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Abstract

How can di¤erent individuals�probability assignments to some events

be aggregated into a collective probability assignment? Although there

are several classic results on this problem, they all assume that the

�agenda�of relevant events forms a �-algebra, an overly demanding as-

sumption for many practical applications. We drop this assumption and

explore probabilistic opinion pooling on general agendas. Our main the-

orems characterize linear pooling and neutral pooling for large classes of

agendas, with standard results as special cases.
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1 Introduction

This paper addresses the classic problem of probabilistic opinion pooling: Dif-

ferent individuals�probability assignments to some events are to be aggregated

into a collective probability assignment, while preserving probabilistic coher-

ence. Although opinion pooling has been explored in some depth by statisti-

cians, economists, and philosophers, almost all contributions so far assume that
�Although both authors are jointly responsible for this paper and project, Christian List

wishes to note that Franz Dietrich should be considered the primary author, to whom the

credit for the present mathematical proofs is due. Addresses: F. Dietrich, Department of
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C. List, Department of Government, London School of Economics.
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the set of relevant events �the agenda �forms a �-algebra. Thus the agenda

must be closed under both complement and countable union. This assump-

tion is technically motivated by the fact that the standard coherence conditions

on probability assignments, particularly �-additivity, use a �-algebra as their

domain. But in realistic applications, many events in the �-algebra, such as

arti�cial conjunctions or disjunctions, may be irrelevant. Although it may be

relevant whether it rains, and whether the interest rate goes up, the conjunc-

tion or disjunction of these events may be irrelevant. Irrelevance can mean one

of two things. On one interpretation, an event is irrelevant if the collective is

not required to specify a probability for that event. Expert committees, for

example, are hardly ever asked to provide a probability assignment to all events

in a �-algebra; rather, they are asked to specify the probabilities of a limited

set of events of interest. On another, very di¤erent interpretation, an event

is irrelevant if the conditions imposed on an opinion pooling function are not

considered compelling when applied to that event. Strong conditions such as

event-wise independence (�the collective probability of an event must depend

only on the individual probabilities of that event�) and zero-preservation (�if

all individuals assign a probability of zero to an event, the collective must also

assign a probability of zero to it�) may be plausible when restricted to some

events �perhaps those deemed �basic��but not when applied to others, such

as arti�cial conjunctions or disjunctions.

We investigate opinion pooling without assuming that the agenda forms

a �-algebra, and consider instead general agendas. The notion of an agenda

employed in this paper is borrowed from the theory of judgment aggregation

(e.g., List and Pettit 2002, Dietrich 2006, Nehring and Puppe 2007, Dokow and

Holzman forthcoming, Dietrich and List 2007). Our two main results are the

following. For a large class of agendas � so-called non-simple ones, of which

�-algebras are only a very special case �any opinion pooling function satisfying

two conditions must be linear, i.e., the collective probability of each event in

the agenda must be a weighted linear average of the individuals�probabilities

of that event, where the weights are the same for all events. Second, for an

even larger class of agendas �so-called non-nested ones, which include all non-
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simple agendas �the same two conditions lead to a neutral pooling function:

here the collective probability of each event is some function of the individu-

als�probabilities of that event, where the function is the same for all events.

Each of these results uses a logically minimal agenda condition, i.e., for agen-

das violating non-simplicity, there are counterexamples to the �rst result and,

for agendas violating non-nestedness, there are counterexamples to the second.

Thus our results are the �rst agenda-characterization results in the theory of

opinion pooling, in analogy with the recent agenda-characterization results in

the theory of judgment aggregation (Nehring and Puppe 2007, Dokow and Holz-

man forthcoming, Dietrich and List 2007). Just as it has been an important step

in the theory of judgment aggregation to characterize the class of agendas for

which certain axiomatic characterizations of dictatorships hold, so the present

results seek to address the parallel challenge in the theory of opinion pooling:

namely to characterize the class of agendas for which certain axiomatic charac-

terizations of salient opinion pooling functions hold �here, linear and neutral

ones.

The two agenda conditions in our present results are surprisingly undemand-

ing. As soon as the agenda contains two or more logically independent events,

for example, it is non-nested; and if, in addition, it contains their conjunction

or disjunction (or some other event logically connecting them), it is non-simple.

Logical independence means that any combination of truth-values across the

events is consistent. In particular, agendas consisting only of logically indepen-

dent events (and their complements) are already non-nested. Such agendas are

common in many realistic decision problems, where there are often only prob-

abilistic dependencies (i.e., correlations) between events but no logical ones, as

in the case of rainfall and an interest-rate increase. Yet these agendas are fun-

damentally di¤erent from ones forming a �-algebra. By focusing on �-algebras

alone, the standard treatments of opinion pooling have therefore been restricted

in generality as well as excluded many realistic applications.

Our results not only go signi�cantly beyond the standard results on opinion

pooling in the literature and imply them as special cases, but we also present a

new illustrative application of opinion pooling: the case of probabilistic prefer-
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ence aggregation. Here each individual submits a probability distribution over

all possible linear orderings over some alternatives, interpretable, for exam-

ple, as representing the individual�s degrees of belief about which ordering is

the �correct�one (e.g., a quality ordering of candidates). The collective must

then determine a single such probability distribution, interpretable as the cor-

responding collective degrees of belief. (Below we also suggest an alternative in-

terpretation in terms of vague preferences.) We show that our characterization

of linear pooling applies to this case when there are three or more alternatives.

As explained below, this illustrative application of our result is di¤erent from

existing results on probabilistic preference aggregation.

For the classical case in which the agenda is a �-algebra, linearity and neu-

trality are among the most widely studied properties of opinion pooling func-

tions (in the case of neutrality sometimes under names such as strong label neu-

trality or strong setwise function property). Linear pooling goes back to Stone

(1961) or even Laplace, and neutral pooling to McConway (1981) and Wagner

(1982). McConway�s classic characterization of linear pooling is a special case of

one of our results. As discussed in more detail below, the �-algebra case has the

interesting feature that every neutral pooling function is automatically linear,

so that neutrality and linearity are equivalent here, if the �-algebra contains

more than four events (McConway 1981 and Wagner 1982; see also Mongin�s

1995 linearity characterization). This peculiarity does not carry over to general

agendas: some agendas allow for neutral yet non-linear opinion pooling. The

reader is referred to Genest and Zidek�s (1986) overview article for an excellent

review of classical results on opinion pooling. For a recent computational (and

non-axiomatic) approach to the aggregation of partial probability assignments,

where individuals do not assign probabilities to all events in the underlying

�-algebra, see Osherson and Vardi (2006).

To provide a pedagocial exposition of our proofs, we sketch the structure

of two of our central proofs in the main text while presenting the underlying

technical arguments in the appendix.
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2 Model

Events and probabilities. Let 
 be a non-empty set of possible worlds (or

states) and � a �-algebra of events, i.e., subsets A � 
.1 For example, � could
be the power set of 
. The complement of any event A is denoted Ac := 
nA
and represents the negation of A. An event A is contingent if it is neither ;
(impossible) nor 
 (certain). The intersection A \ B and union A [ B of two

events A and B represent their conjunction and disjunction, respectively. A

set of events S is consistent if the intersection of the events in S is non-empty

(i.e., \A2SA 6= ;), and inconsistent otherwise; S entails another event B if that
intersection is included in B (i.e., \A2SA � B). A probability measure over �
is a function P : �! [0; 1], with the standard properties (i.e., �-additivity and

P (
) = 1). Let P be the set of all probability measures over �.

Opinion pooling functions. Consider a group of n � 2 individuals, la-

belled i = 1; :::; n. An assignment of probability measures to the n individuals,

(P1; :::; Pn), is called a pro�le. An opinion pooling function is a function F :

Pn ! P, which assigns to each pro�le (P1; :::; Pn) of individual probability mea-
sures a collective one P = F (P1; :::; Pn), in short PP1;:::;Pn. For example, PP1;:::;Pn

could be the arithmetic average 1
n
P1 + ::: +

1
n
Pn, a case of linear pooling, as

de�ned below. There are numerous other possible pooling functions, includ-

ing geometric averages (of a weighted or non-weighted kind)2 and expert rules

(where PP1;:::;Pn := Pi with a �xed or pro�le-dependent �expert�i).

Agenda and relevance. Unlike previous works on opinion pooling, we as-

sume that only some events in � are relevant. As discussed in detail below, the

relevant events can be interpreted in (at least) two ways: either as the events

for which the group actually requires probabilities, or as those for which con-

ditions imposed on the pooling function (independence, zero-perservation, etc.,

as stated below) are compelling. We call the set of relevant events the agenda,

1A �-algebra over 
 is a non-empty set of subsets of 
 that is closed under both complement

and countable union.
2Such pooling functions are de�ned on a suitable subdomain of Pn.
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in analogy to the equally named notion in the theory of judgment aggregation.

Formally, an agenda is a subset X � � which is non-empty and closed under

complement (i.e., if A 2 X then Ac 2 X). Apart from non-emptiness and

closure under complement, there are no other formal conditions on an agenda.

Crucially, we allow an agenda to contain A and B without containing A[B (or
A\B): it may be relevant whether it rains, and whether the interest rate goes
up, yet irrelevant whether it rains or the interest rate goes up. In the �classical�

case X = �, all events are treated as relevant and the conditions imposed on

pooling functions below reduce to the standard conditions in the literature.

An example of an agenda containing no conjunctions or disjunctions.

Suppose each possible world is speci�ed by a vector of three binary chacteristics.

The �rst takes the value 1 if CO2 emissions are above some critical threshold,

and 0 otherwise. The second takes the value 1 if there is a mechanism whereby

if CO2 emissions are above that threshold, then Arctic summers are ice-free,

and 0 otherwise. The third takes the value 1 if Arctic summers are ice-free,

and 0 otherwise. Thus the set of possible worlds is the set of all triples of

0s and 1s, excluding the (inconsistent) triple in which the �rst and second

characteristics are 1 and the third is 0, i.e., 
 = f0; 1g3nf(1; 1; 0)g. We can
now imagine an expert committee faced with an opinion pooling problem on

the agenda X consisting of A;A ! B;B and their complements, where A is

the event of a positive �rst characteristic, A! B the event of a positive second

characteristic,3 and B the event of a positive third characteristic. Although

there are non-trivial overlaps and even logical connections between the events

in this agenda (note that A and A! B are inconsistent with Bc), it contains no

3Here the conditional ! in A! B is interpreted as a subjunctive conditional rather than

a material one, since the only assignment of truth-values to the events A;A! B and B that

is ruled out is (1; 1; 0). If we wanted to interpret ! as a material conditional, we would have

to rule out in addition the truth-value assignments (0; 0; 1), (1; 0; 1) and (0; 0; 0). Under the

material interpretation of !, the event A! B would become Ac [B, and the agenda would
no longer be free from conjunctions or disjunctions. However, the agenda would still not be

a �-algebra, and it would retain all the other properties discussed below (non-nestedness and

non-simplicity).
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conjunctions or disjunctions and is therefore far removed from the �-algebras

to which the standard results in the literature apply. We come back to this

agenda at various points below.

Two interpretations of the agenda. (1) We may interpret the agenda as

the set of those events for which the group requires probabilities. As mentioned

in the introduction, real-world expert committees, which give advice on com-

plex factual questions, are hardly ever asked to assign explicit probabilities to

all events in a �-algebra; instead, they are usually required to come up with a

partial probability assignment PX : X ! [0; 1] which is coherent in the sense

of being extendible (though not necessarily uniquely) to a probability measure

P : � ! [0; 1]. The expert committee of our global-warming example, for in-

stance, may be asked to provide probabilities only for A;A ! B and B (and

their complements), but not for the entire underlying �-algebra. The resulting

opinion pooling problem is thus best captured by a restricted opinion pooling

function FX : (PX)n ! PX , where PX is the set of all coherent partial prob-
ability assignments PX : X ! [0; 1], in analogy with a judgment aggregation

function, which maps pro�les of individual acceptance/rejection judgments on

X into collective such judgments (List and Pettit 2002). Any opinion pooling

function F : Pn ! P satisfying independence for all events in X induces a

well-de�ned restricted counterpart FX : (PX)n ! PX .

(2) Under a second interpretation, the group is interested in probabilities of

events both inside and outside the agenda (and such probabilities must therefore

also be submitted by the individuals), but the conditions imposed on a pooling

function �such as independence and zero-preservation �are deemed compelling

only for events in the agenda. So here the agenda is de�ned by the scope

we give to those conditions. For example, a committee may be interested in

the probability of the conjunction A \ (A ! B) (e.g., for making some policy

recommendation), but it may not wish to assign a probability to this proposition

solely on the basis of the individual probability assignments to it. Rather,

the committee may �rst wish to determine its probabilities for each of A and

A ! B and then derive the probability of the conjunction via some auxiliary
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assumptions (e.g., about the probabilistic dependence or independence of the

conjuncts). Since conditions such as independence are meant to apply to A and

A ! B here but not their conjunction, the set X would be de�ned to include

the former propositions (and their complements) but not the latter.

How realistic are the two interpretations? Typically, at least one of

our two interpretations of the agenda applies. A paradigmatic class of opinion

pooling problems in which the �rst interpretation applies (and arguably also

the second) is the one in which events are speci�ed by statements in natural

language, such as �it will rain�or �the new legislation X will be rejected by the

constitutional court�. In this case, the number of events in � is often enormous

but �nite: k atomic statements lead to 2k Boolean combinations (worlds in 
), a

number that grows exponentially in k. Unless k is small, individuals in the real

world can hardly be asked to submit all 2k probabilities, and even if they can,

the group may not be interested in the probabilities of worlds that represent

arti�cial conjunctions of unrelated statements. Thus the �rst interpretation is

likely to apply here. The second interpretation may apply too. As argued in

similar contexts in the theory of judgment aggregation, it is often implausible

to form a collective belief on some conjunctive or disjunctive event solely on the

basis of individual beliefs on that event, without giving attention to individual

beliefs on, for example, the underlying conjuncts or disjuncts.

By contrast, if the problem is that of estimating the distribution of a real-

valued or vector-valued random variable, such as rainfall or the number of in-

surance claims, the collective may well require a full probability measure, and it

may also be realistic to assume that individuals can come up with a full proba-

bility measure themselves: they �rst choose some parametric class of probability

measures (e.g., that of Gaussian or Poisson or binomial ones) and then estimate

the relevant parameters (for example, there are only two such parameters in the

case of a unidimensional Gaussian distribution). Here the �rst interpretation

of the agenda clearly does not apply, but the second often does: it would seem

highly arti�cial to apply a local pooling criterion on events in � such as the set

of real numbers whose distance to the nearest prime exceeds 37, without giving

8



attention to other logically related events.4 The agenda would then include only

those events on which the application of a local pooling criterion is meaningful.

Events whose collective probability is determined in some derivative way would

lie outside the agenda.

Moreover, if all individuals hold a probability measure from the same para-

metric class (say a Gaussian one), then an opinion pooling function satisfying

independence on the entire �-algebra, such as linear pooling, does not generally

produce a collective probability measure from the same class. If we require the

opinion pooling function to preserve the original parametric class, we therefore

cannot apply conditions such as independence to the entire �-algebra. Notice

that such problems di¤er signi�cantly from opinion pooling problems involv-

ing statements in natural language: 
 is often a (typically in�nite) subset of

R or of a higher-dimensional Euclidean space Rk, rather than a (�nite) set of

maximally consistent statements over which parametric families of probability

measures are not readily available.

3 Two conditions on opinion pooling

Our characterization results use two conditions. The �rst, independence, re-

quires that the collective probability of each relevant event depend only on the

individual probabilities of that event. In the classical case in which every event

is deemed relevant, this coincides with the equally named standard condition

in the literature (sometimes also called weak setwise function property).

Independence. For each event A 2 X, there exists a function DA : [0; 1]
n !

[0; 1] (the local pooling criterion for A) such that, for all P1; :::; Pn 2 P,
PP1;:::;Pn(A) = DA(P1(A); :::; Pn(A)).

The second condition, conditional zero-preservation, requires that if all indi-

viduals assign a conditional probability of zero to some relevant event given
4Rather, one might want to determine some salient parameters of the collective probability

measure PP1;:::;Pn (e.g., its expectation E(PP1;:::;Pn) 2 R+ [ f1g if 
 = R+) as a function

of the same parameters of the individual measures P1; :::; Pn.
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another, then a zero conditional probability should also be assigned collec-

tively.5 In the classical case �more generally, whenever the agenda exhibits

certain closure properties �this becomes equivalent to the standard condition

of zero-preservation, as discussed below.

Conditional zero-preservation. For all events A;B 2 X and P1; :::; Pn 2 P,
if Pi(AjB) = 0 for all individuals i then PP1;:::;Pn(AjB) = 0, with the stipulation
that, for any P 2 P, P (AjB) := 0 when P (B) = 0.6

How can these two conditions be motivated? The main normative defence

of independence is the democratic idea that the collective view on any issue

should be determined by individual views on that issue. This re�ects a local, as

opposed to holistic, notion of democracy; under a holistic notion, the collective

view on an issue may also be in�uenced by individual views on other related

issues. Such a defence of independence is compelling only if the agenda does not

contain �arti�cial�events, such as conjunctions of intuitively unrelated events.

For this reason, a democratic defence of independence is di¢ cult in the classical

case where the agenda is the entire �-algebra. This might explain why a de-

mocratic defence of independence has not, to our knowledge, been put forward

in the standard literature on opinion pooling (although similar arguments for

independence are common in other �elds of aggregation theory).

Apart from a democratic defence, two pragmatic arguments for indepen-

dence can be given, which apply regardless of how large or small the agenda

is. First, determining the collective view on any issue solely on the basis of the

individual views on that issue is informationally less demanding than a holistic

approach and thus easier in practice. Second, independence prevents certain

types of agenda manipulation.7

5We are indebted to Richard Bradley for suggesting this formulation of the condition.
6This standard convention implies that, when P (B) = 0, P (�jB) does not de�ne a proba-

bility measure. The convention can be avoided by using an alternative formulation of condi-

tional zero-preservation: For all events A;B 2 X and P1; :::; Pn 2 P, if every individual i has
Pi(AjB) = 0 provided Pi(B) 6= 0, then also PP1;:::;Pn(AjB) = 0 provided PP1;:::;Pn(B) 6= 0.

7In the classical case X = �, McConway (1981) shows that independence (his weak setwise
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However, an objection against independence in the classical case is its in-

compatibility with collectively preserving unanimous beliefs of probabilistic in-

dependence (see Genest and Wagner 1984; Bradley, Dietrich and List 2006).8

Whether the objection applies to our independence condition depends on the

precise nature of the agenda. Finally, some authors reject independence � in

the classical case � = X and presumably also in our general case �as they pre-

fer to require external Bayesianity, whereby aggregation should commute with

Bayesian updating of probabilities in the light of new information.

The idea underlying conditional zero-preservation is intuitive: if all individ-

uals believe that the probability of some relevant event given another is zero,

e.g., that the probability of no economic impact given war is zero, or that the

probability of famine given democracy is zero (on a strong version of Amartya

Sen�s thesis), then this belief should be preserved collectively. Conditional zero-

preservation implies the following standard condition, its unconditional coun-

terpart:9

Zero-preservation. For all A 2 X and all P1; :::; Pn 2 P, if Pi(A) = 0 for all
individuals i then PP1;:::;Pn(A) = 0.

In fact, as shown in the appendix, if the agenda is closed under pairwise

intersection or union � e.g., if it is the entire �-algebra � conditional zero-

preservation is equivalent to zero-preservation; in the general case, conditional

zero-preservation is stronger.

function property) is equivalent to the marginalization property, which requires aggregation

to commute with the operation of reducing the �-algebra to some sub-�-algebra �� � �. A
similar result holds for general agendas X. Thus independence prevents agenda setters from

in�uencing the collective probability assignment to some events by adding or removing other

events to or from the agenda.
8Assuming the aggregation function is non-dictatorial, i.e., the collective does not always

adopt the probability function of a �xed individual.
9In the special case in which 
 2 X, the implication is immediately obvious, since we can

conditionalize on B = 
. The general argument is given in the appendix.
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4 Characterization of neutral pooling

What is the class of opinion pooling functions satisfying the two conditions

we have introduced? The answer to this question depends on the nature of the

agenda. In this section, we show that, if (and only if) the agenda is what we call

non-nested, our two conditions characterize the class of neutral opinion pooling

functions. In the next section, we show that, if (and only if) the agenda is

what we call non-simple, a condition that strengthens non-nestedness, our two

conditions characterize the class of linear opinion pooling functions. All formal

de�nitions are given in what follows.

Let us begin with our �rst condition on the agenda. Call an agendaX nested

if it has the form X = fA;Ac : A 2 X+g for some set X+ (� X) that is linearly
ordered by set-inclusion �, and non-nested otherwise. For example, binary
agendas X = fA;Acg are nested: take X+ := fAg, which is trivially linearly
ordered by set-inclusion. Also, the agenda X = f(�1; t]; (t;1) : t 2 Rg
(a subset of the Borel-�-algebra � over the real line 
 = R) is nested: take

X+ := f(�1; t] : t 2 Rg, which is linearly ordered by set-inclusion.

By contrast, any agenda consisting of multiple logically independent pairs

A;Ac is non-nested, i.e., X is non-nested if X = fAk; Ack : k 2 Kg with jKj � 2
such that every subset S � X containing precisely one member of each pair

fAk; Ackg (with k 2 K) is consistent. As mentioned in the introduction, such
agendas are of great practical importance because many decision-problems in-

volve events that exhibit only probabilistic dependencies (i.e., correlations), but

no logical ones. Another example of a non-nested agenda is the one in the expert

committee example above, containing A, A! B;B and their complements.

To see that non-nestedness is a very weak condition, notice that nested

agendas have the very special property that all A;B 2 X are logically dependent

(i.e., one of A;Ac entails one of B;Bc). They may thus also be described as

�pairwise connected�or �trivial�, implying that any non-trivial agenda is non-

nested.

We are now in a position to state our �rst main result. Call a pooling

function F neutral if there exists a single function D : [0; 1]n ! [0; 1] such that,
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for every event A 2 X and every pro�le (P1; :::; Pn) 2 Pn,

PP1;:::;Pn(A) = D(P1(A); :::; Pn(A)),

i.e., F is independent with the same local pooling criterion D = DA for all

events A 2 X, thereby treating all relevant events perfectly symmetrically.

In the classical case where the agenda is the entire �-algebra, this condition

becomes the one studied in the literature.

Theorem 1 (a) For a non-nested agenda X, a conditional zero-preserving

pooling function is independent if and only if it is neutral.

(b) For a nested agenda X, �nite and not f;;
g, there exists a conditional
zero-preserving pooling function that is independent but not neutral.

Part (b) shows that the agenda condition of the characterization result in

part (a) is essentially tight; an aggregation function with the required properties

is explicitly constructed in the appendix. However, although nested agendas X

thus permit non-neutral pooling functions, only a limited kind of non-neutrality

is possible: As the proof below indicates, the pooling criterion DA must still be

the same for all A 2 X+, and the same for all A 2 XnX+ (with X+ as de�ned

above). So full neutrality follows even in the nested case if independence is

slightly strengthened by requiring that DA = DAc for some A 2 Xnf;;
g.

Let us outline the proof of part (a); the full technical details are provided

in the appendix. We begin by de�ning a binary relation � on the set of all

contingent events in the agenda. As a preliminary de�nition, call two events

A;B 2 X exclusive if A \ B = ; and exhaustive if A [ B = 
. Now, for any

A;B 2 Xnf;;
g, we de�ne

A � B ,
there is a �nite sequence A1; :::; Ak 2 X with A1 = A and Ak = B

such that any adjacentAj; Aj+1 are neither exclusive nor exhaustive.

Our proof proceeds via three lemmas.

Lemma 1 Consider any agenda X.

(a) � de�nes an equivalence relation on Xnf;;
g:
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(b) A � B , Ac � Bc for all events A;B 2 Xnf;;
g.
(c) A � B ) A � B for all events A;B 2 Xnf;;
g.
(d) If X 6= f;;
g, the relation � has

� either a single equivalence class, namely Xnf;;
g,
� or exactly two equivalence classes, each one containing exactly one
member of each pair A;Ac 2 Xnf;;
g.

Lemma 2 An agenda X 6= f;;
g is nested if and only if there are exactly
two equivalence classes with respect to �, and non-nested if and only if there is
exactly one.

Call a pooling function neutral on a set Z � X if it is independent with the

same pooling criterion for all events in Z.

Lemma 3 An independent conditional zero-preserving pooling function is neu-

tral on each equivalence class with respect to �.

Part (a) of theorem 1 now follows immediately. As already mentioned, the

proof of part (b) consists in explicitly constructing a non-neutral but indepen-

dent and conditional zero-preserving pooling function on any nested agenda.

To convey the idea informally, recall that a nested agenda can be partitioned

into two non-empty sequences of events that are nested by inclusion. The

opinion pooling function we construct has the property that (i) all events in

one of the two nested sequences in the agenda have the same pooling crite-

rion D : [0; 1]n ! [0; 1], de�ned, for example, as the square of a linear pooling

criterion, and (ii) all events in the complementary nested sequence have the

same pooling criterion, de�ned as D�(x1; :::; xn) = 1�D(1� x1; :::; 1� xn) for
all (x1; :::; xn) 2 [0; 1]n. Since the construction and veri�cation of the relevant
properties involve some technicality, we give the full proof in the appendix.

5 Characterization of linear pooling

Let us now introduce a stronger, yet still surprisingly undemanding condition on

the agenda. One preliminary de�nition is needed. Call a set of events Y � �
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minimal inconsistent if it is inconsistent but every proper subset Y 0 ( Y is

consistent. Examples of minimal inconsistent sets are fA;B; (A\B)cg, where A
and B are logically independent events, and fA;A! B;Bcg, with A;B;A! B

as de�ned in the expert committee example above. In each case, the three events

are mutually inconsistent, but any two of them are mutually consistent.

The notion of a minimal inconsistent set is useful for characterizing logical

dependencies between the events in the agenda. Trivial examples of minimal

inconsistent subsets of the agenda are those of the form fA;Acg � X, where

A is contingent, but many interesting agendas have more complex minimal in-

consistent subsets. One may regard supY�X:Y is minimal inconsistent jY j as a measure
of the complexity of the logical dependencies in the agenda X. Given this idea,

call an agenda X non-simple if it has at least one minimal inconsistent sub-

set Y � X containing more than two (but not uncountably many10) events,

and simple otherwise.11 It follows immediately that the agenda consisting of

A;A! B;B and complements in our expert committee example is non-simple.

Moreover, non-simplicity implies non-nestedness, but not vice-versa.12

We can now state our second main result. Call a pooling function linear if

there exist �weights�w1; :::; wn � 0 with sum 1 such that, for every event A 2 X
10The countability condition can often be dropped because all minimal inconsistent sets

Y � X are automatically countable or even �nite. This is so ifX is �nite or countably in�nite,

and also in the (frequent) case that the events in X represent sentences in a language: then,

provided the language belongs to a compact logic, all minimal inconsistent sets Y � X are

�nite (because any inconsistent set has a �nite inconsistent subset). By contrast, the �-

algebra � often contains events not representing a sentence, so that the (unnatural) agenda

X = � often has in�nite minimal inconsistent subsets.
11Non-simplicity is a variant of a standard condition in the theory of judgment aggregation

(Nehring and Puppe 2007, Dietrich and List 2007).
12To give an example of a non-nested but simple agenda, let 
 = fx; y; z; wg and � =

power set of 
. Now de�ne X = ffx; yg; fz; wg; fw; xg; fy; zgg. Clearly, this agenda cannot
be expressed as X = fA;Ac : A 2 X+g for some set X+ linearly ordered by set-inclusion �,
but its largest minimal inconsistent subsets, i.e., ffx; yg; fz; wgg and ffw; xg; fy; zgg, each
contain only two events.
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and every pro�le (P1; :::; Pn) 2 Pn,

PP1;:::;Pn(A) =
nX
i=1

wiPi(A),

or in short, PP1;:::;PnjX =
Xn

i=1
wiPijX . As before, this reduces to the stan-

dard de�nition in the classical case.13 Linearity is obviously a special case of

neutrality, where the pooling criterion D takes a linear form.

Theorem 2 (a) For a non-simple agenda X, a conditional zero-preserving

pooling function is independent if and only if it is linear.

(b) For a simple agenda X, �nite and not f;;
g, there exists a conditional
zero-preserving pooling function that is independent but not linear.

As before, part (b) shows that the agenda condition of the characterization

result in part (a) is essentially tight. For the proof of part (b), which is of

signi�cant di¢ culty, the reader is referred to the appendix. Again, let us outline

the proof of part (a), with details in the appendix.

Consider a non-simple agenda X and a conditional zero-preserving pooling

function F . Let us write 0 and 1 to denote the n-tuples (0; :::; 0) and (1; :::; 1),

respectively. Obviously, if F is linear then F is independent. So let us suppose

F is independent and show linearity. By theorem 1(a) and since non-simple

agendas are non-nested, F is neutral, say with pooling criterion D : [0; 1]n !
[0; 1] for all events A 2 X. The proof now consists of three lemmas. The �rst
establishes some simple properties of D; the second contains the bulk of the

work; and the third is an application of Cauchy�s functional equation (similar

to one made by McConway 1981).

Lemma 4 (a) D(x) +D(1� x) = 1 for all x 2 [0; 1]n.
(b) D(0) = 0 and D(1) = 1.

13Also, if the agendaX is such that every probability measure P 2 P is uniquely determined
by the probabilities of relevant events, our X-relativized linearity notion is equivalent to the

standard global linearity notion (because then PP1;:::;Pn jX =
Xn

i=1
wiPijX implies PP1;:::;Pn =Xn

i=1
wiPi, for all (P1; :::; Pn) 2 Pn).
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Lemma 5 D(x) +D(y) +D(z) = 1 for all x; y; z 2 [0; 1]n with x+ y + z = 1.

Lemma 6 If D(x)+D(y)+D(z) = 1 for all x; y; z 2 [0; 1]n with x+y+z = 1,
then there exist non-negative weights wi with sum 1 such that, for all x 2 [0; 1]n,
D(x1; :::; xn) =

Xn

i=1
wixi.

Part (a) of theorem 2 now follows immediately. In the proof of part (b), we

explicitly construct a non-linear but independent and conditional zero-preserving

pooling function on any simple agenda. The constructed pooling function has

the property that its pooling criterion D takes only three values, namely 0, 1=2

and 1.

It is instructive to see how our present results generalize the standard results

in the literature, where the agenda is a �-algebra (in particular, McConway

1981). Notice the following simple fact:

Lemma 7 When X is closed under pairwise intersection or union (e.g., X =

�), non-nestedness and non-simplicity are equivalent, and X satis�es both if

and only if jXj > 4.

Given the equivalence of conditional zero-preservation and zero-preservation

on such an agenda, theorems 1(a) and 2(a) thus yield the following corollary

(compare the results cited in the introduction):

Corollary 1 Let X be closed under pairwise intersection or union (e.g., X =

�).

(a) If jXj > 4, a zero-preserving pooling function is independent if and only
if it is linear (and if and only if it is neutral).

(b) If jXj � 4, but X 6= f;;
g, there exists a zero-preserving pooling function
that is independent but neither linear nor neutral.
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6 An illustrative application: probabilistic

preference aggregation

To illustrate the generality of our results, let us �nally show how they apply in

a rather di¤erent context, namely that of probabilistic preference aggregation. A

group faces a (�nite non-empty) set K of (mutually exclusive and exhaustive)

alternatives, and seeks to form a collective view on how to rank them in a

linear order. Let 
K be the set of all strict orderings � over K (asymmetric,

transitive and connected binary relations), and let �K be the power set of 
K .

Informally, K can represent any set of distinct objects, e.g., policy options,

candidates, social states, distributions of goods, or artifacts, and an ordering �
over K can have any interpretation consistent with a linear form (e.g., �better

than�, �preferable to�, �higher than�, �more competent than�, �less unequal than�

etc.).

A probability measure P : �K ! [0; 1] can now be interpreted as capturing

an agent�s degrees of belief about which of the orderings � in 
K is the �correct�
one; call this the belief interpretation. In particular, for any pair of alternatives

x; y 2 K, P (x � y) can be interpreted as the agent�s degree of belief in the event
x � y, de�ned as the subset of 
K consisting of all those orderings � in which x
is ranked above y. (On an entirely di¤erent interpretation, the vague-preference

interpretation, P (x � y) could represent the degree to which the agent prefers
x to y, so that the present framework would capture vague preferences over

alternatives as opposed to degrees of belief about how they are ranked in terms

of the appropriate linear criterion.) A pooling function, as de�ned above, maps

n individual such probability measures to a single collective one.

To specify the problem further, de�ne the preference agenda to be XK =

fx � y : x; y 2 K with x 6= yg, which is non-empty and closed under comple-
ment, as required for an agenda.14 We obtain a probabilistic analogue of Arrow�s

preference aggregation problem if each individual i submits probabilities on the

events in XK , and the group determines corresponding collective probabilities.

14This construction draws on Dietrich and List (2007).
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Our independence condition then requires that, for any pair of distinct alterna-

tives x; y 2 K, the collective probability for x � y depend only on individual

probabilities for x � y: the probabilistic analogue of Arrow�s independence of
irrelevant alternatives. Conditional zero-preservation requires that, for any two

pairs of distinct alternatives, x; y 2 K and v; w 2 K, if all individuals agree
that the probability of x � y given v � w is zero, then this agreement be

preserved at the collective level: a strengthened probabilistic analogue of the

weak Pareto principle (the direct analogue would be zero-preservation). The

analogues of Arrow�s universal domain and collective rationality conditions are

built into our de�nition of a pooling function, whose domain and co-domain are

de�ned by the set of all coherent probability measures over �K . To apply our

earlier results, note the following easy lemma.

Lemma 8 If jKj > 2, then the preference agenda XK is non-simple.

Proof. Consider XK with jKj > 2. Since K has at least three distinct

elements x; y; z, the events x � y; y � z; and z � x are all contained in XK .

But as they are mutually inconsistent but any pair of them is consistent, they

form a minimal inconsistent subset of XK of size greater than two, as required.

�

Now theorem 2(b) yields an immediate corollary:

Corollary 2 For the preference agenda XK with jKj > 2, a conditional zero-
preserving pooling function is independent if and only if it is linear.

This result not only shows that a probabilistic preference aggregation prob-

lem can be solved by linear pooling but it also points towards an alternative

logically possible escape-route from Arrow�s impossibility theorem (though it

may be practically applicable only in special contexts): If Arrow�s informational

framework is enriched so as to allow degrees of belief over di¤erent possible pref-

erence orderings as input and output of the aggregation (or alternatively, vague

preferences, understood probabilistically), then Arrow�s dictatorship conclusion

can be avoided. Instead, we obtain a positive characterization of linear pooling,
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despite imposing conditions on the pooling function that are somewhat stronger

than Arrow�s classic conditions (in so far as conditional zero-preservation is

stronger than the analogue of the weak Pareto principle).

On the belief interpretation, the informational framework employed here is

meaningful so long as there exists a fact of the matter about which of the or-

derings � in 
K is the �correct� one (e.g., an objective quality ordering), so

that it makes sense to form beliefs about this fact. On the vague-preference

interpretation, our framework requires that vague preferences over pairs of al-

ternatives are extendible to a coherent probability distribution over the set of

�crisp�orderings � in 
K .

There are, of course, substantial bodies of literature on avoiding Arrow�s

dictatorial conclusion in richer informational frameworks and on probabilistic

or vague preference aggregation. It is well known that the introduction of inter-

personally comparable preferences (of an ordinal or cardinal type) is su¢ cient

for avoiding Arrow�s conclusion (e.g., Sen 1970/1979). Also, di¤erent models of

probabilistic or vague preference aggregation have been investigated. A model

in which individuals and the collective each specify probabilities of selecting

each of the alternatives in K (as opposed to a probability distribution over all

possible orderings over K) has been investigated, for example, by Intriligator

(1973), who has characterized a version of linear averaging in it. A model in

which individuals have vague or fuzzy preferences in the sense that, for any

pair of alternatives x; y 2 K, each individual prefers x to y to a certain de-
gree between 0 and 1 has been investigated, for example, by Billot (1991) and

more recently by Piggins and Perote-Peña (2007) (see also Sanver and Selçuk

2007), but the standard constraints on vague or fuzzy preferences, unlike the

constraints on probabilities in our present model, do not require individuals to

hold a coherent probability distribution over the set of possible crisp orderings;

hence the literature has tended to generate Arrow-style impossibility results.

For the purposes of our present paper, it is illuminating to see that a possi-

bility result on probabilistic preference aggregation can be derived as a corollary

of one of our new results on opinion pooling.
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A Appendix: proofs

A.1 Properties of conditional zero-preservation

We have already pointed out the relationship between conditional

zero-preservation and the classic condition of zero-preservation; it is re-stated

formally below. For our proofs, it is also useful to introduce a condition that is

logically equivalent to conditional zero-preservation. It requires that if all indi-

viduals agree that some relevant event probabilistically implies another (i.e., the

probability of the one occurring without the other is zero), then that agreement

be preserved at the collective level:

Implication-preservation. For all events A;B 2 X and all P1; :::; Pn 2 P, if
Pi(AnB) = 0 for all individuals i then PP1;:::;Pn(AnB) = 0.

To see the equivalence between conditional zero-preservation and implication-
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preservation, note that, for any P 2 P and any A;B 2 X,

P (AjB) = 0 ,
�
P (A\B)
P (B)

= 0 and P (B) 6= 0
�
or P (B) = 0

(since, by stipulation, P (AjB) = 0 when P (B) = 0)
, P (A \B) = 0 or P (B) = 0
, P (A \B) = 0
, P (AnBc) = 0.

Since X is complement-closed, we can substitute BC for B in the antecedent

and consequent of implication-preservation, and the equivalence follows.

This equivalence also illuminates the relationship between conditional zero-

preservation and its unconditional counterpart, because the relationship be-

tween implication-preservation and zero-preservation is very transparent. To

see that implication-preservation implies zero-preservation, simply observe that

if we take B = Ac then P (AnB) = P (AnAc) = P (A). To see the con-

verse when X is closed under pairwise intersection or union (and recalling

that it is closed under taking complements), note that, for any A;B 2 X,

AnB = A \ Bc 2 X. More generally, implication-preservation is equivalent to
a variant of zero-preservation extended to the intersections of any two events

in X. Note, however, that an implication-preserving pooling function need not

preserve a unanimously held zero probability of a union of two relevant events,

or of an intersection or union of more than two relevant events.

The following proposition summarizes the logical relationships:

Proposition 1 (a) Conditional zero-preservation is equivalent to implication-

preservation.

(b) Zero-preservation is equivalent to the following condition:

[8i Pi(A) = 1]) PP1;:::;Pn(A) = 1, for all A 2 X, P1; :::; Pn 2 P.
(c) Implication-preservation (and thereby conditional zero-preservation) is

equivalent to each of the following conditions:

[8i Pi(A\B) = 0]) PP1;:::;Pn(A\B) = 0, for all A;B 2 X, P1; :::; Pn 2 P;
[8i Pi(A[B) = 1]) PP1;:::;Pn(A[B) = 1, for all A;B 2 X, P1; :::; Pn 2 P.

(d) Conditional zero-preservation implies zero-preservation, and is equivalent

to it if the agenda X is closed under taking the union of any two events.
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A.2 Proof of theorem 1(a)

Proof of lemma 1. (a) Re�exivity, symmetry and transitivity on Xnf;;
g are
all obvious (we have excluded ; and 
 to ensure re�exivity).

(b) It su¢ ces to show one direction of implication (as (Ac)c = A for all A 2
X). LetA;B 2 Xnf;;
g withA � B. Then there is a pathA1; :::; Ak 2 X from
A to B such that any neighbours Aj; Aj+1 are not exclusive and not exhaustive.

It follows that Ac1; :::; A
c
k is a path from A

c to Bc where any neighbours Acj; A
c
j+1

are not exclusive (as Acj \ Acj+1 = (Aj [ Aj+1)c 6= 
c = ;) and not exhaustive
(as Acj [ Acj+1 = (Aj \ Aj+1)c 6= ;c = 
).

(c) Let A;B 2 Xnf;;
g. If A � B then A � B in virtue of a direct con-

nection, because A;B are neither exclusive (as A \B = A 6= ;) nor exhaustive
(as A [B = B 6= 
).

(d) Let X 6= f;;
g. Suppose the number of equivalence classes with respect
to � is not one. As Xnf;;
g 6= ;, it is not zero. So it is at least two. We show
two claims:

Claim 1. There are exactly two equivalence classes with respect to �.

Claim 2. Each class contains exactly one member of any pair A;Ac 2
Xnf;;
g.

Proof of claim 1. For a contradiction, let A;B;C 2 Xnf;;
g be pairwise
not equivalent with respect to �. By A 6� B, either A \ B = ; or A [ B = 
.
Without loss of generality we may assume the former case, because in the latter

case we may consider the complements Ac; Bc; Cc instead of A;B;C, using the

fact that Ac; Bc; Cc are pairwise not equivalent with respect to � by (b) with

Ac \ Bc = (A [ B)c = 
c = ;. Now by A \ B = ; we have B � Ac, whence

Ac � B by (c). By A 6� C there are two cases:

� either A \ C = ;, which implies C � Ac, whence C � Ac by (c), so that
C � B (as Ac � B and � is transitive by (a)), a contradiction;

� or A [ C = 
, which implies Ac � C, whence Ac � C by (c), so that

again the contradiction C � B, which completes the proof of claim 1.

Proof of claim 2. Suppose for a contradiction that Z is an equivalence class
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with respect to � containing the pair A;Ac. By assumption, Z is not the only
equivalence class with respect to �, and so there is a B 2 Xnf;;
g with B 6� A
(hence B 6� Ac). Then either A\B = ; or A[B = 
. In the �rst case, B � Ac,
so that B � Ac by (c), a contradiction. In the second case, Ac � B, so that

Ac � B by (c), a contradiction. �

Proof of lemma 2. Consider an agenda X 6= f;;
g. By lemma 1(d), the
two claims are equivalent. So it su¢ ces to prove the �rst one. Note that X

is nested if and only if Xnf;;
g is nested. So we may assume without loss of
generality that ;;
 =2 X.

First suppose there are two equivalence classes with respect to �. Let X+

be one of them. By lemma 1(d), X = fA;Ac : A 2 X+g. To complete the proof
that X is nested, we show that X+ is linearly ordered by set-inclusion �. As
� is of course re�exive, transitive and anti-symmetric, what we have to show is
connectedness. So suppose A;B 2 X+, and let us show that A � B or B � A.
Since A 6� Bc (by lemma 1(d)), either A \ Bc = ; or A [ Bc = 
. In the �rst
case, A � B. In the second case, B � A.

Conversely, let X be nested, i.e., of the form X = fA;Ac : A 2 X+g for
some set X+ � � that is linearly ordered by set-inclusion �. Consider any
A 2 X+. We show that A 6� Ac, which shows that X has more than one, hence

by lemma 1(d) exactly two equivalence classes with respect to �, as desired.
For a contradiction, suppose A � Ac. Then there is a path A1; :::; Ak 2 X from

A to Ac such that, for all neighbours Aj; Aj+1, Aj\Aj+1 6= ; and Aj[Aj+1 6= 
.
As each event C 2 X is either inX+ or has complement in X+, and as A1 2 X+

and Ack 2 X+, there are neighbours Aj; Aj+1 such that Aj; Acj+1 2 X+. So, as

X+ is linearly ordered by �, either Aj � Acj+1 or Acj+1 � At. In the �rst case,
Aj \ Aj+1 = ;, a contradiction. In the second case, Aj [ Aj+1 = 
, also a

contradiction. �

Proof of lemma 3. Let F be independent and implication-preserving. Let

DA; A 2 X be the pooling criteria as given by independence. We show that

DA = DB for all A;B 2 X with A \ B 6= ; and A [ B 6= 
. This implies
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immediately that DA = DB whenever A � B (by induction on the length k of

a path from A to B), completing the proof.

So suppose A;B 2 X with A \ B 6= ; and A [ B 6= 
. Consider any

x 2 [0; 1]n, and let us show that DA(x) = DB(x). As A\B 6= ; and Ac \Bc =
(A [B)c 6= ;, there exist probability measures P1; :::; Pn 2 P such that

Pi(A \B) = xi and Pi(Ac \Bc) = 1� xi, for all i = 1; :::; n.

We have Pi(AnB) = 0 for all i, so that by implication-preservation

PP1;:::;Pn(AnB) = 0; and we have Pi(BnA) = 0 for all i, so that by implication-
preservation PP1;:::;Pn(BnA) = 0. So

PP1;:::;Pn(A) = PP1;:::;Pn(A \B) = PP1;:::;Pn(B).

Hence, using the fact that PP1;:::;Pn(A) = DA(x) (because Pi(A) = xi for all i),

and that PP1;:::;Pn(B) = DB(x) (because Pi(B) = xi for all i), it follows that

DA(x) = DB(x), as desired. �

A.3 Proof of theorem 1(b)

We �rst recall a simple fact of probability theory (in which the word ��nite�is

of course essential).

Lemma 9 Every probability measure on a �nite sub-�-algebra of � can be ex-

tended to a probability measure on �.

Proof. Let �� � � be a �nite sub-�-algebra of �, and P � : �� ! [0; 1]

a probability measure. Let A be the set of atoms of ��, i.e., of (�-)minimal
events in ��nf;g. Using the fact that �� is �nite, it easily follows that A is a

partition of 
, and so that
X

A2A
P �(A) = 1. For each atom A 2 A, consider

a world !A 2 A, and the associated Dirac measure �!A : � ! [0; 1] (de�ned,

for all B 2 �, by �!A(B) = 1 if !A 2 B and �!A(B) = 0 if !A =2 B). Then

P :=
X
A2A

P �(A)�!A
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de�nes a probability measure on �, as it is by
X

A2A
P �(A) = 1 a convex

combination of the probability measures �!1 ; :::; �!k . Further, P extends P �

because for all B = �� we have

P (B) =
X

A2A:!A2B
P �(A) =

X
A2A:A�B

P �(A) = P �(B),

where the �rst equality holds by de�nition of P , and the last equality by ad-

ditivity of P � and the fact that fA 2 A : A � Bg forms a partition of B.
�

To prove part (b) of theorem 1, consider a �nite nested agenda X 6= f;;
g.
We construct a pooling function (P1; :::; Pn) 7! PP1;:::;Pn with the relevant prop-

erties. Without loss of generality, we suppose that ;;
 2 X, and that the

�-algebra generated by X is �, drawing on the following fact:

Claim. If the theorem holds when � is generated by X, it holds in general.

Indeed, suppose the theorem holds in the special case. Let �� (� �) be the
�-algebra generated by X, and P� the set of probability measures on ��. By
assumption, there exists a pooling function F � : (P�)n ! P�; (P �1 ; :::; P �n) 7!
P �P �1 ;:::;P �n with the relevant properties. For all P

�
1 ; :::; P

�
n 2 P�, the collective

probability measure P �P �1 ;:::;P �n : �
� ! [0; 1] can by lemma 9 be extended to one on

�; call it P �P �1 ;:::;P �n j
�. Now de�ne a pooling function F : Pn ! P ; (P1; :::; Pn) 7!

PP1;:::;Pn by

PP1;:::;Pn := P
�
P1j�� ;:::;Pnj�� j

�

(i.e., the Pi�s are �rst restricted to ��, then pooled using F � into a probability

measure on ��, which is then extended to �). F inherits from F � all relevant

properties (independence, non-neutrality, and implication-preservation), essen-

tially because these properties refer only to probabilities of events that are in

�� (more precisely, that are in X or �in the case of implication-preservation �

that are di¤erences of events in X). This proves the claim.

As X is nested and �nite, we may write it as X = fA0; ::::; Ak; Ac1; :::; Ackg
with events ; = A0 ( A1 ( ::: ( Ak = 
.

Consider any neutral implication-preserving pooling function whose pooling

criterion D : [0; 1]n ! [0; 1] is at least weakly increasing in each argument (e.g.,
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dictatorship by individual 1, given by (P1; :::; Pn) 7! P1). As X 6= f;;
g, there
is a contingent event A 2 X. As A is contingent, there are P1; :::; Pn 2 P that
all assign probability 1=2 to A (hence to Ac), so that the collective probabilities

of A and of Ac are each given by D(1=2; :::; 1=2). As these probabilities sum to

1, it follows that

D(1=2; 1=2; :::; 1=2) = 1=2: (1)

We now transform this neutral pooling function into a non-neutral one (that

is still independent and implication-preserving). To do so, we consider a func-

tion T : [0; 1] ! [0; 1] such that (i) T (1=2) 6= 1=2, (ii) T (0) = 0 and T (1) = 1,
and (iii) T is strictly increasing (e.g., T (x) = x2 for all x 2 [0; 1]).

Now consider any P1; :::; Pn 2 P. We have to de�ne the collective probability
measure PP1;:::;Pn : �! [0; 1]. As the �-algebra � is generated by X, hence by

fAj : j = 0; :::; kg, the atoms of � (i.e., the �-minimal elements of �nf;g) are
the di¤erences AjnAj�1, j = 1; :::; k. We de�ne the measure PP1;:::;Pn : �! [0; 1]

by specifying its value on the atoms as follows:

PP1;:::;Pn(AjnAj�1) := T �D(P1(Aj); :::; Pn(Aj))� T �D(P1(Aj�1); :::; Pn(Aj�1))

for all j 2 f1; :::; kg. As each Aj (j 2 f0; :::; kg) is partitioned into the sets
AlnAl�1; l = 1; :::; j, its measure is given by

PP1;:::;Pn(Aj) =

jX
l=1

[T �D(P1(Al); :::; Pn(Al))� T �D(P1(Al�1); :::; Pn(Al�1))],

which (by cancelling out and using the fact that A0 = ;, that D(0; :::; 0) = 0,
and that T (0) = 0) reduces to

PP1;:::;Pn(Aj) = T �D(P1(Aj); :::; Pn(Aj)) for all j = 0; :::; k: (2)

To see why PP1;:::;Pn is indeed a probability measure, note that each atom has

non-negative measure (using the fact that T and D are increasing functions),

and that PP1;:::;Pn(
) = PP1;:::;Pn(Ak) = 1 (by (2) and since D(1; :::; 1) = 1 and

T (1) = 1).

To complete the proof, we must show that the pooling function just de�ned,

(P1; :::; Pn) 7! PP1;:::;Pn, is independent, implication-preserving, but not neutral.
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Independence. Applied to any event of type Aj 2 X, independence holds
with pooling criterion DAj de�ned as T � D, by (2). Applied to any event
of type Acj 2 X, independence holds with pooling criterion DAcj

de�ned by

(t1; :::; tn) 7! 1� T �D(1� t1; :::; 1� tn), because for all P1; :::; Pn 2 P we have

PP1;:::;Pn(A
c
j) = 1� PP1;:::;Pn(Aj) = 1� T �D(P1(Aj); :::; Pn(Aj))

= 1� T �D(1� P1(Acj); :::; 1� Pn(Acj)).

Non-neutrality. By independence, the decision on any A 2 X is made via a

pooling criterion DA : [0; 1]
n ! [0; 1]. We show that the pooling criteria DA are

not all identical �or, more precisely, cannot be chosen to be all identical. As

X 6= f;;
g, there is a pairAj; Acj 2 X of contingent events. As is easily checked,
the pooling criterion for any contingent event is unique; so DAj and DAcj

must

be de�ned as in our independence proof above. We show that DAj 6= DAcj
.

Using (1), we have

DAj(1=2; :::; 1=2) = T �D(1=2; :::; 1=2) = T (1=2),

DAcj
(1=2; :::; 1=2) = 1� T �D(1� 1=2; :::; 1� 1=2)

= 1� T �D(1=2; :::; 1=2) = 1� T (1=2).

So, as T (1=2) 6= 1=2 (by assumption on T ),DAj(1=2; :::; 1=2) 6= DAcj
(1=2; :::; 1=2),

and hence DAj 6= DAcj
, as desired.

Implication-preservation. Consider any A;B 2 X and P1; :::; Pn 2 P such

that Pi(AnB) = 0 for all individuals i. As one easily checks, AnB takes the

form AmnAl for some m; l 2 f0; :::; kg with m � l. Hence

PP1;:::;Pn(AnB) = PP1;:::;Pn(Am)� PP1;:::;Pn(Al) (by Al � Am)

= T �D(P1(Am); :::; Pn(Am))� T �D(P1(Al); :::; Pn(Al)).

In the last expression, each individual i has Pi(Am) = Pi(Al), as Al � Am with
Pi(AmnAl) = P (AnB) = 0. So the expression equals zero, i.e., PP1;:::;Pn(AnB) =
0, as desired. �

A.4 Proof of theorem 2(a)

Proof of lemma 4.
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(a) Note that as X is non-simple it contains an event A for which A 6= ;;
.
For each x 2 [0; 1]n there are (by A 6= ;;
) probability functions P1; :::; Pn 2 P
such that (P1(A); :::; Pn(A)) = x, and hence (P1(Ac); :::; Pn(Ac)) = 1�x, which
implies that

D(x) +D(1� x) = PP1;:::;Pn(A) + PP1;:::;Pn(Ac) = 1;

as desired.

(b) Since the pooling function is implication-preserving and hence zero-

preserving, D(0) = 0, so that by part (a) D(1) = 1�D(0) = 1. �

Proof of lemma 5.

Consider any x; y; z 2 [0; 1]n with sum 1. As X is non-simple, there is a

countable minimal inconsistent set Y � X with jY j � 3. So there are pairwise
distinct A;B;C 2 Y . De�ne

A� := Ac\

0@ \
D2Y nfAg

D

1A ; B� := Bc\
0@ \
D2Y nfBg

D

1A , C� := Cc\
0@ \
D2Y nfCg

D

1A .
As � is closed under countable intersections, A�; B�; C� 2 �. For all i, as

xi + yi + zi = 1 and as A�; B�; C� are pairwise disjoint non-empty members of

�, there exists a Pi 2 P with

Pi(A
�) = xi; Pi(B

�) = yi; Pi(C
�) = zi.

By construction,

Pi(A
� [B� [ C�) = xi + yi + zi = 1 for all i: (3)

For the so-de�ned pro�le (P1; :::; Pn), we consider the collective probability func-

tion P := PP1;:::;Pn. We now derive �ve properties of P (claims 1-5), which then

allow us to show that D(x) +D(y) +D(z) = 1 (claim 6), as desired.

Claim 1. P (\D2Y nfA;B;CgD) = 1.

For all D 2 Y nfA;B;Cg we have D � A� [B� [C�, so that by (3) we have
P1(D) = ::: = Pn(D) = 1, and hence P (D) = 1 by proposition 1. This implies
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claim 1 because the intersection of countably many events of probability one

has probability one.

Claim 2. P (Ac [Bc [ Cc) = 1.

As A \ B \ C is disjoint from the event \D2Y nfA;B;CgD, which by claim 1

has P -probability one, we have P (A\B\C) = 0. This implies claim 2 because
Ac [Bc [ Cc is the complement of A \B \ C.

Claim 3. P ((Ac \Bc) [ (Ac \ Cc) [ (Bc \ Cc)) = 0.

As Ac \ Bc is disjoint with each of A�; B�; C�, it is disjoint with the event
A� [ B� [ C� to which each individual i assigns probability one by (3). So
Pi(A

c \ Bc) = 0 for all i. Hence P (Ac \ Bc) = 0 by proposition 1(c). For

analogous reasons, P (Ac \ Cc) = 0 and P (Bc \ Cc) = 0. Now claim 3 follows

since the union of �nitely (or countably) many events of probability zero has

probability zero.

Claim 4. P ((Ac \B \ C) [ (A \Bc \ C) [ (A \B \ Cc)) = 1

By claims 2 and 3, there is a P -probability of one that at least one of

Ac; Bc; Cc holds, but a P -probability of zero that at least two of Ac; Bc; Cc

hold. So with P -probability of one exactly one of Ac; Bc; Cc holds. This is

precisely what claim 4 states.

Claim 5. P (A�) + P (B�) + P (C�) = P (A� [B� [ C�) = 1.

The �rst equality follows from the pairwise disjointness of the events A�; B�;

C� and the additivity of P . Regarding the second equality, note thatA�[B�[C�

is the intersection of the events \D2Y nfA;B;CgD and (Ac \ B \ C) [ (A \ Bc \
C) [ (A \ B \ Cc), each of which has P -probability of one by claims 1 and 4.
So P (A� [B� [ C�) = 1, as desired.

Claim 6. D(x) +D(y) +D(z) = 1.

As P (A� [ B� [ C�) = 1 by claim 5, and as the intersection of Ac with

A� [B� [ C� is A�, we have

P (Ac) = P (A�): (4)

By Ac 2 X we moreover have

P (Ac) = D(P1(A
c); :::; Pn(A

c)) = D(P1(A
�); :::; Pn(A

�)) = D(x).
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This and (4) imply that P (A�) = D(x). By similar arguments, P (B�) = D(y)

and P (C�) = D(z). So claim 6 follows from claim 5. �

Proof of lemma 6. Suppose

D(x) +D(y) +D(z) = 1 for all x; y; z 2 [0; 1]n with x+ y + z = 1: (5)

Then, for all x; y 2 [0; 1]n with x+ y 2 [0; 1]n,

1 = D(x) +D(y) +D(1� x� y) = D(x) +D(y) + 1�D(x+ y),

where the �rst equality follows from (5) and the second from lemma 4(a). So

D(x+ y) = D(x) +D(y) for all x; y 2 [0; 1]n with x+ y 2 [0; 1]n: (6)

For any i 2 f1; :::; ng, consider the function Di : [0; 1] ! [0; 1] de�ned by

Di(t) = D(0; :::; 0; t; 0; :::; 0), where t occurs at position i in (0; :::; 0; t; 0; :::; 0).

By (6), Di satis�es Di(s+ t) = Di(s) +Di(t) for all s; t � 0 with s+ t � 1. As
one easily checks, Di can be extended to a function �Di : [0;1) ! [0;1) such
that �Di(s+ t) = �Di(s)+ �Di(t) for all s; t � 0, i.e., such that �Di satis�es the non-

negative version of Cauchy�s functional equation. Hence there exists a wi � 0
such that �Di(t) = wit for all t � 0 by a well-known theorem (see Aczél 1966,

theorem 1). Now for all x 2 [0; 1]n, we have D(x) =
Xn

i=1
Di(xi) (by repeated

application of (6)), and so (by Di(xi) = �Di(xi) = wixi) D(x) =
Xn

i=1
wixi.

Applying the latter to x = 1 yields D(1) =
Xn

i=1
wi, hence

Xn

i=1
wi = 1 by

lemma 4(b). So F is a linear pooling function, as desired. �

A.5 Proof of theorem 2(b)

Let the agenda X (� �) be simple, �nite, and not f;;
g. We construct a non-
linear pooling function that is independent (in fact, neutral) and implication-

preserving. We may assume without loss of generality that the �-algebra gener-

ated by X is �, because the �claim�in the proof of theorem 1(b) (proved using

lemma 9) holds analogously here as well.

As an ingredient to the construction, we use an arbitrary linear implication-

preserving pooling function (P1; :::; Pn) 7! P linP1;:::;Pn(e.g., that de�ned by
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(P1; :::; Pn) 7! P1), and denote by Dlin its pooling criterion for all events A 2 X.
To anticipate, the pooling function (P1; :::; Pn) 7! PP1;:::;Pn to be constructed will

have the pooling criterion D : [0; 1]n ! [0; 1] (for every A 2 X) given by

D(t1; :::; tn) :=

8>><>>:
0 if Dlin(t1; :::; tn) < 1=2

1/2 if Dlin(t1; :::; tn) = 1=2

1 if Dlin(t1; :::; tn) > 1=2.

(7)

Consider any P1; :::; Pn 2 P. We have to de�ne PP1;:::;Pn. We write collective
probabilities under the linear function simply as

p(A) := P linP1;:::;Pn(A) for all A 2 �,

and de�ne

X�1=2 : = fA 2 X : p(A) � 1=2g

X>1=2 : = fA 2 X : p(A) > 1=2g

X=1=2 : = fA 2 X : p(A) = 1=2g.

(Although p(A) and the sets X�1=2; X>1=2; X=1=2 depend on P1; :::; Pn, our no-

tation suppresses P1; :::; Pn for simplicity.)

To de�ne PP1;:::;Pn, we �rst need to prove two claims (using the fact that X

is simple).

Claim 1. X=1=2 can be partitioned into two (possibly empty) sets X1
=1=2

and X2
=1=2 such that (i) each X

j
=1=2 satis�es p(A \ B) > 0 for all A;B 2 X

j
=1=2

and (ii) each Xj
=1=2 [ X>1=2 is consistent (whence X

j
=1=2 contains exactly one

member of every pair A;Ac 2 X=1=2).

To show this, note �rst that X=1=2 has of course a subset Y such that

p(A \ B) > 0 for all A;B 2 Y (e.g., Y = ;). Among all such subsets Y �
X=1=2, let X1

=1=2 a maximal one (with respect to set-inclusion), and let X
2
=1=2 :=

X=1=2nX1
=1=2. By de�nition, X

1
=1=2 and X

2
=1=2 form a partition of X=1=2. We

show that (i) and (ii) hold.

(i) Property (i) holds by de�nition for X1
=1=2, and holds for X

2
=1=2 too by

the following argument. Let A;B 2 X2
=1=2 and suppose for a contradiction
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that p(A \ B) = 0. By de�nition of X2
=1=2, there are A

0; B0 2 X1
=1=2 such that

p(A \ A0) = 0 and p(B \ B0) = 0. In particular, p(A \ C) = p(B \ C) = 0

for C := A0 \B0. Since the intersection of any two of the sets A;B;C has zero
p-probability, we have

p(A) + p(B) + p(C) = p(A [B [ C) � 1,

as p is a probability measure. This is a contradiction, since p(A) = p(B) = 1=2

and p(C) = p(A0 \B0) > 0 (the latter as (i) holds for X1
=1=2).

(ii) Suppose for a contradiction that some Xj
=1=2 [ X>1=2 is inconsistent.

Then (as X and hence Xj
=1=2 [X>1=2 is �nite) there is a minimal inconsistent

subset Y � Xj
=1=2 [X>1=2. As X is moreover simple, jY j � 2, say Y = fA;Bg.

As A \B = ; and p is a probability measure, we have

p(A) + p(B) = p(A [B) � 1.

So, as p(A); p(B) � 1=2, it must be that p(A) = p(B) = 1=2, i.e., that A;B 2
Xj
=1=2. Hence, by (i), p(A \B) > 0, a contradiction since A \B = ;.

Claim 2. \C2X1
=1=2

[X>1=2C and \C2X2
=1=2

[X>1=2C are atoms of the �-algebra

�, i.e., (�-)minimal elements of �nf;g (they are the same atoms if and only if
X=1=2 = ;, i.e., if and only if X1

=1=2 = X
2
=1=2 = ;).

To show this, �rst write X as X = fC0j ; C1j : j = 1; :::; Jg, where J = jXj=2
and where each pair C0j ; C

1
j consists of an event and its complement. We may

write � as the set of all unions of intersections of the form Ck11 \ ::: \ CkJJ , i.e.,
as

� = f[(k1;:::;kJ )2K(Ck11 \ ::: \ C
kJ
J ) : K � f0; 1gJg: (8)

Recalling that � is the �-algebra generated by X, the inclusion ���in (8) is
obvious, and the inclusion ���holds because the right hand side of (8) includes
X (as any Ckj 2 X can be written as the union of all intersections Ck11 \
::: \ CkJJ for which kj = k) and is a �-algebra (as it is closed under taking

unions and complements: just take the unions respectively complements of he

corresponding sets K � f0; 1gJ).

From (8) and the pairwise disjointness of the intersections of the form Ck11 \
:::\CkJJ , it is clear that every consistent such intersection is an atom of �. Now
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\C2Xj
=1=2

[X>1=2C is (for j 2 f0; 1g) precisely such a consistent intersections.
Indeed, \C2Xj

=1=2
[X>1=2C is consistent by claim 1, and contains a member of each

pairA;Ac inX, if p(A) = p(Ac) = 1=2 by claim 1 and if p(A) 6= p(Ac) since there
then is a B 2 fA;Acg with p(B) > 1=2, i.e., with B 2 X>1=2 � Xj

=1=2 [X>1=2.

This proves claim 2.

We are now in a position to de�ne the function PP1;:::;Pn on �. Since

\C2X1
=1=2

[X>1=2C and \C2X2
=1=2

[X>1=2C are non-empty by claim 1, there exist

worlds !1 2 \C2X1
=1=2

[X>1=2C and !
2 2 \C2X2

=1=2
[X>1=2C, where we assume that

!1 = !2 if X=1=2 = ;, i.e., if \C2X1
=1=2

[X>1=2C = \C2X2
=1=2

[X>1=2C = \C2X>1=2C.
(Our notation for worlds again suppresses P1; :::; Pn.) Let �!1 and �!2 be the

corresponding Dirac measures on �, given for all A 2 � by �!j(A) = 1 if !j 2 A
and �!j(A) = 0 if !j =2 A. We de�ne

PP1;:::;Pn :=
1

2
�!1 +

1

2
�!2,

where !1; !2 of course depend on P1; :::; Pn. (So PP1;:::;Pn(A) is either 1 or 1/2

or 0, depending on whether A 2 � contains both, exactly one, or none of !1

and !2; further, PP1;:::;Pn = �! if !
1 = !2 = !, i.e., if X=1=2 = ;.)

As PP1;:::;Pn is a convex combination of probability measures, PP1;:::;Pn is

indeed a probability measure. The proof is completed by showing that the so-

de�ned pooling function (P1; :::; Pn) 7! PP1;:::;Pn has the desired properties, as

shown in the next two claims.

Independence. We show that the pooling function is neutral (hence inde-

pendent) with the pooling criterion D given in (7). To do so, consider any

P1; :::; Pn 2 P and any A 2 X, and write (t1; :::; tn) := (P1(A); :::; Pn(A)). We
have to show that PP1;:::;Pn(A) = D(t1; :::; tn). To do this, we consider three

cases, and use p; X>1=2; X1
=1=2; X

2
=1=2; !

1; !2 as de�ned above.

Case 1. p(A) = Dlin(t1; :::; tn) < 1=2. Then D(t1; :::; tn) = 0. So we must

prove that PP1;:::;Pn(A) = 0, i.e., that A contains neither !1 nor !2. Assume

for a contradiction that !1 2 A (the proof is analogous if we instead assume

!2 2 A). Then A includes the set \C2X1
=1=2

[X>1=2C, as this set contains !
1

and is (by claim 2) an atom of �. So Ac \ [\C2X1
=1=2

[X>1=2C] = ;. Hence the
set fAcg [X1

=1=2 [X>1=2 is inconsistent, so has a minimal inconsistent subset
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Y . Since X is simple, jY j � 2. Y does not contain ;, as Ac is non-empty
(by p(Ac) = 1� p(A) > 1=2) and as all B 2 X1

=1=2 [X>1=2 are non-empty (by

p(B) � 1=2). So jY j = 2. Moreover, Y is not a subset ofX1
=1=2[X>1=2, since this

set is consistent by claim 1. Hence Y = fAc; Bg for some B 2 X1
=1=2 [X>1=2.

As Ac \ B = ; and as p(Ac) = 1 � p(A) > 1=2 and p(B) � 1=2, we have

p(Ac [B) = p(Ac) + p(B) > 1=2 + 1=2 = 1, a contradiction.

Case 2. p(A) = Dlin(t1; :::; tn) > 1=2. Then D(t1; :::; tn) = 1. Hence we must

prove that PP1;:::;Pn(A) = 1, or equivalently that PP1;:::;Pn(A
c) = 0. The latter

follows from case 1 as applied to Ac, since p(Ac) = 1� p(A) < 1=2.

Case 3. p(A) = Dlin(t1; :::; tn) = 1=2. Then D(t1; :::; tn) = 1=2. So we must

prove that PP1;:::;Pn(A) = 1=2, i.e., that A contains exactly one of !1 and !2.

As p(A) = 1=2, exactly one of X1
=1=2 and X

2
=1=2 contains A and the other one

contains Ac, by claim 1. Say A 2 X1
=1=2 and A

c 2 X2
=1=2 (the proof is analogous

if instead A 2 X2
=1=2 and A

c 2 X1
=1=2). So A � \C2X1

=1=2
[X>1=2C, and hence

!1 2 A. On the other hand, !2 =2 A, because A is disjoint with Ac, hence with
its subset \C2X2

=1=2
[X>1=2C, which contains !

2.

Non-linearity. As X 6= f;;
g, there is a contingent event A 2 X, hence
a probability measure P 2 P with t := P (A) =2 f0; 1=2; 1g. Now assume all
individuals submit this P . If the pooling function were linear, the collective

probability of A would again be t (=2 f0; 1=2; 1g), a contradiction since the
collective probability is given by D(t; :::; t) (2 f0; 1=2; 1g), as just shown.

Implication-preservation. We assume that A;B 2 X and P1; :::; Pn 2 P
such that Pi(A [ B) = 1 for all i, and show that PP1;:::;Pn(A [ B) = 1, which

by proposition 1 establishes implication-preservation. For all i we have Pi(A)+

Pi(B) � Pi(A [ B) = 1, and hence P (Ai) � 1 � Pi(B) = Pi(B
c). So, as

Dlin : [0; 1]n ! [0; 1] takes a linear form with non-negative coe¢ cients and

hence is weakly increasing in every component,

Dlin(P1(A); :::; Pn(A)) � Dlin(1� P1(B); :::; Pn(B))

= 1�Dlin(P1(B); :::; Pn(B)).

Hence, with p as de�ned earlier, p(A) � 1 � p(B), i.e., p(A) + p(B) � 1. We

distinguish three cases:
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Case 1. p(A) > 1=2. Then, by the independence proof above, PP1;:::;Pn(A) =

1. So PP1;:::;Pn(A [B) = 1, as desired.

Case 2. p(B) > 1=2. Then, by the independence proof above, PP1;:::;Pn(B) =

1. So again PP1;:::;Pn(A [B) = 1, as desired.

Case 3. p(A); p(B) � 1=2. Then, as p(A) + p(B) � 1, we have p(A) =

p(B) = 1=2. Let X>1=2; X
1
=1=2; X

2
=1=2; !

1; !2 be as de�ned above. Then A;B 2
X1
=1=2 [X2

=1=2. It cannot be that A and B are both in X
1
=1=2: otherwise A

c and

Bc are both in X2
=1=2 by claim 2, whence p(Ac \ Bc) > 0 (again by claim 2), a

contradiction since

p(Ac \Bc) = p((A [B)c) = 1� p(A [B) = 1� 1 = 0.

Analogously, it cannot be that A and B are both in X2
=1=2. So one of A and B

is in X1
=1=2 and the other one in X

2
=1=2; say A 2 X1

=1=2 and B 2 X2
=1=2 (the proof

is analogous otherwise). So A � \C2X1
=1=2

[X>1=2C and B � \C2X2
=1=2

[X>1=2C,

and hence !1 2 A and !2 2 B. So A [ B contains both !1 and !2, whence

PP1;:::;Pn(A [B) = 1, as desired. �
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