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Abstract

Building on a Condorcetian common-value framework, this paper tackles the question

of optimal committee formation within a �nite community. Solving for the Bayesian

information-aggregation game yields some interesting normative results that emphasize

the presence of informational externalities as root causes of suboptimally low voluntary

participation levels in communal decision-making and the Pareto-enhancing nature of a

draft as compared to voluntary participation. I �rst derive the optimal size of a committee

based on the assumption of informative voting, then I show that it is globally optimal

within the class of all voting rules, and subsequently compare it to the various symmetric

equilibria that may arise in a complete information setting or a Bayesian environment

with heterogeneous private costs. I �nally sketch out an optimal transfer scheme that may

ex ante implement the socially e¢ cient committee size.

1 Introduction

Following the Aristotelean designation of man as a political animal, participation in the public

sphere irrespective of the structure of political authority has been regarded as a normative
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desideratum. The Ancient Greeks coined the word �idiot�to refer in a derogatory fashion to

one who manifests a �agrant lack of interest in public a¤airs and chooses to ensconce oneself

in the private domain. Yet, the a¤airs of state, whether legislative, executive, or judicial,

have almost always - bar few exceptions of direct democracy - been in the hands of the few.

Even in the modern world, where an increasingly interdependent and uncertain environment

of fragmented information and political factionalization has exacerbated the complexity of

social, political, and economic organization, the norm is decision-making by committee. From

national legislatures, courts, and executive cabinets down to corporate boards of directors

and school boards, the quintessential tasks of creating rules, passing judgment, and solving

problems are delegated to a subgroup of o¢ cials of any given community. The method of

selection of who becomes a member of any committee is often dependent on the nature of its

mandate, i.e., whether it primarily consists of the generation or the allocation of value across

its constituents.

This paper examines the ideas of optimal participation and optimal voting institutions in

political decision-making processes. How inclusive and/ or representative do these processes

need to be in order to maximize social welfare? By the same token, how widespread and/ or

institutionalized should the deliberation process be? The widely accepted tenet that universal

participation in a decision-making process is e¢ cient has come under dubious light of late.

The most recent strand of the voting literature has brought attention to the social welfare

costs of voting and deliberation thus arriving at the conclusion that minimal abstention is

not desirable because of the trade-o¤ between process inclusiveness and cost e¤ectiveness.

In light of the above, this paper theorizes about optimal participation levels albeit within

the context of a certain class of problems, namely issues of common value. The latter mostly

belong to more technocratic areas of �low politics�, where the emphasis is on e¢ ciency rather

than redistribution, problem-solving rather than bargaining. I, hence, propose a model of
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information aggregation rather than preference aggregation and thus build on the results

of the Condorcetian literature on juries (McLennan, 1998; Duggan and Martinelli, 2001).

To that e¤ect, I use throughout an analogous juridical terminology (comparing common-

value decision-making problems to the trial of a defendant) without the express intention of

delimiting the scope of the model to the wider class of such institutions. In other words,

the terms �jury�and �committee�are used interchangeably denoting a �nite group of people

deciding over an issue over which everyone would be of the same mind given full information.

Furthermore, I adopt a mechanism design approach to complement the welfare analysis

with a parsimonious attempt at institutional design. Extending this theoretical framework to

a wider and more generic class of problems can help compare and contrast the implementabil-

ity and e¢ ciency of a variety of decision-making mechanisms (which span the spectrum of

systems of political organization across regions and time). I seek to address such questions as

when should a population faced with a decision of collective repercussions under conditions

of uncertainty delegate decision-making authority to an elected subgroup of representatives

(legislature), concede exclusive decision-making prerogatives to a cabinet (executive), or just

vote by referendum (direct democracy)?1 Or, - counterfactually speaking -, when, if ever,

would it be optimal to elect jurors and randomly draft legislators from a population? The

application of tools and concepts from the �eld of information economics has come to bear

very insightful results on similar questions of optimal design with respect to juridical (e.g.,

Coughlan, 2000; ?), partisan (e.g., Caillaud and Tirole, 1999, 2002), and deliberative (e.g.,

Meirowitz, 2006) institutions.

This set of theoretical concerns may be tackled within the context of this general family of

political economy models that have come to rely upon the fascinating results of the mechanism

design literature in economics. I essentially make use of the widely acclaimed results of the

1Here I do not wish to allude to issues of committee specialization or information delegation.
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literatures on information aggregation (see Austen-Smith and Banks, 1996; Feddersen and

Pesendorfer, 1996, 1997, 1998), voter abstention (see Palfrey and Rosenthal, 1983, 1985),

deliberation (Austen-Smith and Feddersen, 2005; Hafer and Landa, 2007; Meirowitz, 2007;

?), and mechanism design (e.g., Ledyard and Palfrey, 2002; ?; ?), in order to build a model

of optimal committee design (namely with respect to its size and voting rule). My approach

is related to that of Bulkley, Myles and Pearson (2001), Ghosal and Lockwood (2003), and

Persico (2004).

In a closely related model, Persico (2004) analyzes a game of optimal committee design

with costly (hence endogenous) information acquisition. Theorizing from the angle of a

mechanism designer, he examines the incentives of individual jurors to acquire a noisy signal

about the state of the world, wherefrom he derives the optimal number of jurors to be drafted

as well as the optimal aggregation rules to be utilized. Based on the standard assumption

of monotone pure strategies, Persico�s main result is a necessary condition that links the

optimal voting rule to the quality of available information by placing a lower bound on the

range of signal accuracy that can justify the optimal voting rule. As will be done in this

paper, he also makes use of the optimal aggregation rule (or statistical rule as the author

calls it) in Austen-Smith and Banks (1996). Recent papers by ? and ? characterize the

full set of optimal mechanisms for eliciting and aggregating information and show that in

an environment of committee decision-making with costly information acquisition ex ante

optimal voting schemes are not necessarily ex post e¢ cient (i.e., from a statistical point of

view) information aggregation mechanisms.

By contrast, the emphasis of this paper is on the public goods nature of communal decision-

making in a common values environment and its resulting ine¢ ciencies. I �rst derive the

solution to the social planner�s dual optimization problem with respect to jury size and voting

rule and then contrast it to equilibria of a similar game with voluntary participation. My
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results emphasize the presence of informational externalities as root causes of suboptimally

low voluntary participation levels in communal decision-making and the Pareto-enhancing

nature of a draft as compared to voluntary participation.2 A further di¤erence between my

model and some of the above papers on optimal mechanism design with costly information

acquisition is that this is one of exogenous information, whereby agents decide whether to

participate after observing a costless signal of the state of the world. Last but not least,

Persico (2004) among others disregards the social costs of voting and deliberating (which are

proportional to the size of the committee) because he assumes an in�nite pool of potential

committee members, whilst this paper examines a similar question from the point of view of

a �nite community of size N . As a result of its �nite nature, the model yields interesting

normative implications linking community size to optimal decision making mechanisms. That

being said, it is certainly the case that the results of the two models (Persico�s and mine)

converge asymptotically.

I initially sketch out the decision-making environment and basic assumptions of the model

and derive the necessary optimization conditions for optimal jury design in subsection 2.1.

Given that there are two policy instruments at hand, namely jury size and voting rule, I

show how to make this dual optimization problem more analytically tractable. Moreover,

in subsection 2.2 I examine the comparative static and asymptotic properties of the model.

Subsection 2.3 solves for the equilibria of the voluntary participation game with known costs

and section 3 extends the core framework into a Bayesian environment with independent

and identically distributed private costs and therefrom derives the symmetric Bayesian Nash

equilibrium of the game. Subsection 3.1 delves into the mechanism design aspect of the model

by gauging the social e¢ ciency of the Bayesian equilibrium and showing how a mechanism

designer (or else an external benefactor) may induce a stylized community of size N to vol-

2 I manage to show that by comparing optimal committee size with equilibrium participation levels.
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untarily achieve the e¢ cient solution to its institutional design problem. The �nal section

concludes by discussing some extensions to the model and stressing the similarity of the ques-

tion at hand to the underprovision of public goods, since it turns out that the suboptimally

low participation levels of the Bayesian game are accounted for by the presence of positive

informational externalities that are ostensibly absent from the individual calculus of agents.

The appendix contains the proofs not included in the text.

2 The Basic Model

Initially, I lay down the basic framework of the model and then comment on the expected

results and implications. Assume a community with population of �nite size N > 0 (agents

i = 1; : : : ; N) confronting a binary common value problem that uniformly a¤ects all its

members, e.g., bringing justice upon an accused defendant in a trial. First, nature assigns

preferences and brings about an unknown state of the world I (innocence) with prior proba-

bility � 2 [:5; 1) or G (guilt) with prior 1� �. Then, each agent i of the population receives

a private independent and identically distributed signal si 2 fi; gg about the unknown state

of the world with signal accuracy or informativeness p = Pr(si = ijI) = Pr(si = gjG),

where p 2 (:5; 1]. Subsequently, the community drafts an ad hoc jury of size n and each

jury member votes either to convict (C) or acquit (A) based on his/ her private informa-

tion, the voting rule, and the size of the jury. Individual utilities u or ui�s3 are de�ned over

states and outcomes and are normalized such that u(A; I) = u(C;G) = 0, u(C; I) = �q, and

u(A;G) = �(1 � q), where q 2 [0; 1]. So q and 1 � q are the utility costs associated with

convicting the innocent (Type I error) and acquitting the guilty (Type II error) respectively.

Moreover, let us assume constant positive costs of participation and deliberation within a

3Henceforth the subscript i will be dropped, since I assume no heterogeneity in preference intensities q and
the model is ex ante symmetric with respect to agents.
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jury (committee), which can be construed as individual opportunity costs ci = c > 0 (akin

to voting costs in abstention models). Supposing that innocence is the status quo (hence the

dictum �innocent until proven guilty�), a defendant is convicted as long as k(n) or more of the

jury members vote to convict (k-rule).4 Finally, let �i : fi; gg ! [0; 1] denote an individual

voting strategy mapping private signals into the probability of voting to convict.

2.1 Optimal Jury Size

The mechanism designer�s primary goal is to �nd the optimal number of jurors such that

expected social welfare is maximized. Hence, one has to derive the optimal social welfare-

maximizing size of the jury of size n 2 f0; 1; : : : ; Ng such that

n� = argmax
n2f0;1;:::;Ng

EW (�; �)

= argmax
n2f0;1;:::;Ng

fN [�q�Pr (Error I;n; k (n))� (1� q) (1� �) Pr (Error II;n; k (n))]� cng ,

(1)

where the objective function EW (�; �) is the expected social welfare function, c is the constant

individual participation cost, Pr (Error I;n; k (n)) = Pr (CjI;n; k (n)) and Pr (Error II;n; k (n)) =

Pr (AjG;n; k (n)) are the respective probabilities of an ex post wrong decision for given jury

size n and voting rule k (n).

The latter probabilities obviously depend on the k-rule (see Feddersen and Pesendorfer,

1998) and according to the Condorcet Jury Theorem5 are also all else equal positively related

to jury size (i.e., the size of the vector of i.i.d. private signals). Given the discreteness of

this optimization problem and the multiplicity of plausible Nash equilibrium voting strategies

4The trivial cases of k (n) = 0; n + 1 imply a voting rule of always convicting and always acquitting
respectively, regardless of committee members�signals.

5See, for example, Ladha (1992) for a discussion and formal proof of the theorem.
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associated with various voting rules (Feddersen and Pesendorfer, 1998), globally optimizing

over both n and k(n) will be shown to be relatively simple on the basis of existing results in the

literature. Hence, both for the sake of tractability and for reasons of economic e¢ ciency, the

scope of the model is restricted to symmetric equilibria of weakly undominated, informative

voting strategies,6 where each juror �votes his signal�.

De�nition 1 A voting strategy is purely informative in the above game if and only if �(i) = 0

and �(g) = 1, i.e., one votes one�s signal with certainty.

Lemma 1 (Lemma 2 in Austen-Smith and Banks, 1996) For (q; �; p) 2 [0; 1]� [:5; 1)�(:5; 1]

and for a given integer n such that 0 � n � N , informative voting in this model is rational

(i.e., a Nash equilibrium voting pro�le) if and only if the aggregation rule is such that k(n) =

k�(n).

Lemma 2 in Austen-Smith and Banks (1996) shows that in a similar environment infor-

mative voting is rational, that is sincere voting constitutes a Nash equilibrium pro�le, if and

only if the k-rule is the optimal aggregation rule k�(n). Assuming that k(n) denotes the

number of g signals among n jurors, i.e., k (n) = # fsi : si = g;8i 2 ng, then for informative

voting to be rational k�(n) must be such that it is optimal to vote your signal given that your

vote is pivotal and everyone else has voted informatively, i.e., there are k�(n)�1 guilty signals

out of n � 1. As the above authors show formally, integer k� (n), where 0 � k�(n) � n,7 is

the critical number of signals such that it is rational (i.e., a best-response strategy) to vote

6These fall under the general class of weakly undominated, responsive, and symmetric strategy pro�les.
Feddersen and Pesendorfer (1998, p. 26) use the term �responsive�in reference to strategy pro�les �in which
jurors change their vote as a function of their private information with positive probability.�

7The de�nition of a k-rule also implies that, for all n = 0; 1; : : : ; N , k�(n) = 0 denotes an optimal voting
rule of always convicting and k�(n) = n+1 denotes an optimal voting rule of always acquitting. See footnote
below for an assumption that rules out such trivial cases.
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to convict based on a guilty signal and a pivotal vote, i.e.,

E [ui (C; �) jpiv; si = g] � E [ui (A; �) jpiv; si = g]

�qPr (Ijk (n) = k�) � � (1� q) Pr (Gjk(n) = k�)

and to acquit based on an innocent signal given that your vote is pivotal, i.e.,

E [ui (A; �) jpiv; si = i] � E [ui (C; �) jpiv; si = i]

�(1� q) Pr (Gjk (n) = k� � 1) � �qPr (Ijk(n) = k� � 1) .

Hence k�(n) is implicitly de�ned by the following weak inequality:

�
p

1� p

�2[k�(n)�1]�n
� �

1� �
q

1� q �
�

p

1� p

�2k�(n)�n
(2)

The above de�ned voting rule8 is optimal in the sense that it induces the truthful reve-

lation of signals, thus producing unanimously approved decisions given full information and

fully updated posteriors. It is also e¢ cient in the Bayesian hypothesis-testing sense, insofar

as it minimizes posterior expected utility losses assuming a similar Bayesian loss function.

Moreover, using the de�nition of k�(n) by Persico (2004), which he calls the statistical rule,

i.e.,

k� (n) = argmax
n2f0;1;:::;Ng

[�q�Pr (Error I;n; k (n))� (1� q) (1� �) Pr (Error II;n; k (n))] ,

it is straightforward to argue that given informative voting the optimal aggregation rule

minimizes the weighted sum of errors that forms the �rst part of the expected social welfare

8 In order to make k�(n) well-de�ned and to rule out trivial cases, one may assume that parameters (p; q; �)
are such that E [u (A; �) jk (n) = 0] � E [u (C; �) jk (n) = 0] and E [u (C; �) jk (n) = n] � E [u (A; �) jk (n) = n],
so that jurors may not always want to convict or acquit respectively.
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function in equation 1. One last crucial property of the k�(�) function proven by Persico

(2004) in lemma 1 is that k�(n+2) = k�(n)+1, assuming k�(n) 6= 0; n+1. Essentially, k�(�)

behaves as a step function that increases by 1 as n increases by 2.9

Lemma 2 (Lemma 1 in Persico, 2004) Suppose k�(n) 6= 0; n + 1 for some n = 0; 1; : : : ; N .

Then, k�(n+ 2) = k�(n) + 1.

In light of the above de�nitions and assumptions of informative voting strategies, it is

straightforward to calculate the two error probabilities by means of the binomial formula,

i.e.,

Pr (Error I;n; k� (n)) = Pr (CjI;n; k� (n)) =
nX

j=k�(n)

�
n

j

�
(1� p)j pn�j (3)

and

Pr (Error II;n; k� (n)) = Pr (AjG;n; k� (n)) = 1�
nX

j=k�(n)

�
n

j

�
pj (1� p)n�j . (4)

Hence, substituting in from equations 3 and 4 above, optimal jury size (equation 1) becomes

n� = argmax
0�n�N

8<:N
24�q� nX

j=k�(n)

�
n

j

�
(1� p)j pn�j � (1� q) (1� �)

0@1� nX
j=k�(n)

�
n

j

�
pj (1� p)n�j

1A35� cn
9=;

(5)

In essence, a social planner should increase the number of informative signals canvassed

until the expected cost of added information exceeds the marginal social gains in the expected

reduction of false convictions and acquittals. In its core, this is a theoretical question of

optimal sample selection driven by the tension between the size-related transaction costs of

deliberation and the positive statistical e¤ects of wider representation.

In light of the discrete nature of the optimization problem, the analysis proceeds by

deriving a set of necessary conditions for n� rather than a closed-form solution. First, let us

9Moreover, one can show that k�(n)
n

�!
n!1

1
2
, i.e., simple majority voting is optimal in the limit.

10



de�ne the marginal social bene�t of adding one extra juror as

MB (n; k� (n)) = Nf � q� [Pr (Error I;n; k� (n))� Pr (Error I;n� 1; k� (n� 1))]

� (1� q) (1� �) [Pr (Error II;n; k� (n))� Pr (Error II;n� 1; k� (n� 1))] g

= Nf � q�

24 nX
j=k�(n)

�
n

j

�
(1� p)j pn�j �

n�1X
j=k�(n�1)

�
n� 1
j

�
(1� p)j pn�1�j

35
� (1� q) (1� �)

24 n�1X
j=k�(n�1)

�
n� 1
j

�
pj (1� p)n�1�j �

nX
j=k�(n)

�
n

j

�
pj (1� p)n�j

35 g.
(6)

It should be noted that the marginal changes in error probabilities from adding one extra

juror are not monotonically decreasing because of the shape of the k�(�) step function. When-

ever k�(n) = k�(n � 1), the Type I error probability generally goes up (or stay the same),

while the Type II error probability generally goes down, since only the upper bound of the

summation increases (see equations 3 and 4). Intuitively, this happens because the same

number of guilty signals needs to be canvassed by a larger pool of jurors. On the other hand,

whenever k�(n) = k�(n � 1) + 1, the Type I error probability generally decreases (or stays

the same) and the Type II error probability generally increases, since adding an extra juror

with an unchanged voting threshold increases the probability of conviction given informative

voting and decreases the probability of acquittal. The opposite is the case when the expanded

jury has to abide by a higher voting rule. The general trend of these error probabilities is

decreasing as n increases with the exception of some extreme parameter con�gurations.
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Following the above analysis, the local optimization condition boils down to

EW (n�; k� (n�)) � EW (n� + 1; k� (n� + 1))

, AMB (n� + 1; k� (n� + 1)) � c

N

and

EW (n�; k� (n�)) � EW (n� � 1; k� (n� � 1))

, AMB (n�; k� (n�)) � c

N
> 0,

where AMB (n; k� (n)) = MB(n;k�(n))
N , which jointly imply the following necessary condition

(local maximum)

AMB (n�; k� (n�)) � c

N
� AMB (n� + 1; k� (n� + 1)) . (7)

Because of the step-like property of Type I and II errors, the average marginal social bene�t

function AMB (�; �) will generally have multiple local maxima, one of which will correspond

to the globally optimizing committee design (n�; k� (n�)). All local maxima will either occur

only at size levels n where the voting threshold remains the same as in n�1 or only at points

where there is a jump in k� (n). This would imply that there may not exist local optima at

consecutive size levels n and n + 1. Whether local optima and, by consequence, the global

optimum occur at a point where the optimal voting rule remains the same or increases will

depend on the relative intensity of the opposite shifts in Type I and II errors leading up to n

as determined by the parameter con�guration (q; �; p). Extreme values of the individual cost

of participation c relative to the total community population N can generate some interesting

cases. High enough cost values may lead to no committee formation (n� = 0) depending on
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the parameter con�guration (q; �; p), in which case the defendant is either convicted when

k� (0) = 0 or acquitted when k� (0) = 1. On the other hand, extremely low values of c

may possibly suggest direct democracy (n� = N) as an optimal decision-making mechanism,

where universal participation is deemed socially optimal.10

The binomial formulae and the step-like k�(�) function give rise to an average marginal

social bene�t function consisting of two branches of discrete points corresponding to the cases

where k� (�) either increases or stays the same as n increases by one. One branch is always

above the other in the sense that local optima may only located on the upper branch, which is

represented by the sequence fAMB (n0 + 2k; k� (n0 + 2k))g ; k = 0; 1; 2; : : : (n0 denoting the

minimum jury size such that AMB (n0; k� (n0)) > 0). This implies that for all local optimaen 2 f0; 1; : : : ; Ng either k�(en) = k�(en�1) or k�(en) = k�(en�1)+1. The range of the function
almost always consists of non-negative numbers except for extreme cases of extremely high

or low values of signal accuracy p 2 (:5; 1]. Its concavity is ambiguous within the relevant

domain f0; 1; : : : ; Ng, since it is hard to disentangle the two opposing e¤ects of an increase

in committee size on the two types of errors. Asymptotically, AMB (n; k� (n)) �!
n!1

0, i.e.,

both branches converge to the x-axis.11 Graph 1 below depicts AMB (�; �), c
N , and n

� for

di¤erent parameter con�gurations of (q; �; p), where N = 100 and c = 0:1. The average

social marginal bene�t mappings always separate into two branches depending on the optimal

voting rule k� (�). The optimal jury size n� is depicted in the graph by a large dot and its

corresponding AMB (n�; k� (n�)) by a dashed line. The horizontal lines parallel to the x-axis

represent the average marginal social cost lines c
N .

10 In fact, some extreme parameter con�guration, where p is close to 1, � > 1
2
, and q < 1

2
, give rise to the

paradoxical situation of n� (N) < N even for c = 0. That may occur because of the shape of the Error I
and II functions and the fact that the average social marginal bene�t function may turn out negative for
committee sizes n close to the community size N .
11To prove this assertion, we need the fact mentioned in the footnote on page 9 that k�(n)

n
�!
n!1

1
2
. Then,

combined with the assumption that p 2 ( 1
2
; 1], the Law of Large Numbers and the Condorcet Jury Theorem

imply that Pr (Error I;n; k� (n)) �!
n!1

0 and Pr (Error II;n; k� (n)) �!
n!1

0, which in turn proves our claim.
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Figure 1: Average social marginal bene�t mappings
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Ultimately, globally optimal n� is determined by the average marginal social cost line

c
N . Since it must be a local maximum as well, it must lie on the upper branch of the

AMB (�; �) function. Assuming is strictly positive, it must be at a point where (i) the upper

branch approaches c
N from above, (ii) it is a local optimum satisfying condition 7, and (iii)

maximizes expected social welfare among all such points that satisfy necessary conditions

(i) and (ii). Let n�+ denote such a strictly positive jury size that satis�es these conditions.

Then, n� = argmax
n2f0;n�+g

EW (�; �). In light of the discrete nature of this optimization problem,

the solution will be generically unique.

At this point it seems pertinent to discuss the global optimality of the (n�; k�(n�)) solution

to the dual mechanism design problem of optimal committee size and voting rule. Having

restricted the attention to informative voting equilibria in this �nite environment bounded

by the size N of the community, the question arises whether the existence of responsive or

non-responsive, monotonic or non-monotonic, mixed-strategy voting equilibria à la Fedder-

sen and Pesendorfer (1998) would nullify the global social optimality of the above solution.

Clearly, (n�; k�(n�)) is a local optimum, since as shown above n� is optimal given k�(�) and

by de�nition k�(n�) is the optimal aggregation rule for any given jury size. It turns out that

it is also a global optimum by dint of the powerful properties of the optimal voting rule.

Claim 1 Social expected welfare of a community of size N is globally maximized at (n�; k�(n�)).

The intuition behind this claim becomes clear by looking at the problem from the angle of

the mechanism designer or social planner, whose basic task is to induce perfect information

aggregation at a minimal cost for the community. Remember that k�(�) is the only aggregation

rule that will induce the rational full revelation of jurors�private information. As argued

above and in Persico (2004), the statistical rule k� (n) entails the ex ante minimization of the

weighted sum of errors (or else the maximization of the social bene�t part of the expected

welfare function in equation 1). Hence, in anticipation of this full revelation of signals,
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the mechanism designer will choose the optimal jury size n� so as to balance the ex ante

information aggregation bene�ts (which are bounded above zero for any �nite n) with the

social costs of jury draft. Given the de�nition of n� and k� (�), the solution (n�; k�(n�)) is then

the global social optimum among local social optima (en; k�(en)) (see �gure 2 where bold dots
denote local social optima and the circled dot denotes the global social optimum). Allowing

for alternative responsive, non-monotonic, and/or asymmetric equilibria would certainly not

enhance the information aggregation component of expected social welfare. Thus, it would

only be possible to increase social welfare by cutting back on jury size. However, following

Feddersen and Pesendorfer�s (1998) derivation of the error probabilities of non-unanimous

voting rules, the positive e¤ect of economizing on voting costs by curtailing jury size is

dominated by the loss in information aggregation precision.

2.2 Comparative Statics

One can now perform some exercises in comparative statics by determining the e¤ects of

parameter changes on optimal jury size. The following proposition summarizes the results:

Proposition 1 Optimal jury size is ceteris paribus (i) generally weakly increasing up to some

p1, constant for any p 2 [p1; p2], where p1 < p2, and weakly decreasing for p 2 (p2; 1], (ii)

unambiguously weakly decreasing with respect to the voting cost c, and (iii) unambiguously

weakly increasing in community size N . Changes in parameters � and q have an ambiguous

e¤ect on n�.

First, let us consider the e¤ects of an increase in signal accuracy p. Initially, the insu¢ cient

accuracy of extremely low values of p does not justify the participation costs of forming

any kind of committee; instead, the community is content to rely on its prior information.

Subsequently, increasing values of p raise the average marginal social bene�t of participation in

relation to the average marginal social cost so that n� becomes positive and weakly increasing
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Figure 2: Locally and globally optimal combinations of committee size and voting rule
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up to some p1, at which point it plateaus at its maximum value up to p2. For increasingly

high values of p > p2, the AMB (�; �) function becomes convex and convergent to zero (see

cases with p = 0:7 in �gure 1), so that the information gain relative to the participation

cost justi�es only weakly decreasing optimal committee sizes. The intuition is quite simple:

for increasing levels of signal informativeness (or in other words expertise), one need canvass

fewer and more accurate signals in order to achieve the socially optimal level of errors. Some

spikes that may appear to contradict the general pattern of the relationship between n�

and p are due to threshold e¤ects caused by jumps in the optimal voting rule function

k� (�). Figure 3 below illustrates the relationship through some numerical examples with

N = 100; c = 0:1; q 2 f0:1; 0:5; 0:9g, and � 2 f0:6; 0:8g. With the exception of some upward

and downward spikes due to the discontinuities of the voting rule, the general pattern is one

of single-peakedness.

Figure 3: Relationship between signal accuracy p and optimal committee size n�

The e¤ect of parameters � and q follows the same pattern within the overlapping parameter

range of [12 ; 1), since they enter symmetrically into both the average marginal social bene�t

and optimal voting rule functions. Even though an unambiguous general pattern may not
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be established, given the threshold e¤ects of discontinuous changes in k� (�), it appears that

there is a weakly decreasing trend in their e¤ect on the optimal size of a committee. One

can intuitively argue that the more certain and valuable is the innocence of the defendant,

the smaller the socially optimal size of a jury designated to adjudicate the case. In light of

strong informational and preference biases, the community becomes less willing to expend

political resources in search of the correct decision. Correspondingly, for values of q 2 [0; 12),

the relatively higher utility loss associated with an erroneous acquittal generally give rise to

a weakly increasing trend in the relationship between q and n�.

Finally, an exogenous decrease in c or an increase in N may only increase optimal jury

size n�. For any c > c0 > 0 or N 0 > N > 0, the average marginal social cost lines c0

N or c
N 0

shift downwards in a parallel fashion, thus rendering n� (c;N) suboptimal and accordingly

increasing optimal jury size to n�+2k for some positive integer k. To prove this, let n� (N) =

n�, which implies that for all n0 < n�,

EW (n�; k� (n�) ;N) > EW
�
n0; k�

�
n0
�
;N
�

EW (0; k� (0) ;N) +
n�X
n=1

MB (n; k� (n) ;N)� n�c > EW (0; k� (0) ;N) +
n0X
n=1

MB (n; k� (n) ;N)� n0c

N
n�X

n=n0+1

AMB (n; k� (n)) >
�
n� � n0

�
c.

Since this will continue to hold for any N 0 > N , then n� (N 0) � n� (N), i.e., optimal com-

mittee size is weakly increasing in community size N (and by the same argument weakly

decreasing in c).

In examining the asymptotic properties of the model, I �nd that n� converges asymptoti-

cally to a �nite limit. This is certainly quite plausible; for very large communities the overall

bene�ts of better information aggregation and accuracy of verdict that come with increases in
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committee size would eventually peter out relative to the constant technology drafting costs

c. In that sense, there is an upper bound on n� and the asymptotic ratio lim
N!1

n�(N)
N equals

zero since in the limit the linear social costs of voting will dwarf the plateauing social ben-

e�ts of increased participation.12 Clearly, by the Law of Large Numbers and the Condorcet

Jury Theorem, a growing sample of signals canvassed from a large number of people will

almost surely reveal the true state of the world, thus eliminating the utility costs associated

with wrong decisions. Hence, it is asymptotically ine¢ cient to increase jury size in direct

proportion to the overall size of the community, which leads us to the following proposition:

Proposition 2 For all q 2 [0; 1], � 2
�
1
2 ; 1
�
, and p 2

�
1
2 ; 1
�
such that k�(�) is well-de�ned,

then n� (N) �!
N!1

nl < 1, i.e., optimal jury size converges to a �nite upper bound as the

actual size of the community grows in�nitely.

Proof. See appendix.

One interesting implication of the above analysis is that smaller communities or com-

munities with higher costs of drafting or voting (for example, because of higher mobility

costs, bureaucratic frills, and/or poor levels of institutionalization) are all else equal more

likely to be optimally governed by more �oligarchic�and concentrated decision-making insti-

tutions. This result has a paradoxical �avor to it and runs counter to the Aristotelean or even

Rousseauean normative tenet that smaller countries are better suited for direct democracy,

whereas larger countries should be autocratically governed.

2.3 Nash Implementability

What if instead of a draft the mechanism designer allowed for voluntary participation in

communal decision-making, namely through self-selection into a jury? Would the members of
12Taking national legislative bodies as proxies for decision-making committees, then the commonplace ob-

servation that the size of legislatures falls way short of direct proportionality with a country�s population size
would con�rm the above intuition.
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the community rationally achieve optimal levels of participation? To answer these questions,

the rest of the paper examines how the expected level of Nash participation compares to the

optimal jury size level n� for a �xed voting rule k�(�).

The �rst step is to solve the two-stage game where N members of a community initially

decide whether to participate in a jury for a given cost c and subsequently how to vote

based on their privately received information. The defendant is then convicted as long as

k�(n) or more of the voluntary jury members vote to convict and is acquitted otherwise. I,

therefore, implicitly assume that the mechanism designer can make a credible commitment

to enforcing the optimal voting rule upon observing participation decisions. This remains a

common values game with utilities as speci�ed above. The set-up of the game is typical of

voting games of abstention with positive voting costs, yet also highlights the public goods

nature of informed communal decision-making. It turns out that public participation in

communal decision-making fora is socially suboptimal because citizens fail to internalize the

social bene�ts of their individual participation.

Let the participation strategy denoted by �(�) be a function of individual participation

costs c. The analysis will focus on symmetric equilibria, whereby individual signals do not

a¤ect participation decisions.13 E¤ectively, the emphasis is on making the right decision

irrespective of the relative costs of di¤erent types of errors. Pure strategy Nash equilibria will

typically not exist as is the case in the voter abstention literature (see for example Palfrey and

Rosenthal, 1983, 1985) except under special circumstances (e.g., when no jury formation is

optimal, then (��i = 0)i=1;:::;N is a Nash equilibrium strategy pro�le). The existence, however,

of a symmetric mixed strategy Nash equilibrium is guaranteed by �xed-point theorems.

In order to derive equilibrium participation in this game,14 we need to determine the ex

13Supposing that agents only receive their private information upon committing to participate or not, the
emphasis on symmetric equilibria appears natural. Accordingly neither type of information (either in favor of
guilt or innocence) will induce any of the players to renege upon their commitment.
14The analysis is an extension of the approach in Ghosal and Lockwood (2003) and Börgers (2004).
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ante expected marginal gain of participation B(�) for agent i, given that everyone expects an

informative voting equilibrium in the voting endgame. Let � denote the ex ante probability

of participation by all members of the population. Then

B (�) =
N�1X
n=0

m (n; �) Pr (piv;n) b (n)

=
N�1X
n=0

�
N � 1
n

�
�n (1� �)N�1�n

�
n

k� (n+ 1)� 1

�
(Pr (g))k

�(n+1)�1 (Pr (i))n�k
�(n+1)+1 b (n) ;

(8)

where m(n; �) denotes the probability that n out of all agents other than i choose to par-

ticipate given symmetric participation probability � and Pr (piv;n) denotes the probability

that i�s vote would be pivotal, given that n other jurors have chosen to participate (i.e.,

that he/she would be pivotal in a jury of size n + 1). Pr (g) is the ex ante unconditional

probability that j 6= i receives a guilty signal and is equal to �(1 � p) + (1 � �)p. Same for

Pr (i) = �p+(1��)(1�p). Lastly, b(n) denotes the ex ante marginal gain from participation

given that i is pivotal in a jury of size n+ 1.

Since in a fully informative voting equilibrium it is a best response for i to vote his

or her signal if pivotal (from equation 2 and the de�nition of k�), then it follows that for
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k�(n+ 1) = k�(n),

bb (n) = �qPr (g) Pr (Ijk (n+ 1) = k� (n+ 1))� (1� q) Pr (i) Pr (Gjk (n+ 1) = k� (n+ 1)� 1)
+ (1� q) Pr (Gjk (n) = k� (n)� 1)

= �qPr (g)
�
�

n+1
k�(n+1)

�
(1� p)k

�(n+1) pn+1�k
�(n+1)�

n+1
k�(n+1)

�
(Pr (g))k

�(n+1) (Pr (i))n+1�k
�(n+1)

� (1� q) Pr (i)
(1� �)

�
n+1

k�(n+1)

�
pk

�(n+1)�1 (1� p)n+2�k
�(n+1)�

n+1
k�(n+1)

�
(Pr (g))k

�(n+1)�1 (Pr (i))n+2�k
�(n+1)

+ (1� q)
(1� �)

�
n

k�(n+1)�1
�
pk

�(n+1)�1 (1� p)n+1�k
�(n+1)�

n
k�(n+1)�1

�
(Pr (g))k

�(n+1)�1 (Pr (i))n+1�k
�(n+1)

= : : : =
[p (1� p)]k

�(n)
h
(1� q) (1� �) (1� p)n+1�2k

�(n) � q�pn+1�2k�(n)
i

[� (1� p) + (1� �) p]k�(n)�1 [�p+ (1� �) (1� p)]n+1�k�(n)
, (9)

while similarly for k�(n+ 1) = k�(n) + 1,

eb (n) = �qPr (g) Pr (Ijk (n+ 1) = k� (n+ 1))� (1� q) Pr (i) Pr (Gjk (n+ 1) = k� (n+ 1)� 1)
+ qPr (Ijk (n) = k� (n))

= : : : =
[p (1� p)]k

�(n)
h
q�pn+1�2k

�(n) � (1� q) (1� �) (1� p)n+1�2k
�(n)

i
[� (1� p) + (1� �) p]k�(n) [�p+ (1� �) (1� p)]n�k�(n)

. (10)

The only di¤erence between the above two expressions is what happens when i decides

not to participate. In the �rst case (equation 9) the defendant will be acquitted by a jury of

size n (since the number of convicting votes would be one short of the threshold) and in the

second case (equation 10) the defendant will be convicted by a jury of the same size (since the

voting threshold would decrease by one). Note that both expressions turn out to be weakly

positive given the implicit de�nition of k�(�) in inequality 2.

23



Hence, B(�) becomes

B (�) =
N�1X
n=0

m (n; �) Pr (piv;n)
h
1 (k� (n+ 1) = k� (n))bb (n) + 1 (k� (n+ 1) = k� (n) + 1)eb (n)i

=
N�1X
n=0

�
N � 1
n

�
�n (1� �)N�1�n [p (1� p)]k

�(n)
�

n

k� (n)� 1 (k� (n+ 1) = k� (n))

�
�
���(1� q) (1� �) (1� p)n+1�2k�(n) � q�pn+1�2k�(n)��� , (11)

where 1(�) is the indicator function of two exhaustive and mutually exclusive events. Ob-

viously the fact that B(�) is a binomial expansion weighted by a sequence of positive and

increasing factors makes it non-monotonic, therefore not amenable to the uniqueness of a

�xed point.

The mixed-strategy Nash equilibrium occurs at B(��) = c, i.e., when the symmetric mixed

participation strategy of all j 6= i makes i ex ante indi¤erent between participating in the jury

or not. Pure strategies � 2 f0; 1g may still arise in equilibrium as corner solutions whenever

c is too high or too low. Moreover multiple low- and high- participation equilibria are possi-

ble because of the non-monotonicity of the ex ante expected marginal gain of participation

function B(�).15

The next step in the analysis would be to compare the expected jury size E[n] = ��N

under the above mixed strategy equilibria and the optimal jury size n� derived from the

previous section. The following proposition states the results:

Proposition 3 For all q 2 [0; 1], � 2
�
1
2 ; 1
�
, and p 2

�
1
2 ; 1
�
such that k�(�) is well-de�ned,

the maximal element of the symmetric mixed strategy equilibrium set max �� is lower or equal

to the socially optimal level � opt = n�

N , i.e., voluntary participation in communal decision-

15One of course cannot exclude the existence of asymmetric equilibria, whereby each player conditions his/
her participation strategy on his/her interim information type and, thus, uses Bayesian updating to determine
the probability of being pivotal.
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making in an environment with common values will be suboptimally low.

Proof. First, de�ne � opt such that � optN = n� and assume only interior equilibrium mixed

strategies �� 2 (0; 1). It only needs to be proven that for each �� it is ex ante weakly Pareto-

improving to increase � and, hence, raise expected participation levels ��N up to n�. This

would imply that max �� � � opt = n�

N .

The symmetric ex ante unconditional (on the signal si) utility of a citizen i with common

interior participation probability � is

U (�) = (1� �)ua (�) + � (up (�)� c) , (12)

where ua (�) is the ex ante unconditional utility of abstention

ua (�) =

N�1X
n=0

�
N � 1
n

�
�n (1� �)N�1�n

�

24�q� nX
j=k�(n)

�
n

j

�
(1� p)j pn�j � (1� q) (1� �)

0@1� nX
j=k�(n)

�
n

j

�
pj (1� p)n�j

1A35 (13)

and up (�) is the ex ante unconditional utility of participation

up (�) =
N�1X
n=0

�
N � 1
n

�
�n (1� �)N�1�n

�

24�q� n+1X
j=k�(n+1)

�
n+ 1

j

�
(1� p)j pn+1�j � (1� q) (1� �)

0@1� n+1X
j=k�(n+1)

�
n+ 1

j

�
pj (1� p)n+1�j

1A35 .
(14)

Note that both these unconditional utilities are positively increasing in � , i.e., u0a (�) > 0

and u0p (�) > 0, since they are both summations of converging negative terms weighted by a

binomial expansion. As such, an increase in � leads to the �rst-order stochastic dominance
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of the binomial expansion with parameters � 0 (> �) and N � 1.16

Finally, let us take the �rst derivative of U(�) in equation 12 substituting in for equilibrium

values of � :

U 0 (��) = (1� ��)u0a (�) + ��u0p (��) + up (��)� ua (��)� c

= (1� ��)u0a (�) + ��u0p (��) +B (��)� c

= (1� ��)u0a (��) + ��u0p (��) � 0.

The last step follows from the above equilibrium condition B(��) = c. Hence, for each

equilibrium participation probability �� it is weakly Pareto-improving to raise it. Since

this applies to the maximal element of the equilibrium set of symmetric mixed strategies,

then max �� � � opt = n�(N)
N . Note that if degenerate pure strategy equilibria exist, i.e., if

�� 2 f0; 1g, then it can be shown that n� = 0 or N respectively, so that the proposition holds

for boundary equilibria as well. Q.E.D.

Since it has been demonstrated that the equilibrium probability of participation is bounded

above by n�(N)
N and the asymptotics of that limit have been characterized in proposition 2,

then it can be shown that symmetric mixed strategy equilibria converge to zero participation

probabilities. This result runs parallel to the �ndings of Palfrey and Rosenthal (1985) in their

analysis of asymptotic voting turnout equilibria under full information.

Moreover, as N becomes large and � decreases asymptotically, the binomial expression

in B(�) can be approximated by the Poisson distribution (for large N and low �), i.e.,
N�1P
n=0

�
N�1
n

�
�n (1� �)N�1�n �

1P
n=0

e�(N�1)� [(N�1)� ]n
n! . In fact, Myerson (1998a,b) shows that

the Poisson distribution would be exact if and only if the size of the community were a

Poisson random variable with mean N . He further makes use of an approximation for-

mula for pivot probabilities to show that the low-turnout equilibrium solution in Palfrey and

16See for example proposition 3 in Ghosal and Lockwood (2003).
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Rosenthal (1985) is unique in the limit. An appropriate modi�cation of large game Poisson

formulae for non-majoritarian voting rules would arguably prove uniqueness of the generic

low-participation asymptotic equilibrium in this setting too.

3 Bayesian Environment

This section extends the basic framework of the model into a Bayesian environment with

heterogeneous private costs. Let nature assign private participation costs ci distributed ac-

cording to a regular distribution function F [c; c], where F 0 (�) > 0 within the support [c; c]

(full support assumption). Thus, each agent i�s private type is de�ned by (ci; si). The game

structure is as follows: �rst, nature determines the unknown state of the world I or G and

also assigns private types (ci; si) to each citizen i in the community N . Then, the agents

decide whether to become jurors or not. Finally, jurors vote either to convict or acquit based

on their private signals and the optimal voting rule k�(n).

One can now solve for the symmetric Bayesian equilibrium of this two-stage voting game

based once again on the simplifying assumption of informative voting, i.e., �(i) = 0 and

�(g) = 1, in the �nal voting stage, which given k�(n) constitutes a Nash equilibrium in that

subgame. Let � : [c; c]! [0; 1] denote the symmetric participation strategy in the �rst stage

of the game. It follows in a similar fashion to the above analysis that citizen i will decide

to participate in the decision-making process if and only if Bi(�) � ci, otherwise he/she

will decide to abstain. What follows is a proof of the existence of a symmetric Bayesian

equilibrium in this generalized setting:17

Proposition 4 There exists at least one symmetric Bayesian equilibrium de�ned by an equi-

librium cuto¤ c� whereby ��(ci) = 1 if and only if ci < c�, otherwise ��(ci) = 0. If there

17See proposition 1 in Ghosal and Lockwood (2003) for an existence proof in the case of majority voting.
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exists a �xed point such that B(F (c�)) = c�, then c� is a symmetric equilibrium cuto¤ point.

If B(1) � c, then c is an equilibrium cuto¤. If for all n 2 f0; 1; : : : ; Ng,

[p (1� p)]k
�(n)

�
n

k� (n+ 1)� 1

� ���q�pn+1�2k�(n) � (1� q) (1� �) (1� p)n+1�2k�(n)��� � c,
then c is the unique equilibrium cuto¤.

A symmetric Bayesian equilibrium occurs when all i�s have the same participation strategy

��. One can de�ne an equilibrium cuto¤ point such that the ex ante equilibrium probability

of participation � equals F (c�). The continuity of B � F within the support [c; c] guarantees

the existence of an equilibrium cuto¤ either as a �xed point B(F (c�)) = c� or as a boundary

point of the support function. Note that the non-monotonicity of the B � F function allows

for multiple equilibria.18 Moreover, if the expected marginal gain from participation for a

given number of other jury participants never goes above the lower cost bound c, then no

one will ever choose to participate in communal decision-making in such an equilibrium and

c becomes the unique equilibrium cuto¤ point.

It must be noted that the focus has been restricted to the general class of symmetric

Bayesian Nash equilibria assuming informative voting in the endgame. Obviously, allowing for

weakly dominated strategies in the voting game gives rise to a number of other uninteresting

and non-focal equilibria (for example where all vote to convict or acquit regardless of their

signals) that alter the strategic calculus of participation.

3.1 Social E¢ ciency and Mechanism Design

Based on the analysis in subsection 2.1 one can now derive the socially optimal cuto¤point copt

for the above Bayesian set-up. Let c : [c; c]! f0; 1g denote any monotonic cuto¤ mechanism
18Börgers (2004) proves uniqueness of the symmetric Bayesian equilibrium in the case of private values.
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such that � i = 1 , ci < c and � i = 0 , ci � c, i.e., citizens are drafted for jury (or not)

depending on whether their reported cost types are above (or below) a certain threshold

value. A social planner will want to implement such a mechanism that maximizes ex ante

social welfare, that is before learning about realized individual costs. The ex ante e¢ cient

and incentive-compatible mechanism in this case is any optimal solution to the following

optimization problem:

copt = argmax
c2[c;c]

NX
n=0

�
N

n

�
[F (c)]n [1� F (c)]N�n

NX
i=1

ui (n; c (�))

= argmax
c2[c;c]

NX
n=0

�
N

n

�
[F (c)]n [1� F (c)]N�n

�

8<:N [�q�Pr (Error I;n; k� (n))� (1� q) (1� �) Pr (Error II;n; k� (n))]� n
cZ
c

cidF (ci)

9=; .
(15)

It should be noted that the above optimal mechanism places equal weight to all members

of the community as a re�ection of the �veil of ignorance�symmetry of the game. That being

said, copt (�) does not exhaust the full set of ex ante e¢ cient mechanisms.19

It has, thus, been shown that copt is the ex ante socially optimal cuto¤ point in the

Bayesian game from the perspective of the entire community. However, the ex ante e¢ cient

mechanism of political participation is not implementable by the Bayesian Nash equilibrium

of the game. To validate this claim, it would su¢ ce to show that max c� � copt.

Proposition 5 For all q 2 [0; 1], � 2
�
1
2 ; 1
�
, and p 2

�
1
2 ; 1
�
such that k�(�) is well-de�ned,

the maximal symmetric equilibrium max c� is lower or equal to the socially optimal cuto¤

point copt.
19Moreover, as noted in Myerson (1997), the set of ex ante e¢ cient mechanisms will be a subset of interim

e¢ cient mechanisms (i.e., for realized private cost types), which in turn are a subset of ex post e¢ cient
mechanisms (i.e., given full information about cost types).
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Proof. For interior equilibrium cuto¤ points c� 2 (c; c) I only need to prove that for each

c� it is ex ante Pareto-improving to increase the cuto¤ cost level and, thus, raise expected

participation levels. That would imply max c� � copt. The ex ante unconditional utility of

any agent in a mechanism c (�) with interior participation probability � = F (c) is

Ui (c) =

cZ
c

Ui (c (�) jci) dF (ci)

=

cZ
c

Ui (c (�) jci) dF (ci) +
cZ
c�

Ui (c (�) jci) dF (ci)

= F (c)up (c)�
cZ
c

cidF (ci) + [1� F (c)]ua (c) , (16)

where ua (c) is the ex ante unconditional utility of abstention as in equation 13 and up (c) is

the ex ante unconditional utility of participation in such a mechanism as in equation 14. Note

that as before both these unconditional utilities are positively increasing in � , i.e., u0a (�) > 0

and u0p (�) > 0.

Now let us take the �rst derivative of ex ante utility Ui(c�) (�rst-order condition) and

compute its value for any Bayesian Nash equilibrium cuto¤ c�:

U 0i (c
�) = F (c�)u0p (c

�) + f (c�)up (c
�)� c�f (c�) + [1� F (c�)]u0a (c�)� f (c�)ua (c�)

= F (c�)u0p (c
�) + [1� F (c�)]u0a (c�) + f (c�) (up (c�)� ua (c�)� c�)

= F (c�)u0p (c
�) + [1� F (c�)]u0a (c�) > 0. (17)

The last step follows from the fact that in an interior Bayesian equilibrium B (F (c�)) = c�.

Since this will hold for all i 2 N in a symmetric equilibrium, then it follows that any interior

equilibrium cuto¤ c� 2 (c; c) will be ex ante Pareto ine¢ cient and an increase in the cuto¤
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point is locally Pareto-improving in all such equilibria.

To complete the proof, we need to examine boundary cuto¤ equilibria c and c and show

that if c� = c then copt = c and if c� = fcg then copt � c. In the �rst case, the derivative

function from equation 17 becomes U 0i (c) = u
0
p (c) + f (c

�) (up (c�)� ua (c�)� c�) > 0, since

B (1) � c; hence, any strategically equivalent copt � c will constitute an ex ante Pareto

e¢ cient cuto¤ mechanism. In the second case where c is the unique equilibrium cuto¤, de-

pending on the magnitude of B (0)�c it may be that copt > c, otherwise it is trivially assumed

that copt = c (since all monotonic cuto¤ mechanisms c � c are strategically equivalent for a

given support of cost types [c; c]). Q.E.D.

In order to induce optimally higher participation, the mechanism designer (or exter-

nal benefactor) needs to subsidize participation costs within the community.20 Given that

max c� � copt, he/she will therefore set the ex ante level of the optimal unit subsidy s�

such that an agent with individual cost copt becomes just indi¤erent between participat-

ing or not, that is the incentive compatibility constraint becomes just binding.21 Hence,

s� = copt�B
�
F
�
copt

��
.22 On a related point, the existence of multiple equilibria also implies

a task of equilibrium selection for the mechanism designer. One can think of a case where

copt is indeed a Nash equilibrium, but the community has been trapped in a suboptimally low

participation equilibrium of c�sub. Under this scenario it would be advisable for the benevo-

lent dictator to forcefully coerce the community into the better equilibrium, or otherwise to

create strong focal points that will attract attention to optimal levels of participation.

20 In other words, he/ she needs to induce agents to internalize the social bene�ts of their participation,
which are N times their private bene�ts. It is in this sense that the quality of the decision-making process is
like a public good.
21A monotonic cuto¤ mechanism ec (�) in this Bayesian collective-choice problem is interim incentive com-

patible if and only if Ui (ec (�) jci) � U�i (ec (�) ; c0ijci) for all i 2 N , ci 2 [c; c], and c0i 2 [c; c]. This holds for
Bayesian Nash equilibrium cuto¤ points ec = c�, since B (F (c�)) = c�. As a result, c� (�)�s are interim and ex
post Pareto e¢ cient mechanisms, but not ex ante e¢ cient.
22Note that the assumption of an external social planner obviates the social need to balance the budget.

Hence, concerns of an implementable mechanism that balances the budget do not arise here.
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In this context, mechanism design amounts to creating incentives for an optimal increase in

participation through a uniform transfer scheme of subsidies, which explains why it appears

more conducive to take a public goods approach to mechanism design. Regardless of the

formulation of the problem, whether stochastic, heterogeneous or with complete information,

the quality of the decision (i.e., the probability of errors) is a public good in the sense that it

a¤ects everyone�s utility equally, while its cost is borne di¤erentially by jury members. Free-

riding arises in the Bayesian equilibrium because agents do not internalize the marginal social

bene�ts of participation in the decision-making process. There is a positive informational

externality that agents do not take into account once left to their own means to interact with

each other. This is why voluntary symmetric Nash equilibria are socially ine¢ cient.

4 Discussion

I have presented a simple model of optimal committee design within a small community of

�nite size. The model can be generalized into a whole class of common value problems.

Building on the theoretical framework of the seminal papers on information aggregation, I

have derived the optimal size of a jury based on the assumption of informative voting (that

helps surmount the dual optimization di¢ culty) and, subsequently, compared that to various

symmetric equilibria that may arise in a complete information setting or a Bayesian environ-

ment with heterogeneous private costs of participation. I also sketch out an optimal transfer

scheme that may implement the ex ante socially e¢ cient political participation mechanism.

One possible extension would be to assume a governing body within the community that

administers the transfer scheme, but is also expected to balance the budget. Upon intro-

ducing heterogeneity in preference intensities (types qi) one may arguably use the results of

the mechanism design literature on the optimal provision of public goods (see for example

Bergstrom, Blume and Varian, 1986; Bernheim, 1986; Bliss and Nalebu¤, 1984; Groves and

32



Ledyard, 1977; Ledyard and Palfrey, 2002), in order to conduct an implementation analysis

of optimal committee design under a balanced-budget transfer scheme.

One other interesting extension to the model would amount to incorporating a private

values component in the utility functions and �nding the relation between the utility weight on

that component and optimal committee size. Alternatively, one could postulate the existence

of partisans or biased jurors, who derive private utility gains from either solution to the binary

problem regardless of their information about the state of the world, thus unveiling a larger set

of political participation mechanisms.23 This extended version of the model would certainly

have something of import to say on the comparison between the selection mechanisms of juries

and legislatures. It could provide a rationale for the use of di¤erent selection mechanisms

in these two branches of state authority, which basically di¤er in the relative weights of the

common value and private value components of their respective collective choice domains (the

former predominates in the judiciary and the latter in the legislature). What if juries were

elected and legislators randomly drawn from a pool of citizens (see for example Bergstrom

and Varian, 1984)?

Last but not least, the above framework may be enriched in order to study notions of jury

bias or representativeness by allowing for di¤erent priors or a correlation between individual

costs and signal informativeness. What is essentially a �jury of one�s peers�? What kinds

of mechanisms minimize the bias against the defendant and maximize social welfare at the

same time? These are questions whose study falls within the scope of an extended theoretical

framework.
23See ? for a jury model with preference diversity among jurors and ? for a model of committee size with

preference heterogeneity and costly participation.
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Appendix

Proof of Proposition 2. We need to show that lim
N!1

n� (N) = n� < 1, or else that

the monotonically increasing sequence fn� (N)g ; N = 0; 1; 2; : : : has a �nite upper bound.

One of the properties of this sequence is that the absolute di¤erence between any two of its

elements is an even number. Let us look at a related sequence
�
Nn0+2l

	
, where l = 0; 1; 2; : : :,

n0 = min fn� (N) : n� (N) > 0g, and Nn0+2l = min fN : n� (N) = n0 + 2lg. This sequence

lists the consecutive minimum population sizes required to raise the optimal jury size by 2.

The proof proceeds by showing that the limit of this sequence is in�nite. Fix some in-

�nitesimal " > 0 and some �nite positive integer l" such that nl" = n0 + 2l" > n", where

n" is such that for all n > n", jAMB (n; k� (n))j < " (y) (making use of the fact that the

AMB (�; �) function converges to zero). Now pick some l0 = l" + j for any j = 1; 2; : : :.

Then Nn0+2l0 = min fN 0 : n� (N 0) = n0 + 2l0g and it necessarily has to be the case that

EW (nl0 ; k
� (nl0) ;N

0) > EW
�
nl" ; k

�
�
nl"

�
;N 0

�
, N 0

nl"+2jP
n=nl"

AMB (n; k� (n)) > 2jc. From

(y) above it must also be that 2j"N 0 > N 0
nl"+2jP
n=nl"

AMB (n; k� (n)) > 2jc. But for this inequal-

ity "N 0 > c > 0 to hold for "! 0, it must be that N 0 !1, and, therefore, Nn0+2l"
�!
"!0

1.

This in turn implies that the original sequence fn� (N)g converges to some limit point nl. By

theorem 3.13 in Rudin (1976, p. 55), a monotonically increasing sequence converges if and

only if it is bounded by above, hence fn� (N)g has a �nite upper bound. Q.E.D.
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