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Abstract: We consider common value auctions when individuals have ambiguity over the
joint information structures generating the signals for players. This implies that ambiguity
interacts with strategic effects as individuals condition their behaviour on their opponent’s
equilibrium bid and hence their signal. We show that compared to the canonical model,
both in the first-price and second-price auctions, low types underbid and high types
sometimes overbid. Therefore, the winner’s curse is mitigated for low types and potentially
exacerbated for high types. We also show that these results differ from a model with
“standard” ambiguity about the prior over the state. Finally, we characterize the optimal
auction and show that the optimal revenue decreases with this type of ambiguity. A novel
feature that arises in the optimal mechanism is that the seller only partially insures the

high type against ambiguity.

1 Introduction

In auctions as in many other strategic situations, individuals often have a good under-
standing of their own private information but they might know less about others’ infor-
mation sources. For example, they might worry that they do not understand well the cor-
relation between their own information and that of other players they are engaged with.
Common-value auctions are typically analyzed under the assumption of conditionally-
independent private information, with the bidders aware of this fact. However, bidders
may believe that their information sources might be correlated, as would be the case when
there are common factors generating their private signals.? In auctions, bidders condition

their valuation on the event of winning, and therefore have to consider the endogenous
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2We therefore consider sophisticated individuals who entertain the possibility that such correlation

might exist. Recent literature has also looked at the opposite possibility, that information sources may be
correlated and naive individuals may not be aware of this. See Ortoleva and Snowberg (2015), Glaeser and
Sunstein (2009) and Levy and Razin (2015a, 2015b), Eyster and Weizsacker (2011), Kallir and Sonsino
(2009) and Enke and Zimmermann (2013).



information they learn about others’ signals. In this sense it is important to analyze how
individuals behave when they are uncertain about the relation between theirs and others’
information.

In this paper we analyze common-value auctions when individuals have ambiguity over
the joint information structures generating signals for the auction participants. Specifi-
cally, we assume that individuals know the marginal information structure of each bidder
but they may believe that their information sources are correlated to a degree, and have
ambiguity over the possible correlation scenarios.

To model the ambiguity over the joint information structure, we follow Levy and Razin
(2017) and use a single parameter, a, to bound the degree of pointwise mutual information
of the information structures. This formulation allows us to analyse a range of levels of
ambiguity and to get arbitrarily close to the canonical model.

Specifically, consider two individuals, 1 and 2, each receiving a signal, s and s, respec-
tively. Let ¢(s, s'|w) denote a joint probability of the signals conditional on a state w, and
¢1(s|lw) and go(s’|w) denote the marginal probabilities of s and §" conditional on w. The
(exponential) pointwise mutual information (PMI) is defined in the Information Theory
literature as —251)

q1(s|w)gz(s’|w) "
information structures satisfying i

3 We assume that individuals’ ambiguity is over the set of joint
q(s,s"|w)

S Slk)e)

The higher is a, the larger is the set of correlation scenarios considered. When a = 1 we

< a for some finite parameter a > 1.4

are back to the standard model with conditionally independent signals and no ambiguity.

We analyze a simple model with two possible valuations and two signals (the model is
extended to continuous signals in Section 5). When an individual receives a signal and
contemplates what strategy to play, she takes into consideration the scenarios in which
she wins and considers all feasible information structures with PMIs that are bounded by
a for any state and vector of signals. We assume that individuals have ambiguity aversion
and that they consider the worst-case scenario when comparing possible actions (as in
Gilboa and Schmeidler 1989).

We analyze the equilibria in the second-price and first-price auctions. In the model,
ambiguity over information structures is exogenous but ambiguity over the state of the
world is endogenous, and depends on the strategic interaction. For this reason, ambiguity
aversion does not simply imply that individuals lower their bids. Indeed our key result is
that low types underbid and high types may overbid as compared to the standard model.

Therefore, the winner’s curse is mitigated for the low type and is sometimes exacerbated

3See Church and Hanks (1991).
‘Levy and Razin (2017) show that this restriction provides a meaningful way to constrain the set

of ambiguous beliefs, and specifically, that the higher the “correlation capacity” a, the greater is the

ambiguity over the state of the world faced by the individual.



for the high type.

The above result is due to the interaction of ambiguity over correlation structures with
strategic reasoning. In equilibrium, the low type’s worst-case scenario is that the value is
the lowest possible when both players have received low signals (which is the only case in
which she can win). The high type sometimes minimizes her utility by believing that the
value is the highest possible when both players have received high signals, inducing her
to bid higher.

In contrast, if one considers exogenous ambiguity about the state, such as standard
ambiguity over the prior, the results are different. We show that in this case all bids are
lower than in the canonical model. In addition, exogenous ambiguity implies that the
modeler can simply assume that individuals share a single worst-case belief to start with.
In contrast, as we saw above, when ambiguity is about correlation, different types use
different correlation scenarios to minimize their utilities.

Next we study the seller’s revenue. First we show that in the first and second price
auctions, the seller’s revenue is decreasing in the ambiguity about the information struc-
ture. Although bids increase for the high types, the overall effect of ambiguity on the
seller is negative. We also show that the first-price auction yields a higher revenue to the
seller compared with the second-price auction. The intuition for this result stems from the
fact that in the second-price auction individuals condition their bids on more information
implying that the ambiguity is more pronounced.

We then turn to consider the optimal auction in the face of ambiguity over correlation
structures. We characterise the optimal mechanism in this environment assuming that the
true distribution of signals is independent. When « is small, in the optimal mechanism,
the good is always allocated to the player with the highest signal. As in the standard
model, the seller makes side bets with the low type. Since the high type is more likely to
win when the other player has received a low signal, she minimizes her utility by believing
that the other player is likely to have received a high signal in the good state. This
implies that the high type underestimates the probability of the other player receiving a
low signal. The seller exploits this by asking the high type to pay more when the other
player receives a low signal. As a result, the seller only partially insures the high type
against ambiguity.

When a is large and the signal is not very informative, the seller finds it optimal to
fully insure the buyers against the ambiguity, so that the allocation of the good does not
depend on their signals. As a result, the high type earns positive rents in equilibrium.
Finally, we show that the seller’s revenue in the optimal mechanism is decreasing in the
amount of ambiguity, as we found in both the first and second price auctions.

Our paper is related to a recent literature on ambiguity and auctions. As far as we



know, our paper is the first to analyse ambiguity in common-value auctions. For private-
value auctions, Salo and Weber (1995) show how ambiguity aversion translates to higher
bids as individuals underestimate their winning probabilities.” Bose et al (2006) analyze
optimal auction mechanisms for private-value auctions with ambiguity over other bidders’
valuations. They show that the seller will fully insure the buyers against ambiguity. We
show that in some cases only partial insurance arises. Lo (1998) shows that the first-price
auction dominates the second-price auction in some environments. He uses a multiple
priors approach and shows that equilibrium bids are simply determined as if all players
hold the worst-case prior. In our analysis players with different signals use different beliefs.

Bose and Renou (2014) study how principals can use ambiguous mechanisms to imple-
ment social welfare functions that are not attainable under unambiguous mechanisms. In
particular, they construct ambiguous communication mechanisms between the agents and
a moderator resulting with agents updating to sets of beliefs. Finally, Bergemann, Brooks
and Morris (2015) consider private values auctions and study the set of achievable utilities
when considering, as modelers, the set of different feasible information structures. Our
analysis is different as in our approach it is the economic agents, rather than the modeler,
who span the possible information structures. In addition, we restrict the set of possible
information structures using the notion of pointwise mutual information. We show how

this shifts equilibrium behaviour in a non-trivial way.

2 The Model

Consider a common-value auction with two bidders (1 and 2), two possible common
valuations v € {0,1} and a uniform prior. Each individual receives one of two signals: [
or h. In Section 5 we consider continuous information structures.

Let g(s|v) denote the marginal conditional probability of receiving signal s € {l,h}
given state v € {0, 1}. We assume that the (marginal) probability of receiving the signal [
in state 0, or the signal h in state 1,is ¢ > 1 i.e., ¢(s = lJv = 0) = q(s = hlv = 1) = ¢.% Let
q(s1, s2|v) denote the joint conditional probability of player 1 receiving signal s; € {l,h}
and player 2 receiving s, € {l, h} given state v € {0,1}.

We assume that the true joint probability distribution, ¢(s1, s2|v), satisfies conditional
independence, so that ¢(s1, s2|v) = q(s1]|v)q(s2]v). However, while individuals know the
true marginal probability distribution generating both their signals, they have ambiguity

over the set of joint information structures. Thus, individuals perceive the following family

5Chen et al (2007) show in experiments that bids are lower in the presence of ambiguity in first and

second-price auctions with independent private values.
6The analysis can be extended to non-symmetric marginal probability distributions.



of information structures:”

TABLE 1: JOINT INFORMATION STRUCTURES

v=0 1 h v=1 1 h
l %) q— [ o} l—qg—ar
h qg—ayg 1—2g+ay h l—g—a1 2¢q—14+m

Under independence, oy = ¢* and a; = (1 — ¢)?. However, in our models ag and «; are

the parameters over which there is ambiguity, as we define below.

Remark 1: No ambiguity absent strategic concerns: At the interim stage, having
received the signal s = [, and without conditioning on equilibrium behaviour, individual
i has a unique belief that the state of the world is 1, which equals (1 — ¢). The knowledge
that the other player had received a signal as well is immaterial as given the marginal
distributions, the law of iterated expectations would imply the same belief for all joint
information structures considered. Thus, ambiguity over joint information structures does

not necessarily lead to a set of beliefs.®

To consider different levels of ambiguity, we use the notion of pointwise mutual infor-

mation. Specifically, we consider information structures which satisfy the following:

q(s1, 52|v)
q(s1|w)q(sz2|v)
This formulation allows a simple one-parameter characterisation of the extent of ambi-

1
- < <a, Vs = (s1,59) € {I,h}* and Vv € {0,1},
a

guity. When a = 1, only information structures which are conditionally independent are

considered. Note that for general a, the ePMI constraints imply:

"The table describes an information structure so for each state, all cell entries are non-negative and

all entries sum up to one.
8This is related to the dilation principle explored in Seidenfeld and Wasserman (1993), where more

information can create ambiguity.



where:

1
ag(a) = 5(1 —q)P?+2¢—1
1
o, (a) = 5(1 —q)?
1—¢)?+2¢—1 a<-L
q—+q(1—q) a> 1
_ a(l—q)? a <t
ay(a) = 1 1qq
l—qg—35q(l—¢q) a>:L

It is easy to see that the higher is a, the larger is the set of possible information
structures that are considered by bidders. Still, when no confusion occurs, we will omit
the dependence of o, @, a;, and @; on a.

The ambiguity over joint information structures will play an important role in common-
value auctions as a player conditions her valuation on the event in which she wins. This
reveals endogenous information about the other’s signal and thus about the state of the
world. Thus, ambiguity about the state of the world arises here endogenously as it would
depend on equilibrium behaviour. Moreover, the probability of this event (of winning)
also depends on the joint distribution of signals.

An equilibrium is denoted by a pair of bidding strategies for the two players, (b*(s'), b%(s?)),
and a symmetric equilibrium has b'(.) = 0?(.) = b(.). We consider max-min behaviour.
Specifically, in equilibrium, given an observed signal, a bidding strategy maximizes the
utility of the individual under the worst-case information structure.

For the remainder of this section we provide theoretical background on pointwise mutual

information as a measure of correlation. The analysis continues in Section 3.

Pointwise mutual information: Let f(x;,25) be a joint probability distribution

of random variables ¥, Ty, with marginal distributions f;(.). The pointwise mutual in-

formation (PMI) at (z1,22) is ln[%]. PMI was suggested by Church and Hanks
(1991) and is used in information theory and text categorization or coding, to understand
how much information one word or symbol provides about the other, or to measure the

co-occurrence of words or symbols. It can also be written as

f(xla x2)
In[——————] = h(z1) — h(z1|z
[fl(xl)fQ(fL?)] ( 1) ( 1| 2)
where h(x1) = —log, Pr(X; = x7) is the self information (entropy) of z; and h(z|xs) is

the conditional information.
Summing over the PMIs, we can derive the well known measure of mutual information,

MI(X1, X2) = D0 cx, Dumexs f(xl,xg)ln[%] = H(X;) — H(X1|X3), which can
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be shown to be always non-negative as it equals the amount of uncertainty about X;
which is removed by knowing X5. We can also express mutual information by using the
definition of Kullback-Leibler divergence between the joint distribution and the product

of the marginals:
MI(Xy, X2) = Dgr(f(z1, 22)| f1(21) fa(22)),

and it can therefore capture how far from independence individuals believe their infor-
mation structures are. For our purposes, the local concept of the PMI is a more suitable
concept than the MI, as we are looking at ex-post rationalisations given some set of
signals.”

The concept of the PMI is closely related to standard measures of correlation and specif-
ically it implies a bound on the concordance between information structures. The most
common measure of concordance is Spearman’s rank correlation coefficient or Spearman’s
p, a nonparametric measure of statistical dependence between two variables. It assesses
how well the relationship between the variables can be described using a monotonic func-
tion. A perfect Spearman correlation of +1 or -1 occurs when each of the variables is a
perfect monotonic function of the other. In Levy and Razin (2017) we show that there is a
0 < p < 1 such that any joint information structure with bounded PMIs has a Spearman’s

p in [—p,p]. As can be seen above, we simply use the ePMI, the exponent of the PMI,
f(z1,m2)

? fi(en) fa(ze)”

Note that a joint information structure which satisfies independence would have a = 1

i.e.

at any point; whenever a joint information structure does not satisfy independence then
the ePMI is less than 1 for some (s1,$2,v), and is greater than 1 for some (s}, s5,v'),
which implies that perceiving the ePMI at 1 is always in the set around which ambiguity

is constructed.'®

3 Second-price auction

We analyze the equilibria for the second-price auction. The results for the first-price
auction are similar (see Section 4).

As standard in the second-price auction, bids will equal the expected valuation, condi-
tional on both players receiving the same signal. But given the ambiguity about informa-

tion structures, this means that different types might use different information structures

9The PMI therefore does not distinguish between rare or frequent events.
10Tt is impossible to consider only priors/information structures with ePMI that is only higher (lower)

than 1.



to compute this expectation. Given some information structure (ag, o)), we have,

o4 2 — 1+ o
o, (V]1,1) = o+l Eoy oq (v|hy h) = ol tah

Recall that a,, a,, are the maximum and minimum values respectively of «,. We now

characterise the equilibria (for proof see Appendix):
Proposition 1. The unique symmetric pure-strategqy equilibrium satisfies:

1. The low type bids by(l) = Eag,a,)(v|l,1), a bid that decreases in a;

2. For all a < ﬁ, there exist cutoffs q,q, with 0.5 < ¢ < q <1, where:

(a) For q€(0.5,q), the high type bids by(h) = E(a,.a,)(v|h, k), a bid that increases

with a.

(b) For q€(q,1), the high type bids by(h) = E(ag,a.)(v|h, h), a bid that decreases

with a.
(c) For g€ (q,q), the high type bids by(h) = E(ag,a,)(v|h, h) for some aq satisfying
Eag,ay) (v, h) = 2E 5,0,y (|1, 1), a bid that decreases with a.
3. For all a > a(q) > L, the high type bids b,(h) = Eay.a,)(v|h, h).M

1—-q’

Remember that when a = 1 the model becomes the standard model with no ambiguity.
Therefore, the Proposition implies that compared to the standard model the ambiguity
about correlation induces the low type to underbid and the high type to sometimes over-
bid. In other words, ambiguity over information structures affects the distribution of bids
in a non-trivial way.

To see how the result is derived, consider the low type. Her expected utility when
b=bu(l) is

min = Pr(I|L, (a0, a1)) (Bag.an (011, 1) — ball)),

(ap, 1) 2
where
Pr(l|l, (g, 1)) = ap + a1

and thus Pr(I|l, (o, @1))(E(ag,an) (V| 1) = ba(l)) = a1(1 — by (l)) — apbg (1), which implies

that what minimizes utility is (ao, o). As Egoy o (v]l,1) = r this belief minimizes the

o +afy +
valuation of the good conditional on both players receiving low signals, the only event in

H'When q is not too small, a(q) = 7%, When g is sufficiently close to 0.5, a(g) > %, and symmetric

pure-strategy equilibria may not exist in the region [qu, a(q)].



which she can win the good. Note that as the bid of the low type is lower compared with
the canonical case, her expected utility (computed for the true information structure) will
be higher.
Consider now the high type. Her expected utility when b = b,(h) is
min Pr(l]h, (ao, 01))(E(ag,an) (0]l h) = ba(l)) +

(ao,1)

(1/2) Pr(h|h, (a0, a1))(Eap,ar) (V|h, h) = ba(h)).

Note that:

Pr(l|h, (a0, 1)) Elag,an(V[l,R) = 1—=q¢—a;

5 Pr(hlh, (a0, 00)) Blaga (0l 1) = 520~ 14 o)
and that
Pr(l|h, (ag, a1))ba(l) = (1 —ag — ap)ba(l),

S Pr(hlh, (a0, an))bu(h) = 3(an + ao)bulh).
Thus, increasing o has the effect of increasing expected payment by ) and decreasing
it by b,(l). For a that is not too high, when ¢ is low enough, then “éh) = P, X b

ba(l) = E(ag.0,)(v|l,1), which implies that the effect of increasing « is positive and hence
to minimize utility, the high type has to minimize «. Increasing o has a similar effect
in terms of the expected payment, however, it also has a negative effect in terms of the

expected valuation of the good. Specifically, the negative effect is in the order of %, which

ba(h) _ ba(l)
2 <2

5 < % Thus to minimize utility one

is greater than the positive effect of b, (1) —
has to maximize ;.

Intuitively, in this case of low enough ¢, the high type’s worst-case scenario is (aq, 1),
2q—1+a,
oTray

winning against the high type. This implies that her bid is higher than in the canonical

and she ends up maximizing Eu; o (v|h, h) = , the value of the good conditional on

model. In the other case, when ¢ is high, or when a is high, the equilibrium will satisfy
be (h > b, (). This implies that the belief that minimises utility is (&p, ;). This belief
maximizes the probability of encountering the high type, which induces her to lower her
bid compared with the canonical model.

As we show, even when the high type increases her bid, compared to the case of no
ambiguity, her expected utility evaluated at the true joint probability distribution will be
higher compared to the canonical model. Thus, considering the utility of bidders and the

seller, we have:

Proposition 2: (i) The utility of both the high and the low type is higher under ambi-

guity; (i1) The seller’s revenue decreases with ambiguity.

9



We have already seen that the low type pays a lower bid than in the canonical model.
This is also the case sometimes for the high type. When the high types increases her
bid, we show in the Appendix that the size of the increase in the bid exactly offsets the
reduction in the bid of the low type. As the high type is more likely to pay the low type’s
bid for low values of ¢, for which such equilibrium holds, her utility overall increases even
in this case. Finally, we can show that the seller’s revenue decreases with a in all equilibria
described above. This can already be gleaned from the fact that both the high and the
low type gain a higher rent compared with the canonical model. It is also intuitive as a
higher level of ambiguity implies that individuals are more likely to consider the worst-case
scenario.

It is instructive to consider the equilibrium in the limit, where all information structures
are feasible, and so ambiguity is very large. It is the limit of the equilibria constructed
for high @ in Proposition 1 above. Specifically, we show in the Appendix that in this case,
ba(l) = 0 and b,(h) = ¢.'> These bids are the lowest among all equilibria and the seller’s

revenue is therefore substantially lower compared with the canonical model.

Remark 2: The endogeneity of ambiguity: Note that ambiguity over the state is
affected endogenously in this model. Specifically, the characterization is not equivalent
to a model in which the individuals simply start with some unique worst-case belief.
Each type (I or h) uses a different worst-case belief to justify her best response and this
worst-case scenario depends on others’ strategies. In Section 5 we consider the case of
exogenous ambiguity over the prior. This type of ambiguity does not depend on the
strategic behaviour of others. As we show, this implies that bids are uniformly lower, so
that also the high type under-bids.

4 Optimal auctions

In this Section, we characterise the optimal mechanism. In the absence of ambiguity, full
surplus extraction is possible.!? For example, consider the mechanism which always gives
the good to player 1 and charges player 2 nothing. Player 2 has a weak incentive to reveal
her signal, and if the mechanism punishes player 1 sufficiently harshly when the reported
signals do not match, player 1 will also have an incentive to tell the truth, since their
signals are positively correlated. The individual rationality constraint can be made to
bind by rewarding player 1 when the reported signals do match; in this way the seller can

fully extract surplus.

12This is supported by the low type believing ag = 2¢ — 1 and «; = 0, and the high type believing
ag=qand a1y =1—q.
13See Crémer and McLean (1988).
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However, this mechanism cannot extract all the surplus when the buyers are ambiguity
averse about the joint distribution of signals. This is because the elicitation will no longer
be costless: the expected transfers are larger under the buyer’s distribution than the under
the seller’s (true) distribution.

Note that it is easy to establish that the second-price auction is not optimal. In par-

ticular, for a small enough a, we show:

Proposition 3: Revenue is higher in the first-price than in the second-price auction.'*

In the second-price auction, an individual’s payment depends on the other’s bid and as
a result, there are more elements in her utility in which her beliefs play a role. For the
case of no ambiguity, this implies that she conditions her behaviour on more information,
which increases the seller’s revenue. For the case of ambiguity, this implies that individuals
have more possibilities to condition on their worst-case beliefs, which decreases the seller’s
revenue.'®

The key issue when considering optimal auctions under ambiguity is the level of insur-
ance provided by the seller to the bidders. Under independent private values, Bose et
al (2006) show that the optimal mechanism fully insures the bidders against ambiguity.
However, in a common-value setting full insurance has implications for the allocation as
well as the transfers (i.e. fixing an allocation rule, in general it is not possible to fully
insure the buyers against ambiguity by only adjusting transfers). Full insurance implies
that both the probability of winning the good and the transfers must not depend on
the signal (type) of the other player. Moreover, it can be shown that in any mechanism
that allocates the good with probability 1, full insurance implies that for each player, the
probability of winning must be the same for both types. Thus, the revenue from such a
mechanism is at most 1 — ¢, whereas the revenue from the mechanism described above
converges to % as the ambiguity becomes small. This implies that when a is small, full
insurance is not optimal in a common-value setting.

In this Section we show that when a is small, in the optimal mechanism, the seller
incentivizes the high type to tell the truth by making side bets with the low type. Unlike
in the standard model, this elicitation is not costless as the low type’s worst-case belief
minimizes correlation between the signals. If the two players receive different signals, the
seller allocates the object to the high type; this implies that ambiguity will be important

but it also slackens the incentive constraint of the high type, and the seller is able to

141n the Appendix we characterise the equilibrium in the first-price auction for a sufficiently low a; the

results are similar to those of the second-price (that is, overbidding can also arise).
15With private values and ambiguity over the prior, Lo (1998) shows that the first-price auction dom-

inates the second-price auction in some environments.
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partially insure the high type against this ambiguity. On the other hand, when « is large

and the signal is not very informative, full insurance is optimal.

4.1 Seller’s Problem

A direct mechanism (z,t) is an allocation rule x : {l,h}* — [0,1]* and a transfer rule
t:{l,h}? — R% Let U%(s),s;) be i’s utility from reporting s. when i’s signal is s;, given
that the information structure is @ = (g, @1). A direct mechanism is maxmin incentive

compatible if for all s; € S;:
min US(si, 8i) > min U (st si)

for all s, € S;. The revelation principle applies in this setting as long as we make the

following assumption:

No-hedging: The utility from playing the mixed strategy o; € AS; is E% ming U (s}, s;)
(as opposed to ming E7 U (s}, ;).

This assumption is standard in the literature on mechanism design with maxmin agents
(see for example, Bose et al 2006 or Wolitzky 2016). In what follows, we restrict attention
to maxmin incentive compatible direct mechanisms.

The seller’s problem is:

xi,t;
o i=1 i=1

max% (¢ + (1—¢q)?) [Z ti(1,1) + ti(h,h)

2
subject to incentive and participation constraints:

min a12;(1,1) + (1 — q — o)z (I, h) — (g + 1)t (1,1) — (1 — g — 1)t (1, h)

@p,1

> min oqz(h, )+ (1 —q— ag)xi(h, h) — (o + a1)ti(h, 1) — (1 — g — aq)t;(h, h)

@,

min (1 —q—aq)z;(h, 1)+ (29— 1+ aq)z;(h,h) — (1 — ap — aq)ti(h, 1) — (g + 1)ti(h, h)

@Q,1

>min (1 —q—ay)z;(I,1)+ (29— 14 a)z;(I,h) — (1 — ag — o)t (1, 1) — (o + aq)ti (1, h)

0,1

min a12;(, 1) + (1 —q — o)z (I, h) — (g + 1)t (1) — (1 — g — aq)ti(l,h) >0

QQ,01

min (1 —q¢—aq)z;(h, 1)+ (29 — 1+ ag)x;(h,h) — (1 — ap — aq)ti(h, 1) — (g + aq)t;(h,h) >0

QQ,01
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4.2 Analysis

For given a, the optimal mechanism will depend on two cutoff values of ¢, which we now

define. Let ¢*(a) be the solution to ¢+ (1 — ¢)* —ay — a; = g+ a; +ap+a; — 1 that lies

between £ and 1, and let ¢**(a) be the solution to ¢* + (1 —¢)? —ay—ay = 3¢—2+a, +a;
1

that lies between 5 and 1. We derive the explicit expressions for ¢*(a),¢"*(a) in the

Appendix. For 1 < a < o0, ¢*(a) < ¢**(a). We then have:

Proposition 4.

(i) When q < q*(a), an optimal mechanism allocates the good with equal probability for
each player disregarding their type, and for a transfer of %(1 —q). The revenue of the
seller is 1 — q, and the high type earns positive rents.

(ii)) When q > q**(a), the optimal mechanism allocates the good to the high type and
with equal probability to each player if both are of the same type. Transfers are such that
the high type is partially insured, the seller makes side bets with the low type, and the
buyers earn no rents.

(111)) When q¢*(a) < q < ¢**(a), the optimal mechanism allocates the good to the high
type and with equal probability to each player if both are of the same type. Transfers are
such that the high type is partially insured, but there are no side bets with the low type,
and the high type earns positive rents.*

(iv) As a — oo, both ¢*(a) and q**(a) converge to (3—+/3), and as a — 1, both ¢*(a)

and ¢**(a) converge to %

When ¢ < ¢*(a), an implementation of the optimal mechanism is for the seller to first
choose each buyer with equal probability, and then sell to the chosen buyer at price 1 —q.
Since the decision to sell is not based on the signal realisation, the good is worth 1 — ¢
to the low type and ¢ to the high type. Thus, the high type earns positive rents in
equilibrium. Note that this mechanism is efficient, and that given the seller’s design,
ambiguity is not relevant or does not arise in equilibrium.

When g > ¢**(a), the participation constraint of the high type is binding. The seller
engages in a side bet with the low type to prevent the high type from deviating. Unlike
in the classical case, side bets are costly to the seller, so the seller uses the smallest bet
that is sufficient to prevent the high type from deviating. To reduce this cost further, the
seller allocates the good to the high type when the players receive different signals, which

generates endogenous ambiguity over the expected value of the good. The seller is able

16In case (ii) the revenue of the seller is 2 (1 — (¢ + (1 — ¢)* — ay — o) = 20 e —4¢ , and
agt+ar+agt+a; —1

1 (Qo +2a, +a; +q—¢*—(1— q)z) . All explicit expressions for

2
the optimal transfers are derived in the Appendix.

in case (iii) the revenue of the seller is

13



to partially insure the high type by asking her to pay more when the other player has

received a low signal. In this case, the expected payment from the high type is:

T = 20— (1= 4) — 57" — a).

The expected payment from the low type is:

1_q_al_gl
2@+ +ag+a; — 1)

T} = % — [+ (1 -9)?—ay— ]
The low type chooses oy and a7 both to minimise the perceived surplus from winning
the object and to maximise the perceived value of the transfers. Note that in the optimal
mechanism, the belief of the high type regarding «; is irrelevant. When a converges to 1,
only this case remains.

When ¢*(a) < g < ¢**(a), it is optimal to allocate the good to the high type when the
players receive different signals, but it is not optimal to conduct side bets with the low
type. Instead, the high type earns positive rents in equilibrium in order to satisfy the

incentive constraint. This interval shrinks as a goes to either 1 or oco.
3
are binding. The intuition is as follows. If the participation constraint of the high type is

Note that as a — 1, ¢*(a),¢**(a) — 5, so for small a, both participation constraints
slack, the seller can achieve a first order increase in revenue by increasing the payment of
the high type. In order to ensure that the incentive constraint is not violated, the seller
can increase t;(l, h) and decrease ¢;(l,1) in such a way that keeps the low type indifferent,
but lowers the high type’s utility from deviating. Since the low type may have different
beliefs to the seller, these changes in transfers may decrease the seller’s revenue; however,
as the ambiguity becomes small, this fall in revenue converges to zero. On the other hand,

the increase in revenue from increasing the payment of the high type is fixed.

5 Discussion and Extensions

To conclude we discuss some extensions and related models. Importantly, we show how

the analysis differs in the case of exogenous ambiguity about the prior.

5.1 Comparison to exogenous ambiguity

We now show that our equilibrium characterisation differs from that of a model in which
there is some exogenous ambiguity about the state of the world. Specifically, assume now
that the players believe that their information is (conditionally) independent, and that
the probability that the state is 1 is in [% — 8,% + ¢]. The information structure they
consider is therefore unique, common knowledge, and given by:

14



v=0 s sh v=1 s sh

s q(1—q) ' (1-9)? a(l—q)

s ql—q) 1-29+¢ "  ql—q) 29—-1+(1—¢q)?
In this model, ambiguity is exogenous and does not depend on equilibrium strategies. In
this case, as we show, both types would consider the same worst-case scenario which is the
lowest possible prior about the state. As a result both the minimum and the maximum

bids are smaller compared to the model with no ambiguity.

Proposition 5. In the independent information model with exogenous ambiguity over
the prior, individuals behave as if the prior is % — ¢, and thus both the highest and the
lowest bids are lower, both in the second-price and in the first-price auction, compared

with the canonical model.

5.2 Comparison to Crémer-McLean

Crémer and McLean (1988) show that some of the conclusions from the analysis of optimal
auctions with independent private values are not robust. For example, since surplus
extraction is possible when signals are correlated, the optimal mechanism is efficient and
leaves no rents to the buyers. Proposition 4 shows that these results continue to hold for
a close to 1.7 On the other hand, when a is large, it is possible for buyers to earn positive
rents in the optimal mechanism. Note that in this environment, it is always possible to
fully extract rent (see Renou 2015); however, the preceding discussion implies that rent

extraction is not necessarily optimal.

5.3 Continuous signals

In Appendix B we show that the results of Section 3 are robust to the case of a continuum
of signals. Specifically, we assume that signals are drawn from [0,1], with marginals g(s|v)
that satisfy the MLRP, and individuals believe that the joint distribution is the F-G-M

copula, that is:

fv(s) = [1 + )\’U(ZG’U(Sl) - 1)(2Gv(32) - 1)]91}(51)91)(52)7 (1)

and consider the values of A\, € [% —-1,1— é] that satisfy the ePMI constraints. We analyze

a second-price auction and show that it is still the case that some types over bid (in this

1"The set of optimal mechanisms when a = 1 is large. As a — 1, the optimal mechanism described in
the third part of Proposition 4, which is the unique symmetric mechanism when a is close to 1, converges

to an optimal mechanism for the case when a = 1.
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case, these are types with a high but not too high signal), and that the seller’s revenue

decreases with a.'®

6 Appendix

6.1 Appendix A: Omitted Proofs

Proof of Proposition 1:

Standard arguments will imply that b,(I) = E(ag,a.)(v]l,1) for some (ag, o) and be(h) =
Eapapy[v]h; h] for some (ag, ;). We will consider monotone equilibria so that b,(l) <
ba(h).

Under the no hedging condition, deviations to mixed strategies will have lower utility,
and thus equilibria are easier to sustain. We use this to characterize equilibria for large
values of a. Of course all equilibria derived under no "no hedging" will remain equilibria
under "no hedging".

Consider first the low type. For any bid b € [b,(1),b,(h)), we have:

min pPr(ll (a0, 1)) (Bl lolL. 1] = ba(D)

= min paq — p(a1 + ao)ba(l)

@Q,01

where p = 1 if b > b,(l) and

conjectured equilibrium bid is b,

otherwise. This is minimised by (&g, ;). Thus the

1
2
(I) = E(ag,a,)(v|l,1). This will be the case for all equilibria

considered.

Equilibrium with over-bidding for the high type:
Consider now the high type. Consider the case of an equilibrium that satisfies b,(l) >
bq(h). Bidding b = b,(h) yields:

min_Pr(l|h, (ag, 1)) (Efag.an[vll, ] = ba(l)) +

(ao,01)

%Pr(h’ha (g, 1)) (E (@v0,01) [ |hy h] = bg (h)) (2)

where the optimal (v, «1) is the same as the one that solves

min —ap <b“(h> - ba(l)> — <[1 ()] - “}M>

ap,01 2

Since by assumption b, (1) > $b,(h), the payoff is minimised by (ay, @1). Thus the conjec-
tured equilibrium bid for the high typeis b,(h) = E(q,.a1)[v|h, h]. Note that E, a,)[v|h, h] =

18To insure existence in the continuous case, we consider small values of a.
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2g—14a(1—q)*
a(1—q)2+ 2 (1—q)2+2q—1

3Eagan V1D, 1.
Note that the equilibrium payoff will be Pr(I|h, (g, 1)) (E(ag,an) V|l h] — ba(l)) . This

has to be non negative and thus under (ay, &), we must have Ey a,)[v[l, h] > ba(1).

is increasing in a. The equilibrium will hold then only if Es, ) (v|l,1) >

We now consider deviations.

For the low type, the payoff from any mixed strategy is:

min IOOPT(”Z <a07a1)) (E(ao,oq)[vual] - ba(l)) +

(ao,01)

p1Pr(hll, (a0, 1)) (Eag.an VIR, 1] = ba(h))

where 0 < p; < py < 1. Under the information structure (&g, a;), the first term is 0.
Note that E(sa,)[v|h, 1] < ba(h) is a necessary and sufficient condition for no deviation.
In that case, players bid b = b,(l), use (ap, ;) as the information structure, and
standard arguments imply that the equilibrium payoft is 0.
Let us now consider the high type. As long as the other player is playing the equilibrium
(pure) strategy, the payoff from any mixed strategy is:
min_p,Pr(l|h, (o, 1)) (Efag,an V]l h] — ba(1)) +

(Oéo,otl)

plpT(h’h, (aOv al)) (E(a07a1)[v|h7 h] - ba(h)> )

where 0 < p; < py < 1. Under the information structure (g, &1), E(ay.a:)[v|h, h] = ba(h),
which implies that the payoff from the deviation is at most Pr(l|h, (o, @1)) (E(ag.an [V, 1] — ba(1)),
which is the equilibrium payoff. Thus, it is not profitable to deviate to any mixed strategy.
Bringing together all the conditions, we now have:
anal [v|l, h] >E(aoa1 [v]1, 1]
Ea, ) [ 1] < E(% Oél)[ v|h, h]
B (016 1] > 3B v1h, 2]
For a § E;’ these condltlons are:

1—q—a(1—q)>? _ %(1_‘1)2
) = geey-an-ar E—0)a(l=0+20—1 0
2¢—14a(1—q)? B 1—g—2(1—g)?
(2) a(l—Q)2+%(1—Q)2+2q—1 1—(a(1—¢)>+2¢—1)— 1 (1—¢)2 >0
(3) - 2(1-9)? 1 2g—14a(l—g)? <0

La- q)2+a(1 q)2+2q—1 2a(1—q)%+1(1—q)2+2¢—1
Condition (1) and (2) are satisfied for all ¢, while condition (3) is satisfied for all
q < q(a).
1 2 1

q i 2(1—9) 1 2q—1+1—q—;q(1—q) :
For a > %, condition (3), now T gt Tai=g) ~ 2 1oa-La—g+ L-grrae=1 0, is not
satisfied for a which is above a cutoff a. Note that allowing for no hedging will not affect

the existence of this equilibrium for high a.
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Equilibria with under-bidding for the high type:

Next consider the case b,(l) < 3b,(h). Consider the high type, and assume that the
other player is playing the equilibrium strategy (b,((), b, (h)).

Bidding b = b,(h) yields:

min Pr(l|h, (ag, 1)) (E (cv0,01) [ |1, h] — (l)) +

(ao,01)

%Pr(h!h, (ao,al)) (E (a0,1) [ ’h h] o b (h))

which is like solving

1 1
min - + (Oél + Oéo)ba(l) + —-a — —<Oél + Oéo)b (h)
(@0,01) 21 2
1 1 1
= (min) —al(i—ba(l) + §ba(h)) + ap(ba (1) — §ba(h))

For b, (1) < 3be(h), this is minimised by (avg, o).

The equilibrium payoff is then Pr(l|h, (&9, 1)) (Eagan[vll, h] — ba(l)) -

We now consider deviations. Let us consider first the high type. The payoff from any
mixed strategy is:

min p,Pr(l|h, (ag, a1)) (E (0.0 [V, ] — (l)) +

(@o,01)

p1Pr(hlh, (a0, 1)) (Etag.an VIR, B] = ba(h)) |

where 0 < p; < py < 1. Under the information structure (&, @1), E(ag,a,) V|7, h] = ba(h).
Note that this bid decreases with a.

Note that in equilibrium we must have (E(g,.a,)[v|l, h] — E(aga,)[v]l,1]) > 0, and that
the equilibrium maximises the probability of winning against the low type.

Consider now the low type. Under no "no hedging", we have that the payoff from any
mixed strategy is:

min_ o Pr(i[L, (a0, 1)) (Eagan o]t 1] = ba(D)) +

(ao,01)

prPr(hll, (a0, 1)) (Eag.an [vIh, 1] = ba(h))

Under the information structure (&, a ), the first term is 0. Thus a necessary and suffi-
cient condition for the low type not to deviate is E5a,)[v|h, 1] < E(gg,a,)[v]h, h).

The equilibrium conditions as described above are therefore:

(4) EaoanV|l, h] > Eaga[v|l, 1]

(5) E(doﬂl)whv Il < E(@oﬂl)[v|hah]
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(6) Eaoay[vll 1] < 3E@o.anvlh, h].

Conditions (4) and (5) are satisfied for a < L, while condition (6) is satisfied for
q > q(a).

To consider a > 1‘17(1, consider deviations of the low type under the "no hedging"
condition. Her utility from a mixed strategy which wins against the low type only with
probability 5 and with probability 1 — S wins against the low type with probability 1 as
well as against the high type with probability % is:

B min Pr(l|l, (ag, 1)) (E (a0,an)[0]1, 1] — ba(1))

(0407041)

+(1 — B) min (Pr(l|l, (o, 1)) (E (ao,an) V], 1] — (l)) +

(ao,01)
%pr<h|z,<ao,a1>> (B an vl 1] = ba(h))

Note that arg min(.ga,) Pr(l|l, (o, 1)) (E(agan V|l 1] = ba(l)) is (@, oy ), and thus this
part of the utility is 0, and that
. 1
arg min_ Pr(l|l, (o, 1)) (E(ag.an 0]l 1] = ba(l)) + §Pr(h]l, (g, 1)) (Eagan)[v]h, 1] —

(ao,01)

= (a9, 1)

A necessary and sufficient condition under the no hedging is for the above utility to be
lower than 0, the equilibrium utility.

Thus, for a > quq, the equilibrium conditions are:

(4) Eao.anlvll, h] > Egg,a)[v]l, 1]

(5%) Pl (g, 01)) (Eaga V11, 1) — a(D) +-5Pr(hl. (09, 0,) (B ) o1 1] — bulh)) <
0

(6) Eaoa[vll,1] < %E(@O@I)Mh, h].

This equilibrium exists when a > a(q) > l%q, where a(q) > for a low enough ¢ but

l%q
a(q) = 7%, otherwise.

Note also that the equilibrium converges to the equilibrium in the limit where all infor-
mation structures are allowed. To see the limit equilibrium, suppose that b,(l) = 0. For
the low type we minimize «; at 0 and set oy = 2¢ — 1 (which she is indifferent to) and
hence E(v|l,1) = 0. We are therefore in the case in which b,(l) < 1b,(h) and hence the
high type uses ap = g and a3 =1 — ¢q. As a result, b,(h) = ¢ = E(v|h) < E(v|h,h). This
yields to the seller the lowest revenue.

Finally, consider the case b;(a) = 3b,(a). We will show that this equilibrium holds for
a < 1%, for values q(a) < ¢ < q(a).

Let a and q satisfy: 3 Egan)[v|h, h] < Egea) 0l 1] < 2 Eag.an(v|h, R

Consider the high type, and assume that the other player is playing the equilibrium

strategy (ba(l),bq(h)).
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Bidding b = b,(h) yields:

min_Pr(l|h, (ap, a1)) (E(ag,an[v]l, k] — (l))—l—%Pr(Mh, (g, 1)) (Eag,an)[v]hs h] = ba(h))

(cr0,001)
Since b, (1) = 1b.(h), both (ag, @) and (&g, @) achieve the minimum payoff.
The payoff from any mixed strategy is:
min_poPr(l|h, (a0, 1)) (Efag,an[vll, h] — ba(l)) +

(@0,01)

p1Pr(hlh, (a0, 1)) (Eag.an [vIh, B] = ba(h))

Since Pr(ag.ar)(U|h) (Eag,an[v]|l, h] — ba(1)) > 0 for any (co, @) and increasing p, relaxes
the constraint on p,, it is without loss to set p, = 1. Using the fact that b,(1) = 3b4(h),
the payoff becomes:

min Pr(l|h, (ag, 1)) (E(ao,al)[vua h] — ba(l)) +

(a0,01)
plpr(h|ha (aOaal)) (E (a0,a1) [ |h h] Zba(l)> (3)
= min1—b,(1) =g+ p1(2¢ = 1) + cba(D(1 = 2p1) + a1 (pr[1 = 26a(D)] = [1 = ba(1)])

The payoff is minimised by (aq, @) when p; < 1 and (@, @) when p; > 1.

Suppose that p; > % Then under (&g, @), the payoff is lower than when p, = %, since
Eaoanvlh, ) < by(h). If p; < 3, then under (ay,ay), the payoff is lower than when
py = 3, since an anlvlh, h] > b (h) Thus, for p; # %, the payoff must be lower than
when p; = 35, which is the equilibrium payoft.

Now COIlSldeI‘ the low type. As before, the equilibrium payoff is 0. The payoff from any

mixed strategy is:

min_ poPr(i[L, (a0, 1)) (Elagan o]l 1] — ba(D)) +

(ao,01)

p1Pr(hll, (a0, 01)) (Eag.an[v]h, 1] = ba(h))

Under the information structure (&, ; ), the first term is 0 and the second term is negative
if Eag,ap) V|, 1] < ba(h).

So for this to hold we need 3E(ga,)[v|h,h] < Eagapvll,l] < 2Egan[v|h, k] and
2 Eag.a) V|, 1] < Egaga,[v|l, 1], which is satisfied for the range of gs considered.

We show that the seller’s revenue decreases in a in the proof of Proposition A below.l

Proposition A: First-price auction: In equilibrium, the minimum bid is b,(l) =
Eo.a,)(v|l,1) and the mazimum bid b,(h) increases in a. (i1) The expected payment of

the high type decreases in a for low q and increases in a for high q. (iii) The seller’s
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revenue decreases in a. (iv) Revenue is higher in the first-price rather than the second-

price auction.

Proofs of Proposition A, Proposition 2 and Proposition 3: We first characterize
the equilibria in the first-price auction, show that the maximum bid increases in a, and
that the minimum bid decreases in a, for a close to 1.

Consider a low type. For any b,(l), this type’s expected utility is perceived as

aq

(%171(11}(060 + al)(Oéo + Oély—i_ Qg + Oélv B ba(l))
= min ag(v — b,(l)) + a1 (v — by(1))

@p,0]

which (assuming b,(l) > v) is resolved by setting aq to be the highest possible value and
a1 to be the lowest possible value, given the ePMI constraints. Therefore for a sufficiently
close to 1, the solution is (&g, ay).

Note that the low type cannot have any rent as in the standard model, and thus we set

1(1—q)? (1—q)?

Poll) = Baoan (Vb ) = T = o = gprag =1~ G-+ @

Taking a derivative of E(5,q,)(v|l,1) with respect to a, it is straightforward to see that it
is negative. Thus the bid of the low type decreases with a. We will establish later that
this type will not want to use any other bid given the behaviour of the high type.

Now let us consider the high type. Wlog we can consider a mixed strategy with support
on [by(1),b.(h)], as bidding less than b,(I) will provide a zero utility.

First let us consider a bid just above b,(l) which allows the individual to win against
the low type only. We then need to solve the following,

min Pr(l|h, (a0, @1))(E(ag,an) (V][R 1) = ba(1))

(O‘07al)

= min(q — ag)(v — b,(1)) + (1 — ¢ — 1) (v — by (1)),

@Q,01

which, as b,(l) > v, yields the need to maximize o; and to minimize ag. The solu-
tion is (ag, @1). Note that this bid provides a utility of Pr(l|h, (ag, 1)) (Eay,a)(v]h, 1) —
Eag,a,)(v]l,1)), and that ag + a; = ay + a1.

We now consider the highest bid in the support, b,(h). Such bid implies winning for
sure and thus unambiguous gain of F(v|h). To be indifferent, this bid has to satisfy

E(v]h) — by(h)
= Pl"(l|h, (Qw al))(E(go,éq)(v'h’ l) - E(&o,gl)(vuv l))
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ba(h) = Pr(hlh, (ag, a1)) Eagan) (0], h) + Pr(llh, (ag, 1)) Eae.a,) (011, 1)

a
= 29—1 1— o — 1
q +a; + (1 — al)a0+a1
= q—l+a+———«
1 ' Qo + oy =
1 2
11— 1
= 2¢—1+a(l—¢)+ 1~ 4) - —(1-¢)?

a(l—q)?+2¢—14+2(1—¢q)? a
1

— %1+ (1-q)a—+ a )
PR V(e
1
Note that the derivative of a — % + (§+a—1)€1—q)2+q2’ evaluated at a = 1, is % > 0.

Thus the maximum bid increases in a.

We now continue to characterize the equilibrium distribution. Let us consider the worst
case scenario in terms of utility for some distribution F'(b) with density f(b). The expected
utility is

/f(b)[Pr(llh, (@0, 1)) (E(ag,an) (V] 1, 1) — b) +
Pr(hl1, (a0, 1)) F(6) (B (111, ) = D)l

/f (o) (01R) — b —

(0)) Pr(h|h, (a0, 1)) (Eag,a) (v]h; ) — b)]db
To choose the information structure to minimize utility, we maximise

Pl“(h|h, (Oé(), al))(E(ao,m)(U'hv h) - b)
= (2¢ = 1)(v —v) + (ao(v — b) + a1 (v — b))

and the solution is therefore, for all b in [v, 7], to maximize «; and to minimize «p.

F(b) is simply characterized by using the indifference condition and so: («y, &)

Pr(l[h, (ag, @1))(E(ay.an) (v]h, 1) = b) +
Pr(hlh, (ay, 1)) F(0)(E(ay,a1) (v]h, hr) = b)
= Pr(l[h, (a9, @1))(E(ay.a0) (0] h, 1) = ba(l))
implying that

Pr(l]h, (0, @1)) (b — ba(1))
Pr(hlh, (ag, 01))(E(ay.a1) (v]h, h) = b)°

We complete the equilibrium characterization by showing that given the strategy of the

Fa(b) =

high type, the low type will not deviate.
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For the low type, bidding any b above b,(l), we choose the belief to minimize expected
utility:
min Pr(l|l, (ao, 1)) (Eag,a)(v]1,1) — b) +

1,0

Pr(hfl, (o0, 1)) Fa(b)(E(ag.an) (0]l 1) = D)
= min(u—b)(ag(l = Fa(b)) + Fa(b)g) + (v = b)(an(1 = Fu(b)) + Fu(b)(1 = q))

aQ,1

As F,(b) < 1, the solution is («, &p).
This gives us a utility of Pr(|l, (&, a;))(Eag,a,) (|1, 1) — b)+

_ Pr(l|h,(ag,01)) (b= E(ag ,aq) (vIL1))
Pr(h|l, (@0, 1)) S tana B o (ol (Elao.an) (0], 1) = b) =

_ Pr(l|h,(ag,81)) (E(ag.ap) @lLR)=b)  Pr(l|l,(d0,a,))
Pr(hll, (aoagl))(b E(ag,ay) (V[ l))(pr (hIh, (a% a11)) B saf)(vm R—b)  Pr(hll, (a% ) ). Note that
Eaga,) (v |l h) = —— Ojo(_lglq) < 2o ;igl i = Eay.a1)(v]h, h), for a sufficiently close to 1,
(11h) l—ay—a 3 _ _
P ag.a1) _ l-a,—a (Gotay) _ Prlll(a0,)) — 1
and that g7 "G = aeta < Tlaora) — Prillaean) 25 00+ a1 = a1+ ag > 3 for

(ao’Oq)

all a. Thus the utility is negative and the low type does not deviate.

We now proceed to consider the payoff of the seller.

Expected payment to seller, I1, is given by the linear combination of receiving the bid
of the low type (when both are [), the expected bid of the high type (when only one is
h), and the maximum bid of the two h types:

IT = Pr(l,1) Eaga 0|1, ] + 2Pr(l, h) E[by(h)] + Pr(h, h) E[max b, (h)]

i=1,2

For expositional purposes we write this as

1

az+(1—a)y ~ az+(l1—a)
1= 3y + (1 - fy)/ bfa(b)db + 5/ b2f(b)F,(b)db,
Yy Yy

where:

v = Pr(l|l), according to the true (independent) information structure, o = Pr(I|l, (o, 1))
according to the belief of the high bidder, (o, 1), T = E(oy.a,)[v|7 B], ¥ = Eag,e) V], 1] =
ba(l). We therefore also have b,(h) = az + (1 — a)y, F,(b) = =222 and f,(b) =
5(5:132 (.I‘ - y)'

We start by some preliminary results:

Fact 1 5 5
)
da  Oa >0

Proof of Fact 1:

2¢—1+a(l—q)2
Note that © = E a,)(v]h, h) = q27(17q%)(1+7¢(1)2+qzz(17q)2

da = Oa

5 >0

oz _ 0 ( 2g—14a(1—q)? )= (q— 1)2 2a+2¢+2aq® —4ag—1
?—(1-2)(1-g)?+a(1—q)? (a2¢>—202q+a2+2ag—a+q>—2q+1)
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 _ o (-9 — (g—1)? 2a+2¢+2aq? —4dag—1
da da 2q—1+a(l—q)2+1(1—q)2 (a2q2—2a2q+a?+2aq—a+q2—2q+1)> "

Note that this fact proves Proposition 2. For the case 2b of Proposition 1, for low ¢
and low a, Pr(l|h) > 1 Pr(h|h), & =
decreases. In all other cases, the high type reduces her bid with a. Finally the bid of the

%, and thus overall average bid for the high type

low type is always lower than in the canonical model. This implies also that the seller’s

revenue decreases for all a.

Fact 2
Oa

%m:l -
Proof of Fact 2:
o =Prig, an(l|l) :gq+éz1 =a(l—¢?+i(1-¢q?+2¢—1
Do = (1- )28(a+g) = (1—q)%(1- ai?)lail —0m

3a\a 1 da  |a=1

Fact 3 The bid of the low type is decreasing in a.
Proof of Fact 3: Follows from Fact 1.l

Fact 4 (i)

ln(l —a)) — yl In(1 — «).

(ii) At a = 1, the expected bid of the hlgh type decreases in a for low ¢ and increases in

Elba(h)] = 2(1 + =

a for high q.
Proof of Fact 4'

(i) Note that f = db= -5 (x—bln(z—b) +zln(z—b)) = 2 (b=)n@@=b) therefore,

b)2 z—b
Jpertize b = =5t +In(1 - a).
Hence
Elbo(h)] = 52 (x —y) [77707 Zhmdb = 2(14+ 52 (1 - ) — 552 In(1 - a).
(i) As 92, =Oand 52 =G 0ROl =% (14+252In(1-a))u =
S 1+ 2%1 (1—2(1 - g 2.+ 1)
For ¢ > %, the expression (1 + 2%1 (1 —2(1 —¢q)* —2¢+ 1)) is strictly

increasing, negative for ¢ < ¢* and positive for ¢ > ¢* for some ¢* € (0.5,1). As %‘azl > 0,

we are done.ll

Fact 5 (i)

Blmax (1)) = (2 = ) A(—)*ln (1 a) - =

(ii) The expectation of the maximal bid when both are high types decreases in a for low

q and increases in a for high q.
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Proof of Fact 5

(i) f = ® b?;3db = )2 (20*In (z — b) + 222 In (z — b) — 4bx + 2by — xy + 32? — 4bzxIn (x — b)) =
—Abx T 22 ar+(1-a)y b(b— a(2x—2y—3ra+2ya

—In(x—0b)— 4b J;?Zy_b)zy% . Therefore, fy (1-ay ﬁdb =—In(l—-a)— ( 2(1_ya)2(zjy)y ).

Hence

Elmaxi12 b (h)] = 20520 (r —y) ;7 58 db = —2(122) (r — ) (n (1 - @)+
alle-trdreitiod) _ _(; —y)9((120)2In (1~ ) + 5%) + 2.

(i) Recalling that 2 = —%and that 92 = 0 we have,

OF max;—1.2 bé h _ T —x —«

Olmaxiczbuhl] — 0z (_y(l=a)21n(1 — ) — 4122 4 1), and

8E[maxi8:1,2 bb(h)]‘ gx( A( 2!1((1 q) )2111(1 - a) 4 2(1((1761)) +1)

a a=1 a a*+(1 2+ (1—¢q)2
For the expression (—4( 221((11 ?1)) )2In(1—2¢(1—q))—4 22_3((11_?)2 +1) thereisa g € (0.5,1)

such that the expression is negative for ¢ < ¢ and positive for ¢ > q. As 7= > 0, we are
done.l

Given the above facts we can write the profit function as:

1
I = syw+(1-9)

—a
: (2 —9) (1 =) In(1 ~ )
1 —a? 1 22— 2y — 3za + 2y«
- (@ =y)vIn(l —a) = —9( 5 )
vy a—v,1—-« vy a—7v,1—-«
= — In(1— 1 l——— In(1— 1
e Y R L S L MR )
Taking a derivative with respect to a, recalling that (do/da)j,—1 = 0 and that %2 = gg
we get,
oIl ox a—vy,1—«
0a |a=1 8a(7 a ( Q n(l—a)+1)
0

ua
= iy —1 o
aa(v ) <0

Finally we consider the different revenue of the seller in the first and second price
auction. We also show that the profits of the seller are higher in the first-price auction.

In the second price auction, the low type always bids E(s,.q,)[v|l,!], and the high
type bids at most Ey a,)[v|h, h] (either by(h) = E(a,a,)[v|h, k] for low a and ¢, where
Eag.an[vlh, h] > Edo,al)[vlh,h] = by(h) for higher ¢ and a, or where E(, a,)[v|h,h] >
2E(ao,a) V|1, 1] = ba(h)). Let R5F4 be the revenue from a virtual auction where the low
type bids E(s.4,)[v|l,]] and the high type bids E(a,a,)[v|h, h]. Then the actual revenue
in the second price auction must be weakly less than R4,

The seller’s revenue in the second price auction satisfies:

<m0
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where © = Eo a,)[V|h, h], ¥ = Ega,)[v]l, 1], and v = Pr(l|l). The seller’s revenue in

the first price auction is:

_ 1— — 1-—
RFPA — o z+a 7 Oéln(l—a)%—l +y 1-1-2=7 alﬂ(l—a)‘|‘1
2 Qo o 2 Qo o

where o = Pr(l|l, (o, @1)). Thus, the difference in revenue between the two auctions

is:

> 0.

RFPA _ RSPA > RFPA _ RSPA _ (1 _ ) {a—v (1_aln(1—a)+1>

(0% «

Finally, to see that R¥74 is decreasing in a, first note that when a and ¢ are low:

Yo 5 (3) e (1-3) =g <o

Let 2’ = Esoa,)[v]h, h]. Then the revenue when ¢ is high and a is high:

s ()13

2 2
Therefore:
i RSPA o' o
2 :i<1> _y<1_1><0
da |a=1 Oa \2 oa 2
since %—”é < 0. Finally in the last case:
o RSPA o
3 =9 (1 - 1) < 0.
da ja=1 Oa 2
This completes the proofs for part (ii) of Proposition 2, Proposition 3 and Proposition
AR

Proposition 4*.

(i) When q < q*(a), an optimal mechanism is, fori € {1,2}:
o z;(1,1) = z;(h,h) = x;(I,h) = z;(h, 1) = 5

o ti(h,1) = ti(h,h) = t:i(l,h) = t;(I,1) = 5(1 = q).

and the revenue of the seller is 1 — q.

(ii) When ¢*(a) < q¢ < ¢**(a), an optimal mechanism is:
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o 2;(I,1) = z;(h,h) = 5, z;(I,h) = 0, and z;(h,1) =1

d tz(l7l) - tz(lu h) = %Ql

o ti(h,h) = Wﬁ%&

° tl(h, l) — Q+Q0+221+a1

and the revenue of the seller is 5 (g + 20 + @ +q— ¢* — (1 —¢)?).

(111)) When q > ¢**(a), an optimal mechanism is:

o 7;(I.1) =x;(h,h) =%, x,(l,h) =0, and z;(h,]) =1
(1,1) = zy(h, h) = 5 :

1
.umﬁy:%

l—g—a1—

o (I, h) = % + (Qo + ;)

1_q_al_g1
2(@04‘&1 +QO+Q1—1)

«Q
ti(l,1) = _71 —(1—ay—a)

) Qg+ @y —q
and the revenue of the selleris: (1 — (> + (1 — ¢)%2 — a, — « Qo )
y e

Proof of Proposition 4*: The expressions for ¢*(a) and ¢**(a) are as follows:

( —7a+2a? _12a+17a2—4a3
%(%;ﬁ2+ %Qﬁ@3> 1<a<z(-1+V13)
1 ( =7+6a 1—-12a+12a2 1
¢ (a) = Z<7%a+vrz;;:> -1+ V13) <a<2
1 ([ =7+6a 1—12a+12a2
L 4 ( —2+a (—2+a)? ) a>2
S T i 1<a<i(-1+VTD)
1 ( =5+3a 1—4a+3a? 1
¢ (a) = 4?2 ( ~3ta T\ 3+a? ) 5(-1+V17) <a <3
g a = 3
1 ( =54+3a 1—4a+3a?
L 2 ( —3+a (—3+a)? ) a>3

We will ignore the incentive constraint of the low type and check ex post that it is

satisfied. Therefore, the participation constraint of the low type must be binding.
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Let Ul be the utility of the high type in equilibrium and U! be the utility of the low
type in equilibrium, that is:

Ul = min ayz;(1,1) + (1 — ¢ — ay)zi(I, h) — (g + ar))ti(l,1) — (1 — ag — aq)t;(1, h)

@Q,01

Ul=min (1 —q—oq)zi(h, 1) + (2 — 1+ ay)z;(h, h) — (1 — ag — an))ti (R, 1) — (o + a)ti(h, h)

aQ,1

Note that it is optimal to set U! = 0. The incentive constraint of the high type is:

min (1—q—ay)z;([,1)+(2¢—1+ay)z; (1, k) — (ag +a1))t; (1, k) — (1 —ag — o )t (1,1) < U"

0,01

The participation constraint of the low type is:

min ozlxz-(l, l) + (1 —q — Oél)l’i(l, h) - (Oéo + Oél))tia, l) - (]. — Oy — Oél>ti(l, h) =0

0,01
We can subtract the latter from the former to get:

S ~ a0l — U
A-g-o @)l )+ Ge -2 o+ a@)ud ) U gy o)
agtog+apg+a—1

Define:

We can write the expected transfers to the seller from each type as:

Tz‘l = min ayz;(l,1) + (1 —q—a1)xi(l, h) — (Q2 +(1=q)7°— (w0 + 041)) Aty

QQ,01

T! = min (1 —q—ar)zi(h, 1) + (2¢ — 1 + o)z (b, h) — ((12 +(1—¢q)* = (ap+ 041)) Aty — Ul

7
@0,01

Let o, a! and aff, o be solutions to these minimization problems. The seller chooses
zi(1,1) € [0,1], zi(h,h) € [0,3], z;({,h) € [0,1], z;(h,1) € [0,1 — z;(I,h)], Aty; € R,
Atp,; € R, and U > 0 to maximize T + T}* subject to:

(1—q—a, —a)x;(I,1)+ (3¢ — 2+, +ay)z;(l,h) — UP < Ap .
Qg+ o +ap+oy — 1 = S

Clearly, it is optimal to set z;(h,h) = & and x;(h,l) = 1 — z;(I, h). Thus, the seller’s

2
problem is:
max { min almi(l, l) + (1 —q — Oél)l'i(l, h) — (q2 + (1 — q)2 — (ao + CY1>) Atm‘
CEi(l,l),CEi(l,h),Atl,i,AthJ,Uih QQ,01

+ min (1 —¢q¢—a1)(1 —z;(h,1)) + %(2@1 —1+4+a)— (F+(1—q)?— (a0 +a1)) Aty — U.h}

(2
0,1
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subject to:

Qo+ o +ag+a;—1

IN
>

ty;

1
0 <uz(l,1) < 5
Define:

(L) + (3¢ — 24 ay + ) (1, h) — U}
Qo"‘gl"‘a()‘f'al_l ’

zi(l,h) — mi(l,l)}

v —a
Atzi(xi(l,l),xi(l,h),Uih)Emax {O,( ¢-a — )

We show that Aty; = At} (z(1,1), z5(1, h), U') is optimal. Note that At;; < 0 implies
aly = @, which implies that ¢* + (1 — ¢)? — o, — ) < 0, so it is profitable to increase
At;; (which also slackens IC},). Similarly when At;; < z;(1,h) — z;(1,1), o} = @;, which
implies that ¢*> + (1 — ¢)? — o}, — ol < 0, so it is profitable to increase At;;. If At;; >

xi(l,h) — x;(1,1) > 0, then it is profitable to decrease At;;, which is possible if At;; >
(1_‘1_%1_al)$i(lvl)+(3q_2+gl+al)$i(lah)_Uih
apt+a,+ap+ar—1 :

Define: .
Aty (2i(l, h)) = max {O, 5 xi (1, h)}
Similarly, it is optimal to set At;; = Aty ;(x;(l,h)). Thus, the problem becomes:

max R(z;(1,1), z;(I, k), U") = min
:Ci(l,l),xi(hh),Uih a1

{alxi(l, D+ (1—qg—a1)zi(l,h)
—(+ (1= 9q)* = (ap + 1)) Aty (wi(1, 1), (1, ), Uf)}
(

2g—14+ oy

(1—q—a1)(1—xi(l,h)) + 5

Now we show that x;(l,1) = 1 is optimal. Note that:

(

_ (P+(1—q)?—ap—a;)(1—g—a,—T1) , , —i(l,h)(3¢—2+a, +a1)+U}!
(o7} acFaoTa ta—1 >0 x;(1,1) > max { x;(l, h), i

8R ayq >0 (l h) < xz(l l) *$i(l,h)(3q72+gl+al)+Uih

l1—qg—a;—a1

axl<l,l) q2 + (1 _ q)2 — ag >0 —z;i(L,h)(3¢—1— CVO_OZO)-FUZ < :Uz(l l) < T (l h)

agt+ao—q

_ 24 (1—q)2—ay—a1)(l—qg—a; —& —z;(1,h)(3q—1—ay—a0)+U)
Qg — b §0+aoo+glll(alf1 =) > z;(l,1) < min {xz(l h), (aq0+a0 0q : }

Ve
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Thus, the problem becomes:

max  R(z;(l,h),Ul") = min{ % + (1 —q—aq)xi(l, h)

xz(lvh)leh @1

(@4 (= @) — (o + an)) At (a0, ), Uﬁ)}

29— 14+ oy

—f-IgilIl{ (1—q—a)(1 —a(l,h)) + 9

— (P + (1= 9)* = (e + o)) Aty ({1, ) — Uz.h}

Now we find the optimal z;(I, k) as a function of U}":

(

- <0 () > max { SR 4
OR(z;(1,h),Ur) | —(@+(1-q?—ay—a) <0 ;< xz(l h) < *%?fjofaio o
Oxi(lh) | O e onm0) g ZROoee BN g ) < L
\q2 +(1—-¢)*—ay—a; >0 z;(l, h) < min {%, 2(;(13;%;;2?@}
Therefore:
0 U{‘S%(l—q—%—@l)
T (U = § e B gy ) < U < 320 - 1)

3 Ul > 3(2¢—1)

We can now write the problem just in terms of U/
a
2
— (¢ + (1= )" = (a0 + @) Aty (2" (1 )(U]) = UF

(2

+(1=q—a)(1 =27, h)(U) +

2 2
C+(1-9)?—ag—ay ho_ 1¢1 __ ., =
atootatort b U< s(l-g—a—@)

aR(Uzh) 2+(1-q)%—ay—a —
gt =\ e =1 3(l—g - —m) < UM < (20— 1)
Thus,
0 P+(1—q?—ay—a <ap+ao+a +a—1
Ut =

%(1—q—g1—@1) aptapta+a—1<@F+1-¢?—ay—a, <3¢g—2+a, +a,
%(2q_1) q2+(1_Q)2_Q0_QlZ3q_2+g1+gl
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This is equivalent to:

0 q>q"(a)
Uh = %(1—(]—%—&1) q*(a) < g < q*(a)
12¢—1) q < q*(a)

Thus, in the optimal symmetric mechanism, z;(l,!) = z;(h, h) = 1, and:

0 gq>qg*(a)
zi(l,h) =93 ¢*(a) <q<q™(a)
: ¢<q*(a)
l—g—a,—a *%

2(Q0+g1+510+511—1) q 2 q (CL)

Aty; =40 ¢*(a) < g < ¢*(a)
0 q < ¢*(a)
T q>q"(a)

Ath; =<3 ¢*(a) <q<q*(a)
0 q<q*(a)

To recover the transfers ¢;(1,1), t;(I, h), t;(h,1), and t;(h, h), use:

min oz (1, 1) + (1 —q— o)z (I, h) — (o + 1)) ti(l, 1) — (1 — g — ) (E:(1, 1) + Aty;) =0

a@Q,1

min { (1—q—oaq)z;(h, 1)+ (2¢ — 1 4+ aq)z;(h, )

@0,01

- (1 — g — ozl))(tz(h, h) + Athﬂ‘) — (O[() + Oél)ti(h, h)} = Ul-h

Now we show that the optimal symmetric mechanism is fully optimal. Suppose that
there exists an asymmetric mechanism (z,t) that is optimal. Define:

1

f(., ) = %fEl(v ) + 51;2(.7 )
f(.’ ) = étl(.’ ) + %tQ(.’ )
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Consider the following symmetric mechanism:

~
=
—~
\.N
N
I
o~

@0,1

(I,+) + min {alf(l, D+ (1—q—a)x(l,h)

~ (o0 an)T(L,1) — (1 — a0 — an)F(1,h) — 5 > U;}

#(h,-) = #(h,) + min {(1 —q—a))T(h, 1) + (20 — 1 + a))T(h, )

Qp,01

— (= g+ ), 1) — (a0 + 00 )F(h, ) — 5 > U;L}

By construction, the high type gets %Z?:l Ul in equilibrium and the low type gets
% Zle U! in equilibrium; therefore both participation constraints are satisfied.

Define AT, = Z(l,h) — Z(1,1), Aty = t(l,h) — t(1,1), Axy; = x(1,h) — 2;(1,1), and
At =ti(1,h) — ti(1,1). To see that IC), is satisfied, first note that:

@0,01
2

1

=5 Z min (1 —q—aq)z;([,1) + (2¢ — 1 4+ ag)z;(l,h) — (1 — g — 1)t (1, 1) — (g + 1)t (L, h)
i—1 @p,1
12

+ min OzlAfl — (Oéo + Ozl)AEl - = Z min alAiL'lyi — (O./() + &1)Atl7i

0,1 2 i1 0,01

and by definition:

2

1

52 min i (1, 1)+ (1—q—ay)z;(l,h) — (ao+a)ti(l,1) — (1 —ag—ay)ti(l,h) = Ul =0
i=1
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Therefore:

min (1 —¢—a))T(,1)+ (2¢— 1+ a)T(,h) — (1 — ag — a1)t(l,1) — (g + 1)t(L, h)

0,01

_ (min T, )+ (1 —q—a)ZT(l,h) — (o + ap)t(l, 1) — (1 — g — aq)i(l, h)) + %Z Ul

I
DO =
-
88
0
8

’in (1—qg—a)zi(l,1)+(2¢ — 1+ aq)zi(l,h) — (1 —apg — ag)t;(1,1) — (oo + 1)t (1, h)

+ min ;AT — (g + 1) At — = Z min a; Az ; — (o + aq) Aty

@p,1 a@p,01

+ - Z min ay2;(1,1) + (1 — ¢ — ar)zi(l, h) — (oo + 1)t (1, 1) — (1 — ag — a)ts(l, h) — U}

2
_ - 1
— (min aT(l, )+ (1 —qg—oa)T(L,h) — (o + a1)t(l, 1) — (1 — g — aq)t(l, h)) +3 E Ul
@Q,01 i—1

== Z g)uanl (1—q—a)z;(l,))+ 2¢— 1+ ar)z;(l,h) — (1 — ag — an)ti (1, 1) — (g + a1)ti(1, )

i=1

+ min a1 AT; — (g + 1) At — = Z min oy Azy; — (o + o)Aty

@p,01 @0,01

2
1
A At;; — min —a; AT AL <Y UN
+ foﬁ“ﬁ —a1 Az + (o + a1) Aty — min —ai AT + (a0 + )AL < 53 U,
The last inequality follows because:

min OélAfl (Oéo + 061>Atl - = Z min OélAZL’l i (Oé() + al)Atl,i

@Q,1 a@,01

+ = Z min —a1 Az ; + (g + 1) At; — min —a; AT + (g + aq) Al

@Q,x1 0,01

= min ;AT — (g + aq) At — = Z min oy Azy; — (g + aq) Aty

aQ,x1 «@Q,01
+ max a; AT — (ag + ap)At; — = E max a1 Az; — (g + aq) Aty
aQ,01 aQ,01

2
-1
= (a; + @)AT; — (ag + 0o + a; +a1)Al — 3 Z(Ql +a1)Ar; — (ap + o + a; +a1)Al; =0

=1

The proof that IC; is satisfied is analogous. Define AT, = T(h,l) — Z(h,h), At =
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E(h, l) — E(h, h), A‘Thﬂ' = LEZUZ, l) - iCl<h, h), and Athﬂ' = tz(h, l) — tz<h, h) Then:

min aZ(h, 1) + (1 — ¢ — a1)T(h, h) — (@ + a1)t(h, 1) — (1 — ag — ay)t(h, h)

0,01

— (min (1—q—a)x(h,1)+ (29— 1+ a1)T(h,h) — (1 — ag — a1)t(h, 1) — (g + aq)t(h, h)>

a@o,01
1 2
h

]2
=3 Z min a1z;(h,l) + (1 — g — o)z (h, h) — (ap + a1)ti(h, 1) — (1 — ag — a)ti(h, h)

2
+ min ATy, — (g + o)Aty — = Z min oy Azy; — (o + o)Aty

@p,1 QQ,01

+ Z (mln (1—q—aq)zi(h, )+ (2g — 14 aj)z;(h,h) — (1 — g — aq)t;(h, 1) — (o + aq)ti(h, h)

aQp,o
i—1 0,1

— Ul
((:;r()lgll (1—qg—a)x(h,1)+ (2¢ — 1+ a1)xT(h,h) — (1 — ag — a1)t(h, 1) — (g + aq)t(h, h)>
+3 Z Ul

1
=3 Z min aqz;(h, 1) + (1 — g — ay)zi(h, h) — (ag + a1)ti(h, 1) — (1 — ag — o )t;(h, h)
N @p,x1

(2

+ min a1 ATy, — (g + o) Aty — = Z min a; Axy; — (oo + 1) Aty

ag,a1 ap,a

Az, Aty — A VAT U!

+ = Z g)uari —oq Az + (o + ag)Aty, irouari a1 AT, + (g + 1) Aty < Z
Finally, note that 132 #(1,1) > #(1,1), 237 ¢:(,h) > ©(1,h), 13°7  ti(h,1) >

t(h,1), and % ZZ (ti(h,h) > t(h,h), so the symmetric mechanism (2/,t') is incentive

compatible and yields weakly greater revenue to the seller than (z,¢).H

Proof of Proposition 5: First, we consider first-price auctions. Let us above let us
conjecture the minimum bid b.(I) for the low type and a distribution for i on [b.(1), b.(h)].
Let us first compute the bid of the low type. We aim to minimize for any b the utility
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from winning upon the other receiving the low signal, in other words:

pe[f{lﬂﬁ} Pr(i]1) (Ex(v]l, 1) = b-(1))
= min  (1-p)g®(=b-(1)) + p(1 = ¢)*(1 = b-(1))

pelb—e, it

Assuming b.(l) > v = 0 we then have p = % — €. Given that the rent for the low type
would be 0 in equilibrium, we then set

be(l) = Ea(v|l7l) =

and thus the bid is lower than in the case in which there is a unique prior %
Consider now the strategy of the high type. If he uses some F'(b), we have:

/f(b) [Pr(l[R)(E. (v]h, 1) = b) + Pr(h|h) F(b)(E.(v|h, h) — b)]db
— [ FOIE. 0l = b= (1= F@) Pr(an) (el 1) = )
To choose the information structure to minimize utility, we

min B, (v[h) — (1 = F()) Pr(h|h)(E. (v|h, h) = b)

p

The above equals

- pl—(1-F©®)g) . pg® + (1 —p)(1—q)?
St 1-p)(T-q) T F0) pg+(1—=p)(1—4q) ’

For any F'(b) < 1 of the other bidder, this decreases in p and hence we choose the lowest
p=13—c.
Let us look at b.(h) = Pr_(I|h)E_(v|l,1) + Pr_(h|h)E_(v|h, h). Note that E_(v|h,h) <

E(v|h,h), E_(v|l,1) < E(v|l,1), and that Pr_(h|h) < Pr(h|h) = % We there-
Pr.(ilh) b—E. (v]L,])

fore have a uniformly lower value. It is straightforward to show that F.(b) =

Pre(hlh) B (oh,h)—b
To complete the equilibrium characterization note that the low type will not deviate

for a bid b if

min(Pr(l[l)(Ee(v|l, 1) =) + Pr(h[) Fo(b) (Ec(vll, h) = b)) <0

Note that Pr.(I|1)(E.(v|l,1)—b)+Pr.(h|l) F.(b) (E.(v|l, h)—b)) = p(1—q)%+(1-p)q? ( p(1—q)*

p(1—q)+(1—p)g ‘\p(1—¢)%2+(1-p)q?

b) + I%Fg(b) (p—0b)) increases in p for all F.(b) < 1 and thus again we choose the

lowest p = % — €.
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Given the same belief p = = — ¢, we have that

grum(Eg(vu, 1) — b) + Pr(h|D) Fo(b) (E- (o]L, ) — )

= P (EL(0llD) - )+ el g 8 U (Bl ) - )

(h
Pr.(i|h) E.(v|l,h) — b
Pr.(h|h) E_(v|h, h) — b

) <0

= (b= B.(olL)(= Pl + Pr(h)

% < 1 and ETE(;L"ll)) > Prf(}lj‘z by the MLRP which is satisfied here. Finally note

that F.(b) = 11;;;((2”73) }gg (Z h(l;lii)b > F(b) which is computed in the canonical case with no

ambiguity, so F'(b) first order stochastically dominates F.(b) for the same support. This

as

implies that the seller’s revenue would be lower.

Now consider second-price auction. We need to show that

(3 —e)(1—q)?
(3+0)@+ (5 —e)(1—q)?

bE(l) =
and ) )
(3 —¢€)g
(3 +e)(1—a)?+ (5 —e)¢
constitute an equilibrium strategy. Suppose that player 2 is following the equilibrium

be(h) =
strategy. Then the utility to player 1 with signal [ from bidding b.({) is:

min Pr(11) (1 - (1))) ~ Pr(olt) (0.0))
min p(1—q) <1—q(1_be(l)>> -~ (1 —p)g <gbs(l>)

P p(l—q)+(1-p)g\ 2 p(1—¢q)+ (1 —p)g\2

which is minimized by p = 1 — . The utility to player 1 with signal A from bidding b.(h)

1s:

min Pr(L|h) (1 = q)(1 = b(1)) + (1 = b.(k)) ) = Pr(0]h) (qbgm il ) w))

. pq q
min P (1= 01— 0) + S0 - )

(1-p)(1—q) (1—-9q)
Tt -9 (qW) T bg(’”) }

which is minimized by p = 1 — . Since (b-(1), b-(h)) is an equilibrium strategy profile in

the standard model with prior 1 — ¢, there is no profitable deviation fixing p = 1 — ¢.
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However, this also implies that there no profitable deviation when the buyers consider the
set of priors p € [1 — ¢, 1+ ¢], since every deviation is not profitable at least for the belief
p=1—cll

6.2 Appendix B: The continuous model

The state of the world is v € {0, 1}, with an equal prior. Each individual receives a signal
s € [0, 1] about the state of the world. The marginal distributions determining the signals
given the state of the world, are known to the players, are anonymous, and depend on
the state symmetrically. Specifically, go(s) is a decreasing function, ¢;(s) is an increasing
function. Hence Gy(s) is concave and G (s) is convex. For simplicity, let go(s) = g1(1—s),
so that Go(s) = 1 — G1(1 — s). Note that FOSD is satisfied so that Go(s) > Gi(s) for
all interior s, and hence MLRP is satisfied too. Let sy < 0.5 be the median of GGy and
s1 > 0.5 the median of G;.

Individuals have ambiguity over a set of joint distributions per state v € {0,1}. We use
a simple set of joint distributions, the F-G-M transformation, which was introduced by

Morgenstern in 1956. Specifically, given g,(s), we have:

fo(s) = [1 4+ As(2Gu(s1) — 1)(2G0(s2) — 1)]gu(s1)gu(s2)- (4)

For this to be a distribution, for any v we need |\,| < 1, which implies that the highest

correlation coefficient in this family is 3 in absolute value.!” Note that when A, > 0
we have positive correlation of signals in state v while when A\, < 0 we have negative
correlation. When signals are conditionally independent, we have A, = 0 for all v. Adding

ePMI constraints, we then have:

1 1
e[ —1,1— -] 0,1},
E[a a] or v e {0,1}

Let us first write the utility of a player per each bid b. This is

U(s', b) = min %( /O (1= b)) fi(s', ')ds — /0 b fo(s", )ds)

A

where b(s’) is the bid used by the other player and z = b='(b). Thus per each bid b,
each player minimizes his utility by choosing a vector A, given the strategy of the other
player. Recall that s,, for v € {0, 1}, is the median of the cdf G,().

Lemma B1: Consider an equilibrium in which b(s) is increasing. Let X)(s) denote

the information structure which minimizes the utility of the player for each s. Then:

19See Schucany et al (1978).
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(1) (A5 A1) = (Amaxs Amin) for all s < so.

(11) (A5, A7) = (Amin, Amin) for all s € [sp, min{$, s1}].

(111) (A5, A7) = (Amins Amax) 1 [s1,8] if s1 < § and (Mo, A1) = (Amaxs Amin) 0[S, s1]
otherwise.

(1v) (A5, A7) = (Amaxs Amax) for all s > max{sy, §},

and § < 1 satisfies

/OS b(s")go(s")(2Go(s") — 1))ds’" = 0.

That is, A*(s) changes with s, so the behaviour as described cannot be rationalized
with a unique a priori A.

We can now characterise the equilibrium. As expected, bids in equilibrium in the
second-price auction will equal the expectations of the player given his signal and that
the other player had received the same signal. The expectations however will depend for
each b(s), on the chosen vector A*(s).

Proposition B1: When a is not too high, there exists a symmetric equilibrium in
which

[1+ A(2G1(s) — 1)%]gi(s)
[+ X(2G1(s) = 1)%lgi(s) + [1 + A5(2Go(s) — 1)*]g5(s)

b(s, A7) = E™ (v]s, 5) =

Overbidding arises in equilibrium when § > %, for types in [0.5,8]. For all other types,

underbidding arises. When § < 0.5, or when w(y) is decreasing over [1 — §,§|, for
w(y) = (1= Gi(y)gi(y) + (1 = Go(y))go(y),
then the seller’s revenue decreases in a.

Proofs of Lemma Bl and Proposition B1l: We first show in Claims 1-3 how
players choose A* to minimize their utility given each s, when the bid of the other player
is weakly increasing in s’. We then show that the bidding function described above, for
the As chosen, is an equilibrium.

Define:

ne) = | (1= () () n(5)(2G1 (5) — )2 (s") — 1)ds’
Io(s) = — / (5 )g0(s")0()(2Ga(s) — 1)(2Go(s") — 1))ds.

Thus:
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Claim 1: In equilibrium, A} = Apnin (Amax) iff 1,(s) > (<)0.

I,(s) is the derivative of the expected utility with respect to A,. Given max-min behav-

iour, the statement follows.Hl

Claim 2: (i) I1(s) > 0 for s < s, I1(s) < 0 for all s > sy; (ii) o(s) < 0 for s < s,
Iy(s) > 0 for all s € (s, 5), Ip(s) <O for all s > s.

Proof of Claim 2:
(i) 11(s) : This function must be strictly positive for s < s; as (2G1(s)—1)(2G1(s')—1) >
0 for s, s’ < s;. Note that [;(s;) = 0, and that

8[8123) e = 691(8)(2;1(8) —-1) - /051(1 —b(5))g1 () (2G4 (5') — 1)ds’

= 20 [ (1= W (G ) — D <0

More generally:

816128) = (01()(2G1(s) = 1) +2(1(5))°) /08(1 = b(s))g1(s") (2G4 (") — 1)ds’

(1= 0(5))g1(5)g1(5)(2G1(s) = 1)(2G1(s) — 1)

G(s) | 2(s) 1 b1 (o) — 1Y)
O+ e (o) 1) () + 2001~ () (2Ga(s) = 1D(2G(s) ~ 1)

So whenever I1(s) > 0 and s > s; we have that agis) > 0 as gi(s) is increasing

and 2(g1(5))?)(1 — b(s))(2G1(s) — 1)(2G1(s) — 1)) > 0. So now it suffices to check that
L(1)<0:

L) = o) / (1 - b(s")gu(s) (2 () — 1)ds’
— () / (1 b())u(s) G () — 1)ds’ + ga(1) / (1 - b(s))gs () (2G () — 1)

51

< o) [T 1= Hea()EC) = s+ (1) [ (1= Hean()Ga() ~ 1)

51

= ) [0 b ()26 - 1) =0

where the last inequality follows as b(s’) is increasing, (2G1(s’) — 1) > 0 (< 0) whenever
s > s1 (s < s1). The last equality follows from fol 91(s") (2G4 (s") — 1)ds’ = 0.

(ii) Io(s) : This function must be strictly negative for s < sg as (2Go(s) — 1)(2Gy(s') —
1) > 0 for s, 5" < s¢. Note that [y(sg) = 0. Moreover,
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8[8028) |S:SO _ _690(8)<2g:(3) - 1) |S:SO /030 b(Sl>go(5/>(2GO(5/) . 1)d8l

—b(5")g0(5")g0(50)(2Go(s0) — 1)(2Go(s) — 1))
= =2an(s0))* [ Wl (2Ga() ~ D> 0

So Ip(s) < 0for s 2 so. Note that — [ b(s")go(s')(2Go(s") —1))ds" is decreasing for s > sq.
Thus if Ip(1) < 0, we have the result. But

[Lo(1)] = 90(1)/0 b(s")go(s")(2Go(s") — 1)ds’
> go(l) /080 b(80>go(5’)(2G0(5') _ 1)d5/

+go(1)/ b(s0)g0(s")(2Go(s") — 1)ds’

= 90(1)b(30)/0 90(8")(2Go(s') — 1)ds' = 0.

Thus we know there exists § < 1 such that:

| 626l = s’ =0,
0
and we can conclude that Iy(s) > 0 for s € (sg, $) and that Ip(s) < 0 for s > 5.1

Consider now the bidding function E*"(v|s, s). Note that overbidding, compared to the

canonical model, arises when

[+ Mi(2G1(s) — 1)%)g3(s) gi(s)
[1+A:(2G1(s) — 1)?g2(s) + [1 + Ai(2Go(s) — 1)?]g5(s) ~ gi(s) + g3(s)

which holds if an only if:

[1+ M (2G1(s) = 1)7]

1+ M(2Go(s) — 17

We then have:

Claim 3: When b(s) = E* (v|s, s), a necessary condition for overbidding compared to

the canonical model is § > 0.5, that is:

/0 b(s')go(s) (2C0(s') — 1)ds’ < 0

If this holds, there is overbidding in the region [sg, §|, and underbidding for any other

s. Otherwise, all types underbid compared to the canonical model.
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Proof of Claim 3: Given Claims 1 and 2, we can then deduce the different values
of A} in equilibrium and consider when overbidding/underbidding arises compared to the
canonical model when the bidding function is as described in the Proposition.

(1) (Ao, A1) = (Amax, Amin) for all s < s¢. As a result, if this is an equilibrium, we would
have underbidding as

1+ A\uin(2G1(s") — 1)?]
[1 4+ Anax(2Go(s') — 1)?]
which is indeed the case as A\pin < 0 < Apax.

b. (Mo, A1) = (Amin, Amin) for all s € [sg, min{s, s1}]. We have underbidding iff:

1+ Auin(2G1(8") — 1)?]

[T+ Anin(2Go(5) — 1))
If min{$, s;} > 0.5, then we would have overbidding because in the region above 0.5, as
(2G1(0.5)—1)? = (2G((0.5) —1)? by symmetry, but because of convexity (concavity) of G;
(Gp), the fraction would be greater than 1, as we would have (2G;(s')—1)? < (2Go(s')—1)?
just above 0.5.

<1

c. (Aoy A1) = (Amax; Amax) for all s > max{sy, §}. In this case we also have underbidding
as [1 + Amax(2G1(5") — 1)%] < [1 4 Amax(2Go(s") — 1)?], because 5 < G1(s') < Go(s').
d. If 0.5 < s; < § : in the region [s1, ] we have (Ao, A1) = (Amin, Amax)- In this case we

have overbidding as:
[1 4+ Amax (2G4 (8") — 1)?]
14+ Amin(2Go(s") — 1)?]

For this we need s; < 3, implying that 0.5 < s.

e. if § < s1 : Then we have (Ao, A1) = (Amax, Amin) in this region between the two values.

Then we have underbidding as:

1+ Amin(2G1(8") — 1)?]

TF e (2Go(s) — 12 ~ 1

Thus the structure of the equilibrium is therefore as above. So for overbidding we need:

/0 "B g0(s)(2Go(s') — 1)ds

_ /50 [1+ Amin(2G1(8') — 1)%]g3(s)
o [1+ Amin(2G1(s") = 1)2]g7(8") + [1 + Amax (2Go(s") — 1)?]g5(s")
. /0-5 1+ Anin(2G1(8') — 1)%]g3 ()
o 1+ Amin(2G1(s") = 1)2]g7(s) + [1 + Amin(2Go(8") — 1)2] g5 (")
< 0

90(8")(2Go(s") — 1)ds’

90(s")(2Go(s") — 1)ds’

which is analogous to what is in the Proposition. Finally we need to show that the

construction above is an equilibrium:
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Claim 4: The bidding function b(s") defined above with the values of A*(s) described
above consists a symmetric equilibrium when a is low enough.

Proof of Claim 4: We now show that given the above it is optimal, wlog, for player
1 to choose b(s) at s, when player 2 uses b(s’) and A*(s) as defined above.

Let A equal A\*(s) and consider the virtual utility:

U(s.2) = [ (BNl o) = o)A s, )
0
1 [ 3 N
= ([ (@b AR ~ U ol
0

This is not player 1’s utility as it is evaluated at X for all s'. However note that when
z = s, then the integrand is zero. To see that the integrand equals 0 note that, as
A= ( ),

(1 - b(S))f1<)\,S’ S) = b(S)fO(AvSa S)

iff

[1+A5(2Go(s) — 1)"]gp(s)[1 + AT (2G1(s) — 1
= [1+X[(2G1(s) = 1)*]gi(s)[1 + A5(2Gio(s) — 1)(2Go(s

~—

which holds.

Moreover as we now show the first order condition w.r.t. s’ is zero, the second order
condition evaluated at this point is negative, thus z = s is a maximum. To see this,
suppose that we have a z for which U (s,z) = 0. Taking a second derivative w.r.t. z we
get: —b'(2)(fi(As,2) + fo(As, 2)) + (1 = b(2)) fl(As, 2) — b(2) fi( A8, 2). As U(s, z) =0,
this implies that (1 —b(z)) = %, and thus the second order derivative at that z is

/ &\ N b(Z)fO(j\,S,Z) ' ey
—=b'(2)(fi(A,s, 2 0(A,s, 2 —————Lf1(A\5,2) = b(2) fo(A,s, 2
(2)(fa( )+ fo(Ass,2)) + Gs.) fi( ) = b(2) fo(A.s,2)

- _¥(x 1Asz oASZ fo{A,S’Z)
= VEAGS) + R 2) HHE T

Note that the first element is always negative. The second element is negative iff:

91 (2)91(5) (141 (2G1(2)—1)(2G1 ()= 1)) +91(2)91 () M1201 (=) 2G1(5) 1)) _ g1(2)91() (141 (2G1(2)~1)(2G1(s)~1))
90(2)90() (14X0(2Go (2)—1)(2Go(5)=1))+90(2)90(5)A0290(2) (2Go(s)=1))  ~ go(2)g0(s)(1+A0(2G0(2)=1)(2Go(s)—1))
Note that when X is small enough, this is always the case as the LHS is negative. Thus

fl( ) _f(/)<5‘7372)>

a solution to the first order condition is unique.

But the above implies that player 1 can achieve this utility above and cannot improve
upon it when using other bids z # s.

So we know that the player bids until the integrand gets negative, so, written differently,
until £A®)(v]s, s) = b(s), which gives us the equilibrium bidding function.
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We now consider the seller’s revenue and show they decrease in a, under the sufficient
condition identified. Consider the case when § > s;. Let

w(s’) = (1= Gi(s)g1(s') + (1 = Go(s'))go(5)

The seller’s revenue can be written as:

S0
R(CL) = / b(8,7 )\maxa )\mm dS, + / b mm» mln)U)(S/)dS/ +
0

/b(sl7>\mina)\max dS'-i—/ b(s', Amaxs Amax)Ww(s")ds’

S1

The derivative w.r.t. a is:

8?(2@) — i %b(é’,’ )\max; )\mm dS + /SO m1n7 /\min)w(S/)dS/ +
; 0 ! ! ! !
o %b(s 7)\min7 )\max) ( )dS + /; %6(5 )\maxa )\max)w(s )dS +
95 (5, Avmims ) — B3, A Arnas))10(3)
aa ) min» max b max:» max

We note that

9y , _ 91(8)?90(")*[—(2G1 () — 1) — (2Go(s') — 1)
aab( y >\maxa >\m1n)|a:1 (gl (S/)2 + go(Sl)2)2

0 (s’ 91(5')%90(s")?[=(2G1(8") — 1)* + (2Go(s') — 1)?]

5 08 7)\min7 )\min)|a:1 =

da (91(s")* + go(s)?)?
2 N 1)2
0 o Anlos = BEPBEPICG) ~ U2 + (2G0(s) ~ 1))
da (91(s')* + go(s')?)
0 2G 1)?2 — (2G 2
LAY N W 91(5')%90(s")?[(2G1 (") — )/ (2 o(s') —1)7]
da (91(s')* + go(')?)
So that:
8 / 8 / . a /
%b(s ) )\maxa )\min)|a:1 — _%b(s ) )\m1n7 )\max)|a:1 - aab(]- S, )\mlru )\max)|a:1
) o ) ,
aab( )\ma)ﬁ )\max)|a:1 - _8_b(s y )\min7 )\min)|a:1 - %b(l -5, /\Inlna )\mln)|a:1
And therefore we can write 28 |a 1 as:
dR(a) _ 50 N [0, / N7t
LT /0 St A () = [ aab(s,Amln,AmaX)[w(s) w(l = )]ds
0.5 8
[ L A A (') — (1 — )]s — / A i) 10() 5
s Oa

Thus, a sufficient condition for revenue to be decreasing in a is w(s’) decreasing over
(5,1 —35].0
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