γ) < 0.

The first term equals

−nE

[
ln

(
π

1− π

)
1

2

∂2W

∂a2
(a (γ) , γ) (π − γ) |γ, n

]
− nE

[
ln

(
π

1− π

)
R (π − γ) (π − γ) |γ, n

]

= −n

2

∂2W

∂a2
(a (γ) , γ)E

[
ln

(
π

1− π

)
(π − γ) |γ, n

]
− nE

[
ln

(
π

1− π

)
R (π − γ)

π − γ
(π − γ)2 |γ, n

]
.

Since π is bounded away from 0 and 1, standard asymptotic results (see, e.g., Johnson (1970)) establish

that

E

[
ln

(
π

1− π

)
(π − γ) |γ, n

]
= Oγ

(
1

n

)
(20)
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and

E
[
(π − γ)2 |γ, n

]
= Oγ

(
1

n

)
. (21)

From (20), −n
2
∂2W
∂a2

(a (γ) , γ)E
[
ln
(

π
1−π

)
(π − γ) |γ, n

]
= Oγ (1) . Moreover, since limh→0

R(h)
h = 0, it

then follows that

E



ln

(
π

1− π

)

︸ ︷︷ ︸
→pln

(

γ
1−γ

)

n (π − γ)2︸ ︷︷ ︸
O(1)

R (π − γ)

π − γ︸ ︷︷ ︸
→p0

|γ, n



→p 0.

Thus, a′n(γ) is Oγ(1).

Proof of the theorem. In order to obtain a contradiction, suppose that σ̂
(
ht
)
= L for some history

ht with n informative recollections and consider a deviation to σ̂ = H. The gain from self-image is

bounded below by α {E [θ|k + 1, n]− E [θ|k, n]} , which, as established in Lemma 4, is of order 1
n .

The deviation will lead the individual to choose action ãñ
(
γ̃ + 1

n

)
if the game ends after a history

associated with state
(
k̃, ñ

)
= (ñγ̃, ñ) . Therefore, the expected cost of distorting actions equals

∑

γ̃≥k 6/ñ
ñ≥n

ˆ

{[
W (ãñ (γ̃) , π)−W

(
ãñ

(
γ̃ +

1

ñ

)
, π

)]
µ (π|ñγ̃, ñ)

}
dπΦ (ñγ̃, ñ|k, n) , (22)

where Φ
(
k̃, ñ|k, n

)
denotes the probability that the game ends at a history associated to

(
k̃, ñ

)
, given

the strategies being played in the fixed PBE. We will establish that the expression in (22) decreases to

0 at a rate faster than 1
n .

Recall the expression for the expected payoff from action a conditional on (γ̃, ñ):

Vn (a, γ) ≡
ˆ

W (a, π)
[
πγ (1− π)1−γ

]n
µ (π) dπ.

From Taylor’s theorem,

Vñ

(
ãñ
(
γ̃ + 1

ñ

)
, γ̃
)

=

Vñ (ãñ (γ̃) , γ̃) +
∂Vñ

∂a (ãñ (γ̃) , γ̃)×
[
ãñ
(
γ̃ + 1

ñ

)
− ãñ (γ̃)

]

+r
(
ãñ
(
γ̃ + 1

ñ

)
− ãñ (γ̃)

)
,

(23)

where limh→0
r(h)
h = 0. For large enough ñ, ãñ (γ̃) must be interior. Therefore, it must satisfy the

first-order condition: ∂Vñ

∂a (ãñ (γ̃) , γ̃) = 0. Substitute in equation (23) and divide both sides by 1
n :

Vñ (ãñ (γ̃) , γ̃)− Vñ

(
ãñ
(
γ̃ + 1

n

)
, γ̃
)

1
n

=
r
(
ãñ
(
γ̃ + 1

n

)
− ãñ (γ̃)

)
1
n

.

49



In order to show that the cost has a lower order of magnitude than 1
n , we need to verify that

lim
ñ→∞

r (ãñ (γ̃
′)− ãñ (γ̃))
1
ñ

= 0.

If ãñ
(
γ̃ + 1

n

)
= ãñ (γ̃) , the result is immediate; otherwise, we can multiply and divide the term on the

right by ãñ
(
γ̃ + 1

n

)
− ãñ (γ̃):

r
(
ãñ
(
γ̃ + 1

n

)
− ãñ (γ̃)

)

ãñ
(
γ̃ + 1

n

)
− ãñ (γ̃)

ãñ
(
γ̃ + 1

n

)
− ãñ (γ̃)

1
n

.

From the definition of r and the fact that limñ→∞ ãñ
(
γ̃ + 1

ñ

)
− ãñ (γ̃) = 0, the first term converges to

zero. Thus, it suffices to show that there exists K and N such that ñ > N

∣∣ãñ
(
γ̃ + 1

ñ

)
− ãñ (γ̃)

∣∣
1
ñ

< Kγ̃ .

But, from the mean value theorem,

∣∣ãñ
(
γ̃ + 1

ñ

)
− ãñ (γ̃)

∣∣
1
ñ

=
∣∣ã′n (γ∗)

∣∣ ,

for some γ∗ ∈ [γ̃, γ̃ + 1
ñ ]. Hence, from the previous lemma, such Kγ̃ exists. �

Proof of Theorem 2

The proof will proceed by a series of lemmata. Let ρ(θ|k, n), ãn (γ), and a (γ) be as defined in the proof

of Theorem 1. Because V and p−1 are continuous and a (γ) is a singleton except at a finite number of

points, we can partition the type space in a finite number of intervals and the optimal action is unique

and constant in the interior of all those intervals. More precisely, there exists a finite set {π1, π2, ..., πM}
with π1 = p (θ) < π2 < ... < πM = p

(
θ̄
)

such that a (γ) = a (γ′) is a singleton for all γ, γ′ ∈ (πi, πi+1),

i = 1, ..., N − 1.

Note that γ = k
n is the maximum likelihood estimator (MLE) of π = p (θ). The first lemma shows

that when n large enough, the action taken when the individual observes a proportion γ of successes,

ãn(γ), coincides with the action she would take if she knew with certainty that her type was π = γ:

Lemma 6 There exists a constant N such that, for all γ in which a (γ) is a singleton, ãn(γ) = a (γ)

for all n > N .

Proof. First, we establish that there exists Nγ with this property. Let a(γ) be unique. Then, for all

a 6= a (γ) , V (a(γ), p−1 (γ)) > V (a, p−1 (γ)). Note that, for all a 6= a(γ), we have

lim
n→∞

{
E[V (a(γ), p−1 (π))|γn, n]− E[V (a, p−1 (π))|γn, n]

}
= V (a(γ), p−1 (γ))− V (a, p−1 (γ)) > 0.
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Thus, for any ǫ > 0, there exists nγ,ǫ such that

−ǫ <
{
E[V (a(γ), p−1 (π))|γn, n]−E[V (a, p−1 (π))|γn, n]

}
−
[
V (a(γ), p−1 (γ))− V (a, p−1 (γ))

]
< ǫ

for n > nγ,ǫ. Taking ǫ = mina
{
V (a (γ) , p−1 (γ))− V (a, p−1 (γ))

}
> 0 (which exists and is strictly

positive because A is finite), it follows that there exists Nγ such that

E[V (a(γ), p−1 (π))|γn, n] > E[V (a, p−1 (π))|γn, n]

for all n > Nγ . Thus, a (γ) also maximizes E[V (a, θ)|γ, n] for all such n.

Next, we show that we can take Nγ independent of γ. Let N be the supremum of Nγ for γ /∈
{π1, π2, ..., πM}. Suppose, in order to obtain a contradiction, that N = +∞. Then, by the definition

of the supremum, for any n, there exists γn 6= {π1, π2, ..., πM} such that ãn(γn) 6= a (γn) . Therefore,

the sequence {γn} is such that ãn(γn) 6= a(γn) for all n. Since the sequence {γn} is bounded, it has a

convergent subsequence
{
γnj

}
; let γ∗ ∈ [π, π̄] denote its limit. Then, we have a sequence

{
γnj

}
→ γ∗

such that ãn
(
γnj

)
6= a

(
γnj

)
for all nj, which, because A is finite, implies limn→∞ ãn (γ

∗) 6= a (γ∗).

This contradicts our previous result, which shows that there exists Nγ∗ such that ãn (γ
∗) 6= a (γ∗) for

all n > Nγ∗ .

Next, we note that the posterior probability of a high signal can be approximated by its MLE k
n :

Lemma 7 There exist D and N such that for any n > N :

∣∣∣∣∣E [π|k, n]− k

n
+

1

n

[
1− 2

k

n
+

k

n

(
1− k

n

)
ρ′
(
k
n

)

ρ
(
k
n

)
]∣∣∣∣∣ ≤

D

n2
.

Proof. Follows directly from Hald (1967, pp. 360).

We will also use the fact that the MLE of π is asymptotically normally distributed:

Lemma 8
√
n(γ−π)√
γ(1−γ)

→D N (0, 1) , where γ = k
n .

Proof. See Hald (1967).

Proof of the theorem. Fix a type π /∈ {π1, π2, ..., πM}. In order to obtain a contradiction, suppose

that the claim from the theorem is not true. Then, there must exist a sequence of recollections h∞ :=

{σ̂t}t∈N such that:

1. Every finite restriction of h∞ is on the equilibrium path: Pr (σ̂1, ..., σ̂t|σ∗) > 0, and

2. h∞ has an infinite number of informative periods: # {t : σ∗ (σ̂1, ..., σ̂t−1) = L} = +∞.

Let {σ̂tn}∞n=0 be the subsequence of h∞ containing its informative periods. Define the random variable

xtn ≡ 1 (σ̂tn = H) , where 1 (.) denotes the indicator function; let kn =
∑n

i=0 xti denote the number of

successes in the subsequence of informative periods up to n.

Let htn := (σ̂1, ..., σ̂tn ) be the history in the informative period tn. By construction, htn has kn

successes in n informative periods. Since htn is informative, σ̂∗ (htn
)
= L so that both

(
htn , L

)
and
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(
htn ,H

)
are on the equilibrium path. Consider a deviation at htn to σ̂ = H. There are two possibilities.

Either σ̂tn+1 = H so that we remain on h∞ after the deviation, or σ̂tn+1 = L so we leave h∞ after the

deviation. We will consider them separately.

First, suppose σ̂tn+1 = H for n large enough. Then, from Lemma 6, the deviation only affects the

action to be chosen if the game ends at a state (k̃, ñ) in which

k̃

ñ
< πi <

k̃ + 1

ñ
, (24)

for i = 1, ...,M . From Lemma 8,
√
ñ(γ−π)√
γ(1−γ)

→D N (0, 1). Thus, the probability of a signal satisfying

condition 24 converges to

Φ

(√
ñ

γ (1− γ)
(πi − π)

)
− Φ

(√
ñ

γ (1− γ)

(
πi − π − 1

ñ

))
,

where Φ is the c.d.f. of the Normal distribution. The cost of making an incorrect decision is bounded

above by

V̄ := max
θ,a

{V (a, θ)} −min
a,θ

{V (a, θ)} ,

which is finite because V is continuous and Θ×A is compact. Thus, the expected cost from the deviation

in terms of actions is bounded above by the maximum cost of making an incorrect decision times the

probability of affecting the decision:

V̄

M∑

i=1




Φ



√√√√ ñ

k̃
ñ

(
1− k̃

ñ

) (πi − π)


−Φ



√√√√ ñ

k̃
ñ

(
1− k̃

ñ

)
(
πi − π − 1

ñ

)







,

which converges to zero exponentially for all π /∈ {π1, π2, ..., πM}. Therefore, the expected cost has a

lower order of magnitude than the benefit in self image, which is O(1/n). Hence, there is always a

profitable deviation if there exists n large enough for which σ̂tn+1 = H.

Next, let us consider the other case. That is, suppose there exists n̄ such that σ̂tn+1 = L for all

n > n̄. Then, among the informative periods in h∞, there is an infinite number of low signals and only

a finite number (at most n̄) of high signals. Hence, beliefs on h∞ converge to π := p (θ). The previous

argument does not work in this case because, following a deviation to σ̂ = H, histories no longer belong

to the sequence h∞. As a result, the individual may stop interpreting signals realistically: posterior

beliefs will depend on the individual’s continuation strategies after such a deviation. We need a bound

on the cost of the deviation that holds uniformly among all possible continuation strategies. We will

obtain such uniform bound and show that it converges to zero at a much faster rate than 1
n .

First, suppose a
(
p−1 (π)

)
is a singleton. Then, there exists a neighborhood of π where a

(
p−1 (π)

)
=

a
(
p−1 (π)

)
. The probability that the deviation affects actions is bounded above by following a strategy

that interprets signals realistically until we reach γ = k̃
ñ ≥ π1 and then rationalizes all future signals

away. This is an upper bound both because it is maximizes the probability that we affect decisions

among all possible continuation strategies but also because it ignores the probability that the game
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ends (so we may never be able to reach such a state). I will show that the probability determined by

this upper bound is O
(

1
nn−2k

)
.

As shown previously, Pr (σ = H|k, n) = E [π|k, n] = k
n + O

(
1
n2

)
. Since beliefs on h∞ converge to

π < π1 and n is large enough, there is no loss of generality in assuming that k
n < π1. Therefore, we

need to calculate the probability of obtaining S successes and F failures such that k+S
n+S+F ≥ π1.

k + S ≥ π1 (n+ S + F ) ⇐⇒ S ≥ π1 (n+ F )− k

1− π1
.

Letting ⌈·⌉ denote the ceiling function, we need S =
⌈
π1(n+F )−k

1−π1

⌉
and F failures, for F = 0, 1, 2, ... .

Note that the order of successes and failures does not matter for their conditional probabilities (up

to terms of lower order); for any vector {σt+1, σt+2, ..., σt+S+F } with S successes and F failures,

Pr (σt+1, ..., σt+S+F |k, n) =
k

n

k + 1

n+ 1

k + 2

n+ 2
...
k + S − 1

n + S − 1

(
1− k + S

n+ S

)(
1− k + S

n+ S + 1

)
...

(
1− k + S

n+ S + F − 1

)

=
(n− 1)!

(n+ S + F − 1)!

(k + S − 1)!

(k − 1)!

(n− k + F − 1)!

(n− k − 1)!
.

To simplify notation, let r := π1

1−π1
, so that S = ⌈r (n+ F )− (1 + r) k⌉. Summing for F = 0, 1, 2, ....,

we obtain the probability of reaching (k̃, ñ) such that k̃
ñ > π1 is bounded above by

∞∑

F=0

(n− 1)!

(n+ ⌈r (n+ F )− (1 + r) k⌉+ F − 1)!

(k + ⌈r (n+ F )− (1 + r) k⌉ − 1)!

(k − 1)!

(n− k + F − 1)!

(n− k − 1)!

=
(n− 1)!

(k − 1)! (n− k − 1)!

∞∑

F=0

(n− k + F − 1)! (k + ⌈r (n+ F )− (1 + r) k⌉ − 1)!

(n+ ⌈r (n+ F )− (1 + r) k⌉+ F − 1)!
. (25)

Notice that

(n− 1)!

(k − 1)! (n− k − 1)!
= k ×

(
n− 1

k

)
= k ×

k∏

i=1

n− 1− (k − i)

i

which is O
(
nk
)
. Moreover, after some algebraic manipulations, we can rewrite the inverse of the terms

inside the summation as

(n+ ⌈r (n+ F )− (1 + r) k⌉+ F − 1)!

(n− k + F − 1)!× (k + ⌈r (n+ F )− (1 + r) k⌉ − 1)!

= (n+ ⌈r (n+ F )− (1 + r) k⌉+ F − 1)×
(

n+ ⌈r (n+ F )− (1 + r) k⌉+ F − 2

n− k + F − 1

)

= (n+ ⌈r (n+ F )− (1 + r) k⌉+ F − 1)

n−k+F−1∏

i=1

K − 1 + i+ ⌈r (n+ F )− (1 + r) k⌉
i

,

which is O
(
nn−k+F

)
. Thus, there exist constants C0, C1, and n̄ such that

(n− 1)!

(k − 1)! (n− k − 1)!
<

C0

nk
, and
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(n− k + F − 1)! (k + ⌈r (n+ F )− (1 + r) k⌉ − 1)!

(n+ ⌈r (n+ F )− (1 + r) k⌉+ F − 1)!
<

C1r
F

nn−k+F

for all n > n̄. Combining both conditions, we obtain

(n− 1)!

(k − 1)! (n− k − 1)!

∞∑

F=0

(n− k + F − 1)! (k + ⌈r (n+ F )− (1 + r) k⌉ − 1)!

(n+ ⌈r (n+ F )− (1 + r) k⌉+ F − 1)!

<
C0

nk

∞∑

F=0

C1r
F

nn−k+F
=

C0C1

nn−2k

∞∑

F=0

rF

nF
=

(
n

n− r

)
C0C1

nn−2k
.

Since n
n−r → 1, it follows that the expression in equation (25) is O

(
1

nn−2k

)
. Hence, the expected cost

from the deviation – which is bounded above by the probability of affecting actions times the maximum

cost V̄ – is also O
(

1
nn−2k

)
. Since the benefit from the deviation is O

(
1
n

)
, there is always a profitable

deviation for n large enough.

Finally, suppose that a
(
p−1 (π)

)
is not a singleton. Then, because it is a singleton only in a finite

number of points, there exists π1 > π such that a
(
p−1 (π)

)
=: a1 is a singleton for all π ∈ (π, π1).

Moreover, because posteriors have full support and converge to π, it follows that there exists n such

that an
(
p−1

(
k
n

))
converges to a1. Then, the result is obtained by following the exact same steps as

when a
(
p−1 (π)

)
is a singleton. �

Proof of Lemma 3.

Let ht be a last informative history on the equilibrium path. By Bayes’ rule, there must exist at

least two histories on the equilibrium path with different conditional expectations. With no loss of

generality, let

E
[
θ|htσ̂′

t+1

]
> E

[
θ|htσ̂t+1

]
.

In order for this to be an equilibrium, no signal σt+1 that is prescribed to choose σ̂t+1 can profit by

deviating to σ̂′
t+1. Such a deviation raises payoffs from self views by

α

(
1− βT−t+1

1− β

){
E
[
θ|htσ̂′

t+1

]
− E

[
θ|htσ̂t+1

]}
.

Deviating from σ̂t+1 to σ̂′
t+1 reduces the payoff from actions by

βT−t+1κ
{
E
[
θ|htσ̂′

t+1

]
− E

[
θ|htσ̂t+1

]} {
E
[
θ|htσ̂t+1

]
+E

[
θ|htσ̂′

t+1

]
− 2E

[
θ|ht, σt+1

]}
,

where E
[
θ|ht, σt+1

]
denotes the mean conditional on history ht and the true signal σt+1 in period t+1.

Thus, the deviation is profitable if

α

κ

(
1− βT−t+1

1− β

)
≥ βT−t+1

{
E
[
θ|htσ̂t+1

]
+ E

[
θ|htσ̂′

t+1

]
− 2E

[
θ|ht, σt+1

]}
.

Because 1−βT−t+1

1−β ≥ 1 and β ≥ βT−t+1, a sufficient condition for the deviation to be profitable is

α

βκ
≥ E

[
θ|htσ̂t+1

]
+ E

[
θ|htσ̂′

t+1

]
− 2E

[
θ|ht, σt+1

]
. (26)
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Consistency of beliefs requires the posterior mean conditional on recollection σ̂t+1 to lie in the convex

hull of posterior means conditional on all signals that are interpreted as σ̂t+1. Thus, there exists a signal

σt+1 interpreted as σ̂t+1 (i.e., σ̂∗ (htσt+1

)
= σ̂t+1) such that

E
[
θ|htσ̂t+1

]
≤ E

[
θ|ht, σt+1

]
.

After some algebraic manipulations, we obtain:

E
[
θ|htσ̂′

t+1

]
−E

[
θ|htσ̂t+1

]
≥ E

[
θ|htσ̂′

t+1

]
+ E

[
θ|htσ̂t+1

]
− 2E

[
θ|ht, σt+1

]
.

Substituting in equation (26), we obtain the sufficient condition for the deviation to be profitable:

α

βκ
≥ E

[
θ|
{
ht, σ̂′

t+1

}]
− E

[
θ|
{
ht, σ̂t+1

}]
,

concluding the proof �

Proof of Proposition 12. Recall that hthτ denotes the history obtained by concatenating hτ and

ht, whereas htσ̂hτ denotes the concatenation of hτ , σ̂, and hτ – see (8) and (9). We say that ht is

a last history on the equilibrium path if all of its continuation histories on the equilibrium path are

uninformative. Formally, ht is a last informative history on the equilibrium path if

• E
[
θ|
{
htH

}]
6= E

[
θ|
{
htL

}]
, and

• For all continuation histories
{
htσ̂th

s
}
⊃ ht on the equilibrium path, E

[
θ|
{
htσ̂t

}]
= E

[
θ|
{
htσ̂th

s
}]

.

The following lemma establishes that beliefs in a last informative history on the equilibrium path cannot

be “too concentrated.”

Lemma 9 Let ht be a last informative history on the equilibrium path. Then, E
[
θ|
{
htH

}]
−E

[
θ|
{
htL

}]
>

α
βκ .

Proof. Let hT+1 be a history on the equilibrium path. If hT+1 has no informative periods, the statement

is trivially true. Assume that hT+1 has at least one informative period and let t ≤ T +1 denote its last

informative period (i.e., t is the last period in which the individual interprets a low signal realistically

with positive probability: λ
(
ht
)
< 1).

In order for this to be an equilibrium, the individual cannot strictly prefer to play σ̂ = H at ht. Since

all future periods are uninformative, the benefit from playing σ̂ = H instead of σ̂ = L is

α
T∑

s=t

βs−t
{
E
[
θ|
{
ht,H

}]
− E

[
θ|
{
ht, L

}]}
= α

(
1− βT−t+1

1− β

){
E
[
θ|
{
ht,H

}]
− E

[
θ|ht, σt = L

]}
,

where I used the fact that E
[
θ|
{
ht, L

}]
= E

[
θ|ht, σt = L

]
. The cost of playing σ̂ = H instead of

σ̂ = L in terms of choosing a suboptimal action is

βT+1−tE
[
V
(
E
[
θ|
{
ht, L

}]
, θ
)
− V

(
E
[
θ|
{
ht,H

}]
, θ
)
|ht, σt = L

]
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= βT+1−tκ
{
E
[
θ|
{
ht,H

}]
− E

[
θ|ht, σt = L

]}2
.

Thus, the condition for σ̂ = H not to be strictly preferred to σ̂ = L is

α

(
1− βT−t+1

1− β

){
E
[
θ|
{
ht,H

}]
−E

[
θ|ht, σt = L

]}
≤ βT+1−tκ

{
E
[
θ|
{
ht,H

}]
− E

[
θ|ht, σt = L

]}2
.

Since the individual plays L with strictly positive probability, Bayesian updating gives

E
[
θ|ht, σt = L

]
< E

[
θ|ht

]
< E

[
θ|
{
ht,H

}]
≤ E

[
θ|ht, σt = H

]
.

Then, because
(
1−βT−t+1

1−β

)
> 1 > β ≥ βT+1−t, a necessary condition for the individual to play L with

positive probability at ht is

α

βκ
< E

[
θ|
{
ht,H

}]
− E

[
θ|ht, σt = L

]
,

concluding the proof.

The proof proceeds by backward induction. The following lemma establishes the appropriate starting

point.

Lemma 10 Let ht be an informative history on the equilibrium path. Then, ht has a continuation

history on the equilibrium path ht+s = {ht, σ̂t, ..., σ̂t+s−1} with the following properties:

1. ht+s is a last informative history on the equilibrium path; and

2. any continuation history of ht+s−1 = {ht, σ̂t, ..., σ̂t+s−2} has no informative signals in periods

τ > t+ s.

Proof. Let ht be an informative history on the equilibrium path. If t = T , if follows that both
{
hT ,H

}

and
{
hT , L

}
are on the equilibrium path. Since these are terminal histories, they must also be a last

informative history on the equilibrium path.

If t < T , the histories
{
ht,H

}
and

{
ht, L

}
must also be on the equilibrium path. There are two

alternatives: either (i) both of them rationalize away all future signals on the equilibrium path, or (ii)

one of them has a continuation history on the equilibrium path in which a one low signal is interpreted

as low with positive probability.

If alternative (i) is true, the result from the lemma is immediate. Suppose, therefore, that alternative

(ii) holds. Let ht1 (t1 ≥ t + 1) denote the continuation history of either
{
ht,H

}
or
{
ht, L

}
on the

equilibrium path in which a low signal is interpreted as low with positive probability (λ
(
ht1
)
< 1). Then,

both
{
ht1 ,H

}
and

{
ht1 , L

}
are also on the equilibrium path. Again, we have two alternatives: either

(i) all continuation histories of both of them are uninformative, or (ii) one of them has a continuation

history ht2 on the equilibrium path in which λ
(
ht2
)
< 1, where t2 ≥ t1 + 1. Again, the result from the

lemma is immediate if (i) holds.

Proceeding by induction, it follows that either we reach an informative history in which all future

signals are rationalized away, or we can construct a sequence of continuation histories {htn}n∈N with
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tn ≥ tn−1 + 1 in which all histories are informative. However, this contradicts the fact that history any

terminal-period history must be uninformative (there are no new signals after period T ) and, therefore,

such sequence cannot have more than T elements.

Let ht be a last informative history on the equilibrium path such that any continuation history of

ht−1 has no informative signals in periods greater than t. Since ht is informative, we must have either

λ
({

ht−1,H
})

< 1 or λ
({

ht−1, L
})

< 1. There are three possible cases:

1. λ
({

ht−1,H
})

< 1 and λ
({

ht−1, L
})

< 1,

2. λ
({

ht−1,H
})

< 1 and λ
({

ht−1, L
})

= 1, and

3. λ
({

ht−1,H
})

= 1 and λ
({

ht−1, L
})

< 1.

As I show below, there exists a strictly positive bound (independent of T ) on the difference in posterior

means in all informative histories in each of these cases. The following lemmata will be useful throughout

our analysis:

Lemma 11 Suppose ht−1 is an informative history on the equilibrium path. Then

E
[
θ|
{
ht−1,H

}]
− E

[
θ|
{
ht−1, L

}]
≥ Eσ̂

{
E
[
θ|
{
ht−1,H, σ̂

}]
− E

[
θ|
{
ht−1, L, σ̂

}]}
,

with strict inequality if and only if λ
(
ht−1,H

)
< 1.

Proof. To simplify notation, I will omit ht−1 from the conditional distributions in the expressions

below. Thus {H} and {L} will refer to histories {ht−1,H} and {ht−1, L}, respectively.

If σ̂ = H is played with probability 1 after history {H}, it follows that E [θ| {H, σ̂}] = E [θ| {H}].
Moreover, since beliefs conditional on σ = L are the same as beliefs conditional on σ̂ = L, by the law

of iterated expectations, we have

Eσ̂ {E [θ| {Lσ̂}]} = E [θ|L] . (27)

Thus, the condition holds with equality in this case. Suppose σ̂ = H is played with a probability less

than one after history {H}. Note that, in this case, Eσ̂ {E [θ| {Hσ̂}]} equals

Pr (σ̂t = H|L)E [θ| {HH}] + Pr (σ̂t = L|L)E [θ| {HL}]

= E [θ| {HL}] + Pr (σ̂t = H|H)E [θ| {HH} − E [θ| {HL}]]
+ [Pr (σ̂t = H|L)− Pr (σ̂t = H|H)]E [θ| {HH} − E [θ| {HL}]] .

By the law of iterated expectations,

E [θ| {HL}] + Pr (σ̂t = H|H)E [θ| {HH} − E [θ| {HL}]] = E [θ|H] .

Substituting back in the previous equation, gives

Eσ̂ {E [θ| {Hσ̂}]} = E [θ|H]−[Pr (σ̂t = H|H)− Pr (σ̂t = H|L)] {E [θ| {HH}]− E [θ| {HL}]} < E [θ|H] .

(28)
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The result then follows from expressions (27) and (28).

Lemma 12 E
(
θ|
{
ht−1H

})
−E

[
θ|
{
ht−1L

}]
<

E(θ|ht−1)−E[θ|{ht−1L}]
θ for any ht−1 on the equilibrium

path.

Proof. I will omit ht−1 from the conditional distributions in the expressions below. Thus {H} and {L}
will refer to histories {ht−1,H} and {ht−1, L}, respectively. Bayesian updating gives:

E (θ|σ̂2 = H) = αE [θ|σ = H] + (1− α)E [θ|σ = L] ,

and

E (θ) = πE [θ|σ = H] + (1− π)E [θ|σ = L] ,

where π ≡ Pr (σ = H) and θ < π < α ≤ 1. Thus,

E (θ|σ̂2 = H)− E [θ|σ = L]

α
= E [θ|σ = H]−E [θ|σ = L] ,

E (θ)− E [θ|σ = L]

π
= E [θ|σ = H]− E [θ|σ = L] ,

Combining both equalities, we obtain:

E (θ|σ̂2 = H)− E [θ|σ = L] =
α

π
{E (θ)−E [θ|σ = L]} <

E (θ)− E [θ|σ = L]

θ
,

where the inequality uses α < 1 and π > θ ∴
1
π < 1

θ
.

Case 1.

In case 1, there are three informative histories to consider: ht−1,
{
ht−1, L

}
, and

{
ht−1,H

}
. Lemma (1)

gives:

E
(
θ|
{
ht−1,H,H

})
− E

(
θ|
{
ht−1,H,L

})
>

α

βκ
, and

E
(
θ|
{
ht−1, L,H

})
− E

(
θ|
{
ht−1, L, L

})
>

α

βκ
.

For history ht−1, the result follows from the Lemma 11, which concludes the analysis of case 1.

In my analysis of cases 2 and 3, I will use the following decomposition of the payoff from actions:

E
{
V
(
E
[
θ|ht

]
+ δ, θ

)
|ht
}
= −κ

[
Var

(
θ|ht

)
+ δ2

]
∀δ ∈ R,

which is obtained by straightforward algebraic manipulations of the quadratic payoff function. This de-

composition shows that the payoff from actions depends additively on the variance of beliefs (−κVar(θ|ht))
and the square of the distortion (δ2).
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Case 2.

In case 2, all continuation histories of
{
ht−1, L

}
interpret low signals as high with probability one and,

therefore, beliefs remain constant after reaching
{
ht−1, L

}
. Since a low signal is interpreted realistically

with positive probability at
{
ht−1,H

}
, beliefs conditional on

{
ht−1,H,L

}
differ from those conditional

on
{
ht−1,H,H

}
. However, beliefs remain constant after reaching both

{
ht−1,H,L

}
and

{
ht−1,H,H

}
.

Thus, we need to obtain bounds for the two informative histories: ht−1 and
{
ht−1,H

}
. For

{
ht−1,H

}
,

the result follows directly from Lemma (1):

E
[
θ|
{
ht−1HH

}]
− E

[
θ|
{
ht−1HL

}]
>

α

βκ
. (29)

Below, we verify that it also holds for ht−1.

To simplify notation, I will omit ht−1 from the conditional distributions in the expressions below.

Hence, I will write Pr (σ̂t = H|σ̂) for Pr
(
σ̂t = H|

{
ht−1, σ̂

})
, E (θ|σ̂) for E

(
θ|
{
ht−1, σ̂

})
, and so on.

The expected payoff from playing σ̂ = L after observing a low signal at ht−1 is

α

(
1− βT−t+1

1− β

)
E [θ|L]− κβT−t+1Var (θ|L) . (30)

The expected payoff from playing σ̂ = H after observing a low signal at ht−1 is

α

{
E [θ|H] + β

1− βT−t

1− β
[Pr (σ̂t = H|L)E [θ| {HH}] + Pr (σ̂t = L|L)E [θ| {HL}]]

}

−κβT−t+1





Pr (σ̂t = H|L)
{
[E (θ| {HH})−E (θ| {LH})]2 + Var (θ| {LH})

}

+Pr (σ̂t = L|L)
{
[E (θ| {HL})− E (θ| {LL})]2 + Var (θ| {LL})

}


 ,

where the second line uses the payoff from actions decomposition.

Notice that, by the law of iterated expectations,

Pr (σ̂t = H|L)E [θ| {HH}] + Pr (σ̂t = L|L)E [θ| {HL}]

= E [θ|H]− [Pr (H|H)− Pr (H|L)] {E [θ| {HH}]−E [θ| {HL}]} .

Thus, beliefs after playing σ̂ = H in an informative period follow a supermartingale: Eσ̂[E (θ|Hσ̂) |H] <

E [θ|H]. Intuitively, the current-period self expects the beliefs of future selves to, on average, be revised

downwards after a deviation. Moreover, by the law of total variance,

Eσ̂t [Var (θ| {Lσ̂t}) |L] = Var (θ|L)− Varσ̂t [E (θ| {Lσ̂t}) |L] .

Using the definition of variance, we can show that

Varσ̂t [E (θ| {Lσ̂t}) |L] = Pr (σ̂t = H|L) Pr (σ̂t = L|L) [E (θ| {LH})− E (θ| {LL})]2 .
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Substituting back on the expected payoff from playing σ̂ = H gives

αE [θ|H]

(
1− βT−t+1

1− β

)
− α

β − βT−t+1

1− β
[Pr (σ̂t = H|H)− Pr (σ̂t = H|L)] {E [θ| {HH}]− E [θ| {HL}]}

− κβT−t+1





Pr (σ̂t = H|L)
{
[E (θ| {HH})− E (θ| {LH})]2

}

+Pr (σ̂t = L|L)
{
[E (θ| {HL})− E (θ| {LL})]2

}

+Var (θ|L)− Pr (σ̂t = H|L) Pr (σ̂t = L|L) [E (θ| {LH})− E (θ| {LL})]2





. (31)

Recall that, in equilibrium, the individual plays L at ht−1 with positive probability. Thus, the payoff

from H cannot exceed the payoff from playing L. Using the expressions for these payoffs from (30) and

(31), we can write the equilibrium condition as

α

(
1− βT−t+1

1− β

)
{E [θ|H]− E [θ|L]}−α

β − βT−t+1

1− β
[Pr (σ̂t = H|H)− Pr (σ̂t = H|L)] {E [θ| {HH}]− E [θ| {HL}]}

≤ κβT−t+1





(Bias)
2

︷ ︸︸ ︷
Pr (σ̂t = H|L) [E (θ| {HH})− E (θ| {LH})]2 + Pr (σ̂t = L|L) [E (θ| {HL})−E (θ| {LL})]2

−Pr (σ̂t = H|L) Pr (σ̂t = L|L) [E (θ| {LH})− E (θ| {LL})]2︸ ︷︷ ︸
Value of Information





.

(32)

The expression on the first line are the self-image gain from playing σ̂ = H instead of σ̂ = L.

The terms terms on the second line are the expected loss from the bias in posterior beliefs minus

the informational gain from the deviation. Next, we establish that the benefit from the deviation is

O ([E (θ| {H})− E (θ| {L})]) whereas the cost is O
([

E (θ| {H})−E (θ| {L})2
])

.

Lemma 13 E (θ| {HH})− E (θ| {HL}) ≤ 1
θ
× [E (θ| {H})− E (θ| {L})].

Proof. For notational simplicity, let p ≡ Pr (σ̂t = H|σ̂t−1 = H) . Then,

E [θ| {H}] = pE [θ| {HH}] + (1− p)E [θ| {HL}]

∴ [E (θ| {HH})− E [θ| {HL}]] = E [θ| {H}]− E [θ| {HL}]
p

<
E [θ| {H}]− E [θ| {L}]

θ
,

where the inequality uses Pr (σ̂t = H|σ̂t−1 = H) > θ and E [θ| {HL}] > E [θ| {L}] .

Lemma 14 E (θ| {HL})− E (θ| {LL}) ≤ 1
1−λ(ht−1)

× 1−θ
(1−θ̄)

2 × [E (θ| {H})− E (θ| {L})] .

Proof. For notational simplicity, let p ≡ Pr (σ̂t−1 = H|σ̂t = L) and note that

E [θ|σ̂t = L] = E [θ|σ̂t−1 = L] = E [θ|σt−1 = L] .

Then, using the definition of conditional expectations, we have

E [θ| {L}] = pE [θ| {HL}] + (1− p)E [θ| {LL}]

60



∴ E [θ| {HL}]− E [θ| {L}] = (1− p) {E [θ| {HL}]− E [θ| {LL}]} .

Using the fact that E [θ| {HL}] < E [θ| {H}] and 1− p

∴ {E [θ| {HL}]− E [θ| {LL}]} <
E [θ| {H}]− E [θ| {L}]

1− p
.

But. by Bayes’ rule,

1− p = Pr (σ̂t−1 = L|σ̂t = L) = (1− λt−1)
E
[
(1− θ)2

]

(1− E [θ])
,

concluding the proof.

Lemma 15 E (θ| {HH})− E (θ| {LH}) ≤ 1

θ2 × [E (θ| {H})− E (θ| {L})].

Proof. Let p ≡ Pr (σ̂t−1 = H|σ̂t = H). Then, by the definition of conditional expectations,

E (θ|σ̂t = H) = pE (θ| {HH}) + (1− p)E (θ| {LH}) .

Rearrange this expression as:

E (θ| {HH})− E (θ| {LH}) = E (θ|σ̂t = H)− E (θ| {LH})
p

<
E (θ|σ̂t = H)− E (θ| {L})

p
, (33)

where the inequality uses the fact that E (θ| {LH}) > E (θ| {L}). By Bayes’ rule, we have, for s ∈
{t, t− 1},

E (θ|σ̂s = H) = Pr (σs = H|σ̂s = H)E (θ|σs = H) + [1− Pr (σs = H|σ̂s = H)]E (θ|σs = L) .

Using this expression for both s = t and s = t− 1, we obtain:

E (θ|σ̂t = H)− E (θ|σt = L) =
Pr (σt = H|σ̂t = H)

Pr (σt−1 = H|σ̂t−1 = H)
[E (θ|σ̂t−1 = H)− E (θ|σt−1 = L)] .

Plugging back in (33), yields

E (θ| {HH})−E (θ| {LH}) < Pr (σt = H|σ̂t = H) [E (θ|σ̂t−1 = H)− E (θ|σt−1 = L)]

Pr (σ̂t−1 = H|σ̂t = H) Pr (σt−1 = H|σ̂t−1 = H)
. (34)

Note that

Pr (σs = H|σ̂s = H) =
Pr (σs = H)

Pr (σs = H) + λs [1− Pr (σs = H)]
∈
(

θ

θ + (1− θ)λ
, 1

]
,

where λs denotes the probability of playing σ̂ = H at history hs and we used the fact that p(θ) = θ > θ.

Moreover,

Pr (σ̂t−1 = H|σ̂t = H) > θ,
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since the lowest probability of a high interpretation is obtained if all low signals are interpreted realisti-

cally and, in that case, the probability of a high interpretation is bounded below by θ. Combining both

bounds, we obtain

Pr (σt = H|σ̂t = H)

Pr (σ̂t−1 = H|σ̂t = H)× Pr (σt−1 = H|σ̂t−1 = H)
<

θ + (1− θ)λt−1

θ2
<

1

θ2
.

Substitute back in (34) yields

E (θ| {HH})− E (θ| {LH}) < [E (θ|H)− E (θ|L)]
θ2

,

which concludes the proof.

For notational simplicity, let ∆ ≡ E [θ|H]−E [θ|L]. Using Lemmata (13)-(15) and the no-deviation

condition (32), we obtain the following necessary condition for the equilibrium to exist:

α

(
1− βT−t+1

1− β

)
∆ < α

β − βT−t+1

1− β
[Pr (σ̂t = H|H)− Pr (σ̂t = H|L)] ∆

θ

+ κβT−t+1

{
Pr (σ̂t = H|L)

θ4
+

Pr (σ̂t = L|L)
[1− λ(ht−1)]2

(1− θ)2
(
1− θ̄

)4

}
∆2. (35)

By Bayes’ rule,

Pr (σ̂t = H|H) = Pr (σt = H|H) + Pr (σt = L|H)
[
1− λ

(
ht
)]

, (36)

and

Pr (σ̂t = H|L) = Pr (σt = H|L) + Pr (σt = L|L)
[
1− λ

(
ht
)]

. (37)

Combining expressions (36) and (37), we obtain

Pr (σ̂t = H|H)− Pr (σ̂t = H|L) = [Pr (σt = H|H)− Pr (σt = H|L)]λ
(
ht
)

= [E (θ|H)− E (θ|L)]λ
(
ht
)
≤ ∆.

,

where the inequality uses the definition of ∆ and the fact that λ(ht) ≤ 1. Substituting back in inequality

(35), we obtain the necessary condition for the equilibrium to exist:

α

(
1− βT−t+1

1− β

)
<

{
α

θ

β − βT−t+1

1− β
+ κβT−t+1

[
Pr (σ̂t = H|L)

θ4
+

Pr (σ̂t = L|L)
(1− λ(ht−1))2

(1− θ)2

(
1− θ̄

)4

]}
∆.

There are two possibilities depending on whether 1 − λ(ht−1) is uniformly bounded away from

zero. Formally, let a game be parameterized by the number of signals T . Suppose that there exists a

constant K < 1 such that, for any number of signals T ∈ N, λ(ht−1) < K in any history ht−1 satisfying

the conditions of Case 2 (i.e., {ht−1,H} is a last informative history and all continuation histories of{
ht−1, L

}
are uninformative).

62



Then, the previous inequality implies that, for any such history in a game with T signals,

α

(
1− βT−t+1

1− β

)
<

{
α

θ

β − βT−t+1

1− β
+ κβT−t+1

[
Pr (σ̂t = H|L)

θ4
+

Pr (σ̂t = L|L)
(1−K)2

(1− θ)2

(
1− θ̄

)4

]}
∆, (38)

where, as before, we omit ht−1 for notational simplicity. Note that 1−βT−t+1

1−β ≥ 1, β−βT−t+1

1−β ≤ β
1−β ,

Pr (σ̂t = H|L) < 1 and Pr(σ̂t=L|L)
(1−K)2

< θ

(1−K)2
. Thus, a necessary condition for the equilibrium to exist is

∆ >
α

α
θ

β
1−β + κβ

[
1

θ4 + θ
(1−K)2

(1−θ)2

(1−θ̄)
4

] ,

which is a uniform bound on ∆. Thus, when a uniform bound on 1− λ(ht−1) exists, there also exists a

uniform bound on ∆ = E [θ| {H}]−E [θ| {L}].
Suppose, in order to obtain a contradiction, that no bound on ∆ = E [θ| {H}] − E [θ| {L}] holds

uniformly across all histories ht−1 satisfying the conditions on Case 2 for all number of signals T ∈ N.

Then, for any ǫ > 0, there exists a game (parameterized by T ), and a history ht−1 satisfying the

conditions of Case 2 such that

E
[
θ|
{
ht−1H

}]
−E

[
θ|
{
ht−1L

}]
< ǫ.

Taking ǫ = 1
N , we can construct a sequence {∆N}N∈N such that

∆N = E
[
θ|
{
ht−1
N H

}]
− E

[
θ|
{
ht−1
N L

}]
<

1

N

for some Case-2 history ht−1
N on the equilibrium path. Since ∆N > 0 for all N , it follows from the

Squeeze Theorem that {∆N}N∈N converges to zero. By inequality (38), this requires
{
λ(ht−1

N )
}
N∈N

converges to zero. Thus,

lim
N→∞

E
[
θ|
{
ht−1
N H

}]
− E

[
θ|
{
ht−1
N L

}]
= lim

N→∞
E
[
θ|ht−1

N

]
− E

[
θ|
{
ht−1
N L

}]
= 0. (39)

However, by inequality (29), we must have

E
[
θ|
{
ht−1
N HH

}]
− E

[
θ|
{
ht−1
N HL

}]
>

α

βκ

for all ht−1
N (since ht−1

N satisfies the conditions of Case 2, history {ht−1,H} must be informative). Because

λ(ht−1
N ) converges to zero, we have

lim
N→∞

[
E
(
θ|
{
ht−1
N HH

})
− E

(
θ|
{
ht−1
N H

})]
= 0,

and

lim
N→∞

[
E
(
θ|
{
ht−1
N HL

})
− E

(
θ|
{
ht−1
N L

})]
= 0.
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Thus, there exists N̄ such that, for all N > N̄ ,

E
[
θ|
{
ht−1
N H

}]
− E

[
θ|
{
ht−1
N L

}]
>

α

βκ
.

Then, using Lemma 12, we obtain

E
(
θ|ht−1

N

)
− E

[
θ|
{
ht−1
N L

}]
>

αθ

βκ

for all N > N̄ , which contradicts equation (39). Thus, we have obtained a bound on E
(
θ|
{
ht−1H

})
−

E
[
θ|
{
ht−1L

}]
for all Case-2 histories that is uniform across equilibria and number of signals T .

Case 3.

In case 3, there are two informative histories for which we need to verify the bounds on the mean of the

posterior: ht−1 and
{
ht−1, L

}
. The result for history

{
ht−1, L

}
follows straight from the first lemma:

E
[
θ|
{
ht−1LH

}]
− E

[
θ|
{
ht−1LL

}]
>

α

βκ
. (40)

As in our analysis of case 2, I will omit ht−1 from the continuation histories for notational simplicity.

Thus, in the expressions above, I will refer to history {ht−1, L} as {L} and I will refer to history

{ht−1,H} as {H}.
At ht−1, the payoff from playing σ̂ = H is

α
1 − βT+1−(t−1)

1− β
E [θ|{H}]− κβT+1−(t−1)

{
Var (θ|{L}) + [E (θ|{H})− E (θ|{L})]2

}
.

The payoff from playing σ̂ = L is

α
1− βT+1−(t−1)

1− β
E [θ| {L}]− κβT+1−(t−1) [Pr (σ̂t = H|L)Var (θ|{LH}) + Pr (σ̂t = L|L)Var (θ|{LL})] .

(41)

Let ∆1 ≡ E (θ|H)− E (θ|L) and ∆2 ≡ E [θ| {LH}]− E [θ| {LL}]. By the Law of Total Variance,

Var(θ|L)−Eσ̂ [Var (θ|{Lσ̂})] = Varσ̂ [E (θ|{Lσ̂})] .

Using the definition of variance, we obtain

Varσ̂ [E (θ| {L, σ̂}) |L] = Pr (σ̂ = H|L) [E (θ| {LH})− (E (θ| {LL}) + Pr (σ̂ = H|L)∆2)]
2

+Pr (σ̂ = L|L) [E (θ| {LL})− (E (θ| {LL}) + Pr (σ̂ = H|L)∆2)]
2

= Pr (σ̂ = H|L) Pr (σ̂ = L|L)∆2
2.

Hence,

Pr (σ̂t = H|L)Var (θ|{LH})+Pr (σ̂t = L|L)Var (θ|{LL}) = Var (θ|L)−Pr (σ̂ = H|L) Pr (σ̂ = L|L)∆2
2.

(42)
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Substituting (42) in equation (41), we can write the payoff from playing σ̂ = L as

α
1− βT+2−t

1− β
E [θ| {L}]− κβT+2−t

[
Var (θ| {L})− Pr (σ̂ = H| {L}) Pr (σ̂ = L| {L})∆2

2

]
.

Since, the equilibrium prescribed playing σ̂ = L with positive probability at history ht−1, the payoff

from playing σ̂ = H cannot exceed the payoff from playing σ̂ = L:

α
1− βT+2−t

1− β
∆1 ≤ κβT+2−t

{
∆2

1 + Pr (σ̂ = H| {L}) Pr (σ̂ = L| {L})∆2
2

}
. (43)

Note that, by the law of iterated expectations,

E [θ| {L}] = Pr (σ̂ = H|L)E [θ| {LH}] + Pr (σ̂ = L|L)E [θ| {LL}] ,

which can be rearranged as

Pr (σ̂ = L|L) {E [θ| {LH}]− E [θ| {LL}]} = E [θ| {LH}]− E [θ| {L}] < E [θ| {H}]− E [θ| {L}] .

Thus,

[E [θ| {LH}]− E [θ| {LL}]] < E [θ| {H}]− E [θ| {L}]
Pr(σ̂ = L| {L}) =

∆1

Pr(σ̂ = L| {L}) .

Moreover, 1−βT+2−t

1−β > 1 + β, and βT+2−t < β2. Substituting back in (43), we obtain the following

necessary condition for an equilibrium:

α (1 + β) ≤ κβ2

[
1 +

Pr (σ̂ = H| {L})
Pr(σ̂ = L| {L})

]
∆1.

Recall also that

Pr (σ̂t = H|L) = Pr (σt = H|L) + Pr (σt = L|L)λ
(
ht
)
< 1,

Pr (σ̂t = L|L) = Pr (σt = L|L)
[
1− λ

(
ht
)]

> θ
[
1− λ

(
ht
)]

.

Thus, the following condition is necessary for an equilibrium:

α (1 + β) ≤ κβ2

(
1 +

1

θ [1− λ (ht)]

)
∆1. (44)

As in Case 2, there are two possibilities depending on whether λ
(
ht
)

is or is not uniformly bounded

away from one. Suppose that there exists a constant K < 1 such that, for any number of signals T ∈ N,

λ(ht) ≤ K in any history ht satisfying the conditions of Case 3. Then, (44) yields

α

κβ2

1 + β

1 + 1
θ(1−K)

≤ ∆1,

which is a uniform bound on ∆1 ≡ E (θ|H)− E (θ|L).
Suppose, in order to obtain a contradiction, that no bound on ∆1 ≡ E (θ|H) − E (θ|L) holds
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uniformly across all histories ht−1 satisfying the conditions on Case 3 for all number of signals T ∈ N.

Then, for any ǫ > 0, there exists a game (parameterized by T ), and a history ht−1 satisfying the

conditions of Case 3 such that

E
[
θ|
{
ht−1H

}]
−E

[
θ|
{
ht−1L

}]
< ǫ.

Taking ǫ = 1
N , we can construct a sequence {∆1N }N∈N such that

∆1N = E
[
θ|
{
ht−1
N H

}]
− E

[
θ|
{
ht−1
N L

}]
<

1

N

for a Case-3 history ht−1
N on the equilibrium path.

Since ∆1N > 0 for all N , by the Squeeze Theorem, {∆1N }N∈N must converge to zero. By inequality

(38), this requires
{
λ(ht−1

N )
}
N∈N converges to zero. Recall that, from inequality (44), the following

condition is necessary for an equilibrium:

α (1 + β)∆1 ≤ κβ2
{
∆2

1 + Pr
(
σ̂ = L|

{
htN
})

∆2
2

}
. (45)

Notice that Pr (σ̂t = L|L) = Pr (σt = L|L)
[
1− λ

(
ht
)]

< θ̄
[
1− λ

(
ht
)]

converges to zero as λ
(
ht
)

approaches 1. Then, since ∆2
2 is bounded, condition (45) implies that there exists N̄ such that N > N̄

implies
α (1 + β)

κβ2
≤ ∆1N ,

which contradicts the fact that {∆1N }N∈N converges to zero. Thus, there exists a uniform bound on

∆1 that holds across all Case-3 histories in any equilibrium and for any number of signals T .

Proceeding by backward induction establishes that there is a uniform bound on the distance in means

E[θ|
{
ht−s,H

}
]− E[θ|

{
ht−s, L

}
] for all histories s periods away from the last informative period.
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