

Lecture 2

The Lagrange sufficiency theorem

- So we have reached the conclusion that z^* is a solution to *COP* if and only if $(k, g(z^*))$ lies on the upper boundary of B .
- But which values of z give rise to these boundary points?
- Suppose we can draw a line with a slope q through a point $(k, v) = (h(z^*), g(z^*))$ which lies entirely on or above the set C .
- The equation for this line is

$$v - qk = g(z^*) - qh(z^*)$$

- We can draw such a line through $(.25, .75)$ with slope $q = 1$ and a line through $(1, 1)$ with slope 0.
- Recalling that C consists of all points $(h(z), g(z))$, the fact that the line lies entirely on or above the set C can be restated as

$$g(z^*) - qh(z^*) \geq g(z) - qh(z)$$

for all $z \in Z$.

- Because the line has non negative slope, it also lies above the set B , which consists of all the points in C , and all the points below and to the right of points in C .
- But this implies that $(h(z^*), g(z^*))$ lies on the upper boundary of the set B , and as the points on the upper boundary of B are all solutions to our problem, it means that z^* solves the optimization problem for $k = h(z^*)$.
- It is crucial for this argument that the slope of the line is non negative. For example for $(4, 0)$ there is a line with a slope $-.5$. This corresponds to $z = 4$ but it is not a solution and the line does not lie above B .
- This helps to find a way to solve the problem with equality constraints. What about inequality constraints? well then, as with $k = 4$, if we take the line with $q = 0$ through for example $(4, 1)$, it indeed lies above the set B . The point $z^* = 1$ satisfies:

$$g(z^*) - 0h(z^*) \geq g(z) - 0h(z)$$

for all $z \in Z$, and as $h(z^*) < k^*$, then z^* solves the optimization problem for $k = k^* \geq 1$.

- Summarizing the argument so far, suppose k^*, q and z^* satisfy the following conditions:

$$g(z^*) - qh(z^*) \geq g(z) - qh(z) \text{ for all } z \in Z$$

$$q \geq 0$$

$$z^* \in Z$$

$$\text{either } k^* = h(z^*)$$

$$\text{or } k^* > h(z^*) \text{ and } q = 0$$

then z^* solves the COP for $k = k^*$.

- This is the lagrange sufficiency theorem. It is convenient to write it slightly different: add qk^* to both sides of the first condition we have

$$\begin{aligned}
 g(z^*) + q(k^* - h(z^*)) &\geq g(z) + q(k^* - h(z)) \text{ for all } z \in Z \\
 q &\geq 0 \\
 z^* &\in Z \text{ and } k^* \geq h(z^*) \\
 q[k^* - h(z^*)] &= 0
 \end{aligned}$$

- The term q is the lagrange multiplier.
- The term $g(z) + q(k^* - h(z))$ is the Lagrangian.
- The condition says that z^* maximizes the lagrangian.
- Then, we have the non negativity restriction, feasibility, and the complementary slackness condition. What does it mean?

THEOREM *if for some $q \geq 0$, z^* maximizes $L(z, k^*, q)$ subject to the three conditions, it also solves COP.*

Proof: from the complementary slackness condition, $q[k^* - h(z^*)] = 0$. Thus, $g(z^*) = g(z^*) + q(k^* - h(z^*))$. By $q \geq 0$ and $k^* - h(z) > 0$ for all feasible z , then $g(z) + q(k^* - h(z)) \geq g(z)$. By maximization of L we get $g(z^*) \geq g(z)$, for all feasible z and since z^* itself is feasible, then it solves COP.

- We now solve the example of the firm ABC...

$$L = 2z^{.5} - z + q[k - z]$$

Let us use FOC, although we have to prove that we can use them and we will do so in the future. We need differentiability, concavity, and some other conditions.

$$z^{-.5} - 1 - q = 0$$

Consider the case of $q > 0$, and the case of $q = 0$.

The Lagrange multipliers: what does it mean to relax the constraint?
When are the conditions also necessary?

- The conditions that we have stated are sufficient conditions. This means that some solutions of *COP* cannot be characterized by the Lagrangian. For example, if the set B is not convex, then solving the Lagrangian is not necessary.
- If the objective function is concave and the constraint is convex, then B is convex. We will show it. Then, Lagrange conditions are also necessary.
- That is, if we find all the points that max the lagrangian, we find all the points that solve *COP*.
- With differentiability, these points are also solutions to FOCS.