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Abstract: We consider common value auctions when individuals have ambiguity over the

joint information structures generating the signals for players. This implies that ambiguity

interacts with strategic e¤ects as individuals condition their behaviour on their opponent�s

equilibrium bid and hence their signal. We show that compared to the canonical model,

both in the �rst-price and second-price auctions, low types underbid and high types

sometimes overbid. Therefore, the winner�s curse is mitigated for low types and potentially

exacerbated for high types. We also show that these results di¤er from a model with

�standard�ambiguity about the prior over the state. Finally, we characterize the optimal

auction and show that the optimal revenue decreases with this type of ambiguity. A novel

feature that arises in the optimal mechanism is that the seller only partially insures the

high type against ambiguity.

1 Introduction

In auctions as in many other strategic situations, individuals often have a good under-

standing of their own private information but they might know less about others�infor-

mation sources. For example, they might worry that they do not understand well the cor-

relation between their own information and that of other players they are engaged with.

Common-value auctions are typically analyzed under the assumption of conditionally-

independent private information, with the bidders aware of this fact. However, bidders

may believe that their information sources might be correlated, as would be the case when

there are common factors generating their private signals.2 In auctions, bidders condition

their valuation on the event of winning, and therefore have to consider the endogenous

1This project has received funding from the European Union�s Horizon 2020 research and innovation

programme under grant agreement No SEC-C413.
2We therefore consider sophisticated individuals who entertain the possibility that such correlation

might exist. Recent literature has also looked at the opposite possibility, that information sources may be

correlated and naive individuals may not be aware of this. See Ortoleva and Snowberg (2015), Glaeser and

Sunstein (2009) and Levy and Razin (2015a, 2015b), Eyster and Weizsacker (2011), Kallir and Sonsino

(2009) and Enke and Zimmermann (2013).
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information they learn about others�signals. In this sense it is important to analyze how

individuals behave when they are uncertain about the relation between theirs and others�

information.

In this paper we analyze common-value auctions when individuals have ambiguity over

the joint information structures generating signals for the auction participants. Speci�-

cally, we assume that individuals know the marginal information structure of each bidder

but they may believe that their information sources are correlated to a degree, and have

ambiguity over the possible correlation scenarios.

To model the ambiguity over the joint information structure, we follow Levy and Razin

(2017) and use a single parameter, a; to bound the degree of pointwise mutual information

of the information structures. This formulation allows us to analyse a range of levels of

ambiguity and to get arbitrarily close to the canonical model.

Speci�cally, consider two individuals, 1 and 2, each receiving a signal, s and s0; respec-

tively. Let q(s; s0j!) denote a joint probability of the signals conditional on a state !; and
q1(sj!) and q2(s0j!) denote the marginal probabilities of s and s0 conditional on !: The
(exponential) pointwise mutual information (PMI) is de�ned in the Information Theory

literature as q(s;s0j!)
q1(sj!)q2(s0j!) :

3 We assume that individuals�ambiguity is over the set of joint

information structures satisfying 1
a
� q(s;s0j!)

q1(sj!)q2(s0j!) � a for some �nite parameter a � 1:
4

The higher is a; the larger is the set of correlation scenarios considered. When a = 1 we

are back to the standard model with conditionally independent signals and no ambiguity.

We analyze a simple model with two possible valuations and two signals (the model is

extended to continuous signals in Section 5). When an individual receives a signal and

contemplates what strategy to play, she takes into consideration the scenarios in which

she wins and considers all feasible information structures with PMIs that are bounded by

a for any state and vector of signals. We assume that individuals have ambiguity aversion

and that they consider the worst-case scenario when comparing possible actions (as in

Gilboa and Schmeidler 1989).

We analyze the equilibria in the second-price and �rst-price auctions. In the model,

ambiguity over information structures is exogenous but ambiguity over the state of the

world is endogenous, and depends on the strategic interaction. For this reason, ambiguity

aversion does not simply imply that individuals lower their bids. Indeed our key result is

that low types underbid and high types may overbid as compared to the standard model.

Therefore, the winner�s curse is mitigated for the low type and is sometimes exacerbated

3See Church and Hanks (1991).
4Levy and Razin (2017) show that this restriction provides a meaningful way to constrain the set

of ambiguous beliefs, and speci�cally, that the higher the �correlation capacity� a, the greater is the

ambiguity over the state of the world faced by the individual.
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for the high type.

The above result is due to the interaction of ambiguity over correlation structures with

strategic reasoning. In equilibrium, the low type�s worst-case scenario is that the value is

the lowest possible when both players have received low signals (which is the only case in

which she can win). The high type sometimes minimizes her utility by believing that the

value is the highest possible when both players have received high signals, inducing her

to bid higher.

In contrast, if one considers exogenous ambiguity about the state, such as standard

ambiguity over the prior, the results are di¤erent. We show that in this case all bids are

lower than in the canonical model. In addition, exogenous ambiguity implies that the

modeler can simply assume that individuals share a single worst-case belief to start with.

In contrast, as we saw above, when ambiguity is about correlation, di¤erent types use

di¤erent correlation scenarios to minimize their utilities.

Next we study the seller�s revenue. First we show that in the �rst and second price

auctions, the seller�s revenue is decreasing in the ambiguity about the information struc-

ture. Although bids increase for the high types, the overall e¤ect of ambiguity on the

seller is negative. We also show that the �rst-price auction yields a higher revenue to the

seller compared with the second-price auction. The intuition for this result stems from the

fact that in the second-price auction individuals condition their bids on more information

implying that the ambiguity is more pronounced.

We then turn to consider the optimal auction in the face of ambiguity over correlation

structures. We characterise the optimal mechanism in this environment assuming that the

true distribution of signals is independent. When a is small, in the optimal mechanism,

the good is always allocated to the player with the highest signal. As in the standard

model, the seller makes side bets with the low type. Since the high type is more likely to

win when the other player has received a low signal, she minimizes her utility by believing

that the other player is likely to have received a high signal in the good state. This

implies that the high type underestimates the probability of the other player receiving a

low signal. The seller exploits this by asking the high type to pay more when the other

player receives a low signal. As a result, the seller only partially insures the high type

against ambiguity.

When a is large and the signal is not very informative, the seller �nds it optimal to

fully insure the buyers against the ambiguity, so that the allocation of the good does not

depend on their signals. As a result, the high type earns positive rents in equilibrium.

Finally, we show that the seller�s revenue in the optimal mechanism is decreasing in the

amount of ambiguity, as we found in both the �rst and second price auctions.

Our paper is related to a recent literature on ambiguity and auctions. As far as we
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know, our paper is the �rst to analyse ambiguity in common-value auctions. For private-

value auctions, Salo and Weber (1995) show how ambiguity aversion translates to higher

bids as individuals underestimate their winning probabilities.5 Bose et al (2006) analyze

optimal auction mechanisms for private-value auctions with ambiguity over other bidders�

valuations. They show that the seller will fully insure the buyers against ambiguity. We

show that in some cases only partial insurance arises. Lo (1998) shows that the �rst-price

auction dominates the second-price auction in some environments. He uses a multiple

priors approach and shows that equilibrium bids are simply determined as if all players

hold the worst-case prior. In our analysis players with di¤erent signals use di¤erent beliefs.

Bose and Renou (2014) study how principals can use ambiguous mechanisms to imple-

ment social welfare functions that are not attainable under unambiguous mechanisms. In

particular, they construct ambiguous communication mechanisms between the agents and

a moderator resulting with agents updating to sets of beliefs. Finally, Bergemann, Brooks

and Morris (2015) consider private values auctions and study the set of achievable utilities

when considering, as modelers, the set of di¤erent feasible information structures. Our

analysis is di¤erent as in our approach it is the economic agents, rather than the modeler,

who span the possible information structures. In addition, we restrict the set of possible

information structures using the notion of pointwise mutual information. We show how

this shifts equilibrium behaviour in a non-trivial way.

2 The Model

Consider a common-value auction with two bidders (1 and 2), two possible common

valuations v 2 f0; 1g and a uniform prior. Each individual receives one of two signals: l

or h: In Section 5 we consider continuous information structures.

Let q(sjv) denote the marginal conditional probability of receiving signal s 2 fl; hg
given state v 2 f0; 1g. We assume that the (marginal) probability of receiving the signal l
in state 0; or the signal h in state 1; is q > 1

2
i.e., q(s = ljv = 0) = q(s = hjv = 1) = q:6 Let

q(s1; s2jv) denote the joint conditional probability of player 1 receiving signal s1 2 fl; hg
and player 2 receiving s2 2 fl; hg given state v 2 f0; 1g.
We assume that the true joint probability distribution, q(s1; s2jv); satis�es conditional

independence, so that q(s1; s2jv) = q(s1jv)q(s2jv). However, while individuals know the
true marginal probability distribution generating both their signals, they have ambiguity

over the set of joint information structures. Thus, individuals perceive the following family

5Chen et al (2007) show in experiments that bids are lower in the presence of ambiguity in �rst and

second-price auctions with independent private values.
6The analysis can be extended to non-symmetric marginal probability distributions.
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of information structures:7

Table 1: joint information structures

v = 0 l h

l �0 q � �0
h q � �0 1� 2q + �0

v = 1 l h

l �1 1� q � �1
h 1� q � �1 2q � 1 + �1

;

Under independence, �0 = q2 and �1 = (1� q)2: However, in our models �0 and �1 are
the parameters over which there is ambiguity, as we de�ne below.

Remark 1: No ambiguity absent strategic concerns: At the interim stage, having

received the signal s = l; and without conditioning on equilibrium behaviour, individual

i has a unique belief that the state of the world is 1, which equals (1� q): The knowledge
that the other player had received a signal as well is immaterial as given the marginal

distributions, the law of iterated expectations would imply the same belief for all joint

information structures considered. Thus, ambiguity over joint information structures does

not necessarily lead to a set of beliefs.8

To consider di¤erent levels of ambiguity, we use the notion of pointwise mutual infor-

mation. Speci�cally, we consider information structures which satisfy the following:

1

a
� q(s1; s2jv)
q(s1jw)q(s2jv)

� a; 8s = (s1; s2) 2 fl; hg2 and 8v 2 f0; 1g;

This formulation allows a simple one-parameter characterisation of the extent of ambi-

guity. When a = 1; only information structures which are conditionally independent are

considered. Note that for general a, the ePMI constraints imply:

�0(a) � �0 � �0(a)
�1(a) � �1 � �1(a)

7The table describes an information structure so for each state, all cell entries are non-negative and

all entries sum up to one.
8This is related to the dilation principle explored in Seidenfeld and Wasserman (1993), where more

information can create ambiguity.
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where:

�0(a) =
1

a
(1� q)2 + 2q � 1

�1(a) =
1

a
(1� q)2

�0(a) =

8<:a(1� q)2 + 2q � 1 a � q
1�q

q � 1
a
q(1� q) a > q

1�q

�1(a) =

8<:a(1� q)2 a � q
1�q

1� q � 1
a
q(1� q) a > q

1�q

It is easy to see that the higher is a; the larger is the set of possible information

structures that are considered by bidders. Still, when no confusion occurs, we will omit

the dependence of �0, �0, �1, and �1 on a.

The ambiguity over joint information structures will play an important role in common-

value auctions as a player conditions her valuation on the event in which she wins. This

reveals endogenous information about the other�s signal and thus about the state of the

world. Thus, ambiguity about the state of the world arises here endogenously as it would

depend on equilibrium behaviour. Moreover, the probability of this event (of winning)

also depends on the joint distribution of signals.

An equilibrium is denoted by a pair of bidding strategies for the two players, (b1(s1); b2(s2));

and a symmetric equilibrium has b1(:) = b2(:) � b(:): We consider max-min behaviour.

Speci�cally, in equilibrium, given an observed signal, a bidding strategy maximizes the

utility of the individual under the worst-case information structure.

For the remainder of this section we provide theoretical background on pointwise mutual

information as a measure of correlation. The analysis continues in Section 3.

Pointwise mutual information: Let f(x1; x2) be a joint probability distribution
of random variables ~x1; ~x2; with marginal distributions fi(:): The pointwise mutual in-

formation (PMI) at (x1; x2) is ln[
f(x1;x2)

f1(x1)f2(x2)
]. PMI was suggested by Church and Hanks

(1991) and is used in information theory and text categorization or coding, to understand

how much information one word or symbol provides about the other, or to measure the

co-occurrence of words or symbols. It can also be written as

ln[
f(x1; x2)

f1(x1)f2(x2)
] = h(x1)� h(x1jx2)

where h(x1) = � log2 Pr(X1 = x1) is the self information (entropy) of x1 and h(x1jx2) is
the conditional information.

Summing over the PMIs, we can derive the well known measure of mutual information,

MI(X1; X2) =
P

x12X1
P

x22X2 f(x1; x2) ln[
f(x1;x2)

f1(x1)f2(x2)
] = H(X1) � H(X1jX2); which can
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be shown to be always non-negative as it equals the amount of uncertainty about X1

which is removed by knowing X2: We can also express mutual information by using the

de�nition of Kullback-Leibler divergence between the joint distribution and the product

of the marginals:

MI(X1; X2) = DKL(f(x1; x2)jf1(x1)f2(x2));

and it can therefore capture how far from independence individuals believe their infor-

mation structures are. For our purposes, the local concept of the PMI is a more suitable

concept than the MI, as we are looking at ex-post rationalisations given some set of

signals.9

The concept of the PMI is closely related to standard measures of correlation and specif-

ically it implies a bound on the concordance between information structures. The most

common measure of concordance is Spearman�s rank correlation coe¢ cient or Spearman�s

�, a nonparametric measure of statistical dependence between two variables. It assesses

how well the relationship between the variables can be described using a monotonic func-

tion. A perfect Spearman correlation of +1 or -1 occurs when each of the variables is a

perfect monotonic function of the other. In Levy and Razin (2017) we show that there is a

0 < �� < 1 such that any joint information structure with bounded PMIs has a Spearman�s

� in [���; ��]. As can be seen above, we simply use the ePMI, the exponent of the PMI,
i.e., f(x1;x2)

f1(x1)f2(x2)
.

Note that a joint information structure which satis�es independence would have a = 1

at any point; whenever a joint information structure does not satisfy independence then

the ePMI is less than 1 for some (s1; s2; v); and is greater than 1 for some (s01; s
0
2; v

0),

which implies that perceiving the ePMI at 1 is always in the set around which ambiguity

is constructed.10

3 Second-price auction

We analyze the equilibria for the second-price auction. The results for the �rst-price

auction are similar (see Section 4).

As standard in the second-price auction, bids will equal the expected valuation, condi-

tional on both players receiving the same signal. But given the ambiguity about informa-

tion structures, this means that di¤erent types might use di¤erent information structures

9The PMI therefore does not distinguish between rare or frequent events.
10It is impossible to consider only priors/information structures with ePMI that is only higher (lower)

than 1.
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to compute this expectation. Given some information structure (�00; �
0
1); we have,

E�00;�01(vjl; l) =
�01

�01 + �
0
0

; E�00;�01(vjh; h) =
2q � 1 + �01
�01 + �

0
0

Recall that ��v; �v are the maximum and minimum values respectively of �v: We now

characterise the equilibria (for proof see Appendix):

Proposition 1. The unique symmetric pure-strategy equilibrium satis�es:

1. The low type bids ba(l) = E(��0;�1)(vjl; l), a bid that decreases in a;

2. For all a � q
1�q ; there exist cuto¤s q; �q; with 0:5 < q < �q < 1; where:

(a) For q2(0:5; q); the high type bids ba(h) = E(�0;��1)(vjh; h), a bid that increases
with a.

(b) For q2(�q; 1); the high type bids ba(h) = E(��0;��1)(vjh; h); a bid that decreases
with a:

(c) For q2 (q; �q); the high type bids ba(h) = E(�0;��1)(vjh; h) for some �0 satisfying
E(�0;��1)(vjh; h) = 2E(��0;�1)(vjl; l); a bid that decreases with a:

3. For all a � �a(q) � q
1�q ; the high type bids ba(h) = E(��0;��1)(vjh; h):

11

Remember that when a = 1 the model becomes the standard model with no ambiguity.

Therefore, the Proposition implies that compared to the standard model the ambiguity

about correlation induces the low type to underbid and the high type to sometimes over-

bid. In other words, ambiguity over information structures a¤ects the distribution of bids

in a non-trivial way.

To see how the result is derived, consider the low type. Her expected utility when

b = ba(l) is

min
(�0;�1)

1

2
Pr(ljl; (�0; �1))(E(�0;�1)(vjl; l)� ba(l));

where

Pr(ljl; (�0; �1)) = �0 + �1

and thus Pr(ljl; (�0; �1))(E(�0;�1)(vjl; l) � ba(l)) = �1(1 � ba(l)) � �0ba(l); which implies
that what minimizes utility is (��0; �1): As E�00;�01(vjl; l) =

�01
�01+�

0
0
; this belief minimizes the

valuation of the good conditional on both players receiving low signals, the only event in

11When q is not too small, �a(q) = q
1�q : When q is su¢ ciently close to 0.5, �a(q) >

q
1�q and symmetric

pure-strategy equilibria may not exist in the region [ q
1�q ; �a(q)].
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which she can win the good. Note that as the bid of the low type is lower compared with

the canonical case, her expected utility (computed for the true information structure) will

be higher.

Consider now the high type. Her expected utility when b = ba(h) is

min
(�0;�1)

Pr(ljh; (�0; �1))(E(�0;�1)(vjl; h)� ba(l)) +

(1=2) Pr(hjh; (�0; �1))(E(�0;�1)(vjh; h)� ba(h)):

Note that:

Pr(ljh; (�0; �1))E(�0;�1)(vjl; h) = 1� q � �1
1

2
Pr(hjh; (�0; �1))E(�0;�1)(vjh; h) =

1

2
(2q � 1 + �1)

and that

Pr(ljh; (�0; �1))ba(l) = (1� �1 � �0)ba(l);
1

2
Pr(hjh; (�0; �1))ba(h) =

1

2
(�1 + �0)ba(h):

Thus, increasing �0 has the e¤ect of increasing expected payment by
ba(h)
2
and decreasing

it by ba(l): For a that is not too high, when q is low enough, then
ba(h)
2
=

E(�0;��1)(vjh;h)
2

<

ba(l) = E(��0;�1)(vjl; l); which implies that the e¤ect of increasing �0 is positive and hence
to minimize utility, the high type has to minimize �0: Increasing �1 has a similar e¤ect

in terms of the expected payment, however, it also has a negative e¤ect in terms of the

expected valuation of the good. Speci�cally, the negative e¤ect is in the order of 1
2
; which

is greater than the positive e¤ect of ba(l)� ba(h)
2
< ba(l)

2
< 1

2
: Thus to minimize utility one

has to maximize �1:

Intuitively, in this case of low enough q; the high type�s worst-case scenario is (�0; ��1),

and she ends up maximizing E�00;�01(vjh; h) =
2q�1+�01
�01+�

0
0
; the value of the good conditional on

winning against the high type. This implies that her bid is higher than in the canonical

model. In the other case, when q is high, or when a is high, the equilibrium will satisfy
ba(h)
2
> ba(l). This implies that the belief that minimises utility is (��0; ��1). This belief

maximizes the probability of encountering the high type, which induces her to lower her

bid compared with the canonical model.

As we show, even when the high type increases her bid, compared to the case of no

ambiguity, her expected utility evaluated at the true joint probability distribution will be

higher compared to the canonical model. Thus, considering the utility of bidders and the

seller, we have:

Proposition 2: (i) The utility of both the high and the low type is higher under ambi-
guity; (ii) The seller�s revenue decreases with ambiguity.
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We have already seen that the low type pays a lower bid than in the canonical model.

This is also the case sometimes for the high type. When the high types increases her

bid, we show in the Appendix that the size of the increase in the bid exactly o¤sets the

reduction in the bid of the low type. As the high type is more likely to pay the low type�s

bid for low values of q, for which such equilibrium holds, her utility overall increases even

in this case. Finally, we can show that the seller�s revenue decreases with a in all equilibria

described above. This can already be gleaned from the fact that both the high and the

low type gain a higher rent compared with the canonical model. It is also intuitive as a

higher level of ambiguity implies that individuals are more likely to consider the worst-case

scenario.

It is instructive to consider the equilibrium in the limit, where all information structures

are feasible, and so ambiguity is very large. It is the limit of the equilibria constructed

for high a in Proposition 1 above. Speci�cally, we show in the Appendix that in this case,

ba(l) = 0 and ba(h) = q:12 These bids are the lowest among all equilibria and the seller�s

revenue is therefore substantially lower compared with the canonical model.

Remark 2: The endogeneity of ambiguity: Note that ambiguity over the state is

a¤ected endogenously in this model. Speci�cally, the characterization is not equivalent

to a model in which the individuals simply start with some unique worst-case belief.

Each type (l or h) uses a di¤erent worst-case belief to justify her best response and this

worst-case scenario depends on others�strategies. In Section 5 we consider the case of

exogenous ambiguity over the prior. This type of ambiguity does not depend on the

strategic behaviour of others. As we show, this implies that bids are uniformly lower, so

that also the high type under-bids.

4 Optimal auctions

In this Section, we characterise the optimal mechanism. In the absence of ambiguity, full

surplus extraction is possible.13 For example, consider the mechanism which always gives

the good to player 1 and charges player 2 nothing. Player 2 has a weak incentive to reveal

her signal, and if the mechanism punishes player 1 su¢ ciently harshly when the reported

signals do not match, player 1 will also have an incentive to tell the truth, since their

signals are positively correlated. The individual rationality constraint can be made to

bind by rewarding player 1 when the reported signals do match; in this way the seller can

fully extract surplus.

12This is supported by the low type believing �0 = 2q � 1 and �1 = 0; and the high type believing

�0 = q and �1 = 1� q:
13See Crémer and McLean (1988).
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However, this mechanism cannot extract all the surplus when the buyers are ambiguity

averse about the joint distribution of signals. This is because the elicitation will no longer

be costless: the expected transfers are larger under the buyer�s distribution than the under

the seller�s (true) distribution.

Note that it is easy to establish that the second-price auction is not optimal. In par-

ticular, for a small enough a; we show:

Proposition 3: Revenue is higher in the �rst-price than in the second-price auction.14

In the second-price auction, an individual�s payment depends on the other�s bid and as

a result, there are more elements in her utility in which her beliefs play a role. For the

case of no ambiguity, this implies that she conditions her behaviour on more information,

which increases the seller�s revenue. For the case of ambiguity, this implies that individuals

have more possibilities to condition on their worst-case beliefs, which decreases the seller�s

revenue.15

The key issue when considering optimal auctions under ambiguity is the level of insur-

ance provided by the seller to the bidders. Under independent private values, Bose et

al (2006) show that the optimal mechanism fully insures the bidders against ambiguity.

However, in a common-value setting full insurance has implications for the allocation as

well as the transfers (i.e. �xing an allocation rule, in general it is not possible to fully

insure the buyers against ambiguity by only adjusting transfers). Full insurance implies

that both the probability of winning the good and the transfers must not depend on

the signal (type) of the other player. Moreover, it can be shown that in any mechanism

that allocates the good with probability 1, full insurance implies that for each player, the

probability of winning must be the same for both types. Thus, the revenue from such a

mechanism is at most 1 � q, whereas the revenue from the mechanism described above

converges to 1
2
as the ambiguity becomes small. This implies that when a is small, full

insurance is not optimal in a common-value setting.

In this Section we show that when a is small, in the optimal mechanism, the seller

incentivizes the high type to tell the truth by making side bets with the low type. Unlike

in the standard model, this elicitation is not costless as the low type�s worst-case belief

minimizes correlation between the signals. If the two players receive di¤erent signals, the

seller allocates the object to the high type; this implies that ambiguity will be important

but it also slackens the incentive constraint of the high type, and the seller is able to

14In the Appendix we characterise the equilibrium in the �rst-price auction for a su¢ ciently low a; the

results are similar to those of the second-price (that is, overbidding can also arise).
15With private values and ambiguity over the prior, Lo (1998) shows that the �rst-price auction dom-

inates the second-price auction in some environments.
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partially insure the high type against this ambiguity. On the other hand, when a is large

and the signal is not very informative, full insurance is optimal.

4.1 Seller�s Problem

A direct mechanism (x; t) is an allocation rule x : fl; hg2 7! [0; 1]2 and a transfer rule

t : fl; hg2 7! R2. Let U�i (s
0
i; si) be i�s utility from reporting s0i when i�s signal is si, given

that the information structure is � = (�0; �1). A direct mechanism is maxmin incentive

compatible if for all si 2 Si:

min
�
U�i (si; si) � min

�
U�i (s

0
i; si)

for all s0i 2 Si. The revelation principle applies in this setting as long as we make the
following assumption:

No-hedging: The utility from playing the mixed strategy �i 2 �Si isE�i min� U�i (s0i; si)
(as opposed to min�E�iU�i (s

0
i; si)).

This assumption is standard in the literature on mechanism design with maxmin agents

(see for example, Bose et al 2006 or Wolitzky 2016). In what follows, we restrict attention

to maxmin incentive compatible direct mechanisms.

The seller�s problem is:

max
xi;ti

1

2

�
q2 + (1� q)2

� " 2X
i=1

ti(l; l) + ti(h; h)

#
+ q(1� q)

"
2X
i=1

ti(l; h) + ti(h; l)

#

subject to incentive and participation constraints:

min
�0;�1

�1xi(l; l) + (1� q � �1)xi(l; h)� (�0 + �1)ti(l; l)� (1� �0 � �1)ti(l; h)

� min
�0;�1

�1xi(h; l) + (1� q � �1)xi(h; h)� (�0 + �1)ti(h; l)� (1� �0 � �1)ti(h; h)

min
�0;�1

(1� q � �1)xi(h; l) + (2q � 1 + �1)xi(h; h)� (1� �0 � �1)ti(h; l)� (�0 + �1)ti(h; h)

� min
�0;�1

(1� q � �1)xi(l; l) + (2q � 1 + �1)xi(l; h)� (1� �0 � �1)ti(l; l)� (�0 + �1)ti(l; h)

min
�0;�1

�1xi(l; l) + (1� q � �1)xi(l; h)� (�0 + �1)ti(l; l)� (1� �0 � �1)ti(l; h) � 0

min
�0;�1

(1� q � �1)xi(h; l) + (2q � 1 + �1)xi(h; h)� (1� �0 � �1)ti(h; l)� (�0 + �1)ti(h; h) � 0

12



4.2 Analysis

For given a, the optimal mechanism will depend on two cuto¤ values of q, which we now

de�ne. Let q�(a) be the solution to q2+(1�q)2��0��1 = �0+�1+�0+�1�1 that lies
between 1

2
and 1, and let q��(a) be the solution to q2+(1�q)2��0��1 = 3q�2+�1+�1

that lies between 1
2
and 1. We derive the explicit expressions for q�(a); q��(a) in the

Appendix. For 1 < a <1, q�(a) < q��(a). We then have:

Proposition 4.
(i) When q � q�(a), an optimal mechanism allocates the good with equal probability for

each player disregarding their type, and for a transfer of 1
2
(1 � q). The revenue of the

seller is 1� q, and the high type earns positive rents.
(ii) When q � q��(a), the optimal mechanism allocates the good to the high type and

with equal probability to each player if both are of the same type. Transfers are such that

the high type is partially insured, the seller makes side bets with the low type, and the

buyers earn no rents.

(iii) When q�(a) < q < q��(a), the optimal mechanism allocates the good to the high

type and with equal probability to each player if both are of the same type. Transfers are

such that the high type is partially insured, but there are no side bets with the low type,

and the high type earns positive rents.16

(iv) As a!1, both q�(a) and q��(a) converge to 1
2
(3�

p
3), and as a! 1, both q�(a)

and q��(a) converge to 1
2
.

When q � q�(a), an implementation of the optimal mechanism is for the seller to �rst

choose each buyer with equal probability, and then sell to the chosen buyer at price 1� q.
Since the decision to sell is not based on the signal realisation, the good is worth 1 � q
to the low type and q to the high type. Thus, the high type earns positive rents in

equilibrium. Note that this mechanism is e¢ cient, and that given the seller�s design,

ambiguity is not relevant or does not arise in equilibrium.

When q � q��(a), the participation constraint of the high type is binding. The seller

engages in a side bet with the low type to prevent the high type from deviating. Unlike

in the classical case, side bets are costly to the seller, so the seller uses the smallest bet

that is su¢ cient to prevent the high type from deviating. To reduce this cost further, the

seller allocates the good to the high type when the players receive di¤erent signals, which

generates endogenous ambiguity over the expected value of the good. The seller is able

16In case (ii) the revenue of the seller is 12

�
1� (q2 + (1� q)2 � �0 � �1)

�0 + �0 � q
�0 + �1 + �0 + �1 � 1

�
, and

in case (iii) the revenue of the seller is 12
�
�0 + 2�1 + �1 + q � q2 � (1� q)2

�
: All explicit expressions for

the optimal transfers are derived in the Appendix.
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to partially insure the high type by asking her to pay more when the other player has

received a low signal. In this case, the expected payment from the high type is:

T hi =
1

2
(1� (1� q)2)� 1

2
(q2 � �0):

The expected payment from the low type is:

T li =
�1
2
�
�
q2 + (1� q)2 � �0 � �1

� 1� q � �1 � �1
2(�0 + �1 + �0 + �1 � 1)

:

The low type chooses �0 and �1 both to minimise the perceived surplus from winning

the object and to maximise the perceived value of the transfers. Note that in the optimal

mechanism, the belief of the high type regarding �1 is irrelevant. When a converges to 1,

only this case remains.

When q�(a) < q < q��(a), it is optimal to allocate the good to the high type when the

players receive di¤erent signals, but it is not optimal to conduct side bets with the low

type. Instead, the high type earns positive rents in equilibrium in order to satisfy the

incentive constraint. This interval shrinks as a goes to either 1 or 1:
Note that as a ! 1, q�(a); q��(a) ! 1

2
, so for small a, both participation constraints

are binding. The intuition is as follows. If the participation constraint of the high type is

slack, the seller can achieve a �rst order increase in revenue by increasing the payment of

the high type. In order to ensure that the incentive constraint is not violated, the seller

can increase ti(l; h) and decrease ti(l; l) in such a way that keeps the low type indi¤erent,

but lowers the high type�s utility from deviating. Since the low type may have di¤erent

beliefs to the seller, these changes in transfers may decrease the seller�s revenue; however,

as the ambiguity becomes small, this fall in revenue converges to zero. On the other hand,

the increase in revenue from increasing the payment of the high type is �xed.

5 Discussion and Extensions

To conclude we discuss some extensions and related models. Importantly, we show how

the analysis di¤ers in the case of exogenous ambiguity about the prior.

5.1 Comparison to exogenous ambiguity

We now show that our equilibrium characterisation di¤ers from that of a model in which

there is some exogenous ambiguity about the state of the world. Speci�cally, assume now

that the players believe that their information is (conditionally) independent, and that

the probability that the state is 1 is in [1
2
� "; 1

2
+ "]. The information structure they

consider is therefore unique, common knowledge, and given by:

14



v = 0 sl sh

sl q2 q(1� q)
sh q(1� q) 1� 2q + q2

v = 1 sl sh

sl (1� q)2 q(1� q)
sh q(1� q) 2q � 1 + (1� q)2

In this model, ambiguity is exogenous and does not depend on equilibrium strategies. In

this case, as we show, both types would consider the same worst-case scenario which is the

lowest possible prior about the state. As a result both the minimum and the maximum

bids are smaller compared to the model with no ambiguity.

Proposition 5. In the independent information model with exogenous ambiguity over
the prior, individuals behave as if the prior is 1

2
� ", and thus both the highest and the

lowest bids are lower, both in the second-price and in the �rst-price auction, compared

with the canonical model.

5.2 Comparison to Crémer-McLean

Crémer and McLean (1988) show that some of the conclusions from the analysis of optimal

auctions with independent private values are not robust. For example, since surplus

extraction is possible when signals are correlated, the optimal mechanism is e¢ cient and

leaves no rents to the buyers. Proposition 4 shows that these results continue to hold for

a close to 1.17 On the other hand, when a is large, it is possible for buyers to earn positive

rents in the optimal mechanism. Note that in this environment, it is always possible to

fully extract rent (see Renou 2015); however, the preceding discussion implies that rent

extraction is not necessarily optimal.

5.3 Continuous signals

In Appendix B we show that the results of Section 3 are robust to the case of a continuum

of signals. Speci�cally, we assume that signals are drawn from [0,1], with marginals g(sjv)
that satisfy the MLRP; and individuals believe that the joint distribution is the F-G-M

copula, that is:

fv(s) = [1 + �v(2Gv(s1)� 1)(2Gv(s2)� 1)]gv(s1)gv(s2); (1)

and consider the values of �v 2 [ 1a�1; 1�
1
a
] that satisfy the ePMI constraints. We analyze

a second-price auction and show that it is still the case that some types over bid (in this

17The set of optimal mechanisms when a = 1 is large. As a! 1, the optimal mechanism described in

the third part of Proposition 4, which is the unique symmetric mechanism when a is close to 1, converges

to an optimal mechanism for the case when a = 1.
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case, these are types with a high but not too high signal), and that the seller�s revenue

decreases with a:18

6 Appendix

6.1 Appendix A: Omitted Proofs

Proof of Proposition 1:
Standard arguments will imply that ba(l) = E(�0;�1)(vjl; l) for some (�0; �1) and ba(h) =

E(�00;�01)[vjh; h] for some (�
0
0; �

0
1): We will consider monotone equilibria so that ba(l) <

ba(h):

Under the no hedging condition, deviations to mixed strategies will have lower utility,

and thus equilibria are easier to sustain. We use this to characterize equilibria for large

values of a: Of course all equilibria derived under no "no hedging" will remain equilibria

under "no hedging".

Consider �rst the low type. For any bid b 2 [ba(l); ba(h)); we have:

min
(�0;�1)

�Pr(ljl; (�0; �1))
�
E(�0;�1)[vjl; l]� ba(l)

�
= min

�0;�1
��1 � �(�1 + �0)ba(l)

where � = 1 if b > ba(l) and 1
2
otherwise. This is minimised by (��0; �1). Thus the

conjectured equilibrium bid is ba(l) = E(��0;�1)(vjl; l): This will be the case for all equilibria
considered.

Equilibrium with over-bidding for the high type:
Consider now the high type. Consider the case of an equilibrium that satis�es ba(l) >

1
2
ba(h): Bidding b = ba(h) yields:

min
(�0;�1)

Pr(ljh; (�0; �1))
�
E(�0;�1)[vjl; h]� ba(l)

�
+

1

2
Pr(hjh; (�0; �1))

�
E(�0;�1)[vjh; h]� ba(h)

�
(2)

where the optimal (�0; �1) is the same as the one that solves

min
�0;�1

��0
�
ba(h)

2
� ba(l)

�
� �1

�
[1� ba(l)]�

[1� ba(h)]
2

�
Since by assumption ba(l) > 1

2
ba(h), the payo¤ is minimised by (�0; ��1). Thus the conjec-

tured equilibrium bid for the high type is ba(h) = E(�0;��1)[vjh; h]:Note thatE(�0;��1)[vjh; h] =
18To insure existence in the continuous case, we consider small values of a:
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2q�1+a(1�q)2
a(1�q)2+ 1

a
(1�q)2+2q�1 is increasing in a: The equilibriumwill hold then only ifE(��0;�1)(vjl; l) >

1
2
E(�0;��1)[vjh; h]:
Note that the equilibrium payo¤ will be Pr(ljh; (�0; �1))

�
E(�0;�1)[vjl; h]� ba(l)

�
: This

has to be non negative and thus under (�0; ��1); we must have E(�0;��1)[vjl; h] � ba(l):
We now consider deviations.

For the low type, the payo¤ from any mixed strategy is:

min
(�0;�1)

�0Pr(ljl; (�0; �1))
�
E(�0;�1)[vjl; l]� ba(l)

�
+

�1Pr(hjl; (�0; �1))
�
E(�0;�1)[vjh; l]� ba(h)

�
where 0 � �1 � �0 � 1. Under the information structure (��0; �1), the �rst term is 0.

Note that E(��0;�1)[vjh; l] < ba(h) is a necessary and su¢ cient condition for no deviation.
In that case, players bid b = ba(l); use (��0; �1) as the information structure, and

standard arguments imply that the equilibrium payo¤ is 0.

Let us now consider the high type. As long as the other player is playing the equilibrium

(pure) strategy, the payo¤ from any mixed strategy is:

min
(�0;�1)

�0Pr(ljh; (�0; �1))
�
E(�0;�1)[vjl; h]� ba(l)

�
+

�1Pr(hjh; (�0; �1))
�
E(�0;�1)[vjh; h]� ba(h)

�
;

where 0 � �1 � �0 � 1. Under the information structure (�0; ��1), E(�0;��1)[vjh; h] = ba(h),
which implies that the payo¤from the deviation is at most Pr(ljh; (�0; ��1))

�
E(�0;��1)[vjl; h]� ba(l)

�
,

which is the equilibrium payo¤. Thus, it is not pro�table to deviate to any mixed strategy.

Bringing together all the conditions, we now have:

E(�0;��1)[vjl; h] > E(��0;�1)[vjl; l]
E(��0;�1)[vjh; l] < E(�0;��1)[vjh; h]
E(��0;�1)[vjl; l] >

1
2
E(�0;��1)[vjh; h]

For a � q
1�q ; these conditions are:

(1) 1�q�a(1�q)2
1�( 1

a
(1�q)2+2q�1)�a(1�q)2 �

1
a
(1�q)2

1
a
(1�q)2+a(1�q)2+2q�1 > 0

(2) 2q�1+a(1�q)2
a(1�q)2+ 1

a
(1�q)2+2q�1 �

1�q� 1
a
(1�q)2

1�(a(1�q)2+2q�1)� 1
a
(1�q)2 > 0

(3)
1
a
(1�q)2

1
a
(1�q)2+a(1�q)2+2q�1 �

1
2

2q�1+a(1�q)2
a(1�q)2+ 1

a
(1�q)2+2q�1 > 0

Condition (1) and (2) are satis�ed for all q; while condition (3) is satis�ed for all

q < q(a):

For a � q
1�q ; condition (3), now

1
a
(1�q)2

1
a
(1�q)2+q� 1

a
q(1�q) �

1
2

2q�1+1�q� 1
a
q(1�q)

1�q� 1
a
q(1�q)+ 1

a
(1�q)2+2q�1 > 0; is not

satis�ed for a which is above a cuto¤ �a. Note that allowing for no hedging will not a¤ect

the existence of this equilibrium for high a:
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Equilibria with under-bidding for the high type:
Next consider the case ba(l) < 1

2
ba(h): Consider the high type, and assume that the

other player is playing the equilibrium strategy (ba(l); ba(h)).

Bidding b = ba(h) yields:

min
(�0;�1)

Pr(ljh; (�0; �1))
�
E(�0;�1)[vjl; h]� ba(l)

�
+

1

2
Pr(hjh; (�0; �1))

�
E(�0;�1)[vjh; h]� ba(h)

�
which is like solving

min
(�0;�1)

��1 + (�1 + �0)ba(l) +
1

2
�
1
� 1
2
(�1 + �0)ba(h)

= min
(�0;�1)

��1(
1

2
�ba(l) +

1

2
ba(h)) + �0(ba(l)�

1

2
ba(h))

For ba(l) < 1
2
ba(h), this is minimised by (��0; ��1).

The equilibrium payo¤ is then Pr(ljh; (��0; ��1))
�
E(��0;��1)[vjl; h]� ba(l)

�
:

We now consider deviations. Let us consider �rst the high type. The payo¤ from any

mixed strategy is:

min
(�0;�1)

�0Pr(ljh; (�0; �1))
�
E(�0;�1)[vjl; h]� ba(l)

�
+

�1Pr(hjh; (�0; �1))
�
E(�0;�1)[vjh; h]� ba(h)

�
;

where 0 � �1 � �0 � 1. Under the information structure (��0; ��1), E(��0;��1)[vjh; h] = ba(h):
Note that this bid decreases with a:

Note that in equilibrium we must have
�
E(��0;��1)[vjl; h]� E(��0;�1)[vjl; l]

�
� 0, and that

the equilibrium maximises the probability of winning against the low type.

Consider now the low type. Under no "no hedging", we have that the payo¤ from any

mixed strategy is:

min
(�0;�1)

�0Pr(ljl; (�0; �1))
�
E(�0;�1)[vjl; l]� ba(l)

�
+

�1Pr(hjl; (�0; �1))
�
E(�0;�1)[vjh; l]� ba(h)

�
Under the information structure (��0; �1), the �rst term is 0. Thus a necessary and su¢ -

cient condition for the low type not to deviate is E(��0;�1)[vjh; l] < E(��0;��1)[vjh; h]:
The equilibrium conditions as described above are therefore:

(4) E(��0;��1)[vjl; h] > E(��0;�1)[vjl; l]
(5) E(��0;�1)[vjh; l] < E(��0;��1)[vjh; h]
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(6) E(��0;�1)[vjl; l] <
1
2
E(��0;��1)[vjh; h]:

Conditions (4) and (5) are satis�ed for a � q
1�q ; while condition (6) is satis�ed for

q > �q(a):

To consider a > q
1�q ; consider deviations of the low type under the "no hedging"

condition. Her utility from a mixed strategy which wins against the low type only with

probability � and with probability 1� � wins against the low type with probability 1 as
well as against the high type with probability 1

2
is:

� min
(�0;�1)

Pr(ljl; (�0; �1))
�
E(�0;�1)[vjl; l]� ba(l)

�
+(1� �) min

(�0;�1)
(Pr(ljl; (�0; �1))

�
E(�0;�1)[vjl; l]� ba(l)

�
+

1

2
Pr(hjl; (�0; �1))

�
E(�0;�1)[vjh; l]� ba(h)

�
)

Note that argmin(�0;�1) Pr(ljl; (�0; �1))
�
E(�0;�1)[vjl; l]� ba(l)

�
is (�0; �1); and thus this

part of the utility is 0, and that

arg min
(�0;�1)

Pr(ljl; (�0; �1))
�
E(�0;�1)[vjl; l]� ba(l)

�
+
1

2
Pr(hjl; (�0; �1))

�
E(�0;�1)[vjh; l]� ba(h)

�
= (�0; �1)

A necessary and su¢ cient condition under the no hedging is for the above utility to be

lower than 0, the equilibrium utility.

Thus, for a > q
1�q ; the equilibrium conditions are:

(4) E(��0;��1)[vjl; h] > E(��0;�1)[vjl; l]
(5�) Pr(ljl; (�0; �1))

�
E�0;�1 [vjl; l]� ba(l)

�
+ 1
2
Pr(hjl; (�0; �1))

�
E(�0;�1)[vjh; l]� ba(h)

�
<

0

(6) E(��0;�1)[vjl; l] <
1
2
E(��0;��1)[vjh; h]:

This equilibrium exists when a > �a(q) � q
1�q ; where �a(q) >

q
1�q for a low enough q but

�a(q) = q
1�q otherwise:

Note also that the equilibrium converges to the equilibrium in the limit where all infor-

mation structures are allowed. To see the limit equilibrium, suppose that ba(l) = 0: For

the low type we minimize �1 at 0 and set �0 = 2q � 1 (which she is indi¤erent to) and
hence E(vjl; l) = 0: We are therefore in the case in which ba(l) < 1

2
ba(h) and hence the

high type uses �0 = q and �1 = 1� q: As a result, ba(h) = q = E(vjh) < E(vjh; h): This
yields to the seller the lowest revenue.

Finally, consider the case bl(a) = 1
2
bh(a): We will show that this equilibrium holds for

a < q
1�q ; for values q(a) < q < �q(a):

Let a and q satisfy: 1
2
E(��0;��1)[vjh; h] < E(��0;�1)[vjl; l] <

1
2
E(�0;��1)[vjh; h]

Consider the high type, and assume that the other player is playing the equilibrium

strategy (ba(l); ba(h)).
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Bidding b = ba(h) yields:

min
(�0;�1)

Pr(ljh; (�0; �1))
�
E(�0;�1)[vjl; h]� ba(l)

�
+
1

2
Pr(hjh; (�0; �1))

�
E(�0;�1)[vjh; h]� ba(h)

�
Since ba(l) = 1

2
ba(h), both (�0; ��1) and (��0; ��1) achieve the minimum payo¤.

The payo¤ from any mixed strategy is:

min
(�0;�1)

�0Pr(ljh; (�0; �1))
�
E(�0;�1)[vjl; h]� ba(l)

�
+

�1Pr(hjh; (�0; �1))
�
E(�0;�1)[vjh; h]� ba(h)

�
Since Pr(�0;�1)(ljh)

�
E(�0;�1)[vjl; h]� ba(l)

�
> 0 for any (�0; �1) and increasing �0 relaxes

the constraint on �1, it is without loss to set �0 = 1. Using the fact that ba(l) =
1
2
ba(h),

the payo¤ becomes:

min
(�0;�1)

Pr(ljh; (�0; �1))
�
E(�0;�1)[vjl; h]� ba(l)

�
+

�1Pr(hjh; (�0; �1))
�
E(�0;�1)[vjh; h]� 2ba(l)

�
(3)

= min
�0;�1

1� ba(l)� q + �1(2q � 1) + �0ba(l)(1� 2�1) + �1 (�1[1� 2ba(l)]� [1� ba(l)])

The payo¤ is minimised by (�0; ��1) when �1 � 1
2
and (��0; ��1) when �1 � 1

2
.

Suppose that �1 >
1
2
. Then under (��0; ��1), the payo¤ is lower than when �1 =

1
2
, since

E(��0;��1)[vjh; h] < ba(h). If �1 <
1
2
, then under (�0; ��1), the payo¤ is lower than when

�1 =
1
2
, since E(�0;��1)[vjh; h] > ba(h). Thus, for �1 6= 1

2
, the payo¤ must be lower than

when �1 =
1
2
, which is the equilibrium payo¤.

Now consider the low type. As before, the equilibrium payo¤ is 0. The payo¤ from any

mixed strategy is:

min
(�0;�1)

�0Pr(ljl; (�0; �1))
�
E(�0;�1)[vjl; l]� ba(l)

�
+

�1Pr(hjl; (�0; �1))
�
E(�0;�1)[vjh; l]� ba(h)

�
Under the information structure (��0; �1), the �rst term is 0 and the second term is negative

if E(��0;�1)[vjh; l] < ba(h).
So for this to hold we need 1

2
E(��0;��1)[vjh; h] < E(��0;�1)[vjl; l] <

1
2
E(�0;��1)[vjh; h] and

1
2
E(��0;�1)[vjh; l] < E(��0;�1)[vjl; l]; which is satis�ed for the range of qs considered.
We show that the seller�s revenue decreases in a in the proof of Proposition A below.�

Proposition A: First-price auction: In equilibrium, the minimum bid is ba(l) =

E(��0;�1)(vjl; l) and the maximum bid ba(h) increases in a. (ii) The expected payment of

the high type decreases in a for low q and increases in a for high q. (iii) The seller�s
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revenue decreases in a. (iv) Revenue is higher in the �rst-price rather than the second-

price auction.

Proofs of Proposition A, Proposition 2 and Proposition 3: We �rst characterize
the equilibria in the �rst-price auction, show that the maximum bid increases in a; and

that the minimum bid decreases in a; for a close to 1.

Consider a low type. For any ba(l), this type�s expected utility is perceived as

min
�0;�1

(�0 + �1)(
�0

�0 + �1
v +

�1
�0 + �1

�v � ba(l))

= min
�0;�1

�0(v � ba(l)) + �1(�v � ba(l))

which (assuming ba(l) > v) is resolved by setting �0 to be the highest possible value and

�1 to be the lowest possible value, given the ePMI constraints. Therefore for a su¢ ciently

close to 1; the solution is (��0; �1):

Note that the low type cannot have any rent as in the standard model, and thus we set

ba(l) = E(��0;�1)(vjl; l) =
1
a
(1� q)2

1
a
(1� q)2 + a(1� q)2 + 2q � 1

<
(1� q)2

(1� q)2 + q2

Taking a derivative of E(��0;�1)(vjl; l) with respect to a; it is straightforward to see that it
is negative. Thus the bid of the low type decreases with a: We will establish later that

this type will not want to use any other bid given the behaviour of the high type.

Now let us consider the high type. Wlog we can consider a mixed strategy with support

on [ba(l);�ba(h)]; as bidding less than ba(l) will provide a zero utility.

First let us consider a bid just above ba(l) which allows the individual to win against

the low type only. We then need to solve the following,

min
(�0;�1)

Pr(ljh; (�0; �1))(E(�0;�1)(vjh; l)� ba(l))

= min
�0;�1

(q � �0)(v � ba(l)) + (1� q � �1)(�v � ba(l));

which, as ba(l) > v; yields the need to maximize �1 and to minimize �0: The solu-

tion is (�0; ��1): Note that this bid provides a utility of Pr(ljh; (�0; ��1))(E(�0;��1)(vjh; l) �
E(��0;�1)(vjl; l)); and that ��0 + �1 = �0 + ��1:
We now consider the highest bid in the support, �ba(h): Such bid implies winning for

sure and thus unambiguous gain of E(vjh): To be indi¤erent, this bid has to satisfy

E(vjh)� �ba(h)
= Pr(ljh; (�0; ��1))(E(�0;��1)(vjh; l)� E(��0;�1)(vjl; l))
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Thus:

�ba(h) = Pr(hjh; (�0; ��1))E(�0;��1)(vjh; h) + Pr(ljh; (�0; ��1))E(��0;�1)(vjl; l)

= 2q � 1 + ��1 + (1� �0 � ��1)
�1

��0 + �1

= 2q � 1 + ��1 +
�1

��0 + �1
� �1

= 2q � 1 + a(1� q)2 +
1
a
(1� q)2

a(1� q)2 + 2q � 1 + 1
a
(1� q)2

� 1
a
(1� q)2

= 2q � 1 + (1� q)2(a� 1
a
+

1
a

(a+ 1
a
� 1)(1� q)2 + q2

)

Note that the derivative of a � 1
a
+

1
a

( 1
a
+a�1)(1�q)2+q2 ; evaluated at a = 1; is

(2q�1)2
2q2�2q+1 > 0:

Thus the maximum bid increases in a.

We now continue to characterize the equilibrium distribution. Let us consider the worst

case scenario in terms of utility for some distribution F (b) with density f(b): The expected

utility is Z
b

f(b)[Pr(ljh; (�0; �1))(E(�0;�1)(vjh; l)� b) +

Pr(hjh; (�0; �1))F (b)(E(�0;�1)(vjh; h)� b)]db

=

Z
b

f(b)[E(�0;�1)(vjh)� b�

(1� F (b)) Pr(hjh; (�0; �1))(E(�0;�1)(vjh; h)� b)]db

To choose the information structure to minimize utility, we maximise

Pr(hjh; (�0; �1))(E(�0;�1)(vjh; h)� b)
= (2q � 1)(�v � v) + (�0(v � b) + �1(�v � b))

and the solution is therefore, for all b in [v; �v]; to maximize �1 and to minimize �0:

F (b) is simply characterized by using the indi¤erence condition and so: (�0; ��1)

Pr(ljh; (�0; ��1))(E(�0;��1)(vjh; l)� b) +
Pr(hjh; (�0; ��1))F (b)(E(�0;��1)(vjh; h)� b)

= Pr(ljh; (�0; ��1))(E(�0;��1)(vjh; l)� ba(l))

implying that

Fa(b) =
Pr(ljh; (�0; ��1))(b� ba(l))

Pr(hjh; (�0; ��1))(E(�0;��1)(vjh; h)� b)
:

We complete the equilibrium characterization by showing that given the strategy of the

high type, the low type will not deviate.
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For the low type, bidding any b above ba(l); we choose the belief to minimize expected

utility:

min
�1;�0

Pr(ljl; (�0; �1))(E(�0;�1)(vjl; l)� b) +

Pr(hjl; (�0; �1))Fa(b)(E(�0;�1)(vjl; h)� b)
= min

�0;�1
(v � b)(�0(1� Fa(b)) + Fa(b)q) + (�v � b)(�1(1� Fa(b)) + Fa(b)(1� q))

As Fa(b) � 1; the solution is (�1; ��0):
This gives us a utility of Pr(ljl; (��0; �1))(E(��0;�1)(vjl; l)� b)+
Pr(hjl; (��0; �1))

Pr(ljh;(�0;��1))(b�E(��0;�1)(vjl;l))
Pr(hjh;(�0;��1))(E(�0;��1)(vjh;h)�b)

(E(��0;�1)(vjl; h)� b) =

Pr(hjl; (��0; �1))(b�E(��0;�1)(vjl; l))(
Pr(ljh;(�0;��1))
Pr(hjh;(�0;��1))

(E(��0;�1)(vjl;h)�b)
(E(�0;��1)(vjh;h)�b)

� Pr(ljl;(��0;�1))
Pr(hjl;(��0;�1))

): Note that

E(��0;�1)(vjl; h) =
1�q� 1

a
(1�q)2

1���0��1
< 2q�1+a(1�q)2

�0+��1
= E(�0;��1)(vjh; h); for a su¢ ciently close to 1,

and that
Pr

(�0;��1)
(ljh)

Pr
(�0;��1)

(hjh) =
1��0���1
�0+��1

<
(��0+�1)

1�(��0+�1)
=

Pr(ljl;(��0;�1))
Pr(hjl;(��0;�1))

; as ��0 + �1 = ��1 + �0 >
1
2
for

all a: Thus the utility is negative and the low type does not deviate.

We now proceed to consider the payo¤ of the seller.

Expected payment to seller, �, is given by the linear combination of receiving the bid

of the low type (when both are l), the expected bid of the high type (when only one is

h), and the maximum bid of the two h types:

� = Pr(l; l)E(��0;�1)[vjl; l] + 2Pr(l; h)E[ba(h)] + Pr(h; h)E[maxi=1;2
bia(h)]

For expositional purposes we write this as

� =
1

2

y + (1� 
)

Z �x+(1��)y

y

bfa(b)db+



2

Z �x+(1��)y

y

b2f(b)Fa(b)db;

where:


 = Pr(ljl), according to the true (independent) information structure, � = Pr(ljl; (�0; ��1))
according to the belief of the high bidder, (�0; ��1); x = E(�0;��1)[vjh; h]; y = E(��0;�1)[vjl; l] =
ba(l):We therefore also have �ba(h) = �x + (1 � �)y; Fa(b) =

1��
�

b�y
x�b and fa(b) =

1
�

1��
(x�b)2 (x� y).
We start by some preliminary results:

Fact 1
@x

@a
= �@y

@a
> 0

Proof of Fact 1:
Note that x = E(�0;��1)(vjh; h) =

2q�1+a(1�q)2
q2�(1� 1

a
)(1�q)2+a(1�q)2

@x
@a
= @

@a
( 2q�1+a(1�q)2
q2�(1� 1

a
)(1�q)2+a(1�q)2 ) = (q � 1)

2 2a+2q+2aq2�4aq�1
(a2q2�2a2q+a2+2aq�a+q2�2q+1)2 > 0
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@y
@a
= @

@a

1
a
(1�q)2

2q�1+a(1�q)2+ 1
a
(1�q)2 = � (q � 1)

2 2a+2q+2aq2�4aq�1
(a2q2�2a2q+a2+2aq�a+q2�2q+1)2 :�

Note that this fact proves Proposition 2. For the case 2b of Proposition 1, for low q

and low a; Pr(ljh) > 1
2
Pr(hjh); @x

@a
= �@y

@a
; and thus overall average bid for the high type

decreases. In all other cases, the high type reduces her bid with a: Finally the bid of the

low type is always lower than in the canonical model. This implies also that the seller�s

revenue decreases for all a:

Fact 2
@�

@a ja=1
= 0

Proof of Fact 2:
� = Pr(�0;��1)(ljl) = �0 + ��1 = a(1� q)

2 + 1
a
(1� q)2 + 2q � 1

@�
@a ja=1 = (1� q)

2 @(a+
1
a
)

@a ja=1 = (1� q)
2(1� 1

a2
)ja=1 = 0:�

Fact 3 The bid of the low type is decreasing in a:
Proof of Fact 3: Follows from Fact 1.�

Fact 4 (i)

E[ba(h)] = x(1 +
1� �
�

ln(1� �))� y1� �
�

ln(1� �):

(ii) At a = 1; the expected bid of the high type decreases in a for low q and increases in

a for high q:

Proof of Fact 4:
(i) Note that

R
b

(x�b)2db =
1
x�b (x� b ln (x� b) + x ln (x� b)) =

x�(b�x) ln(x�b)
x�b ; therefore,R �x+(1��)y

y
b

(b�x)2db =
�x

(1��)(x�y) + ln(1� �):
Hence

E[ba(h)] =
1��
�
(x� y)

R �x+(1��)y
y

b
(b�x)2db = x(1 +

1��
�
ln(1� �))� y 1��

�
ln(1� �):

(ii) As @�
@a ja=1 = 0 and

@x
@a ja=1 = �

@y
@a ja=1;

@E[ba(h)]
@a ja=1 =

@x
@a ja=1(1 + 2

1��
�
ln(1� �))ja=1 =

@x
@a ja=1(1 + 2

1�2(1�q)2�2q+1
2(1�q)2+2q�1 ln(1� 2(1� q)2 � 2q + 1)):

For q > 1
2
; the expression (1 + 21�2(1�q)

2�2q+1
2(1�q)2+2q�1 ln(1 � 2(1 � q)2 � 2q + 1)) is strictly

increasing, negative for q < q� and positive for q > q� for some q� 2 (0:5; 1): As @x
@a ja=1 > 0;

we are done.�

Fact 5 (i)

E[max
i=1;2

bia(h)] = (x� y) 2((
1� �
�

)2 ln (1� �)� 1� �
�

) + x

(ii) The expectation of the maximal bid when both are high types decreases in a for low

q and increases in a for high q:
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Proof of Fact 5:
(i)
R b(b�y)
(x�b)3db =

1
2(x�b)2 (2b

2 ln (x� b) + 2x2 ln (x� b)� 4bx+ 2by � xy + 3x2 � 4bx ln (x� b)) =
� ln (x� b)��4bx+2by�xy+3x2

2(x�b)2 : Therefore,
R �x+(1��)y
y

b(b�y)
(x�b)3db = � ln (1� �)�

�(2x�2y�3x�+2y�)
2(1��)2(x�y) :

Hence

E[maxi=1;2 b
i
a(h)] = 2(

1��
�
)2 (x� y)

R �x+(1��)y
y

b(b�y)
(x�b)3db = �2(

1��
�
)2 (x� y) (ln (1� �)+

�(2x�2y�3x�+2y�)
2(1��)2(x�y) ) = � (x� y) 2((1��

�
)2 ln (1� �) + 1��

�
) + x:

(ii) Recalling that @x
@a
= �@y

@a
and that @�

@a
= 0 we have,

@E[maxi=1;2 b
i
a(h)]

@a
= @x

@a
(�4(1��

�
)2 ln(1� �)� 41��

�
+ 1); and

@E[maxi=1;2 b
i
a(h)]

@a ja=1 =
@x
@a
(�4( 2q(1�q)

q2+(1�q)2 )
2 ln(1� �)� 4 2q(1�q)

q2+(1�q)2 + 1)

For the expression (�4( 2q(1�q)
q2+(1�q)2 )

2 ln(1�2q(1�q))�4 2q(1�q)
q2+(1�q)2 +1) there is a �q 2 (0:5; 1)

such that the expression is negative for q < �q and positive for q > �q: As @x
@a
> 0; we are

done.�

Given the above facts we can write the pro�t function as:

� =
1

2

y + (1� 
)x+ 1� �

�
(x� y) (1� 
) ln(1� �)

+� 1� �
�

2

(x� y) 
 ln(1� �)� 1

�

(
2x� 2y � 3x� + 2y�

2
)

= x(



2
+
�� 

�

(
1� �
�

ln (1� �) + 1)) + y(1� 

2
� �� 


�
(
1� �
�

ln (1� �) + 1))

Taking a derivative with respect to a; recalling that (d�=da)ja=1 = 0 and that @x@a = �
@y
@a

we get,

@�

@a ja=1
=

@x

@a
(
 � 1 + 2�� 


�
(
1� �
�

ln (1� �) + 1))

=
@x

@a
(
 � 1) < 0:�

Finally we consider the di¤erent revenue of the seller in the �rst and second price

auction. We also show that the pro�ts of the seller are higher in the �rst-price auction.

In the second price auction, the low type always bids E(��0;�1)[vjl; l], and the high
type bids at most E(�0;��1)[vjh; h] (either ba(h) = E(�0;��1)[vjh; h] for low a and q, where
E(�0;��1)[vjh; h] > E(��0;��1)[vjh; h] = ba(h) for higher q and a, or where E(�0;��1)[vjh; h] >
2E(��0;�1)[vjl; l] = ba(h)). Let �R

SPA be the revenue from a virtual auction where the low

type bids E(��0;�1)[vjl; l] and the high type bids E(�0;��1)[vjh; h]. Then the actual revenue
in the second price auction must be weakly less than �RSPA.

The seller�s revenue in the second price auction satis�es:

RSPA � �RSPA = x
�

2

�
+ y

�
1� 


2

�
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where x = E(�0;��1)[vjh; h], y = E(��0;�1)[vjl; l], and 
 = Pr(ljl). The seller�s revenue in
the �rst price auction is:

RFPA = x

�



2
+
�� 

�

�
1� �
�

ln(1� �) + 1
��
+y

�
1� 


2
� �� 


�

�
1� �
�

ln(1� �) + 1
��

where � = Pr(ljl; (�0; ��1)). Thus, the di¤erence in revenue between the two auctions
is:

RFPA �RSPA � RFPA � �RSPA = (x� y)
�
�� 

�

�
1� �
�

ln(1� �) + 1
��

> 0:

Finally, to see that RSPA is decreasing in a, �rst note that when a and q are low:

@RSPA1

@a ja=1
=
@x

@a

�

2

�
+
@y

@a

�
1� 


2

�
= �(1� 
)@x

@a
< 0

Let x0 = E(��0��1)[vjh; h]. Then the revenue when q is high and a is high:

RSPA2 = x0
�

2

�
+ y

�
1� 


2

�
Therefore:

@RSPA2

@a ja=1
=
@x0

@a

�

2

�
+
@y

@a

�
1� 


2

�
< 0

since @x0

@a
< 0. Finally in the last case:

@RSPA3

@a ja=1
=
@y

@a

�
1 +




2

�
< 0:

This completes the proofs for part (ii) of Proposition 2, Proposition 3 and Proposition

A.�

Proposition 4�.
(i) When q � q�(a), an optimal mechanism is, for i 2 f1; 2g:

� xi(l; l) = xi(h; h) = xi(l; h) = xi(h; l) = 1
2

� ti(h; l) = ti(h; h) = ti(l; h) = ti(l; l) = 1
2
(1� q).

and the revenue of the seller is 1� q.

(ii) When q�(a) < q < q��(a), an optimal mechanism is:
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� xi(l; l) = xi(h; h) = 1
2
, xi(l; h) = 0, and xi(h; l) = 1

� ti(l; l) = ti(l; h) = 1
2
�1

� ti(h; h) = q+�0+�1+�1�1
2

� ti(h; l) = q+�0+�1+�1
2

and the revenue of the seller is 1
2
(�0 + 2�1 + �1 + q � q2 � (1� q)2) :

(iii) When q � q��(a), an optimal mechanism is:

� xi(l; l) = xi(h; h) = 1
2
, xi(l; h) = 0, and xi(h; l) = 1

� ti(h; l) =
1

2
(1 + �0)

� ti(h; h) =
�0
2

� ti(l; h) =
�1
2
+ (�0 + �1)

1� q � �1 � �1
2(�0 + �1 + �0 + �1 � 1)

� ti(l; l) =
�1
2
� (1� �0 � �1)

1� q � �1 � �1
2(�0 + �1 + �0 + �1 � 1)

and the revenue of the seller is 1
2

�
1� (q2 + (1� q)2 � �0 � �1)

�0 + �0 � q
�0 + �1 + �0 + �1 � 1

�
.

Proof of Proposition 4�: The expressions for q�(a) and q��(a) are as follows:

q�(a) =

8>>>>>><>>>>>>:

1
2

�
6�7a+2a2
3�2a+a2 +

q
�12a+17a2�4a3
(3�2a+a2)2

�
1 < a � 1

2
(�1 +

p
13)

1
4

�
�7+6a
�2+a +

q
1�12a+12a2
(�2+a)2

�
1
2
(�1 +

p
13) < a < 2

3
5

a = 2

1
4

�
�7+6a
�2+a �

q
1�12a+12a2
(�2+a)2

�
a > 2

q��(a) =

8>>>>>>><>>>>>>>:

2�2a+a2
2�a+a2 +

r
�2a+3a2�a3)
(2�a+a2)2p

2
1 < a � 1

2
(�1 +

p
17)

1
2

�
�5+3a
�3+a +

q
1�4a+3a2
(�3+a)2

�
1
2
(�1 +

p
17) < a < 3

5
8

a = 3

1
2

�
�5+3a
�3+a �

q
1�4a+3a2
(�3+a)2

�
a > 3

We will ignore the incentive constraint of the low type and check ex post that it is

satis�ed. Therefore, the participation constraint of the low type must be binding.

27



Let Uhi be the utility of the high type in equilibrium and U li be the utility of the low

type in equilibrium, that is:

U li � min
�0;�1

�1xi(l; l) + (1� q � �1)xi(l; h)� (�0 + �1))ti(l; l)� (1� �0 � �1)ti(l; h)

Uhi � min
�0;�1

(1� q � �1)xi(h; l) + (2q � 1 + �1)xi(h; h)� (1� �0 � �1))ti(h; l)� (�0 + �1)ti(h; h)

Note that it is optimal to set U li = 0. The incentive constraint of the high type is:

min
�0;�1

(1�q��1)xi(l; l)+(2q�1+�1)xi(l; h)� (�0+�1))ti(l; h)� (1��0��1)ti(l; l) � Uhi

The participation constraint of the low type is:

min
�0;�1

�1xi(l; l) + (1� q � �1)xi(l; h)� (�0 + �1))ti(l; l)� (1� �0 � �1)ti(l; h) = 0

We can subtract the latter from the former to get:

(1� q � �1 � �1)xi(l; l) + (3q � 2 + �1 + �1)xi(l; h)� Uhi
�0 + �1 + �0 + �1 � 1

� ti(l; h)� ti(l; l)

De�ne:

�tl;i � ti(l; h)� ti(l; l)
�th;i � ti(h; l)� ti(h; h)

We can write the expected transfers to the seller from each type as:

T li = min
�0;�1

�1xi(l; l) + (1� q � �1)xi(l; h)�
�
q2 + (1� q)2 � (�0 + �1)

�
�tl;i

T hi = min
�0;�1

(1� q � �1)xi(h; l) + (2q � 1 + �1)xi(h; h)�
�
q2 + (1� q)2 � (�0 + �1)

�
�th;i � Uhi

Let �l0; �
l
1 and �

h
0 ; �

h
1 be solutions to these minimization problems. The seller chooses

xi(l; l) 2 [0; 1
2
], xi(h; h) 2 [0; 1

2
], xi(l; h) 2 [0; 1], xi(h; l) 2 [0; 1 � xi(l; h)], �tl;i 2 R,

�th;i 2 R, and Uhi � 0 to maximize T li + T hi subject to:

(1� q � �1 � �1)xi(l; l) + (3q � 2 + �1 + �1)xi(l; h)� Uhi
�0 + �1 + �0 + �1 � 1

� �tl;i

Clearly, it is optimal to set xi(h; h) = 1
2
and xi(h; l) = 1 � xi(l; h). Thus, the seller�s

problem is:

max
xi(l;l);xi(l;h);�tl;i;�th;i;U

h
i

�
min
�0;�1

�1xi(l; l) + (1� q � �1)xi(l; h)�
�
q2 + (1� q)2 � (�0 + �1)

�
�tl;i

+ min
�0;�1

(1� q � �1)(1� xi(h; l)) +
1

2
(2q � 1 + �1)�

�
q2 + (1� q)2 � (�0 + �1)

�
�th;i � Uhi

�
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subject to:

(1� q � �1 � �1)xi(l; l) + (3q � 2 + �1 + �1)xi(l; h)� Uhi
�0 + �1 + �0 + �1 � 1

� �tl;i

0 � xi(l; l) �
1

2

0 � xi(l; h) � 1

De�ne:

�t�l;i(xi(l; l); xi(l; h); U
h
i ) � max

�
0;
(1� q � �1 � �1)xi(l; l) + (3q � 2 + �1 + �1)xi(l; h)� Uhi

�0 + �1 + �0 + �1 � 1
;

xi(l; h)� xi(l; l)
�

We show that �tl;i = �t�l;i(xi(l; l); xi(l; h); U
h
i ) is optimal. Note that �tl;i < 0 implies

�l0 = �0, which implies that q2 + (1 � q)2 � �l0 � �l1 < 0, so it is pro�table to increase

�tl;i (which also slackens ICh). Similarly when �tl;i < xi(l; h) � xi(l; l), �l1 = �1, which
implies that q2 + (1 � q)2 � �l0 � �l1 < 0, so it is pro�table to increase �tl;i. If �tl;i >

xi(l; h) � xi(l; l) � 0, then it is pro�table to decrease �tl;i, which is possible if �tl;i >
(1�q��1��1)xi(l;l)+(3q�2+�1+�1)xi(l;h)�Uhi

�0+�1+�0+�1�1
.

De�ne:

�t�h;i(xi(l; h)) � max
�
0;
1

2
� xi(l; h)

�
Similarly, it is optimal to set �th;i = �t�h;i(xi(l; h)). Thus, the problem becomes:

max
xi(l;l);xi(l;h);Uhi

R(xi(l; l); xi(l; h); U
h
i ) = min

�1

�
�1xi(l; l) + (1� q � �1)xi(l; h)

�
�
q2 + (1� q)2 � (�0 + �1)

�
�t�l;i(xi(l; l); xi(l; h); U

h
i )

�
+ min
�0;�1

�
(1� q � �1)(1� xi(l; h)) +

2q � 1 + �1
2

�
�
q2 + (1� q)2 � (�0 + �1)

�
�t�h;i(xi(l; h))� Uhi

�
Now we show that xi(l; l) = 1

2
is optimal. Note that:

@R

@xi(l; l)
=

8>>>>>><>>>>>>:

�1 �
(q2+(1�q)2��0��1)(1�q��1��1)

�0+�0+�1+�1�1
> 0 xi(l; l) > max

n
xi(l; h);

�xi(l;h)(3q�2+�1+�1)+Uhi
1�q��1��1

o
�1 > 0 xi(l; h) < xi(l; l) <

�xi(l;h)(3q�2+�1+�1)+Uhi
1�q��1��1

q2 + (1� q)2 � �0 > 0
�xi(l;h)(3q�1��0��0)+Uhi

�0+�0�q
< xi(l; l) < xi(l; h)

�1 � (q2+(1�q)2��0��1)(1�q��1��1)
�0+�0+�1+�1�1

> 0 xi(l; l) < min
n
xi(l; h);

�xi(l;h)(3q�1��0��0)+Uhi
�0+�0�q

o
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Thus, the problem becomes:

max
xi(l;h);Uhi

R(xi(l; h); U
h
i ) = min

�1

�
�1
2
+ (1� q � �1)xi(l; h)

�
�
q2 + (1� q)2 � (�0 + �1)

�
�t�l;i(xi(l; h); U

h
i )

�
+min

�1

�
(1� q � �1)(1� xi(l; h)) +

2q � 1 + �1
2

�
�
q2 + (1� q)2 � (�0 + �1)

�
�t�h;i(xi(l; h))� Uhi

�
Now we �nd the optimal xi(l; h) as a function of Uhi :

@R(xi(l; h); U
h
i )

@xi(l; h)
=

8>>>>>><>>>>>>:

� (q2+(1�q)2��0��1)(3q�2+�1+�1)
�0+�0+�1+�1�1

< 0 xi(l; h) > max
n
� 1
2
(�0+�0�q)+Uhi
3q�1��0��0

; 1
2

o
�(q2 + (1� q)2 � �0 � �1) < 0 1

2
< xi(l; h) <

� 1
2
(�0+�0�q)+Uhi
3q�1��0��0

� (q2+(1�q)2��0��1)(3q�1��0��0)
�0+�0+�1+�1�1

< 0
� 1
2
(1�q��1��1)+Uhi
3q�2+�1+�1

< xi(l; h) <
1
2

q2 + (1� q)2 � �0 � �1 > 0 xi(l; h) < min
n
1
2
;
� 1
2
(1�q��1��1)+Uhi
3q�2+�1+�1

o
Therefore:

x�i (l; h)(U
h) =

8>>><>>>:
0 Uhi � 1

2
(1� q � �1 � �1)

� 1
2
(1�q��1��1)+Uhi
3q�2+�1+�1

1
2
(1� q � �1 � �1) < Uhi < 1

2
(2q � 1)

1
2

Uhi � 1
2
(2q � 1)

We can now write the problem just in terms of Uhi :

max
Uhi

R(Uhi ) =
�1
2
+ (1� q � �1)x�i (l; h)(Uhi )�

�
q2 + (1� q)2 � (�0 + �1)

�
�t�l;i(U

h
i )

+ (1� q � �1)(1� x�i (l; h)(Uhi )) +
2q � 1 + �1

2

�
�
q2 + (1� q)2 � (�0 + �1)

�
�t�h;i(x

�(l; h)(Uhi ))� Uhi

@R(Uhi )

@Uhi
=

8>>><>>>:
q2+(1�q)2��0��1
�0+�0+�1+�1�1

� 1 Uhi <
1
2
(1� q � �1 � �1)

q2+(1�q)2��0��1
3q�2+�1+�1

� 1 1
2
(1� q � �1 � �1) < Uhi < 1

2
(2q � 1)

�1 Uhi >
1
2
(2q � 1)

Thus,

Uh =

8>>><>>>:
0 q2 + (1� q)2 � �0 � �1 � �0 + �0 + �1 + �1 � 1
1
2
(1� q � �1 � �1) �0 + �0 + �1 + �1 � 1 < q2 + (1� q)2 � �0 � �1 < 3q � 2 + �1 + �1
1
2
(2q � 1) q2 + (1� q)2 � �0 � �1 � 3q � 2 + �1 + �1
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This is equivalent to:

Uh =

8>>><>>>:
0 q � q��(a)
1
2
(1� q � �1 � �1) q�(a) < q < q��(a)

1
2
(2q � 1) q � q�(a)

Thus, in the optimal symmetric mechanism, xi(l; l) = xi(h; h) = 1
2
, and:

xi(l; h) =

8>>><>>>:
0 q � q��(a)
1
2
q�(a) < q < q��(a)

1
2
q � q�(a)

�tl;i =

8>>><>>>:
1�q��1��1

2(�0+�1+�0+�1�1)
q � q��(a)

0 q�(a) < q < q��(a)

0 q � q�(a)

�th;i =

8>>><>>>:
1
2
q � q��(a)

1
2
q�(a) < q < q��(a)

0 q � q�(a)

To recover the transfers ti(l; l), ti(l; h), ti(h; l), and ti(h; h), use:

min
�0;�1

�1xi(l; l) + (1� q � �1)xi(l; h)� (�0 + �1))ti(l; l)� (1� �0 � �1)(ti(l; l) + �tl;i) = 0

min
�0;�1

�
(1� q � �1)xi(h; l) + (2q � 1 + �1)xi(h; h)

� (1� �0 � �1))(ti(h; h) + �th;i)� (�0 + �1)ti(h; h)
�
= Uhi

Now we show that the optimal symmetric mechanism is fully optimal. Suppose that

there exists an asymmetric mechanism (x; t) that is optimal. De�ne:

x(�; �) � 1

2
x1(�; �) +

1

2
x2(�; �)

t(�; �) � 1

2
t1(�; �) +

1

2
t2(�; �)
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Consider the following symmetric mechanism:

x0i(�; �) = x(�; �)

t0i(l; �) = t(l; �) + min
�0;�1

�
�1x(l; l) + (1� q � �1)x(l; h)

� (�0 + �1)t(l; l)� (1� �0 � �1)t(l; h)�
1

2

2X
i=1

U li

�
t0i(h; �) = t(h; �) + min

�0;�1

�
(1� q � �1)x(h; l) + (2q � 1 + �1)x(h; h)

� (1� �0 + �1)t(h; l)� (�0 + �1)t(h; h)�
1

2

2X
i=1

Uhi

�

By construction, the high type gets 1
2

P2
i=1 U

h
i in equilibrium and the low type gets

1
2

P2
i=1 U

l
i in equilibrium; therefore both participation constraints are satis�ed.

De�ne �xl � x(l; h) � x(l; l), �tl � t(l; h) � t(l; l), �xl;i � xi(l; h) � xi(l; l), and
�tl;i � ti(l; h)� ti(l; l). To see that ICh is satis�ed, �rst note that:

min
�0;�1

(1� q � �1)x(l; l) + (2q � 1 + �1)x(l; h)� (1� �0 � �1)t(l; l)� (�0 + �1)t(l; h)

=
1

2

2X
i=1

min
�0;�1

(1� q � �1)xi(l; l) + (2q � 1 + �1)xi(l; h)� (1� �0 � �1)ti(l; l)� (�0 + �1)ti(l; h)

+ min
�0;�1

�1�xl � (�0 + �1)�tl �
1

2

2X
i=1

min
�0;�1

�1�xl;i � (�0 + �1)�tl;i

and by de�nition:

1

2

2X
i=1

min
�0;�1

�1xi(l; l)+(1� q��1)xi(l; h)� (�0+�1)ti(l; l)� (1��0��1)ti(l; h)�U li = 0
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Therefore:

min
�0;�1

(1� q � �1)x(l; l) + (2q � 1 + �1)x(l; h)� (1� �0 � �1)t(l; l)� (�0 + �1)t(l; h)

�
�
min
�0;�1

�1x(l; l) + (1� q � �1)x(l; h)� (�0 + �1)t(l; l)� (1� �0 � �1)t(l; h)
�
+
1

2

2X
i=1

U li

=
1

2

2X
i=1

min
�0;�1

(1� q � �1)xi(l; l) + (2q � 1 + �1)xi(l; h)� (1� �0 � �1)ti(l; l)� (�0 + �1)ti(l; h)

+ min
�0;�1

�1�xl � (�0 + �1)�tl �
1

2

2X
i=1

min
�0;�1

�1�xl;i � (�0 + �1)�tl;i

+
1

2

2X
i=1

min
�0;�1

�1xi(l; l) + (1� q � �1)xi(l; h)� (�0 + �1)ti(l; l)� (1� �0 � �1)ti(l; h)� U li

�
�
min
�0;�1

�1x(l; l) + (1� q � �1)x(l; h)� (�0 + �1)t(l; l)� (1� �0 � �1)t(l; h)
�
+
1

2

2X
i=1

U li

=
1

2

2X
i=1

min
�0;�1

(1� q � �1)xi(l; l) + (2q � 1 + �1)xi(l; h)� (1� �0 � �1)ti(l; l)� (�0 + �1)ti(l; h)

+ min
�0;�1

�1�xl � (�0 + �1)�tl �
1

2

2X
i=1

min
�0;�1

�1�xl;i � (�0 + �1)�tl;i

+
1

2

2X
i=1

min
�0;�1

��1�xl;i + (�0 + �1)�tl;i � min
�0;�1

��1�xl + (�0 + �1)�tl �
1

2

2X
i=1

Uhi

The last inequality follows because:

min
�0;�1

�1�xl � (�0 + �1)�tl �
1

2

2X
i=1

min
�0;�1

�1�xl;i � (�0 + �1)�tl;i

+
1

2

2X
i=1

min
�0;�1

��1�xl;i + (�0 + �1)�tl;i � min
�0;�1

��1�xl + (�0 + �1)�tl

= min
�0;�1

�1�xl � (�0 + �1)�tl �
1

2

2X
i=1

min
�0;�1

�1�xl;i � (�0 + �1)�tl;i

+max
�0;�1

�1�xl � (�0 + �1)�tl �
1

2

2X
i=1

max
�0;�1

�1�xl;i � (�0 + �1)�tl;i

= (�1 + �1)�xl � (�0 + �0 + �1 + �1)�tl �
1

2

2X
i=1

(�1 + �1)�xl;i � (�0 + �0 + �1 + �1)�tl;i = 0

The proof that ICl is satis�ed is analogous. De�ne �xh � x(h; l) � x(h; h), �th �
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t(h; l)� t(h; h), �xh;i � xi(h; l)� xi(h; h), and �th;i � ti(h; l)� ti(h; h). Then:

min
�0;�1

�1x(h; l) + (1� q � �1)x(h; h)� (�0 + �1)t(h; l)� (1� �0 � �1)t(h; h)

�
�
min
�0;�1

(1� q � �1)x(h; l) + (2q � 1 + �1)x(h; h)� (1� �0 � �1)t(h; l)� (�0 + �1)t(h; h)
�

+
1

2

2X
i=1

Uhi

=
1

2

2X
i=1

min
�0;�1

�1xi(h; l) + (1� q � �1)xi(h; h)� (�0 + �1)ti(h; l)� (1� �0 � �1)ti(h; h)

+ min
�0;�1

�1�xh � (�0 + �1)�th �
1

2

2X
i=1

min
�0;�1

�1�xh;i � (�0 + �1)�th;i

+
1

2

2X
i=1

�
min
�0;�1

(1� q � �1)xi(h; l) + (2q � 1 + �1)xi(h; h)� (1� �0 � �1)ti(h; l)� (�0 + �1)ti(h; h)

� Uhi
�

�
�
min
�0;�1

(1� q � �1)x(h; l) + (2q � 1 + �1)x(h; h)� (1� �0 � �1)t(h; l)� (�0 + �1)t(h; h)
�

+
1

2

2X
i=1

Uhi

=
1

2

2X
i=1

min
�0;�1

�1xi(h; l) + (1� q � �1)xi(h; h)� (�0 + �1)ti(h; l)� (1� �0 � �1)ti(h; h)

+ min
�0;�1

�1�xh � (�0 + �1)�th �
1

2

2X
i=1

min
�0;�1

�1�xh;i � (�0 + �1)�th;i

+
1

2

2X
i=1

min
�0;�1

��1�xh;i + (�0 + �1)�th;i � min
�0;�1

��1�xh + (�0 + �1)�th �
1

2

2X
i=1

U li

Finally, note that 1
2

P2
i=1 t

0
i(l; l) � t(l; l), 1

2

P2
i=1 t

0
i(l; h) � t(l; h), 1

2

P2
i=1 t

0
i(h; l) �

t(h; l), and 1
2

P2
i=1 t

0
i(h; h) � t(h; h), so the symmetric mechanism (x0; t0) is incentive

compatible and yields weakly greater revenue to the seller than (x; t).�

Proof of Proposition 5: First, we consider �rst-price auctions. Let us above let us
conjecture the minimum bid b"(l) for the low type and a distribution for h on [b"(l);�b"(h)]:

Let us �rst compute the bid of the low type. We aim to minimize for any b the utility
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from winning upon the other receiving the low signal, in other words:

min
p2[ 1

2
�"; 1

2
+"]
Pr
"
(ljl)(E"(vjl; l)� b"(l))

= min
p2[ 1

2
�"; 1

2
+"]
(1� p)q2(�b"(l)) + p(1� q)2(1� b"(l))

Assuming b"(l) > v = 0 we then have p = 1
2
� ": Given that the rent for the low type

would be 0 in equilibrium, we then set

b"(l) = E"(vjl; l) =
(1
2
� ")(1� q)2

(1
2
+ ")q2 + (1

2
� ")(1� q)2

;

and thus the bid is lower than in the case in which there is a unique prior 1
2
:

Consider now the strategy of the high type. If he uses some F (b); we have:

Z
b

f(b)[Pr
"

(ljh)(E"(vjh; l)� b) + Pr
"

(hjh)F (b)(E"(vjh; h)� b)]db

=

Z
b

f(b)[E"(vjh)� b� (1� F (b)) Pr
"

(hjh)(E"(vjh; h)� b)]db

To choose the information structure to minimize utility, we

min
p
E"(vjh)� (1� F (b)) Pr

"

(hjh)(E"(vjh; h)� b)

The above equals

min
p

pq(1� (1� F (b))q)
pq + (1� p)(1� q) + (1� F (b))

pq2 + (1� p)(1� q)2
pq + (1� p)(1� q) b

For any F (b) � 1 of the other bidder, this decreases in p and hence we choose the lowest
p = 1

2
� ":

Let us look at �b"(h) = Pr"(ljh)E"(vjl; l) + Pr"(hjh)E"(vjh; h): Note that E"(vjh; h) <
E(vjh; h); E"(vjl; l) < E(vjl; l); and that Pr"(hjh) < Pr(hjh) =

pq2+(1�p)(1�q)2
pq+(1�p)(1�q) : We there-

fore have a uniformly lower value. It is straightforward to show that F"(b) =
Pr"(ljh)
Pr"(hjh)

b�E" (vjl;l)
E" (vjh;h)�b

:

To complete the equilibrium characterization note that the low type will not deviate

for a bid b if

min
"
(Pr
"
(ljl)(E"(vjl; l)� b) + Pr

"
(hjl)F"(b)(E"(vjl; h)� b)) < 0

Note that Pr"(ljl)(E"(vjl; l)�b)+Pr"(hjl)F"(b)(E"(vjl; h)�b)) = p(1�q)2+(1�p)q2
p(1�q)+(1�p)q (

p(1�q)2
p(1�q)2+(1�p)q2�

b)+ q(1�q)
p(1�q)+(1�p)qF"(b)(p� b)) increases in p for all F"(b) � 1 and thus again we choose the

lowest p = 1
2
� ":
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Given the same belief p = 1
2
� "; we have that

Pr
"
(ljl)(E"(vjl; l)� b) + Pr

"
(hjl)F"(b)(E"(vjl; h)� b)

= Pr
"
(ljl)(E"(vjl; l)� b) + Pr

"
(hjl) Pr"(ljh)

Pr"(hjh)
b� E"(vjl; l)
E"(vjh; h)� b

(E"(vjl; h)� b)

= (b� E"(vjl; l)(�Pr
"
(ljl) + Pr

"
(hjl) Pr"(ljh)

Pr"(hjh)
E"(vjl; h)� b
E"(vjh; h)� b

) < 0

as E"(vjl;h)�b
E" (vjh;h)�b

< 1 and Pr"(ljl)
Pr"(hjl) >

Pr"(ljh)
Pr"(hjh) by the MLRP which is satis�ed here. Finally note

that F"(b) =
Pr"(ljh)
Pr"(hjh)

b�E" (vjl;l)
E" (vjh;h)�b

� F (b) which is computed in the canonical case with no

ambiguity, so F (b) �rst order stochastically dominates F"(b) for the same support: This

implies that the seller�s revenue would be lower.

Now consider second-price auction. We need to show that

b"(l) =
(1
2
� ")(1� q)2

(1
2
+ ")q2 + (1

2
� ")(1� q)2

and

b"(h) =
(1
2
� ")q2

(1
2
+ ")(1� q)2 + (1

2
� ")q2

constitute an equilibrium strategy. Suppose that player 2 is following the equilibrium

strategy. Then the utility to player 1 with signal l from bidding b"(l) is:

min
p
Pr
"
(1jl)

�
1� q
2
(1� b"(l))

�
� Pr

"
(0jl)

�q
2
b"(l)

�
min
p

p(1� q)
p(1� q) + (1� p)q

�
1� q
2
(1� b"(l))

�
� (1� p)q
p(1� q) + (1� p)q

�q
2
b"(l)

�
which is minimized by p = 1� ". The utility to player 1 with signal h from bidding b"(h)
is:

min
p
Pr
"
(1jh)

�
(1� q)(1� b"(l)) +

q

2
(1� b"(h))

�
� Pr

"
(0jh)

�
qb"(l) +

(1� q)
2

b"(h)

�
min
p

�
pq

pq + (1� p)(1� q)

�
(1� q)(1� b"(l)) +

q

2
(1� b"(h))

�
� (1� p)(1� q)
pq + (1� p)(1� q)

�
qb"(l) +

(1� q)
2

b"(h)

��
which is minimized by p = 1� ". Since (b"(l); b"(h)) is an equilibrium strategy pro�le in

the standard model with prior 1 � ", there is no pro�table deviation �xing p = 1 � ".
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However, this also implies that there no pro�table deviation when the buyers consider the

set of priors p 2 [1� "; 1+ "], since every deviation is not pro�table at least for the belief
p = 1� ".�

6.2 Appendix B: The continuous model

The state of the world is v 2 f0; 1g; with an equal prior. Each individual receives a signal
si 2 [0; 1] about the state of the world: The marginal distributions determining the signals
given the state of the world, are known to the players, are anonymous, and depend on

the state symmetrically. Speci�cally, g0(s) is a decreasing function, g1(s) is an increasing

function: Hence G0(s) is concave and G1(s) is convex. For simplicity, let g0(s) = g1(1�s);
so that G0(s) = 1 � G1(1 � s): Note that FOSD is satis�ed so that G0(s) > G1(s) for

all interior s; and hence MLRP is satis�ed too. Let s0 < 0:5 be the median of G0 and

s1 > 0:5 the median of G1:

Individuals have ambiguity over a set of joint distributions per state v 2 f0; 1g:We use
a simple set of joint distributions, the F-G-M transformation, which was introduced by

Morgenstern in 1956. Speci�cally, given gv(s); we have:

fv(s) = [1 + �v(2Gv(s1)� 1)(2Gv(s2)� 1)]gv(s1)gv(s2): (4)

For this to be a distribution, for any v we need j�vj � 1; which implies that the highest
correlation coe¢ cient in this family is 1

3
in absolute value:19 Note that when �v > 0

we have positive correlation of signals in state v while when �v < 0 we have negative

correlation. When signals are conditionally independent, we have �v = 0 for all v: Adding

ePMI constraints, we then have:

�v 2 [
1

a
� 1; 1� 1

a
] for v 2 f0; 1g:

Let us �rst write the utility of a player per each bid b: This is

U(s1; b) = min
�

1

2
(

Z z

0

(1� b(s0))f1(s1; s0)ds0 �
Z z

0

b(s0)f0(s
1; s0)ds0)

where b(s0) is the bid used by the other player and z = b�1(b). Thus per each bid b;

each player minimizes his utility by choosing a vector �; given the strategy of the other

player. Recall that sv, for v 2 f0; 1g; is the median of the cdf Gv():

Lemma B1: Consider an equilibrium in which b(s) is increasing. Let ��v(s) denote

the information structure which minimizes the utility of the player for each s. Then:

19See Schucany et al (1978).
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(i) (��0; �
�
1) = (�max; �min) for all s < s0:

(ii) (��0; �
�
1) = (�min; �min) for all s 2 [s0;minfŝ; s1g]:

(iii) (��0; �
�
1) = (�min; �max) in [s1; ŝ] if s1 < ŝ and (�0; �1) = (�max; �min) in [ŝ; s1]

otherwise.

(iv) (��0; �
�
1) = (�max; �max) for all s > maxfs1; ŝg;

and ŝ < 1 satis�es Z ŝ

0

b(s0)g0(s
0)(2G0(s

0)� 1))ds0 = 0:

That is, ��(s) changes with s; so the behaviour as described cannot be rationalized

with a unique a priori �:

We can now characterise the equilibrium. As expected, bids in equilibrium in the

second-price auction will equal the expectations of the player given his signal and that

the other player had received the same signal. The expectations however will depend for

each b(s); on the chosen vector ��(s):

Proposition B1: When a is not too high, there exists a symmetric equilibrium in

which

b(s;��) = E�
�
(vjs; s) = [1 + ��1(2G1(s)� 1)2]g21(s)

[1 + ��1(2G1(s)� 1)2]g21(s) + [1 + ��0(2G0(s)� 1)2]g20(s)
:

Overbidding arises in equilibrium when ŝ > 1
2
, for types in [0:5; ŝ]: For all other types,

underbidding arises. When ŝ < 0:5, or when w(y) is decreasing over [1� ŝ; ŝ], for

w(y) � (1�G1(y))g1(y) + (1�G0(y))g0(y);

then the seller�s revenue decreases in a:

Proofs of Lemma B1 and Proposition B1: We �rst show in Claims 1-3 how

players choose �� to minimize their utility given each s; when the bid of the other player

is weakly increasing in s0: We then show that the bidding function described above, for

the �s chosen, is an equilibrium.

De�ne:

I1(s) =

Z s

0

(1� b(s0))g1(s0)g1(s)(2G1(s)� 1)(2G1(s0)� 1)ds0

I0(s) = �
Z s

0

b(s0)g0(s
0)g0(s)(2G0(s)� 1)(2G0(s0)� 1))ds0;

Thus:
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Claim 1: In equilibrium, ��v = �min (�max) i¤ Iv(s) > (<)0:

Iv(s) is the derivative of the expected utility with respect to �v: Given max-min behav-

iour, the statement follows.�

Claim 2: (i) I1(s) > 0 for s < s1; I1(s) < 0 for all s > s1; (ii) I0(s) < 0 for s < s0;
I0(s) > 0 for all s 2 (s0; ŝ); I0(s) < 0 for all s > ŝ:

Proof of Claim 2:
(i) I1(s) : This function must be strictly positive for s < s1 as (2G1(s)�1)(2G1(s0)�1) >

0 for s; s0 < s1: Note that I1(s1) = 0; and that

@I1(s)

@s
js=s1 =

@g1(s)(2G1(s)� 1)
@s

js=s1
Z s1

0

(1� b(s0))g1(s0)(2G1(s0)� 1)ds0

= 2(g1(s1))
2

Z s1

0

(1� b(s0))g1(s0)(2G1(s0)� 1)ds0 < 0

More generally:

@I1(s)

@s
= (g01(s)(2G1(s)� 1) + 2(g1(s))2)

Z s

0

(1� b(s0))g1(s0)(2G1(s0)� 1)ds0

+(1� b(s))g1(s)g1(s)(2G1(s)� 1)(2G1(s)� 1)

= (
g01(s)

g1(s)
+

2(g1(s))

(2G1(s)� 1)
)I1(s) + 2(g1(s))

2)(1� b(s))(2G1(s)� 1)(2G1(s)� 1))

So whenever I1(s) > 0 and s > s1 we have that
@I1(s)
@s

> 0 as g1(s) is increasing

and 2(g1(s))2)(1 � b(s))(2G1(s) � 1)(2G1(s) � 1)) > 0. So now it su¢ ces to check that
I1(1) < 0 :

I1(1) = g1(1)

Z 1

0

(1� b(s0))g1(s0)(2G1(s0)� 1)ds0

= g1(1)

Z s1

0

(1� b(s0))g1(s0)(2G1(s0)� 1)ds0 + g1(1)
Z 1

s1

(1� b(s))g1(s0)(2G1(s0)� 1)ds0

< g1(1)

Z s1

0

(1� b(s1))g1(s0)(2G1(s0)� 1)ds0 + g1(1)
Z 1

s1

(1� b(s1))g1(s0)(2G1(s0)� 1)ds0

= g1(1)

Z s1

0

(1� b(s1))g1(s0)(2G1(s0)� 1)ds0 = 0;

where the last inequality follows as b(s0) is increasing, (2G1(s0)� 1) > 0 (< 0) whenever
s > s1 (s < s1). The last equality follows from

R 1
0
g1(s

0)(2G1(s
0)� 1)ds0 = 0:

(ii) I0(s) : This function must be strictly negative for s < s0 as (2G0(s)� 1)(2G0(s0)�
1) > 0 for s; s0 < s0: Note that I0(s0) = 0. Moreover,
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@I0(s)

@s
js=s0 = �@g0(s)(2G0(s)� 1)

@s
js=s0

Z s0

0

b(s0)g0(s
0)(2G0(s

0)� 1)ds0

�b(s0)g0(s0)g0(s0)(2G0(s0)� 1)(2G0(s0)� 1))

= �2(g0(s0))2
Z s0

0

b(s0)g0(s
0)(2G0(s

0)� 1)ds0 > 0

So I0(s) < 0 for s & s0. Note that �
R s
0
b(s0)g0(s

0)(2G0(s
0)�1))ds0 is decreasing for s > s0.

Thus if I0(1) < 0; we have the result. But

jI0(1)j = g0(1)

Z 1

0

b(s0)g0(s
0)(2G0(s

0)� 1)ds0

> g0(1)

Z s0

0

b(s0)g0(s
0)(2G0(s

0)� 1)ds0

+g0(1)

Z 1

s0

b(s0)g0(s
0)(2G0(s

0)� 1)ds0

= g0(1)b(s0)

Z 1

0

g0(s
0)(2G0(s

0)� 1)ds0 = 0:

Thus we know there exists ŝ < 1 such that:Z ŝ

0

b(s0)g0(s
0)(2G0(s

0)� 1))ds0 = 0;

and we can conclude that I0(s) > 0 for s 2 (s0; ŝ) and that I0(s) < 0 for s > ŝ:�

Consider now the bidding function E�
�
(vjs; s): Note that overbidding, compared to the

canonical model, arises when

[1 + �1(2G1(s)� 1)2]g21(s)
[1 + �1(2G1(s)� 1)2]g21(s) + [1 + �1(2G0(s)� 1)2]g20(s)

>
g21(s)

g21(s) + g
2
0(s)

which holds if an only if:
[1 + �1(2G1(s

0)� 1)2]
[1 + �0(2G0(s0)� 1)2]

> 1:

We then have:

Claim 3: When b(s) = E�
�
(vjs; s); a necessary condition for overbidding compared to

the canonical model is ŝ > 0:5; that is:Z 0:5

0

b(s0)g0(s
0)(2G0(s

0)� 1)ds0 < 0

If this holds, there is overbidding in the region [s0; ŝ], and underbidding for any other

s. Otherwise, all types underbid compared to the canonical model.
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Proof of Claim 3: Given Claims 1 and 2, we can then deduce the di¤erent values
of ��v in equilibrium and consider when overbidding/underbidding arises compared to the

canonical model when the bidding function is as described in the Proposition.

(i) (�0; �1) = (�max; �min) for all s < s0: As a result, if this is an equilibrium, we would

have underbidding as
[1 + �min(2G1(s

0)� 1)2]
[1 + �max(2G0(s0)� 1)2]

< 1;

which is indeed the case as �min < 0 < �max:

b. (�0; �1) = (�min; �min) for all s 2 [s0;minfŝ; s1g]: We have underbidding i¤:

[1 + �min(2G1(s
0)� 1)2]

[1 + �min(2G0(s0)� 1)2]
< 1

If minfŝ; s1g > 0:5; then we would have overbidding because in the region above 0.5, as
(2G1(0:5)�1)2 = (2G0(0:5)�1)2 by symmetry, but because of convexity (concavity) of G1
(G0), the fraction would be greater than 1, as we would have (2G1(s0)�1)2 < (2G0(s0)�1)2

just above 0.5.

c. (�0; �1) = (�max; �max) for all s > maxfs1; ŝg: In this case we also have underbidding
as [1 + �max(2G1(s0)� 1)2] < [1 + �max(2G0(s0)� 1)2], because 1

2
< G1(s

0) < G0(s
0):

d. If 0:5 < s1 < ŝ : in the region [s1; ŝ] we have (�0; �1) = (�min; �max): In this case we

have overbidding as:
[1 + �max(2G1(s

0)� 1)2]
[1 + �min(2G0(s0)� 1)2]

> 1

For this we need s1 < ŝ; implying that 0:5 < ŝ:

e. if ŝ < s1 : Then we have (�0; �1) = (�max; �min) in this region between the two values.

Then we have underbidding as:

[1 + �min(2G1(s
0)� 1)2]

[1 + �max(2G0(s0)� 1)2]
< 1:�

Thus the structure of the equilibrium is therefore as above. So for overbidding we need:Z 0:5

0

b(s0)g0(s
0)(2G0(s

0)� 1)ds0

=

Z s0

0

[1 + �min(2G1(s
0)� 1)2]g21(s0)

[1 + �min(2G1(s0)� 1)2]g21(s0) + [1 + �max(2G0(s0)� 1)2]g20(s0)
g0(s

0)(2G0(s
0)� 1)ds0

+

Z 0:5

s0

[1 + �min(2G1(s
0)� 1)2]g21(s0)

[1 + �min(2G1(s0)� 1)2]g21(s0) + [1 + �min(2G0(s0)� 1)2]g20(s0)
g0(s

0)(2G0(s
0)� 1)ds0

< 0

which is analogous to what is in the Proposition. Finally we need to show that the

construction above is an equilibrium:
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Claim 4: The bidding function b(s0) de�ned above with the values of ��(s) described
above consists a symmetric equilibrium when a is low enough.

Proof of Claim 4: We now show that given the above it is optimal, wlog, for player
1 to choose b(s) at s; when player 2 uses b(s0) and ��(s) as de�ned above.

Let �̂ equal ��(s) and consider the virtual utility:

Û(s; z) =

Z z

0

(E�̂(s)(vjs; s0)� b(s0))dF �̂(s)(s; s0)

=
1

2
(

Z z

0

((1� b(s0))f1(�̂;s; s0)� b(s0)f0(�̂;s; s0))ds0

This is not player 1�s utility as it is evaluated at �̂ for all s0: However note that when

z = s; then the integrand is zero. To see that the integrand equals 0 note that, as

�̂ = �
�
(s);

(1� b(s))f1(�̂;s; s) = b(s)f0(�̂;s; s)

i¤

[1 + ��0(2G0(s)� 1)2]g20(s)[1 + ��1(2G1(s)� 1)(2G1(s)� 1)]g1(s)g1(s)
= [1 + ��1(2G1(s)� 1)2]g21(s)[1 + ��0(2G0(s)� 1)(2G0(s)� 1)]g0(s)g0(s)

which holds.

Moreover as we now show the �rst order condition w.r.t. s0 is zero, the second order

condition evaluated at this point is negative, thus z = s is a maximum: To see this,

suppose that we have a z for which Û(s; z) = 0: Taking a second derivative w.r.t. z we

get: �b0(z)(f1(�̂;s; z) + f0(�̂;s; z)) + (1� b(z))f 01(�̂;s; z)� b(z)f 00(�̂;s; z): As Û(s; z) = 0;
this implies that (1� b(z)) = b(z)f0(�̂;s;z)

f1(�̂;s;z)
; and thus the second order derivative at that z is

�b0(z)(f1(�̂;s; z) + f0(�̂;s; z)) +
b(z)f0(�̂;s; z)

f1(�̂;s; z)
f 01(�̂;s; z)� b(z)f 00(�̂;s; z)

= �b0(z)(f1(�̂;s; z) + f0(�̂;s; z)) + b(z)(
f0(�̂;s; z)

f1(�̂;s; z)
f 01(�̂;s; z)� f 00(�̂;s; z))

Note that the �rst element is always negative. The second element is negative i¤:
g01(z)g1(s)(1+�̂1(2G1(z)�1)(2G1(s)�1))+g1(z)g1(s)�̂12g1(z)(2G1(s)�1))
g00(z)g0(s)(1+�̂0(2G0(z)�1)(2G0(s)�1))+g0(z)g0(s)�̂02g0(z)(2G0(s)�1))

< g1(z)g1(s)(1+�̂1(2G1(z)�1)(2G1(s)�1))
g0(z)g0(s)(1+�̂0(2G0(z)�1)(2G0(s)�1))

Note that when �̂ is small enough, this is always the case as the LHS is negative. Thus

a solution to the �rst order condition is unique.

But the above implies that player 1 can achieve this utility above and cannot improve

upon it when using other bids z 6= s:
So we know that the player bids until the integrand gets negative, so, written di¤erently,

until E�̂(s)(vjs; s) = b(s); which gives us the equilibrium bidding function.
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We now consider the seller�s revenue and show they decrease in a; under the su¢ cient

condition identi�ed. Consider the case when ŝ > s1: Let

w(s0) = (1�G1(s0))g1(s0) + (1�G0(s0))g0(s0)

The seller�s revenue can be written as:

R(a) =

Z s0

0

b(s0; �max; �min)w(s
0)ds0 +

Z s1

s0

b(s0; �min; �min)w(s
0)ds0 +Z ŝ

s1

b(s0; �min; �max)w(s
0)ds0 +

Z 1

ŝ

b(s0; �max; �max)w(s
0)ds0

The derivative w.r.t. a is:

@R(a)

@a
=

Z s0

0

@

@a
b(s0; �max; �min)w(s

0)ds0 +

Z s1

s0

@

@a
b(s0; �min; �min)w(s

0)ds0 +Z ŝ

s1

@

@a
b(s0; �min; �max)w(s

0)ds0 +

Z 1

ŝ

@

@a
b(s0; �max; �max)w(s

0)ds0 +

@ŝ

@a
(b(ŝ; �min; �max)� b(ŝ; �max; �max))w(ŝ)

We note that
@

@a
b(s0; �max; �min)ja=1 =

g1(s
0)2g0(s

0)2[�(2G1(s0)� 1)2 � (2G0(s0)� 1)2]
(g1(s0)2 + g0(s0)2)2

@

@a
b(s0; �min; �min)ja=1 =

g1(s
0)2g0(s

0)2[�(2G1(s0)� 1)2 + (2G0(s0)� 1)2]
(g1(s0)2 + g0(s0)2)2

@

@a
b(s0; �min; �max)ja=1 =

g1(s
0)2g0(s

0)2[(2G1(s
0)� 1)2 + (2G0(s0)� 1)2]

(g1(s0)2 + g0(s0)2)2

@

@a
b(s0; �max; �max)ja=1 =

g1(s
0)2g0(s

0)2[(2G1(s
0)� 1)2 � (2G0(s0)� 1)2]

(g1(s0)2 + g0(s0)2)2

So that:
@

@a
b(s0; �max; �min)ja=1 = � @

@a
b(s0; �min; �max)ja=1 = �

@

@a
b(1� s0; �min; �max)ja=1

@

@a
b(s0; �max; �max)ja=1 = � @

@a
b(s0; �min; �min)ja=1 =

@

@a
b(1� s0; �min; �min)ja=1

And therefore we can write @R(a)
@a
ja=1 as:

@R(a)

@a
ja=1 = �

Z 1�ŝ

0

@

@a
b(s0; �min; �max)w(s

0)ds0 �
Z s0

1�ŝ

@

@a
b(s0; �min; �max)[w(s

0)� w(1� s0)]ds0

�
Z 0:5

s0

@

@a
b(s0; �max; �max)[w(s

0)� w(1� s0)]ds0 �
Z 1

ŝ

@

@a
b(s0; �min; �min)w(s

0)ds0:

Thus, a su¢ cient condition for revenue to be decreasing in a is w(s0) decreasing over

[ŝ; 1� ŝ]:�
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