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Abstract: We analyze the implications of an explanation-based approach to combining

forecasts. This approach, �rst studied by Pennington (1981), assumes that decision makers

interpret multiple sources of information by adopting an explanation which connects and

helps them interpret their observed forecasts. We model explanations as joint information

structures which are consistent with a set of forecasts the individual observes. In line with

the legal notion of balance of probabilities and the philosophical notion of plausible argu-

mentation we assume that the explanation that is adopted is the one that maximizes the

likelihood of the observed forecasts. We show that this procedure leads to a simple and dy-

namically consistent mechanism for aggregating forecasts. The procedure implies that some

forecasts are ignored. In particular the individual adopts explanations under which some

predictions follow, in a statistical sense, from other more extreme forecasts. Therefore, the

procedure provides a rationalization for why extreme forecasts might get more weight when

aggregating multiple sources of information.

1 Introduction

When confronted with multiple sources of information, or forecasts, we often have a better

understanding of each source separately than we do of how the sources relate to one another.

This is apparent in many situations, even when experts make predictions.2 In this paper we

use the explanation-based approach, advocated by Pennington and Hastie (1988), to model

how decision makers combine forecasts in such complex environments.

In an in�uential set of papers based on experiments with jurors�decisions in court cases,

Pennginton and Hastie suggest a novel theory of how individuals combine multiple forecasts.

In the experiments, jurors were exposed to evidence and testimonies from real court cases.

Pennington and Hastie (1988) document a process by which jurors �rst choose a summary

representations of the evidence, which includes a narrative of the causality of signi�cant

events and relationships between di¤erent pieces of information. As they show, this mental

1This project has received funding from the European Union�s Horizon 2020 research and innovation

programme under grant agreement No SEC-C413.
2In the �nance literature this has been long recognised. Jiang and Tian (2016) point to several problems

in estimating correlation, including the lack of enough market data, instabilities in the correlation process

and the increasingly interconnected market patterns. The US �nancial crisis inquiry (FCIC) report from

2011 cites the acknowledgment of the rating agency Moody�s that �In the absence of meaningful default data,

it is impossible to develop empirical default correlation measures based on actual observations of defaults.�
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model facilitates evidence comprehension, directs inference and allows to make a decision as

well as determine the con�dence level about the success of the decision.

Pennington and Hastie (1988) propose an explanation-based theory of decision making.

The theory suggests the following procedure of decision making: (i) An individual is faced

with the raw evidence pertaining to their decision problem. (ii) The individual entertains

di¤erent �explanations�, i.e., narratives that provide assumptions about causality and re-

lation between the di¤erent pieces of information. (iii) The individual chooses one of the

explanations based on some criterion. (iv) The chosen explanation is used to interpret the

raw evidence to form a prediction about the unknowns behind the decision at hand.

In this paper we provide a model of the explanation-based procedure in the context of

a decision maker who is combining forecasts. We consider an environment in which the

decision maker observes multiple forecasts, taken to be posteriors about some state of the

world. The decision maker then adopts one narrative that explains the forecasts: this is a

joint information structure that has generated the forecasts. This explanation allows her to

create a posterior about the state of the world which can then facilitate taking a decision.

Pennington and Hastie (1988) suggest several criteria for choosing explanations, such as

coherence and goodness of �t. In this paper we focus on the criterion of balance of probabil-

ities, an intuitive criterion used in di¤erent forms of argumentation. For example, in legal

a¤airs, this is the standard of proof in civil cases, demanding that the case that is the more

probable should succeed. While most legal systems agree that the actual truth may never

be known, it is prescribed that the court weighs up the evidence and decides which version

is most probably true. In line with this practice, in the model we assume that the decision

maker chooses the explanation that yields the highest likelihood of observing the evidence.

We then analyze the behavioral implications of such a most plausible explanation (MPE)

procedure for combining forecasts.

We �rst show that the MPE prediction takes a simple form in which extreme forecasts

get prominence while others are ignored. The intuition for why some forecasts are ignored

in the �nal prediction stems from the possibility to construct more plausible theories of the

data whereby these forecasts are statistical derivatives of other forecasts. Doing that can

increase the likelihood of these theories in explaining the data.

Speci�cally, it is extreme forecasts that play an important role, while weak forecasts will

play no role in the prediction. To see this, note that the more extreme is a forecast (measured

by the distance of the forecast to the prior) the lower is the likelihood of any �explanation�

of this observation. For example, assume that all forecasts are based on a common prior and

some information structure that generates di¤erent posteriors. To explain an observation

which is in line with the prior, one can �nd an explanation that happens with probability
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one; the forecast is based on someone who knew the prior and didn�t receive any signal about

the state. Therefore, given that she knew the prior, the probability she will end up with the

prior as her posterior is one. On the other hand, to explain a forecast that is di¤erent from

the prior and is degenerate on one particular state of the world, the highest likelihood you

might get is the probability of that state under the prior.

But an explanation has to include all of the observed forecasts, and so the most extreme

forecast provide the upper bound on the likelihood of any explanation. As we show in our

main result, the decision maker can achieve this upper bound. The decision maker constructs

an explanation which �rst rationalises all the extreme forecasts. The explanation then builds

an information structure in which all other forecasts are statistical derivatives of the extreme

forecasts. Therefore, the explanation of the decision maker includes a high level of correlation

between forecasts which implies that "weaker" forecasts are ignored in the �nal prediction.

The above characterization of the MPE leads to several important behavioral implications.

First, we show that an individual that uses the MPE procedure dynamically changes her

prediction in a directional way. In particular, as new forecasts come to light, the individual

will respond to them only if they are more extreme than the current set of extreme forecasts

she has observed in the past. In a dynamic framework, this also implies stagnation; even

when new forecasts arrive over time, the prediction of the decision maker may remain the

same. This is true even for repeated forecasts; they have no e¤ect on the prediction.

We study the dynamic properties of the MPE procedure. First, the procedure is simple to

compute and involves low memory constraints. In particular, the discussion above implies

that the decision maker has to remember only the set of the current extreme forecasts. As

we show in the paper, the number of such forecasts at any time is bounded by the number

of states in the state space.

We show that the MPE procedure is time consistent. In particular, we ask whether the

decision maker can maintain a coherent explanation across time or does she have to entertain

a completely new explanation when she confronts a new forecast. We show that the MPE

explanation evolves in a way that new forecasts are embedded into the previous explanations.

Finally, it satis�es path independence. At any period, the explanation and hence prediction

are the same no matter what is the order in which forecasts arrived prior to that period.

We consider the implications of our results to social learning, when each forecast is observed

by a di¤erent decision maker. In this case a decision maker at time t only observes the MPE

predictions of those before her and not their forecasts. We show that if all the history

of predictions is observed, then this is equivalent to a single decision maker observing all

forecasts. However, with limited observability of previous predictions, path dependency may

arise. Moreover, stagnation in predictions is less likely to arise in the limited observability
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case.

Finally we discuss how the MPE procedure relates to biases in group decision making

explored in the literature. In the context of group decision making, when each individual

provides a forecast, the group MPE prediction will be biased towards extreme ones.3 We

shed light on the puzzling Talmudic law that requires that if judges (in the Sanhedrin court)

are unanimous in conviction, the defendant should be set free. As in Glatt (2013), who uses

a maximum likelihood approach, MPE implies that unanimity among many judges is most

likely is a result of strong correlation between the judges, and therefore demands caution.

There is by now a growing literature in economics on how individuals and organizations

combine forecasts in a non-Bayesian manner, speci�cally when individuals have a good un-

derstanding of each information source separately but are not sure of how the sources relate

to one another. In Levy and Razin (2017) we consider decision makers who perceive all

possible consistent explanations with a bounded levels of correlation. We introduce the no-

tion of �correlation capacity�which implies a restricted pointwise mutual information, and

show that the set of predictions is completely characterised by the Naïve-Bayes heuristic,

which completely neglects correlation, and the degree of this correlation capacity. To derive

behavioural implications we consider preferences over the ambiguous set of explanations. In

contrast, our analysis here allows for all degrees of correlation and indeed decision makers

who use MPE predictions consider models with full correlation. While not Bayesian, the

decision maker considers all joint information structures that are consistent with Bayesian

updating for the forecasts she observes, and chooses the one that is most plausible given the

forecasts.

At what seems to be the other extreme, which arises when there is no correlation capacity,

decision makers have correlation neglect, as for example in DeMarzo et al (2003), Glaeser

and Sunstein (2009), Levy and Razin (2015a, 2015b) and Golub and Jackson (2012).4 This

literature either uses the Naïve-Bayes approach so that individuals believe that sources are

(conditionally) independent, or the DeGroot heuristic (when applied to normal distribu-

tions). Ellis and Piccione (2017) consider an axiomatic approach to decision makers who

ignore correlation. The literature shows that polarisation or extreme beliefs are likely to

arise when individuals neglect correlation. As we show, MPE predictions which arise from

decision makers who consider large degrees of correlation can also lead to polarisation and

3See Schkade et al (2000) for experiments that show how group decisions are biased towards extreme

views. Ambrus et al (2015) on the other hand show in an experiments that it is moderate members that are

more persuasive.
4See also Ortoleva and Snowberg (2015), Enke and Zimmerman (2013), Kallir and Sonsino (2009) and

Eyster and Weiszacker (2011), who provide experimental and empirical evidence about correlation neglect.
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prominence to extreme forecasts.5

The MPE prediction uses maximum likelihood, a key notion in statistics, econometrics and

machine learning since Fisher (1912). Our analysis in this paper di¤ers from maximum like-

lihood procedures used by econometricians or in machine learning;6 in these environments,

the econometricians knows (or learns) the family of joint information structures which gen-

erate the data. Thus, by the law of large numbers, estimators of correlation parameters

will be e¢ cient, as if the decision maker is also Bayesian. We analyze such an example in

Section 5. However, in the main model, we focus on a dynamic model in which every period

the decision maker encounters another forecast, and she considers all possible explanations

without restricting to any functional form. Thus at period t; she considers t forecasts and

a joint information structure generating t forecasts which is analogous to one observation

in the data set of the econometrician. Thus such a procedure is not likely to lead to the

true information structure. Note that while typically maximum likelihood explanations are

considered to be over-�tting data, in our case we look for explanations that are consistent

with rationality of forecasters, so that such over-�tting will not typically arise.

In decision theory, Gilboa and Schmeidler (2003) identify axioms that can rationalize

maximum likelihood procedures while Gilboa and Schmeidler (2010) highlight the trade-o¤

that can arise with a very complex theory providing an extreme likelihood of 1, and a simple

explanation. We show that for our framework, the maximum likelihood criterion of choosing

an explanation has a simple characterisation which also induces dynamic consistency and

low memory requirements. Ortoleva (2012) provides axioms that rationalise how individuals

change their prior when they encounter zero probability events, where he shows that such

individuals can use maximum likelihood in order to switch between priors.

Our analysis also relates to the literature on opinion pooling (Dietrich and List 2016,

2017) and combining probability distributions (Genest and Zidek 1989). In particular, this

literature has taken an axiomatic approach to the aggregation of pro�les of probability

distributions into one probability distribution. We can show that the version of independence

considered in this literature is violated by the MPE procedure.

2 The Model

A decision maker is forming a prediction about a state of the world !2
. For expositional
purposes in the main body of the paper we assume a binary state of the world so that

5Sobel (2014) shows that polarisation can also arise in a purely Bayesian model.
6See Mullainathan and Waggoner (2017) for a survey of the use of maximum likelihood in machine

learning.
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 = f0; 1g: All our results extend to the general case, see Section 6.7 The decision maker
has a prior p = Pr(! = 1) 2 (0; 1):
At every period t 2 f1; 2; :::; Tg; the decision maker observes a forecast. A forecast t is a

(full support) probability distribution over 
. Let then qt denote the probability that the

state is 1 according to forecast t: The decision maker knows that for any t the forecast qt

is the posterior derived using Bayes rule from the prior p; when a forecaster observed some

informative signal about the state. The distribution of the signal that led to forecast qt is

unknown to the decision maker.

Let Qt = fq1; q2:::qtg denote the history of forecasts up to period t 2 f1; 2; :::; Tg, for
T � 1. At any period t; the agent�s observed history is Qt: We will discuss later on

other possibilities for example when the decision maker forgets forecasts but remembers her

predictions (which, as we show, makes no di¤erence), or when the decision maker does not

even remember all her predictions.

At every t; the decision maker will combine these forecasts and the prior into a prediction

about the state. A prediction about the state is a probability distribution � over 
. To form

a prediction, the decision maker will consider consistent explanations, which are Bayesian

models that are consistent with Qt and the prior.

Note that the decision maker only observes forecasts here; our approach can be generalized

to the case in which the decision maker observes the forecasts and the marginal distributions

generating each forecast (which is equivalent to observing also the signal of each information

source providing the forecasts).

We now formally de�ne what an explanation is. An explanation is an information struc-

ture, that is, a tuple I =(S;
; p; q(s; !)); such that S = �tj=1Sj is a set of signals where Sj

is �nite and for s 2S, q(s; !) is a joint probability distribution over signals and states. Given
q(s; !), we have q(sj!), q(!js) and q(s) that are de�ned accordingly. Moreover, q(s; !) also
implies the marginal distributions on signal sj; qj(sjj!).
An explanation of the data implies that prediction qj in Qt was generated by a Bayesian

forecaster who was exposed only to the information contained by the marginal distribution

of signals in Sj; qj(sjj!):
A consistent explanation of Qt will be a rationalisation of the observations in Qt according

to an information structure. Formally,

De�nition 1 A consistent explanation of Qt is a couple, (I; s�) where I is a joint in-
formation structure and s� = (s�;j)tj=1 2 S such that for all j 2 f1; 2; ::; tg; qj = PrI(! =
1js�;j) = pqj(1js�;j)

pqj(1js�;j)+(1�p)qj(0js�;j) :

7All proofs in the Appendix are for the general case.
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In other words, the agent perceives some information structure I, and a particular realisa-
tion of signals s�; such that given the prior, the marginal of the joint information structure

qj(sjj!) derived from the joint distribution q(sj!); and the relevant element of s�; s�;j; all
the forecasts qj can be rationalised by Bayes rule, assuming that each forecast qj was based

only on the signals generated by qj(sjj!): Let the set of consistent models of Qt be given by
CQ

t
:

In this paper we assume that the decision maker uses the maximum likelihood criterion

to select which consistent explanation to adopt to set her prediction.8 To formalise this, we

�rst de�ne the likelihood function of observing Qt given the consistent model (I; s�) :

L(Qtj(I; s�)) =
X
!i2


p(!i)q(s
�j!i):

We are now ready to formalise the behavioural assumption about how the decision maker

forms a prediction given an observation of Qt :

Assumption A1 (Most Plausible Explanation-based prediction): At any period

t; the decision maker forms a prediction about 
 according to the following procedure: (i)

She chooses a consistent explanation, (I; s�); in argmax(I0;s0�)2CQt L(Qtj(I 0; s0�)): (ii) Her
prediction is given by �MPE

Qt (!) = qj(I;s�)(!js�):

3 The MPE prediction and ignored forecasts

We now characterize the MPE prediction for the observed history Qt for t 2 f1; :::; Tg. We
then use the properties of the characterisation to discuss the features of the simple dynamic

algorithm that allows us to generate predictions over time, as well as the positive properties

of the observed sequence of predictions.

3.1 The MPE prediction

Consider the t forecasts. Let qt;max = argmaxj2f1;2;::;tg qj and let qt;min = argminj2f1;2;::;tg qj:

Proposition 1: For any Qt; the MPE prediction of the decision maker is well-de�ned,
8Pennington and Hastie (1988) discuss other criteria relating to coverage, coherence and goodness of

�t. In Levy and Razin (2017) we consider all explanations and use preferences over ambiguity to derive

behavioural implications.
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unique and satis�es:

�MPE
Qt (1) =

8>><>>:
qt;max if qt;min > p
qt;min if qt;max 6 p

qt;minqt;max

qt;minqt;max+ p
(1�p) (1�qt;min)(1�qt;max)

Proof of Proposition 1: First note that for any information structure, for any ! 2

, q(s�j!) � minj=1;:::;t q

j(s�;jj!); to satisfy the de�nition of a joint distribution function.
Second note that by the consistency of the explanation (De�nition 1), for any j we must

have:
qj

1� qj =
p

1� p
qj(s�;jj1)
qj(s�;jj0)

This implies that by setting qj(s�;jj1) at some level, we pin down qj(s�;jj0). Using this fact
and the inequality above, we can write the upper bound for the likelihood as:X

!i2

piq(s

�j!i) � pmin
j
fqj(s�;jj1)g+ (1� p)min

j
fqj(s�;jj0)g

= pmin
j
fqj(s�;jj1)g+ (1� p)min

j
f1� q

j

qj
p

1� pq
j(s�;jj1)g

= p[min
j
fqj(s�;jj1)g+min

j
f1� q

j

qj
qj(s�;jj1)g]

We will now maximise the right hand side and show that we can achieve a likelihood equal

to the maximal upper bound. Note that the problem is separable across the forecasts, and

that increasing qj(s�;jj1), for each forecast j, increases all the values for forecasts.
Note that as qj(sjj0) = 1�qj

qj
p
1�pq

j(s�;jj1) � 1; this implies an upper bound on qj(s�;jj1).
Therefore we can set qj(s�;jj1) at the upper bound,

qj(s�;jj1) = minf1; 1� p
p

qj

1� qj g � 
j )

qj(s�;jj0) = minf1� q
j

qj
p

1� p; 1g � �
j

Given that we do this for each j; going back to the original problem we can set:

qMPE(s�j1) = min
j
j;

qj(s�j0) = min
j
�j:

And as a result,
�MPE(1)

�MPE(0)
=

p

1� p
qMPE(s�j1)
qMPE(s�j0) =

p

1� p
minj 

j

minj �j
:
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This implies the expression in the Proposition.�

Intuitively, the most extreme forecast has the lowest ex ante likelihood; if the forecast is

very di¤erent from the prior and for example is degenerate on one particular state of the

world, its likelihood is at most the probability of that state under the prior. As the maximum

likelihood for the joint set of forecast is bounded by the likelihood of each individual one,

the likelihood of the most extreme forecast provide the upper bound on the likelihood of

any explanation. The proof shows that the decision maker can achieve this upper bound by

rationalising all the extreme forecasts and then creating an information structure in which all

other forecasts are statistical derivatives of the extreme forecasts. Therefore, the explanation

of the decision maker includes a high level of correlation between forecasts which implies that

all forecasts other than qt;max and qt;min are always ignored.9 This is also true in the general,

non-binary case, and will induce important dynamic implications that we will explore below.

Before doing so, let us illustrate the result further by constructing the MPE itself, i.e., the

joint information structure which has the highest likelihood of generating the forecasts. Let

us consider two forecasts, so that t = 2: With out loss of generality we consider information

structures with two signals, s� and s��: Assume that q2 � q1: Assume wlog that 1�p
p

q2

1�q2 >

1: When also 1�p
p

q1

1�q1 > 1; then the unique MPE explanation is:

! = 0 s�1 s��1

s�2
1�q2
q2

p
1�p 0

s��2
1�q1
q1

p
1�p �

1�q2
q2

p
1�p 1� 1�q1

q1
p
1�p

! = 1 s�1 s��1

s�2 1 0

s��2 0 0

:

In the table above, each cell in the matrix represents the joint probability over receiving

the two signals by the two forecasters.

Note that forecast 1�s signal realisation s�1 always follows when forecast 2�s signal s
�
2 is

generated: As a result, the signal realisation of forecast 2, s�2; is a su¢ cient statistic for

the signal realisation of forecast 1, s�1; and therefore forecast 1 is ignored. The information

structure exempli�es why moderate forecasts are sometimes ignored: they are considered to

be a weaker signal, correlated with the strong and extreme forecast.

On the other hand, when 1�p
p

q2

1�q2 > 1 > 1�p
p

q1

1�q1 ; then the information structure that

achieves maximum likelihood is
9The result here is that the MPE prediction either identi�es with one of the extreme forecasts or is a

compromise. When we extend to more than two state we can also have MPE beliefs that are more extreme

than the extreme forecasts (and so outside the convex hull of the forecasts). Still, it is only the extreme

forecasts that matter. Also, the compromise in the simple binary case treats the two extremum forecasts

as if they were independent; this will not generalize for the case of non-binary realisations of the state. See

Section 6.
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! = 0 s� s��

s� 1�q2
q2

p
1�p 0

s�� 1� 1�q1
q1

p
1�p 0

! = 1 s� s��

s� 1�p
p

q1

1�q1 1� 1�p
p

q1

1�q1

s�� 0 0

:

Now the signal of forecast 2 is not a su¢ cient statistic for the one of forecast 1 and forecast

1 is indeed taken into consideration. Both information structures satisfy full correlation in

the sense that the matrices above have zero entries.

Remark 1 (A su¢ cient statistic forecast is not necessarily relevant): Note that when

a forecast is ignored, then we can generate an information structure in which the other

forecast is a su¢ cient statistic for it. However, the opposite is not true. For two predictions,

we can generate an information structure in which one is a su¢ cient statistic of the other,

but this does not imply that the MPE prediction will ignore the latter. For example, take

the information structure:

! = 0 s�1 s��1

s�2
1�q2
q2

p
1�p

1�q1
q1

p
1�p �

1�q2
q2

p
1�p

s��2 0 1� 1�q1
q1

p
1�p

! = 1 s�1 s��1

s�2 1 0

s��2 0 0

:

Now the � signal of forecaster 1 is a su¢ cient statistic for the � signal of forecaster 2.
However this is not the MPE.

The key feature of the MPE prediction is that it demands a high degree of correlation

between the signals generating Qt: This can be seen from the fact that some forecasts in

Qt may actually be ignored; the important or decisive set of forecasts will be the two most

extreme beliefs. This, together with the fact that this belief is based on a Bayesian rational-

isation implies that it is based on a joint information structure which involves a high degree

of correlation between the signals that have generated Qt. If, in contrast, these signals were

assumed to be conditionally independent, the likelihood ratios would have been responsive

to all beliefs in Qt. Thus, the MPE decision maker �looks for�correlations.

3.2 Dynamics of MPE predictions: stagnation and simplicity

We �rst present two behavioural implications of the dynamic MPE predictions: path in-

dependence and stagnation. We also discuss the dynamic properties of the process itself;

we show that the MPE is in itself consistent through time, and that the decision maker

needs only a bounded memory to reach optimal MPE predictions, as well as use a simple

explanation. All the results generalize to the case of non-binary state of the world.
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3.2.1 Path independence and stagnation

An immediate derivative of the above results is the invariance of the procedure to the order

of forecasts:

Corollary 1: (Path independence) At period t; the MPE prediction is the same for any

permutation of Qt:

Another observation relates to stagnation. Assume just for illustration equal priors, i.e.,

p = 1
2
. Imagine the decision maker observing q1 > 1

2
and then q2 > 1

2
; with q1 > q2: The

decision maker will not change her mind in period 2, and �1;MPE = �2;MPE = q1: Similarly,

if forecasts are repeated, such repetition does not a¤ect the MPE prediction. For example,

completely replicating the set of forecasts will result in the same prediction. Stagnation will

arise in this case as well. Formally, we say that stagnation arises in period t when �t = �t�1:

Corollary 2: (Stagnation and no e¤ect for repetition): (i) For any history Qt; �t;MPE(Qt) =

�t+1;MPE(Qt; q̂) for any q̂ 2 [minfp; qt;ming;maxfqt;max; pg]: (ii) Consider the history Q � Qt

and replicate it k times so that Q
t+kjQj

= (Q
t
; Q;Q; :::; Q): Then �MPE

Qt = �MPE
Qt+kjQj

:

Another way to describe the particular dynamics of stagnation is noting that MPE leads

to directional updating. This can be seen again in the example with two forecasts: When

q1 > 1
2
then the decision maker strongly responds to q2 > q1, as it is more extreme and points

in the same direction away from the prior as initial belief, and does not respond at all to

weaker beliefs in that direction, when q2 2 [1
2
; q1]: When confronted with forecasts pointing

in the other direction from the prior, q2 < 1
2
; the decision maker does respond to this, but

only partially.

Therefore, although we have not assumed any auxiliary reason to favour one direction

to another, the MPE prediction produces such a bias. Weaker forecasts (pointing to the

same direction away from the prior) can be assumed to follow directly from the signals that

have produced the stronger forecast, which allows the decision maker to build consistent

explanations with a high correlation and high likelihood.

3.2.2 Simplicity of the dynamics of the MPE

We now highlight �e¢ cient�features of the dynamic MPE prediction: the dynamic process is

time-consistent so one can �extend�the current explanation to accommodate a new forecast,

and moreover the process demands only a low memory capacity. Finally, we show that it is

su¢ cient to consider information structures with two signals for each forecaster. Together

these results illustrate the simplicity of the process.
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Let us consider time-consistency �rst: We show that when the decision maker observes

a new forecast, she can accommodate it within the (adjusted) previous explanation rather

than consider a whole new explanation.

The following de�nition will be useful to formulate time-consistency across explanations.

De�nition 2: For any consistent explanation (I; s�) of Qt+1; let the marginal of (I; s�)
on Qt; (IjQt ; s�jQt); be given by IjQt = (SjQt ; 
; p(:); qjQt(s; !)) where SjQt = S = �j such that qj2QtSj

and qjQt(s; !) is the projection of q(s; !) on the predictions in Qt; and s�jQt = (s
�;j)j2Qt :

Proposition 2: For any Qt and additional forecast q, there exists a consistent explanation

(I; s�) 2 argmax(I0;s0�)2CQt+1 L(Qt+1j(I 0; s0�)) such that (IjQt ; s�jQt) 2 argmax(I0;s0�)2CQt L(Qtj(I 0; s0�)):

The dynamic MPE prediction also has an attractive simplicity characteristic: As at each

point in time only the extreme forecasts matters, it is enough for the decision maker to

remember across periods at most the two most extreme forecasts she had received. More

generally, whenever a forecast is ignored at one point, it can be ignored forever and can be

permanently forgotten. This is a good property of the procedure in particular when the data

gets large:

Corollary 3 To generate the same sequence of MPE predictions as a decision maker who

always knows all the forecasts, a decision maker needs to carry over to the next period at

most 2 forecasts.

Finally, another feature of the MPE prediction is that the explanations involved -namely

the joint information structures- are themselves simple. In the previous subsection we have

generated the MPE information structure with only two signals. This is in fact a general

su¢ cient feature which is technically helpful; while the set of consistent explanations the

decision maker considers is very large, without loss of generality we can focus only on infor-

mation structures with #jSjj = 2 for any j = 1; :::;m :

Lemma 1 For any (I 0; s0�) 2 CQt there exists another consistent explanation (I; s�) 2 CQt

such that S = fs�; s��gm and for which (i) q̂(!ijs�; I) = q̂(!ijs�; I 0) = �ML
Qt (!) and (ii)

L(Qtj(I; s�)) = L(Qtj(I 0; s0�)):

4 Source amnesia and social learning

We have so far assumed that the decision maker remembers forecasts; she either remembers

all forecasts, or as we saw, the two most extreme forecasts (the �decisive�set of forecasts).

We now consider an extension to a decision maker that does not remember forecasts but
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predictions. This is important to consider as predictions which possibly turn into actions

are typically easier to remember as these have consequences. It is therefore reasonable to

assume that the decision maker remembers her predictions but not how she reached them.

This feature is sometimes referred to as source amnesia.

We consider �rst the case in which she remembers all her predictions, i.e., full observability,

and then the case of limited observability, where she remembers only her last prediction. We

then compare between the two.

4.1 Full observability: equivalence result

In our previous model, at time t; the decision maker observes Qt = (q1; q2; :::; qt): Assume an

equal prior for simplicity. We now assume instead that at time t; a decision maker observes

�t = (�1; �2; :::; �t�1; qt); that is, previous �MPE predictions, and a new forecast.

When all history of play is observable, q1 is the forecast and action at Period 1, �2 =

�MPE(q2; q1) is the observed action at Period 2, �3 = �MPE(q3; �2; q1) is the observed action

and belief at Period 3, and so on.

Suppose that q1 > 1
2
: Let us consider Period 3, where the decision maker observes q3 and

�2; q1. She knows that for whichever q2 she imagines, it has to be that �2 = �MPE(q2; q1):

By Proposition 1, if �2 � q1; then �2 = q2: If �2 = q1; then q1 > q2 > 1
2
and it is not

important for her to know the exact value of q2; so one can assume q2 = q1: If �2 < q1;

then q2 = �2(1�q1)
q1+�2(1�2q1) : Thus, at Period 3 (and hence at all subsequent periods) she can

extract min1;2f q1

1�q1 ;
q2

1�q2g from her previous behaviour: It follows then that at Period t she

can understand minif qi

1�qig for i < t for any i: We therefore have:

Proposition 3: When the decision maker remembers only her previous predictions (and

all of them) but not forecasts, at any period t the MPE prediction is the same as in the model

in which she observes Qt:

In the previous Section we have shown that if the decision maker remembers forecasts, then

it is su¢ cient to remember only the most extreme ones. The result here also exempli�es the

simple memory requirements needed by the MPE procedure. Proposition 3 states that it is

also equivalent to remember all predictions (in the order they have been derived). However,

when one remembers predictions and not forecasts, it is not su¢ cient to have a limited

observability or memory, as we now illustrate.
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4.2 Limited observability: path dependence and less stagnation

We now consider a decision maker who has limited observability of predictions. For simplicity,

let us assume that she remembers her latest prediction, �t�1; and learns the forecast qt; when

making her prediction at time t: Imagine an individual that receives two pieces of information,

q1 and q2; and delivers a combined forecast �2: At this point, the individual forgets how she

reached �2; that is, the exact q1 and q2; only remembers �2 as her current beliefs and only

carries this through to the next period until she needs to act again. Thus in period 3 she

knows q3 and �2:10

We saw above that when decision makers observe the full sequence of forecasts, the se-

quence of moves did not a¤ect the prediction. However, this is not the case when decision

makers only observes the previous prediction. To consider an example, let q > 1
2
; and q̂ < 1

2
:

If q1 = q; q2 = q̂; q3 = q; then �2 =
q̂

1�q̂
q̂

1�q̂+
1�q
q

. Suppose that q̂ > 1 � q; and thus �2 2 (1
2
; q):

We then have at period 3 the combined forecast of �2 and q which is �3 = �MPE(�2; q) = q:

However, if q1 = q; q2 = q; q3 = q̂; then �2 = q and �3 = �MPE(q̂; q) =
q̂

1�q̂
q̂

1�q̂+
1�q
q

< q: Thus,

history matters and speci�cally, a lower belief q̂ will have a greater e¤ect the later it is in

the sequence.

The pattern of the example above is more general: at any period t; beliefs are more likely

to make a di¤erence when arriving at the end rather than earlier in the sequence:

Corollary 4: Consider a sequence of T beliefs composed of t > 1 forecasts q > 1
2

and T � t > 1 forecasts q0 satisfying 1 � q < q0 < 1
2
: The �nal prediction will be q if

(qT�1; qT ) = (q; q) and will be lower than q if qT = q0:

We have derived stagnation in the basic model in which the decision maker observes

forecasts. From Proposition 3 we know that this will arise also in the case in which she

observes the set of predictions, as these cases are equivalent. As we now show, the instances

of stagnation are lower in the case of limited memory of forecasts. This is intuitive as limited

previous predictions cannot carry with them the intensity with which they were derived and

thus the decision maker will underestimate the strength of the last predictions.

Proposition 4: (ii) For any sequence of forecasts fqtg1t=1; for any period t; if under
the full observability of predictions model there is no stagnation in period t then there is

no stagnation in the limited observability model. (iii) There exists sequences of forecasts

fqtg1t=1 and periods t such that there is stagnation under the full observability model and no
stagnation under the limited observability model.
10The decision maker may or may not realize that �2 was based on two forecasts; we show in the Appendix

(Lemma 2) that this is not important. That is, the new prediction will be the same if the decision maker

mistakenly believes that �2 = q2; or if she believes that it was derived based on q1 and q2:
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4.3 Social learning

Social learning is typically modelled as an environment in which an individual at period t

observes the sequence of the actions or predictions of her predecessors, as well as her own

forecast.11 Thus as above, she will observe a segment of �t = f�1; �2; �3:::�t�1; qtg:
The key di¤erence between a social learning environment and a single decision maker is

that in the former we have to assume what each individual thinks about how others combine

forecasts.

Assume then that all players use MPE predictions and that all players know that others

do so as well. Formally, we de�ne this recursively. Player 2 needs to rationalize q1; q2 with

an MPE as in De�nition 1 and Assumption 1. Player 3 needs to rationalize q1; q2; q3 with

an MPE subject to Player 2 rationalizing q1; q2 with an MPE satisfying �MPE(q2; q1) = �2:

Thus, a player k needs to rationalize some q1; q2; q3; :::; qk�1; qk; by having an MPE with a

set of signals s1; :::; sk; so that qi = q̂(!jsi) for each player i � k; and for each player i < k;
there exists an MPE so that �i = �MPE(q1; q2; ::qi).

Given the above, all the results above hold. When all previous predictions are observed,

it is as if forecasts are shared as well. When predictions are not fully observed, then path

dependence will arise, with latter forecasts being more important, as Corollary 4 indicates.

Within the literature on social learning, our results then show that even in a model with

continuous actions and beliefs, stagnation might arise, so that individuals may stick to the

same action even when they receive more and more di¤erent forecasts. Still, stagnation may

be temporary and the prediction or action may change at a latter point. This di¤ers from the

results in the current literature (see for example Eyster and Rabin 2010, Smith and Sorensen

2001).

5 A homogenous pool model: non monotonicity of de-

cision rules

In our analysis above we have assumed a general set of possible explanations. In some

applications there are some restrictions imposed on the set of possible explanations. One

reason to put restrictions on the set of possible explanations is tractability. Poll aggregation

analysts for example use speci�c families of correlations structures (copulas) to model di¤er-

ent scenarios of correlation between di¤erent polls in di¤erent constituencies. Or it can be

11In the standard social learning literature an individual observes a signal and knows her marginal prob-

ability distribution generating the signal conditional on the state of the world. As long as she does not

know the correlation between the signals, our model in which individuals only observe Bayesian forecasts is

qualitatively equivalent.
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the case that the decision maker has some prior information about the environment which

identi�es a speci�c family of information structures.

In this Section we provide a simple example of a homogenous pool model to illustrate

how an explanation-based approach might work when the set of possible explanations is

constrained. We show that some of the results above are a product of the generality in

the set of explanations. In particular, as we illustrate below, an explanation-based decision

maker might not ignore forecasts as often as above when the set of explanations is more

restricted, and thus may change her mind with repetition of forecasts. It also illustrates

the di¤erence between our approach above and the standard use of maximum likelihood in

econometrics. We then discuss the implications of this example to some non-monotonicity

properties of group decision rules.

Let us focus on a simple, homogenous pool, family of possible explanations. In particular,

assume a binary state of the world with a uniform prior and assume that all information

structures in this family have the following structure. There are T + 1 binary, conditionally

independent signals, (s�; s1; :::; sT ); that each agree with the state of the world with prob-

ability q > 0:5. Each forecast qt is determined by either observing the realisation of s�,

with probability � 2 [0; 1]; or by observing the realisation of st; with probability 1��: This
family of explanations is characterized by the parameter � which represents the degree of

correlation across forecasts. When � = 1 we have full correlation across forecasts and when

� = 0 we have conditionally independent forecasts.

If this family of information structure is indeed what is behind the observed forecasts,

then the observed forecasts could either be q or 1 � q: Therefore, given that the order of
forecasts should not make a di¤erence, each Qt can be fully characterized by the number k

of forecasts q: The following Proposition characterizes the maximum likelihood explanation-

based prediction as a function of k for large n:

Proposition 5: Let k = T: (i) When  = q; there is a large enough T such that the

MPE explanation is � = 0 and the MPE prediction is 1. (ii) When  = 1; then for any T;

the MPE explanation is � = 1 and the MPE prediction is q:

The proof follows the law of large numbers. Intuitively, when all forecasts are the same,

then the most likely explanation is that all are fully correlated. On the other hand when the

set of forecasts is large enough, and the share of q forecasts is exactly as predicted by the

(conditional) independent case, then this is the most likely one.12

12Note also that an MPE who does not restrict the set of explanations to the homogenous pool model

would behave in the same way when  = 1; but would have a low con�dence with a prediction of 12 for all

interior :
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Note that this example is similar to how econometricians use maximum likelihood esti-

mators. When the set of explanations is restricted to a speci�c family, and this family is

the correct one, then a large enough set of observations yields the asymptotically correct

estimator of � and as a result of the state. As a result, decision making based on such a

procedure will be equivalent in the limit to a standard Bayesian procedure.

The result above allows us to shed light on a peculiar form of judicial making. The Tal-

mudic Sanhedrin court law is an interesting example of a decision rule that is not monotonic

in the share of the votes. Speci�cally, it requires that if judges are unanimous in conviction,

the defendant should be set free, while if only a majority convict, this majority verdict per-

tains.13 While our main analysis focused on a single decision maker, we can interpret the set

of forecasts as a set of information held by committee members or juries. If they have the

same preferences and share these forecasts, then a committee with T members is equivalent

to a single decision maker who faces T forecasts. The result in Proposition 5 shows how

non-monotonicity arises. A majority -but not unanimity- of votes to convict will send the

defendant to jail, while she will be spared with a unanimity of votes to convict. Consensus

leads to low con�dence and cautiousness compared to the majority case.

6 More than two states of the world

We conclude the paper by generalizing the results of Section 3 to more than two states of

the world. The di¤erences from the binary environment are not substantial, but some of

them are interesting to note. We start with some extension of the notation.

Consider then a decision maker who is forming a prediction about a state of the world

!2
 = f!1; :::; !ng. She has a prior p; p = (p1; ::::; pn); a probability distribution over over 
:
A forecast t is a (full support) probability distribution, qt = (qt1; ::::; q

t
n); over 
. A consistent

explanation of Qt is a couple, (I; s�) where I is a joint information structure and s� 2 S
such that 8!i 2 
 for all j 2 f1; 2; ::; tg; qji = PrI(!ijs�;j) =

piq
j(!ijs�;j)Pn

l=1 plq
j(!ljs�;j) :

For any forecast j = 1; :::; t, let ij 2 argmaxi2f1;:::;ng
qj
i

pi
. In what follows we assume that

for any j = 1; :::; t; ij is unique.

Proposition 1�: Given a set Qt; the MPE prediction of the decision maker is well-de�ned,
13Glatt (2013) o¤ers a maximum likelihood rationalisation of this rule; unanimity among many judges

most likely is a result of strong correlation between the judges, and therefore demands caution. Gunn et al

(2016) discuss this interpretation also in other legal scenarios.
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unique and satis�es, for any k; k0 2 f1; :::; ng:

�MPE
Qt (!k)

�MPE
Qt (!k0)

=
minj=1;:::;tf

p
ij

qj
ij

qjkg

minj=1;:::;tf
p
ij

qj
ij

qjk0g

Note that the likelihood ratio between two states arising from the MPE prediction does

not satisfy independence of irrelevant states. As this ratio depends on �special�states ij for

some forecasts j; the likelihood ratio between two states k and k0 will depend on these states

ij. This of course di¤ers from the binary case for which there are only two realisation and

thus the issue of independence of the MPE maximum likelihood ratio plays no role.14

Another di¤erence is that an ignored forecast will not be necessarily �dominated�by one

other forecast, but potentially by a set of several other forecasts. In the binary model for

example with equal priors, a forecast q2 was dominated by q1 when q2 2 (0:5; q1): When we
have more than two states this relation will be more involved.

In what follows for any history of forecasts Qt, let Qt�t0 be the same history of forecasts

excluding period t0 � t.

De�nition 3: A forecast t0 is ignored in Qt if �MPE
Qt = �MPE

Qt�t0
.

We show below that the notion of ignoring a forecast implies a transitive incomplete

relation on forecasts. This result is su¢ cient in order to extend the proofs of all results in

the subsection describing the dynamic properties of the MPE.

Let (Qt; qt+1) be the history Qt and the additional forecast for period t+ 1; qt+1:

Proposition 6: (i) (no path dependence): The MPE prediction is the same for any

history with the same set of forecasts as in Qt even if they arrive in di¤erent order; (ii)

(Weak monotonicity): If qt+1 is ignored in (Qt; qt+1); it is ignored in any (Qs; qt+1) where

Qt � Qs. (ii) (Transitivity) If qt+1 is ignored in (Qt; qt+1); and qs+1 2 Qt is ignored in
(Qs; qs+1) then qt+1 is ignored in fQt�s [ Qs; qt+1g. (iii) For any history Qt; there is a
decisive set Q0 � Qt such that no q0 2 Q0 is ignored in Qt; all q 2 QtnQ0 are ignored in Q0;
and #jQ0j � n implying that when t > n at least t� n forecasts are ignored.

A �nal di¤erence from the binary case relates to whether predictions end up in the convex

hull of forecasts, or whether additional polarisation arises. In fact, in the general model,

some situations we are assured to be outside of the convex hull:
14For the same reason we have the violation of event independence, see Dietrich and List (2017).
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Corollary 5: Suppose there exists an i� such that for any j; ij = i� and that the set

of forecasts j such that j 2 argmint=1;:::;Tf
p
i�
qt
i�
qtig for some i is not a singleton. Then

polarisation arises so that �MPE(!i�) > maxj q
j(!i�).

This case arises for example when all forecasts have the same mode but di¤er in how they

view other states. This implies that the MPE prediction on the other states becomes weaker

due to the disagreement between the forecasts, while the MPE belief becomes stronger on

the mode of the forecasts.

7 Conclusion

We have analyzed a decision maker who combines forecasts by �nding the most likely expla-

nation that have yielded these forecasts, and using this explanation to form a prediction. We

show how such explanations will be based on a high degree of correlation. As a result, when

no meaningful constraints are imposed, many forecasts that are ignored, while extreme fore-

casts are prominent. When the decision maker knows the particular family of information

structures that generates the forecasts, then we have identi�ed a speci�c functional form that

rationalizes why decision rules are not necessarily monotonic in forecasts and why unanimity

can lead to low con�dence.

8 Appendix

We �rst present the proof of Proposition 1 for the non-binary case, as well as of Proposition

6, which is important for the other proofs that follow. Henceforth for the remainder of

the Appendix, we denote by a superscript * a result that is worded more generally for the

non-binary case and provide its proof which will therefore prove the result without the * as

well.

Proof of Proposition 1�:

Step 1: For any information structure, for any ! 2 
, q(s�j!) � minj=1;:::;m qj(s�;jj!):
Proof: This is by the de�nition of a joint distribution function.

Step 2: By consistency of the model (De�nition 1), we must have for any !k; !k0 2 
 :

qjk
qjk0
=
pk
pk0

qj(s�;jj!k)
qj(s�;jj!k0)

This implies that by setting qj(s�;jj!1) at some level, we pin down all values qj(s�;jj!i),
i = 1; :::; n.
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Using the inequality and equality above, we can write the upper bound for the likelihood

as: X
!i2


piq(s
�j!i) � p1min

j
fqj(s�;jj!1)g

+p2min
j
fqj(s�;jj!2)g

:::+ pnmin
j
fqj(s�;jj!n)g =

p1[
nX
i=1

min
j
fq

j
i

qj
1

qj(s�;jj!1)g]

We will now provide a solution to the above problem by maximising the right hand side

and showing that we can achieve a likelihood equal to the maximal upper bound. Note

that the problem is separable across the forecasts, and that increasing qj(s�;jj!1), for each
forecast j, increases all the values for forecasts.

Note that for any i 2 f1; :::; ng; qj(sjj!i) =
qj
i

qj1

p1
pi
qj(sjj!1) � 1 which implies an upper

bound on qj(s�;jj!1). Therefore we can set qj(s�;jj!1) at the upper bound,

qj(s�;jj!1) =
pij

p1

qj
1

qj
ij

Note that pij
p1

qj
1

qj
ij

� 1 by the de�nition of ij:
Thus going back to the original problem, we can set

qMPE(s�j!i) = min
j
fpij
pi

qji
qj
ij

g

And as a result,

�MPE(!i) =
piq

MPE(s�j!i)Pn
i=1 piq

MPE(s�j!j)

=
minjf

p
ij

qj
ij

qj
i
gPn

k=1minjf
p
ij

qj
ij

qj
k
g
:

This implies the expression in the Proposition. �

Proof of Proposition 6: By Proposition 1�, we know that the solution depends for any

state !i on minj=1;:::;mf
p
ij

qj
ij

qji g: (i) Let q1 be ignored in Q = (q1; Q0): This implies that for

any i; minj2Q0f
p
ij

qj
ij

qji g �
p
i1

q1
i1
q1i : This will remain so if more forecasts are added. (ii) Let q

1

be ignored in Q0 as above and q2 be ignored in Q00: By the fact that q2 is ignored in Q00;

and by (i), we know that minj2fq;Q0nq2[Q00gf
p
ij

qj
ij

qji g � minj2fq;Q0gf
p
ij

qj
ij

qji g �
p
i1

q1
i1
q1i where the

latter inequality follows from the fact that q1 is ignored in Q0: Thus we get the result. (iii)
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As for any state we choose the forecast that solves minj=1;:::;tf
p
ij

qj
ij

qji g; there will be at most
�decisive�n forecasts. Moreover, by the �niteness of the problem there must exist at least

one forecast which is not ignored and thus such a set always exists. Thus at least t � n
forecasts will be ignored.�

Proofs of Corollaries 1 and 3: These are included in the proof of Proposition 6.

Corollary 2� To generate the same sequence of predictions as a decision maker who always

knows all the forecasts, a decision makers needs to carry over each period at most n forecasts.

Proof of Corollary 2�: By Proposition 5, we know that at period n; once the decision

maker has n forecasts, the set of predictions that are not ignored in Qn is at most of size

n: Denote this set by Q̂n: By Proposition 5, all forecasts in QnnQ̂n will be ignored in every
future period. Thus in period n+ 1 the decision maker needs to consider fQ̂n; qn+1g: Again
from part (iii) we know that the set of forecasts that are not ignored in fQ̂n; qn+1g will be
of size of at most n and that ignored forecasts in fQ̂n; qn+1g will be ignored in every future
period and thus the decision maker does not need to remember them. A simple inductive

argument completes the proof.�

Proof of Proposition 2�: Suppose that (I; s�) 2 argmax(I0;s0�)2CQt+1 L(Qt+1j(I 0; s0�)):
Let q̂Q

t+1
(s; !) be the distribution of signals in a consistent model ofQt+1 in argmax(I0;s0�)2CQt+1 L(Q

t+1j(I 0; s0�))
and let q̂Q(s; !) be the distribution of signals in a consistent model ofQt in argmax(I0;s0�)2CQt L(Q

tj(I 0; s0�)).
Following the proof of Proposition 1� we have either (i) q̂Q

t+1
(s�j!i) = q̂Q

t
(s�jQtj!i) ,

minj2Qt+1f
p
ij

pi

qj
i

qj
ij

g = minj2Qtf
p
ij

pi

qj
i

qj
ij

g; or (ii) q̂Qt+1(s�j!i) < q̂Q
t
(s�jQtj!i), minl2Qt+1f

p
ij

pi

qj
i

qj
ij

g <

minj2Qtf
p
ij

pi

qj
i

qj
ij

g:

Now we can choose a new consistent model ofQt+1 with distribution ~qQ
t+1
(s�j!i) as follows.

First, following the proof of Proposition 1�, all the marginal probabilities for receiving sj;�

are set at ~qj;Q
t+1
(sj;�j!i) =

p
ij

pi

qj
i

qj
ij

:

In case (i): For states !i in this case we have ~qj;Q
t+1
(sj;�j!i) =

p
ij

pi

qj
i

qj
ij

> minj02Qt+1f
p
ij
0

pi

qj
0
i

qj
ij
0
g

so we construct ~qQ
t+1
so that:

Let � 2 [0; 1] satisfy q̂Qt(s�jQtj!i) + (1� q̂Q
t
(s�jQtj!i))� =

p
ij

pi

qj
i

qj
ij

: Note that such an � exists

as q̂Q
t
(s�jQtj!i) = minj02Qt+1f

p
ij
0

pi

qj
0
i

qj
ij
0
g � p

ij

pi

qj
i

qj
ij

= ~qj;Q
t+1
(sj;�j!i): Now set ~qQ

t+1
(s�jQtj!i) =

q̂Q
t
(s�jQtj!i), ~qQ

t+1
(sj;�js�jQt) = 1 and 8s 2 SjQt ; s 6= s

�
jQt ~q

Qt+1(sj;�js) = �: For these values we
have ~qQ

t+1
(sj;�j!i) =

p
ij

pi

qj
i

qj
ij

by the de�nition of � and ~qQ
t+1
(sj;�; s�jQtj!i)+~qQ

t+1
(sj;��; s�jQtj!i) =

q̂Q
t
(s�jQtj!i):
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In case (ii): For states !i in this case we have ~qj;Q
t+1
(sj;�j!i) =

p
ij

pi

qj
i

qj
ij

< minj02Qt+1f
p
ij
0

pi

qj
0
i

qj
ij
0
g

so we construct ~qQ
t+1
so that ~qQ

t+1
(sj;�j!i) =

p
ij

pi

qj
i

qj
ij

, ~qQ
t+1
(s�jQtjsl�) = 1 and ~qQ

t+1
(s�jQtjsj;��) =

�; where � 2 [0; 1] satis�es ~qQt+1(sj;�j!i)+(1� ~qQ
t+1
(sj;�j!i))� = q̂Q

t
(s�jQtj!i): Note that such

an � exists as q̂Q
t
(s�jQtj!i) = minj02Qt+1f

p
ij
0

pi

qj
0
i

qj
ij
0
g > p

ij

pi

qj
i

qj
ij

= ~qj;Q
t+1
(sj;�j!i): For these values

we have, by the de�nition of �; ~qQ
t+1
(sj;�; s�jQtj!i) + ~qQ

t+1
(sj;��; s�jQtj!i) = q̂Q

t
(s�jQtj!i):�

Proof of Lemma 1: Construct the new model by maintaining the same distribution over

signals as in (I 0; s0�); but re-labeling the signal names. In particular, label all the individual
elements in s0� as s�. In addition, for any j = 1; :::; t, bundle all other signal values by

one value s��. Note that this relabeling does not a¤ect the consistency of the model, the

prediction nor the likelihood as they all just depend on s0�.�

Lemma 2 Suppose a sequence of forecasts fqtg1t=1: The sequence of predictions f�t;MPE(qt; �t�1;MPE)g1t=1
arising for the naïve and sophisticated individuals in the limited memory model is the same.

Proof of Lemma 2: The highest likelihood ratio for any �t�1;ML will be achieved when

q1 = q2 = ::: = qt�1 = �t�1;ML; which is the same as the naive individual would use.�

Proof of Corollary 4: Note that the lowest that �T�2;MPE can be is q0: Thus �T�1;MPE(T�2;MPE; q)

must be above 1
2
and thus �T;MPE(�T�1;MPE; q) will be q: If qT = q0 then even if �T�1;MPE = q;

which is the highest possible, then �T;MPE(�T�1;MPE; q0) will be lower than q:�

Proof of Proposition 4: (i) is a corollary of Proposition 1 and shown in Example 1. To

see (ii) notice that if in some period t the action in period t is di¤erent to that in period t+1

under the full observability model, this must mean that qt+1 has to be further than the prior

than any other forecast qs with s < t+1: But by Proposition 1 this implies that qt+1 has to

be further than the prior than any other prediction under the limited observability model

for periods s with s < t+1: Therefore, the prediction under the limited observability model

in period t + 1 must be di¤erent to that of period t: (iii) Consider the following example:

Let q1 > 1
2
; and q2 < 1

2
and q2 < q3 < 1

2
: For this sequence, under the full observability

model the prediction in period 3 will be the same as that in period 2. But assume that
q1

1�q1
q̂

1�q1+
1�q2
q2

> 1
2
then under the limited observability model the actions in the three periods

are all di¤erent.�

Proof of Proposition 5: Suppose that the state is 1. Fix �. By the law of large

numbers we know that almost surely the fraction of observed forecasts equal to q will be

either q(1� �) + � with probability q or q(1� �) with probability 1� q: Now consider the
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state 0. By the law of large numbers we know that almost surely the fraction of observed

forecasts equal to q will be either (1� q)(1� �) + � with probability 1� q or (1� q)(1� �)
with probability q:

Suppose that a fraction  = q of forecasts q is observed. By the law of large numbers

this could have arisen when the state was 1 and � = 0 or when the state was 0 and the

signal s� was realised to signal that the sate was 1; with probability (1 � q): Among these
two possibilities, the �rst has a likelihood proportional to 1

2
while the second to (1�q)

2
< 1

2
.

Therefore, in this case the explanation is � = 0 and given this explanation, the prediction is

that the state is 1 with probability one.

Now suppose that a fraction  = 1 of forecasts p is observed. In this case, for any n, this

could arise as � = 1 and the state is either 1 or 0 but the signal s� was realised to signal

that the sate was 1: The likelihood of the observation given this observation is 1
2
: But the

likelihood of this observation under any other explanation is strictly smaller than 1
2
. To see

this, �x � < 1: The likelihood of observing n forecasts p is then given by,

Pr(n forecasts q) =

0:5q
Pn

m=0

�
n
m

�
�m((1� �)q)n�m

+0:5(1� q)((1� �)q)n

+0:5(1� q)
Pn

m=0

�
n
m

�
�m((1� �)(1� q))n�m

+0:5q((1� �)(1� q))n =
0:5q(

Pn
m=0

�
n
m

�
�m((1� �)q)n�m + ((1� �)(1� q))n)

+0:5(1� q)(
Pn

m=0

�
n
m

�
�m((1� �)(1� q))n�m + (1� �)q)n

< 0:5q + 0:5(1� q) = 0:5:
The inequality follows asPn

m=0

�
n
m

�
�m((1� �)q)n�m + ((1� �)(1� q))n =

Pr(n forecasts qjs� = ! = 1) + Pr(n forecasts 1� qjs� = ! = 1) < 1
and

Pn
m=0

�
n
m

�
�m((1� �)(1� q))n�m + (1� �)q)n =

Pr(n forecasts qjs� 6= ! = 0) + Pr(n forecasts 1� qjs� 6= ! = 1) < 1:�

Proof of Corollary 5: Let j� = argmaxj qj(!i�):Now note that �MPE(!i�) =
pi�Pn

k=1 pi� minjf
q
j
k

q
j
i�
g
=

1Pn
k=1minjf

q
j
k

q
j
i�
g
> 1Pn

k=1

q
j�
k

q
j�
i�

= qj
�

k
:�
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