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The epistemology of special majority voting: 

Why the proportion is special only in special conditions 
 

It is known that, in Condorcet’s classical jury model, the proportion of jurors supporting a decision is not a 

significant indicator of that decision’s reliability: the probability that a particular majority decision is correct given 

the majority size depends only on the absolute margin between the majority and the minority, and is invariant under 

changes of the proportion in the majority if the absolute margin is held fixed. Here I show that, if juror competence 

depends on the jury size, the proportion may become significant: there are then conditions in which the probability 

that a given majority decision is correct depends only on the proportion of jurors supporting that decision, and is 

invariant under changes of the jury size. The proportion is significant in this way if and only if juror competence is a 

particular decreasing function of the jury size. Yet the required condition on juror competence is not only highly 

special – thereby casting doubt on the significance of the proportion in realistic conditions – but it also undermines 

the Condorcet jury theorem. If the proportion is significant, then the jury theorem fails to hold; and if the jury 

theorem holds, then the proportion is not significant. I discuss the implications of these results for defining and 

justifying special majority voting from the perspective of an epistemic account of voting. 

 
1 Introduction 

 
Special majority voting is often used in binary decisions where a positive decision is weightier 

than a negative one. Under special majority voting, standardly defined, a positive decision is 

made if and only if a proportion of q or more of the votes support that decision, where q is a fixed 

parameter greater than 1/2, e.g. 2/3 or 5/6. In jury decisions, special majorities of at least 10 out 

of 12 jurors are often required for a ‘guilty’ verdict. Constitutional amendments in the United 

States become valid “when ratified by the Legislatures of three fourths of the several States” (US 

Constitution, Article V). To change Germany’s Basic Law, 2/3 majorities in both chambers of 

parliament, Bundestag and Bundesrat, are required. Rousseau advocated the use of special 

majority voting in important decisions (Weirich 1986):  

 
“[T]he more the deliberations are important and serious, the more the opinion that carries should 

approach unanimity.” (Rousseau, The Social Contract, bk. 4, ch. 2, cited in Weirich 1986) 

 
“Between the veto [i.e. unanimity] [...] and plurality [...] there are various propositions for which 

one can determine the preponderance of opinions according to the importance of the issue. For 

example, when it concerns legislation, one can demand at least three-fourths of the votes, two-

thirds for matters of State, a simple plurality for elections and other affairs of the moment. This is 

only an example to explicate my idea and not a proportion that I recommend.” (Rousseau, 

Considerations on the Government of Poland, ch. 9, cited in Weirich 1986) 
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There are at least two different reasons for using special majority voting (on epistemic and 

procedural accounts of voting, see Cohen 1986, Dahl 1979, Coleman and Ferejohn 1986, Estlund 

1993, 1997, List and Goodin 2001). Which of these applies to a given decision problem depends, 

among other things, on whether or not there exists an independent fact on what the correct 

decision is. In jury decisions, there typically exists such a fact, as it is either true or false that the 

defendant has committed the crime in question. If false positives (convicting the innocent or 

making a ‘bad’ constitutional amendment) are considered worse than false negatives (acquitting 

the guilty or failing to make a ‘good’ constitutional amendment), then the intuition for using 

special majority voting is as follows. The proportion of voters supporting a particular decision 

seems a good indicator of the decision’s reliability, and so special majority voting reduces the 

probability of a false positive decision, perhaps at the expense of increasing the probability of a 

false negative decision. Call such reasons for using special majority voting epistemic ones. 

 
In other decision problems, there may not exist an independent standard of correctness. Different 

political values may lead to different judgments on the desirability of some constitutional 

amendment, and no judgment may be independently ‘correct’. The justifiability of a decision may 

here depend on whether it has been reached through a procedure with certain attractive properties. 

A reason for using special majority voting might be that it protects minorities: requiring a 

proportion of at least q for a positive decision where q > ½ means giving veto power to any 

minority greater than 1-q. Call such reasons for using special majority voting non-epistemic ones. 

 
In this paper, I reassess our epistemic reasons for using special majority voting. My aim is to 

make a contribution to the intersection between social choice theory and Bayesian epistemology. 

I tentatively use Condorcet’s classical model of jury decisions (e.g. Grofman, Owen and Feld 

1983). That model confirms the intuition that requiring more than a simple majority for a positive 

decision reduces the probability of false positives.1 But does it also confirm the intuition that the 

proportion of voters supporting a particular decision is a good indicator of that decision’s 

reliability? Some important technical papers address special majority voting from a Condorcetian 

perspective (e.g. Nitzan and Paroush 1984, Ben-Yashar and Nitzan 1997, Fey 2003), but the 

question of when the proportion is significant in Bayesian epistemological terms has not been 
                                                           
1 This intuition is not uncontested. Feddersen and Pesendorfer (1998) have constructed an alternative model of jury 
decisions (where jurors vote strategically) in which unanimity rule (i.e. special majority rule with q = 1) leads to 
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explored. Weirich (1986), in a philosophical paper, suggests that Rousseau advocated 

‘proportional’ majority voting partly for epistemic reasons, and partly for reasons of political 

stability. While Weirich questions whether voters will always vote with the general interest in 

mind, he does not seem to question the epistemic significance of the proportion, in cases where 

Condorcet’s jury model applies. So is the proportion an epistemically significant indicator? 

 
If the group size is fixed, a decision supported by a larger proportion is certainly more likely to be 

correct than one supported by a smaller proportion (other things being equal). A decision 

supported by 10 out of 12 jurors (5/6) is more likely to be correct than one supported by only 8 

out of 12 (2/3). But what if the group size is not fixed? Is a 5/6 majority among 24 jurors as likely 

to be correct as a 5/6 majority among only 12 jurors, other things being equal? And what about a 

5/6 majority among 12 jurors as compared with a narrow 50.4% majority among 1000 jurors? 

 
As noted in the literature, Condorcet’s classical jury model has a remarkable implication for this 

question: Other things being equal, the probability that a particular majority decision is correct 

given the size of that majority is a function of the absolute margin between the number of votes in 

the majority and the number in the minority.2 The probability is invariant under changes in the 

total number of votes, provided the absolute margin remains the same. As a 5/6 majority among 

12 votes and a 50.4% majority among 1000 votes both correspond to an absolute margin of 8 

(=10-2=504-496), a 5/6 majority among 12 votes would be just as likely to be correct as a 50.4% 

majority among 1000 votes. McLean and Hewitt (1994, p. 37) summarize this point as follows: 

 
“What matters is the absolute size of the majority, not the size of the electorate, nor the proportion 

of the majority size to electorate size. If the jury theorem is applicable, we should talk about ‘a 

majority of 8’, ‘a majority of 20’, etc., not ‘a two-thirds majority’ or ‘a three-quarters majority’. 

Condorcet did so in most of his later work.” 

 

                                                                                                                                                                                            
higher probabilities of both false positives and false negatives than several less demanding majority rules, including 
simple majority rule. 
2 The result is stated formally below. To avoid a frequent misunderstanding, note that the result on the significance of 
the absolute margin concerns the (Bayesian) probability of a particular state of the world (e.g. the defendant is guilty) 
conditional on a particular voting pattern (e.g. precisely h out of n jurors have voted for ‘guilty’). The result does not 
concern the (classical) probability of a particular voting pattern conditional on a particular state of the world, where 
the order of conditionalization is reversed. Saying that the former (Bayesian) probability is invariant under changes 
of h and n that preserve the absolute margin m=h-(n-h) is not the same as saying that the latter (classical) probability 
is invariant under such changes. In fact, the latter probability depends very much on the values of n and h. See the 
discussion in section 2. 
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The significance of the absolute margin and its implications have been discussed in detail 

(McLean and Hewitt 1994; List 2003; the result is also implicitly used in Feddersen and 

Pesendorfer 1998 for computing the posterior probability that the defendant is guilty conditional 

on h out of n guilty signals). Although earlier work (List 2003) has identified some modifications 

of Condorcet’s conditions under which the absolute margin ceases to be significant, these 

conditions do not imply the significance of the proportion. I here extend this work and ask 

whether we can modify Condorcet’s conditions such that the proportion becomes significant, i.e. 

such that the probability that a particular decision is correct, given the voting pattern, becomes a 

function of the proportion of the votes supporting that decision. I show that, holding all other 

conditions of the model fixed, the proportion becomes significant in this way if and only if voter 

competence is a particular decreasing function of the jury size. I further show that, if the 

identified condition holds, then the Condorcet jury theorem does not hold, i.e. it is no longer the 

case that the probability of a correct jury verdict converges to 1 as the jury size increases. A 

corollary of the results is that, if the Condorcet jury theorem holds, then the proportion is not 

significant. Proofs of the new results in sections 3 and 4 are given in the appendix. 

 
While I am unable to assess the condition for the significance of the proportion empirically, I 

suggest that the present results are best interpreted as “if-then” results and perhaps even as results 

showing the epistemic insignificance of the proportion. The identified condition is extremely 

special: it requires not only (first) that voter competence decreases with jury size, but also 

(second) that the decrease is of a particular exponential form. Even if the first part of the 

requirement were met in realistic conditions, it would still remain unclear whether the second part 

is also met.  

 
2 The classical Condorcet jury model and the significance of the absolute margin 

 
In this section I introduce the classical Condorcet jury model, and state the result on the 

significance of the absolute margin, following List (2003).  

 
Let 1, 2, …, n denote the n jurors (n > 0). We assume that there are two states of the world, 

represented by a binary variable X taking the value 1 for ‘guilty’ and 0 for ‘not guilty’. The votes 

of the jurors are represented by the binary random variables V1, V2, …, Vn, where each Vi takes 

the value 1 for a ‘guilty’ vote and 0 for a ‘not guilty’ vote. The vote of juror i is correct if and 
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only if the value of Vi coincides with that of X. We use capital letters to denote random variables 

and small letters to denote particular values. The classical Condorcet jury model assumes: 

 
Competence (C). For all jurors i = 1, 2, …, n, Pr(Vi=1|X=1) = Pr(Vi=0|X=0) = p >½.  
 
Independence (I). For each x∈{0, 1}, V1, V2, …, Vn are independent from each other, given the 

state of the world x. 

 
As these assumptions have been extensively discussed in the literature, I will not discuss them 

here.3 But one point should be noted. By assumption (C), the competence parameter p is constant 

in two senses: the value of p is identical for all jurors i, and it does not depend on the total 

number of jurors n. 
                                n 
Given  V1, V2, …, Vn,  the  vote  of  the  jury  can  be  expressed  as V = ∑ Vi.  Under  Condorcet’s  

                       i = 1 
assumptions, the probability distribution of V conditional on X is a binomial distribution with 

parameters n and p, with the following probability function: 

                                             n 
(1) for each h = 0, 1, 2, …, n, Pr(V = h | X=1) = Pr(V = n-h | X=0) = (    ) ph(1-p)n-h. 
                                               h 
 
The definition of V allows the following interpretation: 
 
 V = h :  Precisely h out of n jurors support a ‘guilty’ verdict. 

 V > n/2 : A simple majority supports a ‘guilty’ verdict. 

 V ≥ qn : A proportion of at least q of the jurors supports a ‘guilty’ verdict. 

 2V-n ≥ m :  A majority with a margin of at least m between the majority and the  

minority supports a ‘guilty’ verdict. (Note that 2V-n = V-(n-V).) 

 
Simple and special majority voting can now be defined as follows: 
 
Simple majority voting. A positive decision (e.g. conviction) is made if and only if V > n/2.  
 
Special majority voting / proportion definition, where q > ½ (hereafter q-voting). A positive 

decision (e.g. conviction) is made if and only if V ≥ qn. 
                                                           
3 Cases where different jurors have different competence levels – i.e. where (C) does not hold – are discussed, for 
example, in Grofman, Owen and Feld (1983), Borland (1989), Kanazawa (1998). Cases where there are certain 
dependencies between different jurors’ votes – i.e. where (I) does not hold – are discussed, for example, in Ladha 
(1992) and Estlund (1994). Cases where jurors vote strategically rather than sincerely – i.e. where a juror’s vote does 
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We also consider a non-standard definition of special majority voting: 
 
Special majority voting / absolute margin definition, where m>0 (hereafter: m-voting). A 

positive decision (e.g. conviction) is made if and only if 2V-n ≥ m. 

 
We assess each of these voting rules in terms of two epistemic conditions: truth-tracking in the 

limit and no reasonable doubt, defined below. The first is a classical condition: it concerns 

probabilities that are conditional on the state of the world (on X = 1 or X = 0). The second is a 

Bayesian condition: it concerns probabilities that are conditional on a particular observation (on a 

particular voting outcome). Condorcet’s famous jury theorem concerns the first condition. Let me 

state the theorem before stating the condition.   

  
Proposition 1. (Condorcet jury theorem; Grofman, Owen and Feld 1983) Suppose (C) and (I) 

hold. Then Pr(V > n/2|X=1) (= Pr(V < n/2 | X=0)) converges to 1 as n tends to infinity. 

 
By proposition 1, if (C) and (I) hold, simple majority voting satisfies the following condition: 
 
Truth-tracking in the limit (T). 

• The probability of a positive decision conditional on X = 1 converges to 1 as n tends to 

infinity. 

• The probability of a negative decision conditional on X = 0 converges to 1 as n tends to 

infinity. 
 
Note that condition (T) concerns the (classical) probability of a certain observation (a particular 

voting outcome) conditional on the state of the world (X = 1 or X = 0). In the jury example, 

condition (T) states that, if the defendant is truly guilty, then he or she will be convicted with a 

probability approaching 1 as the jury size increases, and, likewise, if the defendant is truly 

innocent, then he or she will be acquitted with a probability approaching 1 as the jury size 

increases. 

 
Results similar to proposition 1 can be stated for q-voting and m-voting.  

                                                                                                                                                                                            
not always coincide with that juror’s private signal about the state of the world – are discussed, for example, in 
Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1998).  
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Proposition 2. (Condorcet jury theorem for q-voting; Kanazawa 1998; Fey 2003; List 2003) 

Suppose (C) and (I) hold, and q > ½.  

(i) If p < q, then Pr(V ≥ qn | X=1) converges to 0 as n tends to infinity. 

(ii) If p > q, then Pr(V ≥ qn | X=1) converges to 1 as n tends to infinity. 

Pr(V < qn | X = 0) converges to 1 as n tends to infinity. 

 
Proposition 3. (Condorcet jury theorem for m-voting; List 2003) Suppose (C) and (I) hold. For 

any m > 0, Pr(2V-n ≥ m | X=1) converges to 1 as n tends to infinity; and Pr(2V-n < m | X=0) 

converges to 1 as n tends to infinity. 

 
By propositions 2 and 3, under (C) and (I), m-voting always satisfies (T), whereas q-voting 

satisfies (T) only if juror competence satisfies p > q, a demanding condition if q is close to 1. 

 
As noted, the Condorcet jury theorem concerns the (classical) probability of a particular voting 

outcome (e.g. V>n/2) conditional on a particular state of the world (e.g. X=1). This probability is 

of interest when we ask, for example, how likely it is that there will be a majority (simple or 

special) for ‘guilty’ given that the defendant is truly guilty. We can interpret this probability as 

the conviction rate in those cases where the defendant is guilty. Similarly, we can ask how likely 

it is that there will be no majority for ‘guilty’ given that the defendant is not guilty. We can 

interpret this probability as the acquittal rate in those cases where the defendant is innocent. 

 
But suppose we wish to assess a particular jury verdict. We may then ask how likely it is that the 

defendant is truly guilty given that a majority of precisely h out of n jurors have voted for 

‘guilty’. Thus we may be interested not in the (classical) probability of a particular voting 

outcome (e.g. V>n/2) conditional on a particular state of the world (e.g. X=1), but rather in the 

(Bayesian) probability of a particular state of the world (e.g. X=1) conditional on a particular 

voting outcome (e.g. V=h). Note the reversed order of conditionalization. The result on the 

significance of the absolute margin concerns this second conditional probability. Let me state the 

result before stating our second epistemic condition. 

 
Let r = Pr(X=1) be the prior probability that the defendant is guilty, where 0 < r < 1. Condorcet 

implicitly assumed r = ½, but r might alternatively be defined to be the (low) probability that a 

randomly chosen member of the population is guilty of the crime in question.  
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Proposition 4. (Condorcet; List 2003) Suppose (C) and (I) hold, and suppose h > n/2. Then 
                r pm                              r 

Pr(X=1 | V = h) =  = ,  
      r pm + (1-r) (1-p)m      r + (1-r) (1/p - 1)m 

  
where m = 2h-n. 
 
The result can be derived from expression (1) above and Bayes’s theorem. The parameter m is the 

absolute margin between the majority (h) and the minority (n-h). By proposition 4, the probability 

that the defendant is guilty given that a majority of precisely h out of n jurors have voted for 

‘guilty’ depends only on the value of m (in addition to p and r), but not on the values of h or n by 

themselves.4 If (C) and (I) hold, m is therefore significant in the following sense: 
 
Significance of the absolute margin (M). Pr(X=1 | V = h) is invariant under changes of n and h 

that preserve m = 2h-n, where p and r are held fixed.  
 
Condition (M) means the following. Let us hold p and r fixed. If we change n and h such that m 

remains the same, then Pr(X=1 | V = h) also remains the same. Such changes of n and h can be 

achieved by substituting n* = n+2a for n and h* = h+a for h, where a is some integer satisfying 

n+a ≥ h. Below p will be a function of n rather than a constant. Then holding p fixed means using 

the same function p for different values of n. 
 
In the example given in the introduction,  

[Pr(X=1 | V = 10) where n = 12] equals [Pr(X=1 | V = 504) where n = 1000]. 

Now we are in a position to state our second epistemic condition: 
 
No reasonable doubt (D). For all h and n (0 ≤ h ≤ n), in a given situation where precisely h 

jurors have voted for x and n-h jurors against x, a positive decision is made if and only if  

(2) Pr(X=1 | V = h) ≥ c,  

where c is a fixed “no reasonable doubt” threshold satisfying 0 < c < 1 (e.g. c = 0.99).  

                                                           
4 Why should we conditionalize on V = h and not on V ≥ h (or on V ≥ n/2) when determining the degree of belief we 
assign to the hypothesis that the defendant is guilty given that a majority of h out of n jurors have voted for ‘guilty’? 
Suppose we wish to assess a particular jury verdict, where precisely h out of n jurors have voted for ‘guilty’. If we 
were to conditionalize on V ≥ h (and not on V = h, as we do) – i.e. on the disjunction φ := [V=h or V=h+1 or V=h+2 
or … or V=n] – we would fail to use the full information we have. We would use only the information that the 
disjunction φ is true, but not the additional information (which we also have) on precisely which of the disjuncts in φ 
is true, namely V = h. Even worse, by conditionalizing on V ≥ h, we would assign a greater degree of belief to the 
hypothesis that the defendant is guilty than the one we can justifiably assign to that hypothesis given our full 
information (namely V = h). It can easily be verified that, for p > ½, Pr(X=1 | V ≥ h) ≥ Pr(X=1 | V = h). 
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Note that condition (D) concerns the (Bayesian) probability of a certain state of the world (X = 1) 

conditional on a certain observation (a particular voting outcome). In the jury example, condition 

(D) is the requirement that the defendant will be convicted if and only if the degree of belief we 

can assign to the hypothesis that the defendant is truly guilty, given that we have observed a 

particular voting outcome, is at least c, where c is our threshold of “no reasonable doubt”. 
 
Using proposition 4, we can determine a necessary and sufficient condition for inequality (2). 
 
Proposition 5. (List 2003) Suppose (C) and (I) hold. Let c be a fixed threshold such that 

0 < c < 1. Then 

(i)  Pr(X=1 | V=h) > (=) c  

if and only if 
                          r-cr 

                           log() 
                          c-cr  
(ii) 2h-n > (=) m :=  . 
                    log(1/p - 1) 
 
We observe that, under (C) and (I), a voting rule satisfies (D) if and only if it is m-voting, with the 

parameters as defined in proposition 5.  
 
An absolute margin of m corresponds to a proportion of q = 1/2(m/n + 1). Changes of n and h that 

preserve m = 2h-n will change q. Likewise, changes of n and h that preserve q = h/n will change 

m. As Pr(X=1 | V = h) is an increasing function of m, it follows that, if (M) holds, the following 

condition does not hold:  
 
Significance of the proportion (P). Pr(X=1 | V = h) is invariant under changes of n and h that 

preserve q = h/n, where p and r are held fixed.5 
 
We also observe that, under (C) and (I), there exists no parameter q such that q-voting satisfies 

condition (D). The only way to avoid this result would be to define q not as a single parameter, 

but as a function of n, i.e. q(n)=1/2(m/n+1), where m is as defined in proposition 5. But then 

                                                           
5 If p is a function of n, then holding p fixed means using the same function p for different values of n. 

q(n)-voting is simply a notational variant of m-voting – and (P) still does not hold.  
 
Before continuing the technical exposition, let us briefly ask what the significance of the absolute 

margin implies from a more substantive perspective. Suppose we advocate special majority 
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voting for epistemic reasons and we accept this result. Then it seems inaccurate to define special 

majority voting in terms of a required proportion independently of the actual number of voters, or 

to speak, as Rousseau does, of a three-fourths majority “when it concerns legislation” or a two-

thirds majority “for matters of State” independently of the number of decision-makers. It seems 

inaccurate to require a 3/4 majority of the States to ratify a constitutional amendment 

independently of the actual number of States – which has increased from 13 when the US 

Constitution came into force to 50 at present. It seems inaccurate to require a 2/3 majority in the 

German Bundestag for certain laws independently of the Bundestag’s size – which has ranged 

from a minimum of 402 members in 1949 to a maximum of 672 in 1994, with 602 at present. 

Instead, it seems more accurate to state the special majority criterion in terms of a required 

margin between the majority and the minority. A 3/4 majority among 13 States corresponds to a 

margin of 5 (=9-4), and a 2/3 majority among 402 members of the Bundestag corresponds to a 

margin of 134 (=402-134). Even when the number of voters changes, we would have to hold the 

absolute margin criterion fixed, although it would then correspond to a different proportion. An 

absolute margin of 5, corresponding to a 2/3 majority among the original 13 States, corresponds 

to a 55% majority among the present 50 States.  

 
Note that all this follows only if we advocate special majority voting for epistemic reasons and 

we accept Condorcet’s classical jury model in an unmodified form. But, if we do, we must define 

special majority voting in terms of a required absolute margin.  

 
If we want to resist this conclusion and defend the standard definition of special majority voting 

in terms of the proportion, we have two alternatives. The first is to defend that definition for non-

epistemic reasons, such as the procedural ones mentioned in the introduction. The second is to 

defend a modification of the jury model in which the proportion is epistemically significant. In 

the next section I identify such a modified model, but I remain agnostic on whether that model is 

realistic. 

 
3 When is the proportion significant? 

 
In this section I show that the proportion may become significant if juror competence depends on 

the jury size. We replace condition (C) in Condorcet’s model with the following weaker 

condition: 
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Non-constant competence (NC). For all jurors i = 1, 2, …, n, Pr(Vi=1|X=1) = Pr(Vi=0|X=0) = 

p(n) >½, for some function p : {1, 2, 3, ...} → (0, 1). 

 
Condition (NC) is weaker than condition (C) in one respect: (NC), unlike (C), allows individual 

competence to depend on the total number of jurors n. But (NC) is not weaker than (C) in another 

respect: (NC), like (C), requires that, for each value of n, the corresponding value of p(n) is 

identical for all jurors i. Condition (C) is simply a special case of (NC) where p(n) is constant. 

 
We first note that, if p(n) is not constant in a relevant sense, the absolute margin ceases to be 

significant. 

 
Proposition 6. Suppose (NC) and (I) hold, and suppose that there exist n1 and n2 (either both odd 

or both even) such that p(n1) ≠ p(n2). Then (M) does not hold. 

 
But, if the absolute margin is not significant, this does not in general imply that the proportion is 

significant. However, we now identify a particular functional form for p(n) (a class of functions 

p(n) with one free parameter k) for which the proportion is significant.  

 
Proposition 7. Suppose (NC) and (I) hold, and suppose that p(n) = 1/(1+exp(-k/n)) for some 

constant k > 0. Suppose h > n/2. Then 
                                  r 
 Pr(X=1 | V = h) =   ,  

      r + (1-r) exp(k-2kq) 
  
where q = h/n. 

 
Here the probability that the defendant is guilty given that a majority of h out of n jurors have 

voted for ‘guilty’ depends only on the proportion h/n (in addition to k and r), but not on the 

values of h or n by themselves. Therefore, if (NC) and (I) hold, where p(n) = 1/(1+exp(-k/n)) for 

some k > 0, then (P) also holds, i.e. the proportion is significant.  

 
It is not only the case that the particular functional form for p(n) in proposition 7 leads to the 

significance of the proportion. It is also the only functional form with this property, as the 

following proposition shows. The proof of the proposition also illustrates how the expression p(n) 

= 1/(1+exp(-k/n)) can be derived from the conjunction of (NC), (I) and (P). 
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Proposition 8. Suppose (NC) and (I) hold. Then (P) holds if and only if p(n) = 1/(1+exp(-k/n)) for 

some constant k > 0. 

 
What are the properties of p(n)? 

• For all n, k > 0, we have ½ < p(n) < 1. 

• For a fixed k, p(n) decreases as n increases, and converges to ½ as n tends to infinity. 

• For a fixed n, p(n) increases as k increases, and converges to 1 as k tends to infinity. The 

limiting case k = 0 corresponds to p(n) = ½.  

 
Diagram 1 shows p(n) for four different values of k. The four curves correspond to k = 1 

(bottom), k = 5 (2nd from bottom), k = 10 (2nd from top) and k = 20 (top). The value of n is plotted 

on the x-axis, the value of p(n) on the y-axis. 

 

Diagram 1: p(n) for k = 1, k = 5, k = 10, k = 20 (from bottom to top curve) 

 
Having identified conditions for the significance of the proportion, we can revisit our epistemic 

condition (D), no reasonable doubt. For any threshold c (and parameters r, k), we can ask what 

proportion q is required for making our degree of belief in the guilt of the defendant greater than 

or equal to c, i.e. for Pr(X=1 | V = h) ≥ c (which is inequality (2) in (D)). 

 
Proposition 9. Let p(n) = 1/(1+exp(-k/n)) for some constant k > 0. Let c be a fixed threshold such 

that 0 < c < 1. Then 

(i)  Pr(X=1 | V=h) > (=) c  

if and only if 
                                r-cr 

                               log() 
                              c-cr  
(ii) h/n > (=) q := ½( + 1) . 
                                        -k 
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We can observe that, under (NC) and (I) and with p(n) = 1/(1+exp(-k/n)), a voting rule satisfies 

(D) if and only if it is q-voting, with the parameters as defined in proposition 9. 

 
Table 1 shows some sample calculations of q for different values of k, c and r. As explained 

below, the N/A entries correspond to the impossible requirement q > 1. To give a more intuitive 

interpretation of k, the table also shows some illustrative values of p(n) corresponding to the 

shown values of k. 
 

k  
p(1) 

 
p(12) 

 
p(24) 

 
p(100) 

c r = 0.001 r = 0.01 r = 0.3 r = 0.4 r = 0.5 r = 0.6 

0.5 N/A N/A 0.9236 0.7027 0.5 < 0.5 
0.75 N/A N/A N/A N/A N/A 0.8466 
0.99 N/A N/A N/A N/A N/A N/A 

1 0.7311 0.5208 0.5104 0.5025 

0.999 N/A N/A N/A N/A N/A N/A 
0.5 N/A 0.9595 0.5847 0.5405 0.5 < 0.5 
0.75 N/A N/A 0.6946 0.6504 0.6099 0.5693 
0.99 N/A N/A N/A N/A 0.9595 0.919 

5 0.9933 0.6027 0.5519 0.5125 

0.999 N/A N/A N/A N/A N/A N/A 
0.5 0.8453 0.7298 0.5424 0.5203 0.5 < 0.5 
0.75 0.9003 0.7847 0.5973 0.5752 0.5549 0.5347 
0.99 N/A 0.9595 0.7721 0.75 0.7298 0.7095 

10 0.9999 0.6971 0.6027 0.5250 

0.999 N/A N/A 0.8877 0.8656 0.8453 0.8251 
0.5 0.6727 0.6149 0.5212 0.5101 0.5 < 0.5 
0.75 0.7001 0.6423 0.5486 0.5376 0.5275 0.5173 
0.99 0.7875 0.7298 0.6361 0.625 0.6149 0.6047 

20 ≈1 0.8411 0.6971 0.5498 

0.999 0.8453 0.7875 0.6939 0.6828 0.6727 0.6625 
Table 1: Values of q corresponding to different values of k, r and c  

 
Proposition 9 has some natural corollaries. For these corollaries, we let p(n) = 1/(1+exp(-k/n)) for 

some k > 0. First, for any given proportion q and any “no reasonable doubt” threshold c (and any 

prior probability r), we can ask what value of the parameter k in p(n) is required to ensure that 

Pr(X=1 | V=h) ≥ c where the proportion h/n is exactly q.  
 
Corollary 9.1. Suppose ½ < q ≤ 1, and suppose 0 < c < 1. Then 
 
(i)  Pr(X=1 | V=h) > (=) c  
 
if and only if 
 
             r-cr 

             -log() 
             c-cr  
(ii) k > (=)   
                    2q - 1 
 
where q = h/n. 
 
Next, given a “no reasonable doubt” threshold c and a prior probability r, we say that the 

threshold c is implementable if there exists some proportion ½ < q ≤ 1 (possibly q = 1) such that 
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Pr(X=1 | V=h) ≥ c where h/n ≥ q, i.e. if it is possible to obtain a sufficiently large majority to 

meet the “no reasonable doubt” threshold c. If the threshold c is not implementable in a given 

situation (i.e. for a given value of k), then a decision rule satisfying (D) will never produce a 

‘guilty’ verdict as its outcome, no matter how large the majority for ‘guilty’ is. In that case, no 

majority, however large, will support a ‘guilty’ verdict beyond any reasonable doubt, where the 

requirement of “no reasonable doubt” is represented by the condition Pr(X=1 | V=h) ≥ c. 

 
Corollary 9.2. Suppose 0 < c < 1. Then the “no reasonable doubt” threshold c is implementable if 

and only if k ≥ -log(r-cr/c-cr). 

 
The N/A entries in table 1 mean that, under the given values of k and r, the threshold c is not 

implementable, i.e. a proportion q greater than 1 (which is impossible) would be required for 

Pr(X=1 | V=h) ≥ c. 

 
4 The implications of decreasing juror competence 

 
We have seen that the competence function p(n) which leads to the significance of the proportion 

decreases and converges to ½ as n tends to infinity. What are the implications of this property for 

the Condorcet jury theorem? More precisely, if the competence function p(n) has this property, 

does simple majority voting still satisfy our first epistemic condition (T), i.e. truth-tracking in the 

limit? And, more demandingly, does special majority voting satisfy condition (T)? 

 
We first note that the fact that p(n) decreases and converges to ½ by itself does not undermine the 

Condorcet jury theorem for simple majority voting. The following proposition implies that there 

exist competence functions p(n) with this property (decreasing and converging to ½ as n tends to 

infinity) for which simple majority voting still satisfies (T). 

 
Proposition 10.6 (Condorcet jury theorem with varying juror competence; see also Berend and 

Paroush 1998) Suppose (NC) and (I) hold. Suppose further that p(n) satisfies the condition  

(3)  nε(n)2 tends to infinity as n tends to infinity, 

where ε(n) := p(n)-½. Then Pr(V > n/2|X=1) (= Pr(V < n/2 | X=0)) converges to 1 as n tends to 

infinity. 
 
                                                           
6 A proof is given in the appendix. The result is a special case of a result by Berend and Paroush (1998).  
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Condition (3) states that the square of p(n)-½ tends to 0 more slowly than n tends to infinity; 

equivalently, ε(n) tends to 0 more slowly than 1/√n tends to 0. By proposition 10, if p(n) satisfies 

(3), simple majority voting satisfies (T). Examples of functions p(n) satisfying (3) are: 
            3 
 p(n) = ½ + 1/√n  

more generally: p(n) = ½ + 1/na, where 0 < a < ½. 

By contrast, p(n)=½+1/√n violates (3), as do p(n)=½+1/n and p(n)=½+1/n2. Berend and Paroush 

(1998) have shown, with some technical provisos, that (3) is not only sufficient for simple 

majority voting to satisfy (T), but also necessary. Therefore, for any p(n) violating (3), simple 

majority voting does not satisfy (T). 

 
Crucially, p(n) = 1/(1+exp(-k/n)) – the competence function which leads to the significance of the 

proportion – does not satisfy (3), regardless of the value of k. It converges to ½ too fast. As an 

illustration, diagram 2 shows 1/(1+exp(-k/n)) for k = 20 in comparison with ½+1/n0.4999, which is 

an example of a function still satisfying (3) but converging to ½ already relatively fast.7 While, 

for small values of n, 1/(1+exp(-k/n)) lies above ½+1/n0.4999, the two curves soon intersect; and, 

for larger values of n, 1/(1+exp(-k/n)) lies below ½+1/n0.4999. In essence, 1/(1+exp(-k/n)) declines 

exponentially, while ½+1/n0.4999 declines only polynomially, as n increases. 

 

 
Diagram 2: 1/(1+exp(-20/n)) (the lower one of the two curves for larger values of n) and ½ + 1/n0.4999 (the 
higher one of the two curves for larger values of n) 
 
By the Berend and Paroush result, the fact that p(n) = 1/(1+exp(-k/n)) violates (3) implies that 

neither simple majority voting nor special majority voting of any form (q-voting or m-voting) 

satisfies (T). But there is an independent way of proving that, for p(n) = 1/(1+exp(-k/n)),  

q-voting violates (T), not based on the fact that p(n) violates (3). This independent proof is given 

                                                           
7 As noted, an exponent of 0.5 in this functional form is the cut-off point for condition (3), i.e. ½ + 1/n0.5 converges 
to ½ too fast for condition (3). 
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by the next result. If p(n) decreases and converges to ½ as n tends to infinity – regardless of 

whether or not p(n) satisfies (3) – then q-voting (where q>½) violates (T): specifically, the 

probability of a positive decision conditional on X = 1 converges to 0 as n tends to infinity. 
 
Proposition 11. Suppose (NC) and (I) hold, and suppose p(n) converges to ½ as n tends to 

infinity. Then, for any q > ½, Pr(V ≥ qn | X=1) converges to 0 as n tends to infinity. 
 
Proposition 11 is illustrated by diagram 3, which shows the probability of obtaining a 2/3 

majority for a positive decision conditional on X = 1, where p(n) = 1/(1+exp(-k/n)) with k=10. 

This probability can be interpreted as the conviction rate for guilty defendants under a 2/3 

majority rule. The probability declines rapidly as n increases. For r = ½, a 2/3 majority in this 

scenario corresponds to Pr(X=1 | V=h) = 0.965555 (which is independent of n). So we have the 

following situation: If we get a 2/3 majority, we are justified in attaching a degree of belief of 

0.965555 to its correctness (e.g. to the proposition that the defendant is truly guilty). But the 

probability of obtaining such a majority in the first place (e.g. of convicting) decreases as n 

increases, even when the defendant is guilty. If real-world juror competence were indeed of the 

form p(n) = 1/(1+exp(-k/n)), then we would have to prefer smaller juries to larger ones from the 

viewpoint of maximizing the conviction rate for guilty defendants. Put differently, if juror 

competence is of this form, irrespective of the state of the world, it is highly probable that large 

juries will not reach a positive decision. 

 
Diagram 3: Probability of obtaining a special majority of at least 2/3 conditional on X=1 where p(n) = 
1/(1+exp(-k/n)) with k=10 
 
Finally, we may remark that the proof of proposition 10 can be modified to show that a sufficient 

condition for q-voting to satisfy (T) – particularly, for Pr(V ≥ qn | X=1) to converge to 1 as n 

tends to infinity – is that p(n) > q and n(p(n)-q)2 tends to infinity as n tends to infinity. This 

provides a generalization of part (ii) of proposition 2 for the case where (NC) but not (C) holds. 
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5 Conclusion 

 
Does the classical Condorcet jury model confirm the intuition that the proportion of voters 

supporting a particular decision is a good indicator of that decision’s reliability? We need to say 

what we mean by a ‘good indicator’. Following Nozick (2001), let us define a good indicator to 

be one whose informational content (e.g. what it tells us about the reliability of a decision) is 

invariant under those changes of relevant other parameters (e.g. the majority size h and the jury 

size n) that preserve the indicator itself (e.g. changes of h and n that preserve h/n). Then the 

answer is that the proportion is a good indicator only in special conditions. 

 
In Condorcet’s classical model where juror competence does not depend on the jury size, the 

absolute margin rather than the proportion is significant, in the sense that (M) but not (P) holds. 

But we have identified a modification of the model, where juror competence may depend on the 

jury size, in which the proportion may become significant. In the modified model, a necessary 

and sufficient condition for the significance of the proportion is that juror competence is a 

decreasing function of n of the form p(n) = 1/(1+exp(-k/n)) for some k > 0.  

 
This finding leaves open the question of whether there exist real-world situations in which 

individual competence has this exact functional form. If the answer to this question is positive, 

then the proportion is at least sometimes significant from an epistemic perspective. If it is 

negative, then our results suggest that the proportion has no such significance.  

 
There are at least two potentially plausible situations in which competence might be a decreasing 

function of jury size:  

 
• There is only a limited pool of competent jurors. As we add more and more jurors, we must 

accept less and less competent ones. 

• Each juror’s competence is a function of his/her effort, and that effort decreases as the jury 

size increases. This might be because (i) the juror’s marginal influence on the jury verdict 

decreases as the jury size increases, or because (ii) the juror’s visibility in the jury – relevant 

to reputation effects of the juror’s effort – decreases as the jury size increases.8  

                                                           
8 A discussion or defence of this scenario is not within the scope of this paper; nor is it this paper’s purpose. 
However, the scenario has been investigated in the literature on “rational ignorance”. See, for instance, Brennan and 
Lomasky (1993, ch. 7). Li (2001) considers collective decisions that require the costly acquisition of information by 
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The present model – where the value of p(n) may depend on n but is identical for all jurors i –

captures the second situation best. The second situation is consistent with an identical value of 

p(n) for all jurors i, while the first situation requires different competence values for different 

jurors. Specifically, the first situation requires that, in any jury (regardless of its size), the first 

juror has competence p(1), the second p(2), the ith p(i), and so on, where p is a decreasing 

function of n. The result on the significance of the proportion does not hold without identical 

competence for all jurors. 

 
But in either of the two described situations where competence might be a decreasing function of 

jury size, we would still have no reason to expect the function to be of exactly the form required 

for the significance of the proportion. 

 
Let us briefly revisit the examples given in the introduction. It is implausible that the 

‘competence of each State’ – in itself an aggregate agent represented by its Legislature – should 

depend in any systematic way on the total number of States. On the other hand, if the size of an 

assembly has certain incentive effects on the members’ effort, then perhaps the size of the 

German Bundestag does affect the competence of each member. But this is pure speculation at 

this point. Interestingly, Condorcet himself suggested that juror competence might decline as the 

jury size increases (Condorcet, cited in Waldron 1999, p. 32): 

 
“A very numerous assembly cannot be composed of very enlightened men. It is even probable that 

those comprising this assembly will on many matters combine great ignorance with many 

prejudices. Thus there will be a great number of questions on which the probability of the truth of 

each voter will be below ½. It follows that the more numerous the assembly, the more it will be 

exposed to the risk of making false decisions.” 

 
Condorcet’s suggestion points away from the significance of the absolute margin and in the right 

direction for the significance of the proportion. But again, even if his suggestion were true, it 

would be insufficient to establish the significance of the proportion, as juror competence would 
                                                                                                                                                                                            
the individual group members. Li identifies a free-riding problem that arises when a large group size (corresponding 
to a low probability that each individual is a pivotal voter) leads to insufficient effort in the required acquisition of 
information and thus to bad overall decisions. To overcome the problem, Li advocates the use of special majority 
rules that are biased against the alternative favoured by the group’s preference or prior, arguing that the use of such 
rules increases private incentives to acquire the requisite information. In a recently published paper, Karotkin and 
Paroush (2003) analyse a “quality-quantity” trade-off that results from reduced competence in larger groups, and 
determine the optimal group size in such scenarios. Interestingly, the Karotkin and Paroush model can represent 
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have to be not only a decreasing function of jury size, but also of the exact form  

p(n) = 1/(1+exp(-k/n)) for some k > 0.  

 
In short, the identified condition for the significance of the proportion might turn out to be 

empirically vacuous. 

 
So our findings might be best interpreted as “if-then” results, i.e. as results describing the 

structure of the logical space surrounding Condorcet’s model. Let us recapitulate these findings. 

 
• In the classical model, m-voting, but not q-voting, satisfies the no reasonable doubt condition 

(D), whereas, in the modified model, q-voting, but not m-voting, satisfies (D), provided that 

p(n) = 1/(1+exp(-k/n)) for some k > 0. 

• While, in the classical model, each of simple majority voting, m-voting and q-voting satisfies 

truth-tracking in the limit (T) (if p > q in the case of q-voting), this is not true in the modified 

model. Under conditions where the proportion is significant, not even simple majority voting, 

let alone q-voting or m-voting, satisfies (T): the larger the jury, the higher the acquittal rate 

for guilty defendants. This means that, when the proportion is significant, smaller juries are 

better than larger ones at tracking the truth in cases where the defendant is guilty, even when 

we require the no reasonable doubt condition (D).  

• Decreasing competence by itself will not undermine the Condorcet jury theorem for simple 

majority voting. By proposition 10, even when juror competence decreases and converges to 

½ as n increases, the jury theorem for simple majority voting may still hold, if the rate of 

decrease is sufficiently small. By contrast, decreasing competence will always undermine the 

jury theorem for q-voting, as shown in proposition 11. If competence drops below ½ “in a 

numerous assembly”, as Condorcet suggests, then clearly the jury theorem will cease to hold 

even for simple majority voting; and the proportion will not be significant either. 

 
This leads to the following logical structure. In the jury models studied in this paper, we have: 

 
• For a fixed parameter q, q-voting can satisfy at most one of (T) or (D). Which of (T) or (D), if 

any, it satisfies depends on the precise functional form of p(n).  

                                                                                                                                                                                            
heterogeneous competence levels across different jurors, and might therefore also be suitable for formalizing the first 
of the two above described situations where competence decreases with jury size. 
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� If p does not depend on n and p > q,9 then q-voting satisfies (T) but not (D).  

� If p depends on n and p(n) = 1/(1+exp(-k/n)) for some k>0, then q-voting satisfies (D) but 

not (T).  

� In all other conditions, q-voting satisfies neither (T) nor (D). 

• For a fixed parameter m, m-voting can satisfy both (T) and (D), so long as p does not depend 

on n. So (T) and (D) are consistent with each other. 

 
Therefore, if the world is such that the proportion is epistemically significant, then it cannot also 

be such that the Condorcet jury theorem holds. And, if the world is such that the Condorcet jury 

theorem holds, then it cannot also be such that the proportion is epistemically significant. In the 

latter case, if we still wish to defend the use of special majority voting defined in proportional 

terms and independently of the jury’s size, we need to defend it for reasons other than epistemic 

ones. 
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Appendix: Proofs 

 
Proof of proposition 6. Fix r such that 0 < r < 1. First define a function fm : (0, 1) → (0, 1) by 
    r   
 fm(p) :=  ,  

             r + (1-r) (1/p - 1)m         
 
where m is a fixed parameter such that m ≥ 1. Then fm is an increasing function of p. (This is easy 

to see. First note that, for p∈(0, 1), 1/p > 1, and hence 1/p-1 > 0. Next note that 1/p-1 decreases as p 

increases, and hence r+(1-r)(1/p-1)m also decreases as p increases. Therefore fm(p) increases as p 

increases.) 

 
By proposition 4, for each fixed value of n, we have  
                            r   
 Pr(X=1 | V = h)  =    where m = 2h-n 

   r + (1-r) (1/p(n) - 1)m         
 
    = fm(p(n)). 
 
Suppose that there exist n and n*, either both odd or both even, such that p(n) ≠ p(n*). Without 

loss of generality, p(n) < p(n*). Let h = m = n. As fm is an increasing function of p, 

fm(p(n)) < fm(p(n*)). But [fm(p(n)) = Pr(X=1 | V = h) where the jury size is n] and [fm(p(n*)) = 

Pr(X=1 | V = h*) where the jury size is n* and h* = h+½(n*-n)]. But the change from n and h to 

n* and h* leaves the absolute margin fixed, i.e. m = 2h-n = 2h*-n*. Hence Pr(X=1 | V = h) is not 

invariant under changes of n and h that preserve m, for the same p and r. � 

 
Proof of proposition 7. Let p(n) = 1/(1+exp(-k/n)) for some constant k > 0. Suppose h > n/2. By 

proposition 4, for each fixed value of n, we have: 
             r   

 Pr(X=1 | V = h)  =    where m = 2h-n 
      r + (1-r) (1/p(n) - 1)m         

  
         r               

   =   
     r + (1-r) (1/(1/(1+exp(-k/n))) - 1)m        
                 r 
=  
   r + (1-r) exp(-k/n)m 

 
                  r                     

   =    
    r + (1-r) exp(m(-k/n))              

 
r  

=   
      r + (1-r) exp((2h-n)(-k/n)) 
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          r       
 =     
                 r + (1-r) exp(k-2k(h/n))  

 
      r 

=     where q = h/n. � 
       r + (1-r) exp(k-2kq) 

 

Proof of proposition 8. Suppose (NC) and (I) hold. Let c, r ∈(0,1) be fixed constants. By 

proposition 5, for each fixed value of n, we have: 
                                   r-cr 

                                log() 
                            c-cr  

Pr(X=1 | V=h) = c   if and only if  2h-n = m =    
                       log(1/p(n) - 1) 

 
and, using the relationship q(n) = 1/2(m/n + 1), 
 
                                            r-cr 

                                           log() 
                                     c-cr  
i.e. Pr(X=1 | V=h) = c   if and only if  q(n) = h/n = ½( + 1).  

                                n log(1/p(n) - 1) 
 
Now (P) holds if and only if q(n) takes the same value for all values of n, i.e. if and only if q(n) is 

a constant function. Note that 

 q(n) is constant for all n if and only if  n log(1/p(n) - 1) is constant for all n 

     if and only if  n log(1/p(n) - 1) = -k  

for some constant k > 0 

(because p(n) > ½, as demanded by (NC), implies log(1/p(n) - 1) < 0) 

     if and only if p(n) = 1/(1+exp(-k/n))  

for some constant k > 0. � 

 
Proof of proposition 9. The result follows immediately from proposition 5, the relationship 

q = 1/2(m/n + 1) and the definition for p(n). � 

 
Corollaries 9.1 and 9.2 follow immediately from proposition 9. For proving corollary 9.2, simply 

set q = 1. � 

 
Proof of proposition 10. By Chebyshev’s inequality, if Y is a random variable with finite mean µ 

and finite variance σ2, then, for all κ ≥ 0, Pr(|Y-µ| ≥ κ) ≤ σ2/κ 2. I will prove that Pr(V > n/2|X=1) 

converges to 1 as n tends to infinity. The result for Pr(V < n/2 | X=0) is perfectly analogous. I will 

now conditionalize on X = 1. For each value of n and p(n), the random variable V has mean np(n) 
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and variance np(n)(1-p(n)) conditional on X = 1. For ease of notation, we write Pr*(A) for 

Pr(A|X=1), for any A. Since (NC) holds, we can write p(n)=½+ε(n) where ε(n) > 0. Put κ := 

ε(n)n. By Chebyshev’s inequality, we have: 

                     n(½+ε(n))(½-ε(n))          1 
(4) Pr*(|V-n(½+ε(n))| ≥ nε(n))  ≤   =  - 1/n .  
               (nε(n))2       4nε(n)2 
 
Suppose p(n) = ½+ε(n) satisfies condition (3), i.e. nε(n)2 tends to infinity as n tends to infinity. 

Then  

limn→∞(1/(4nε(n)2) - 1/n) = limn→∞(1/(4nε(n)2)) - limn→∞(1/n) = 0. 

By the inequality (4), Pr*(|V-n(½+ε(n))| ≥ nε(n)) also converges to 0 as n tends to infinity.  

Note that |V-n(½+ε(n))| ≥ nε(n) if and only if [V ≥ ½+2nε(n)] or [V ≤ ½]. Therefore  

Pr*(V ≤ ½n)  ≤  Pr*(|V-n(½+ε(n))|≥nε(n)) 

and hence Pr*(V ≤ ½n) also converges to 0 as n tends to infinity. But Pr*(V ≤ ½n)  

= 1-Pr*(V > ½n), and hence 

Pr(V > n/2|X=1) = Pr*(V > ½n) converges to 1 as n tends to infinity. � 

 
Proof of proposition 11.  

 
Lemma (Boundedness Lemma). Suppose p(n) < p*. Then  
 
           n           n  ∑ (    ) p(n)h(1-p(n))n-h < ∑ (    ) p*h(1-p*)n-h . 
           h ≥ qn    h           h ≥ qn    h 
 
Lemma (Convergence Lemma). Suppose (C) and (I) hold. Further, suppose p ∈ S, where  

S ⊆ (0, 1) is an open set. Then Pr(V/n∈S | X=1) converges to 1 as n tends to infinity. 

         n   
The first lemma follows from the fact that ∑ (    ) ph(1-p)n-h is an increasing function of p. The 

                    h ≥ qn    h        
second lemma follows from the law of large numbers.  

 
Suppose the conditions of proposition 11 hold. Let q > ½. Choose p* such that ½ < p* < q, e.g. 

p* = (½+q)/2. Since p(n) converges to ½ as n tends to infinity, there exists n* such that, for all n 

> n*, we have p(n) < p*. Let S := (0, q). Then S is an open set. Consider the framework where (C) 

and (I) hold and where the competence parameter is the constant p*. Let V* be the random 

variable representing the corresponding jury vote. Since p*∈S, we can apply the convergence 
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lemma to find that Pr(V*/n∈S | X=1) converges to 1 as n tends to infinity. By definition of S,  

Pr(V* ≥ qn | X=1) ≤ 1-Pr(V*/n∈S | X=1), and hence Pr(V* ≥ qn | X=1) converges to 0 as n tends 

to infinity. Further, for every n > n*, we have p(n) < p*. Hence, by the boundedness lemma, for 

every n > n*, 
           n           n  ∑ (    ) p(n)h(1-p(n))n-h < ∑ (    ) p*h(1-p*)n-h   
           h ≥ qn    h           h ≥ qn    h  
The left-hand side of this inequality is Pr(V ≥ qn | X=1). The right-hand side is Pr(V* ≥ qn | X=1), 

which converges to 0 as n tends to infinity. Therefore Pr(V ≥ qn | X=1) also converges to 0 as n 

tends to infinity. � 


