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Objectives of Asymptotic Theory

While exact results are available for, say, the distribution of the classical least squares estimator

for the normal linear regression model, and for other leading special combinations of distributions and

statistics, generally distributional results are unavailable when statistics are nonlinear in the underlying

data and/or when the joint distribution of those data is not parametrically specified. Fortunately, most

statistics of interest can be shown to be smooth functions of sample averages of some observable random

variables, in which case, under fairly general conditions, their distributions can be approximated by a

normal distribution, usually with a covariance matrix that shrinks to zero as the number of random variables

in the averages increases. Thus, as the sample size increases, the gap between the true distribution of the

statistic and its approximating distribution asymptotes to zero, motivating the term asymptotic theory.

There are two main steps in the approximation of the distribution of a statistic by a normal distribution.

The first step is the demonstration that a sample average converges (in an appropriate sense) to its

expectation, and that a standardized version of the statistic has distribution function that converges to a

standard normal. Such results are called limit theorems — the former (approximation of a sample average by

its expectations) is called a law of large numbers (abbreviated “LLN”), and the second (approximation of

the distribution of a standardized sample average by a standard normal distribution) is known as a central

limit theorem (abbreviated “CLT”). There are a number of LLNs and CLTs in the statistics literature,

which impose different combinations of restrictions on the number of moments of the variables being

averaged and the dependence between them; some basic versions are given below.

The second step in deriving a normal approximation of the distribution of a smooth function of sample

averages is demonstration that this smooth function is approximately a linear function of sample averages

(which is itself a sample average). Useful results for this step, which use the usual calculus approximation

of smooth (differentiable) functions by normal functions, are grouped under the heading Slutsky theorems,

after the author of one of the particularly useful results. So, as long as the conditions of the limit theorems

and Slutsky theorems apply, smooth functions of sample averages are approximately sample averages
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themselves, and thus their distribution functions are approximately normal. The whole apparatus of

asymptotic theory is made up of the regularity conditions for applicability of the limit and Slutsky theorems,

along with the rules for mathematical manipulation of the approximating objects.

In order to discuss approximation of a statistic by a constant, or its distribution by a normal distribution,

we first have to extend the usual definitions of limits of deterministic sequences to accomodate sequences

of random variables (yielding the concept of “convergence in probability”) or their distribution functions

(“convergence in distribution”).

Convergence in Distribution and Probability

For most applications of asymptotic theory to statistical problems, the objects of interest are

sequences of random vectors (or matrices), say XN or YN , which are generally statistics indexed by the

sample size N ; the object is to find simple approximations for the distribution functions of XN or YN

which can be made arbitrarily close to their true distribution functions for N large enough. Writing the

cumulative distribution function of XN as

FN (x) ≡ Pr{XN ≤ x}

(where the argument x has the same dimension as XN and the inequality holds only if it is true for

each component), we define convergence in distribution (sometimes called convergence in law) in terms of

convergence of the function FN (x) to some fixed distribution function F (x) for any point x where the F

is continuous. That is, the random vector XN converges in distribution to X, denoted

XN
d→ X as N→∞,

if

lim
N→∞

FN(x) = F (x)

at all points x where F (x) is continuous.

A few comments on this definition and its implications are warranted:

1. The “limiting” random vector X in this definition is really just a placeholder for the distribution

function F (x); there needs be no “real” random vector X which has the limiting distribution func-

tion. In fact, it is often customary to replace X with the limiting distribution function F (x) in the
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definition, i.e., to write

XN
d→ F (x) as N→∞;

if, say, F (x) is a multivariate standard normal, then we would write

XN
d→ N(0, I),

where the condition “N →∞” is usually not stated, but implied.

2. If XN
d→ F (x), then we can use the c.d.f. F (x) to approximate probabilies for XN if N is large, i.e.,

Pr{XN ∈ A} A
=

Z
A
dF (x),

where the symbol “A=” means that the difference in the left- and right-hand sides goes to zero as N

increases.

3. We would like to construct statistics so that their limiting distributions are of convenient (tabulated)

form, e.g., normal or chi-squared distribution. This often involves standardizing the statistics by

subtracting off their expectations and dividing by their standard deviations (or the matrix equivalent).

4. If limN→∞ FN(x) is discontinuous, it may not be a distribution function, which is why the qualification

“at all points where F (x) is continuous” has to be appended to the definition of convergence in

distribution. To make this more concrete, suppose

XN ∼ N
µ
0,
1

N

¶
,

so that

FN (x) = Φ
³√

Nx
´

→

⎧⎨⎩
0 if x < 0
1
2 if x = 0
1 if x > 0

.

Obviously here limN→∞ FN(x) is not right-continuous, so we would never use it to approximate

probabilities for XN (since it isn’t a c.d.f.). Instead, a reasonable approximating function for FN (x)

would be

F (x) ≡ 1{x ≥ 0}.
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where “1{A}” is the indicator function of the statement A, i.e., it equals one if A is true and is zero

otherwise. The function F (x) is the c.d.f. of a degenerate random variable X which equals zero with

probability one, which is a pretty good approximation for FN(x) when N is large for this problem.

The last example — convergence of the c.d.f. FN(x) to the c.d.f. of a degenerate (“nonrandom”)

random variable — is a special case of the other key convergence concept for asymptotic theory, convergence

in probability. Following Ruud’s text, we define convergence in probability of the sequence of random

vectors XN to the (nonrandom) vector x, denoted

plim
N→∞

XN = x

or

XN
p→ x as N→∞

if

XN
d→ x,

i.e.,

FN (x)→ 1{0 ≤ x}

whenever all components of x are nonzero. (The symbol “plim” stands for the term “probabilty limit”.)

We can generalize this definition of convergence in probability of XN to a constant x to permit XN to

converge in probability to a nondegenerate random vector X by specifying that

XN
p→ X

means that

XN −X d→ 0.

An equivalent definition of convergence in probability, which is the definition usually seen in textbooks,

is that

XN
p→ x

if, for any number ε > 0,

Pr{||XN − x|| >ε}→ 0
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as N →∞. Thus, XN converges in probability to x if all the probability mass for XN eventually ends up

in an ε-neighborhood of x, no matter how small ε is. Showing the equivalence of these two definitions of

probability limit is a routine exercise in probability theory and real analysis.

A stronger form of convergence of XN to x, which can often be used to show convergence in probability,

is quadratic mean convergence. We say

Xn
qm→ x

as N →∞ if

E[||XN − x||2]→ 0.

If this condition can be shown, then it follows that XN converges in probability to x because of

Markov’s Inequality: If Z is a nonnegative (scalar) random variable, i.e., Pr{Z ≤ 0} = 1, then

Pr{Z > K} ≤ E(Z)

K

for any K > 0.

The proof of this inequality is worth remembering; it is based upon a decomposition of E(Z) (which

may be infinite) as

E(Z) ≡
Z ∞

0
zdFZ(z)

=

Z K

0
zdFZ(z) +

Z ∞

K
(z −K)dFZ(z) +

Z ∞

K
KdFZ(z).

Since the first two terms in this sum are nonnegative, it follows that

E(Z) ≥
Z ∞

K
KdFZ(z) = K · Pr{Z > K},

from which Markov’s inequality immediately follows. A better-known variant of this inequality, Tchebysh-

eff ’s Inequality, takes Z = (X − E(X))2 for a scalar random variable X (with finite second moment) and

K = ε2 for any ε > 0, from which it follows that

Pr{|X −E(X)| > ε} = Pr{(X −E(X))2 > ε2} ≤ V ar(X)

ε2
,

since V ar(X) = E(Z) for this example. A similar consequence of Markov’s inequality is that convergence

in quadratic mean implies convergence in probability: if

E[||XN − x||2]→ 0,
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then

Pr{||XN − x|| >ε} ≤
E[||XN − x||2]

ε2
→ 0

for any ε > 0.

There is another, stronger version of convergence of a random variable to a limit, known as almost sure

convergence (or convergence almost everywhere or convergence with probability one), which is denoted

XN
a.s.→ x.

Rather than give the detailed definition of this form of convergence — which is best left to a more advanced

course — it is worth pointing out that it is indeed stronger than convergence in probability (which is

sometimes called weak convergence for that reason), but that, for the usual purposes of asymptotic theory,

the weaker concept is sufficient.

Limit Theorems

With the concepts of convergence in probability and distribution, we can more precisely state how a

sample average is approximately equal to its expectation, or how its standardized version is approximately

normal. The first result, on convergence in probability, is

Weak Law of Large Numbers (WLLN): If X̄N ≡ 1
N

PN
i=1Xi is a sample average of scalar, i.i.d. random

variables {Xi}Ni=1 which have E(Xi) = μ and V ar(Xi) = σ2 finite, then

X̄N
p→ μ = E(Xi).

Proof: By the usual calculations for means and variances of sums of i.i.d. random variables, E(X̄N ) = μ,

V ar(X̄N) =
σ2

N = E(X̄N − μ)2, which tends to zero as N →∞. By definition, X̄N tends to μ in quadratic

mean, and thus in probability.

Inspection of the proof of the WLLN suggests a more general result for averages of random variables

that are not i.i.d. — namely, that

X̄N −E(X̄N )
p→ 0

if
1

N2

NX
i=1

NX
j=1

Cov(Xi,Xj)→ 0.
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This general condition can be specialized to yield other LLNs for heterogeneous (non-constant variances)

or dependent (nonzero covariances) data. Other laws of large numbers exist which relax conditions on the

existence of second moments, and which show almost sure convergence (and are known as “strong laws of

large numbers”).

The next main result, on approximate normality of sample averages, again applies to i.i.d. data:

Central Limit Theorem (Lindeberg-Levy): If X̄N ≡ 1
N

PN
i=1Xi is a sample average of scalar, i.i.d.

random variables {Xi}Ni=1 which have E(Xi) = μ and V ar(Xi) = σ2 finite, then

ZN ≡ X̄N −E(X̄N )p
V ar(X̄N)

=
√
N

µ
X̄N − μ

σ

¶
d→ N(0, 1).

The proof of this result is a bit more involved, requiring manipulation of characteristic functions, and

will not be presented here. The result of this CLT is often rewritten as

√
N(X̄N − μ)

d→ N(0, σ2),

which points out that X̄N converges to its mean μ at exactly the rate
√
N increases, so that the product

eventually “balances out” to yield a random variable with a normal distribution. Another way to rewrite

the consequence of the CLT is

X̄N
A∼ N

µ
μ,

σ2

N

¶
,

where the symbol “A∼” means “is approximately distributed as” (or “is asymptotically distributed as”). It

is very important here to make the distinction between the limiting distribution of the standardized mean

ZN , which is a standard normal, and the asymptotic distribution of the (non-standardized) sample mean

X̄N , which is actually a sequence of approximating normal distributions with variances that shrink to zero

at speed 1/N. In short, a “limiting distribution” cannot depend upon N, which has passed to its (infinite)

limit, while an “asymptotic distribution” can involve the sample size N.

Like the Weak Law of Large Numbers, the Lindeberg-Levy Central Limit Theorem admits a number of

different generalizations (often named after their authors) which relax the assumption of i.i.d. data while
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imposing various stronger restrictions on the existence of moments or the tail behavior of the true data

distributions.

To this point, the WLLN and CLT apply only to scalar random variables {Xi}; to extend them to

random vectors {Xi}, we can use the intriguingly-named Cramér-Wald device, which is really a theorem

that states that if the scalar random variable

YN ≡ λ0XN

converges in distribution to

Y ≡ λ0X

for any fixed vector λ having the same dimension as XN — that is, if

λ0XN
d→ λ0X

for any λ — then the vector XN converges in distribution to X,

XN
d→ X.

This result immediately yields a multivariate version of the Lindeberg-Levy CLT: a sample mean X̄N of

i.i.d. random vectors {Xi} with E(Xi) = μ and V (Xi) = Σ has

√
N(X̄N −μ) d→ N (0,Σ) .

And, since convergence in probability is a special case of convergence in distribution, the Cramér-Wald

device also immediately yields a multivariate version of the WLLN.

Slutsky Theorems

To extend the limit theorems for sample averages to statistics which are functions of sample aver-

ages, asymptotic theory uses smoothness properties of those functions (i.e., continuity and differentiability)

to approximate those functions by polynomials, usually constant or linear functions. The simplest of these

approximation results is the continuity theorem, which states that probability limits share an important

property of ordinary limits — namely, the probability limit of a continuous function is the value of that

function evaluated at the probability limit:
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Continuity Theorem: If XN
p→ x0and the function g(x) is continous at x = x0, then g(XN)

p→ g(x0).

Proof: For any ε > 0, continuity of the function g(x) at x0 implies that there is some δ > 0 so that

||XN − x0|| ≤ δ implies that ||g(XN)− g(x0)|| ≤ ε. Thus

Pr{||g(XN )− g(x0)|| ≤ ε} ≥ Pr{||XN − x0|| ≤ δ}.

But the probability on the right-hand side converges to one because XN
p→ x0, so the probability on the

left-hand side does, too.

With the continuity theorem, it should be clear that probability limits are more conveniently manipu-

lated than, say, mathematical expectations, since, for example, if

θ̂ ≡ ȲN
X̄N

is an estimator of the ratio of the means of Yi and Xi,

θ0 ≡
E(Yi)

E(Xi)
≡ μY

μX
,

then θ̂N
p→ θ0 as long as μX 6= 0, even though E(θ̂N ) 6= θ0 in general.

Another key approximation result is Slutsky’s Theorem, which states that the sum (or product) of a

random vector that converges in probability and another that converges in distribution itself converges in

distribution:

Slutsky’s Theorem: If the random vectors XN and YN have the same length, and if XN
p→ x0 and

YN
d→ Y, then XN +YN

d→ x0 +Y and X0NYN
d→ x00Y.

The typical application of Slutsky’s theorem is to estimators that can be represented in terms of a

linear approximation involving some statistics that converge either in probability or distribution. To be

more concrete, suppose the (scalar) estimator θ̂N can be decomposed as

√
N(θ̂N − θ0) = X

0
NYN + ZN ,

where

XN
p→ x0,

YN
d→ N(0,Σ), and

ZN
p→ 0.
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This decomposition is often obtained by a first-order Taylor’s series expansion of θ̂N , and the components

XN , YN , and ZN are sample averages to which a LLN or CLT can be applied; an example is the so-called

“delta method” discussed below. Under these conditions, Slutsky’s theorem implies that

√
N(θ̂N − θ0)

d→ N(0,x00Σx0).

Both the continuity theorem and Slutsky’s theorem are special cases of the continuous mapping theorem,

which says that convergence in distribution, like convergence in probability, interchanges with continuous

functions, as long as they are continuous everywhere:

Continuous Mapping Theorem: If XN
d→ X and the function g(x) is continous for all x, then g(XN )

d→

g(X).

The continuity requirement for g(x) can be relaxed to hold only on the support of X if needed. The

continuous mapping theorem can be used to get approximations for the distributions of test statistics based

upon asymptotically-normal estimators; for example, if

ZN ≡
√
N(θ̂N − θ0)

d→ N (0,Σ) ,

then

T ≡ Z0NZN = N(θ̂N − θ0)0(θ̂N − θ0)
d→ χ2p,

where p ≡ dim{θ̂N}.

The final approximation result discussed here, which is an application of Slutsky’s theorem, is the

so-called “delta method”, which states that continuously-differentiable functions of asymptotically-normal

statistics are themselves asymptotically normal:

The “Delta Method”: If θ̂N is a random vector which is asymptotically normal, with

√
N(θ̂N − θ0) d→ N (0,Σ)

for some θ0, and if g(θ) is continuously differentiable at θ = θ0 with Jacobian matrix

G0 ≡
∂g(θ0)

∂θ0
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that has full row rank, then
√
N(g(θ̂N)− g(θ0))

d→ N
¡
0,G0ΣG

0
0

¢
.

Proof: First suppose that g(θ) is scalar-valued. Since θ̂N converges in probability to θ0 (by Slutsky’s

Theorem), and since ∂g(θ)/∂θ0 is continuous at θ0, the Mean Value Theorem of differential calculus implies

that,

g(θ̂N) = g(θ0) +
∂g(θ∗N )

∂θ0
· (θ̂N − θ0),

for some value of θ∗N between θ̂N and θ0 (with arbitrarily high probability). Since θ̂N
p→ θ0, it follows

that θ∗N
p→ θ0, so

∂g(θ∗N )

∂θ0
→G0 ≡

∂g(θ0)

∂θ0
.

Thus, by Slutsky’s Theorem,

√
N(g(θ̂N )− g(θ0)) =

∂g(θ∗N)

∂θ0
.
√
N(θ̂N − θ0)

d→ G0 ·N(0,Σ)

= N(0,G0ΣG
0
0).

To extend this argument to the case where g(θ̂N ) is vector-valued, use the same argument to show that

any (scalar) linear combination λ0g(θ̂) has the asymptotic distribution

√
N(λ0g(θ̂N)− λ0g(θ0)) d→ N(0,λ0G0ΣG

0
0λ),

from which the result follows from the Cramér-Wald device.
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