
On-Line Appendices 

Appendix 2:  Data Methodology 

This Appendix has three components. The first discusses and describes the sources for all data used in 

this paper. The second deals with measures on cover/footprint and volume we use to analysis. The third 

gives the algorithm used to extract unchanged buildings, redeveloped buildings and infill from the 

overlay of 2004 and 2015 depiction of building polygons. 

Data Sources 

Building Data 

We use two cross sections of data that delineate every building footprint in the city of Nairobi. 

The first is based on tracings of buildings from aerial photo images for 2003 which we received 

from the Nairobi City Council. Although no explicit metadata was provided, as far as we can 

tell this data was created by the Japan International Cooperation Agency (JICA) and the 

Government of the Republic of Kenya under the Japanese Government Technical 

Cooperation Program, and based on aerial images taken in February 2003 at a scale of 

1:15,000. We base this off documentation from the Center for Sustainable Urban Development 

(CSUD) at Columbia University, who use a highly detailed building density and landuse map 

from the JICA (Williams et.al. 2014). Further we do our own data quality check by comparing 

the digital tracings to very high resolution imagery from Google Earth (2002), (2003), and 

(2004). By examining areas that changed from 2002-2003 and from 2003-2004 we confirm 

that our data of building outlines matches those that exist in 2003, but did not exist in 2002, 

and does not include those that were yet to be built in 2003 and appeared in 2004. The second 

cross section comes from January 2015, when imagery at (10-20cm resolution) was recorded 

and digitized into building footprints by a Nairobi based company Ramani Geosystems.  

The footprint data describe only the area on the ground that each building occupies while we 

are interested in the complete volume of each building. To address this need we supplement 

the 2-dimensional building data with 2015 building height data derived from LiDAR (0.3-1m 

resolution) which was again produced by Ramani Geosystems. Without direct measurements 

of heights in 2003, we interpolate them by assigning to each building in a grid square in a sector 

(slum or formal) the average height of unchanged buildings in the same sector over queen 

neighbouring grid squares.  

Slum and land use maps 

We focus on a definition of slums provided IPE Global under the Kenya Informal Settlements 

program (KISIP). IPE mapping of informal settlements was done using satellite imagery and 

topographic maps. Their approach was to identify slums as “unplanned settlements” which 

have some aspects of low house quality, poor infrastructure, or insecure tenure. To incorporate 

this definition of slums into our database we created shapefiles by manually digitizing KISIP 

documentation which contained detailed maps of all identified informal settlements in Nairobi 

(IPE Global Private Limited and Silverwind Consultants, 2013). There remains an issue of tight 

delineation of slum areas, where boundaries are drawn to outline the slum areas leaving a lot 



of empty land residual in the formal sector which we define as the complement to slums. To 

offset this, we adjust the IPE slum boundaries by first classifying buildings as slum if their 

centre lies within the original slum boundary, and then assigning each 3m x 3m pixel of non-

built land to slum if the nearest building is classified as slum, and formal otherwise. 

A secondary set of maps that we use comes from the Center for Sustainable Urban 

Development (CSUD) at Columbia University. The CSUD maps landuse in 2003, including 

slums, based on a more detailed, copyrighted, land-use map created by the JICA and the 

Government of Kenya under the Japanese Government Technical Cooperation Program which 

was published and printed by the survey of Kenya 1000 in March 2005 (Williams, et al. 2014). 

In principle, polygons are categorized as slums if they seemed to contain small mostly 

temporary buildings that are randomly distributed in high density clusters. We use this set of 

slums to offer a descriptive comparison of how slums have changed on the extensive margin, 

but for our analysis we defer to a single definition based on IPE due to discrepancies in the 

definition of slum across the data sources. We also make use of the CSUD landuse map to 

identify areas that we remove from our formal classification. The areas that we chose to remove 

are listed in appendix table 3.3 and are areas in permanent public use.  

Household Survey 

In order to get estimates on slum and formal household rents we use a cross section of 

georeferenced household level data from the 2012 ‘Kenya: State of the Cities’ survey by the 

National Opinion Research Center (NORC) (Zinnes et.al. 2012). This is the first survey to 

record household rent (with detailed house and some neighbourhood characteristics) for a 

sample that is stratified between slum and formal areas (based on the 2009 Census) covering 

Nairobi. Also included in this survey were geo-coordinates taken at the time of survey, however 

we found these to be imprecise when compared to the location of the enumeration area (EA) 

that the household was recorded to reside in. We correct household coordinates if they fall 

outside of their EA by replacing them with the EA’s centroid coordinates.  

Vacant land price listings 

We also require data on land values in order to calibrate the model, for this we rely on property 

values that have been scraped from property24.co.ke over the period September 2014 to 

November 2015. This data source provides us with vacant land listings recording information 

on asking price and plot area and location, all of which are provided for in over 80% of the 

listings. The locations are descriptive and so we entered geo-coordinates by manually searching 

the addresses and location descriptions. These listings are only found in the formal sector. 

SRTM elevation 

Elevation and ruggedness measures used in regression tables are calculated from the Shuttle 

Radar Topography Mission (SRTM), a grid of 1 arc-second wide cells (or roughly 30 metres 

in Nairobi) published by the USGS (2005). Elevation is simply the mean of these cells in each 

of our 150x150m gridcells, while we measured ruggedness as the standard deviation in 

elevation within each 150x150 metre gridcell. 



SPOT Imagery 

We also use high resolution SPOT5 and SPOT6 images of Nairobi for 2004 and 2015 

respectively. The raw imagery was created by Airbus Defence and Space and we used it as 

reference to manually trace roads and define their widths in order to come up with estimates of 

the extent of road coverage in both the early and late time periods. Alternative sources, like 

Open Streetmap, were unsuitable as they did not allow us to make the comparison across time. 

Measures of cover and volume 

Our unit of analysis is 150x150m grid squares. For calculating cover within the grid square in a usage, 

each of these is broken into 50 3x3m cells and use type classified by what is at the centroid of the 3m 

square in each period. There are three uses: vacant land, slum area and formal. For each 150x150 square 

we sum across the 50 cells to get total use of each type. Most 150x150 squares are either all slum or all 

formal sector. However there are about 12% which are mixed grid squares, for which we record the 

cover or volume of slum and formal separately.  

Having summed the total area of use of each type in 3x3 squares in each 150x150 meter square, these 

are averaged for 150x150m squares whose centroid falls in a narrow distance ring. That sum is then 

divided by the total number of 150x150 grid squares in that distance band. For volume for 2015, for 

each 3x3m square which is formal sector, we have the height of the building at the centroid of that 

square.  Volume for that 3x3 square is 9 times the height in meters of the building from LiDAR data. 

We then sum across the grid squares occupied with formal usage for 150x150m grid squares in each 

distance ring and then average by the total number of 150x150 m grid squares in the ring. For 2004 we 

have no height data. To infer 2004 heights, we use what we think is an upper bound on height: the 

height of unchanged buildings, where we presume demolished buildings between 2004 and 2015 are 

likely to be of lower height than those which survive. To assign a height to a 3x3m square in 2004 in 

formal sector usage, we take the average height in 2015 of all buildings that were there in 2004 for all 

3x3m formal sector unchanged buildings in the own 150x150m grids square and its 8 queen neighbours. 

Height is the height assigned to each 3x3m square in usage in a distance ring from the centre averaged 

over all such cells, to effectively get a coverage weighted average of individual building heights. 

How do we measure change between 2004 and 2015? For demolition, at the 3x3m level the square is 

defined as demolition if its centroid is covered by a 2004 building which has been replaced by open 

space. Demolished coverage is lost 2004 cover; demolished volume is assessed as before using the 

average height of unchanged buildings in the neighbourhood.  Infill is new buildings which do now 

overlap with any 2004 buildings; a 3x3m square is infill if its centroid is covered by such a building on 

2015 where there was no building in 2004. Infill cover and volume are assessed from 2015 data. Net 

redevelopment in coverage takes coverage in the new 2015 buildings and subtracts the coverage of old 

2004 buildings. So for each 150m150m meter square we have for redeveloped buildings, we have total 

coverage in 2004 measured at the 3x3m level (centroid covered by the old 2004 building(s)) and we 

have total coverage in 2015 measured at the 3x3m squares (centroid covered by the new replacement 

2015 building(s)). Net redevelopment at the 150x150sqaure is the difference. In general, the same 

buildings are drawn in 2015 to have modestly more coverage than in 2004 so coverage change is likely 

to be an upper bound. Net volume change again assigns heights in 2004 to the 3x3m coverage based on 

neighbourhood averages for unchanged buildings and uses 2015 height information on the new 

buildings.  

Overlaying Buildings 

We match buildings across time by overlaying 2015 and 2004 building polygon data in order to track 

the persistency, demolition, construction and reconstruction of buildings over time. Since buildings are 

not identified across time our links rely on a shape matching algorithm. For each building, the algorithm 

determines whether it was there in the other period, or not, by comparing it with the buildings that 

overlap in the other time period. 



This task is not straightforward, since the same building can be recorded in different ways depending 

on the aerial imagery used, whether building height was available, and the idiosyncrasies of the human 

digitizer. 

 

Data and definitions 

For 2004 we use the building dataset received from the Nairobi City Council with digitized polygons 

for every building, roughly 340,000 in the administrative boundary of Nairobi. For 2015 we use the 

dataset that was created by Ramani Geosystems using imagery (10-20cm resolution).  

 

The nomenclature we use is as follows.  First, a trace is the collection of polygon vertices that make up 

its outline. A shape is the area enclosed by the trace, and can be thought of as a representation of the 

rooftop of a building. A cavity is an empty hole completely enclosed in a shape. A candidate pair is the 

set of any two shapes in different time periods which spatially intersect. A link is the relationship 

between a set of candidates in one period to a set of candidates in the other time period.  

 

Pre-processing 

Before running our shape matching algorithm we clean up the data sets. First we take care of no data 

areas. There are some areas that were not delineated in 2004, including the Moi Air Base, and Nairobi 

State House. We drop all buildings in these areas for both 2004 and 2015, amounting to roughly 1,500 

buildings from the 2015 data, and 100 buildings from 2004. Next we deal with overlapping shapes, an 

issue arising in the 2015 data, although not that for 2004.  This is most often the same building traced 

multiple times. We identify all such overlapping polygons and discard the smaller version until no 

overlaps remain; about 1,400 buildings from the 2015 data this way. We also drop small shapes, in part 

because the 2015 data has many very small shapes, while the 2004 data does not. In order to avoid 

complications of censoring in the 2004 data, we simply drop all shapes that have an area of less than 

1m2. We drop 2 small buildings in 2004, and 462 small buildings in 2015. 

 

Another issue is that buildings are often defined as contiguous shapes in 2004, but broken up in 2015. 

For the majority of buildings we cannot aggregate the broken up pieces in 2015 since it is hard to 

identify such cases in general. To match these cases across time we rely on our one to many, and many 

to many matching algorithms defined below. However, in the specific case where a building is 

completely enclosed in another the task is much easier. First, we find all cavities present in each period, 

then we take all building shapes that overlap with the cavities in the same time period. After identifying 

all shapes that intersect a cavity, we redefine both shapes, the original shape containing the cavity and 

the shape intersecting it, as a single new shape.  

 

Shape Matching Algorithm 

 

After the pre-processing of each cross-section is complete, we run our shape matching algorithm to 

establish links between buildings across time periods. For any given building we consider 5 possible 

scenarios; that it has a link to no building, that it has a link to one building (one to one match), that it 

has a link to multiple buildings (one to many), that it is part of a group of buildings that match to one 

building (many to one), or that it is a part of a group of buildings that matches to a group of buildings 

(many to many). We follow and approach similar to Yeom et al (2015) however, due to the inherent 

difficulty of inconsistent tracings we contribute to their method by introducing the one to many and 

many to many approaches. We assign each link a measure of fit that we call the overlay ratio. We then 

choose optimal links based on the overlay ratio. Finally, we categorize links as matched or not using a 

strict cut-off on the overlay ratio of 0.5. Other cu-offs such as 0.4, 0.6 and 0.7 produced more errors in 

categorization. 

 

Candidates 

For all buildings A in the first time period, and B in the second time period we identify the set of 

candidates: 

𝐶𝑃 = {(𝐴, 𝐵);  𝐴𝑟𝑒𝑎(𝐴 ∩ 𝐵) ≠ 0} 
 



For each candidate pair we find the ratio of the intersection area over the area of each shape, so if shapes 

A and B intersect, we find 𝑟𝐴𝐵 =
𝐴𝑟𝑒𝑎(𝐴∪𝐵)

𝐴𝑟𝑒𝑎(𝐴)
 and 𝑟𝐵𝐴 =

𝐴𝑟𝑒𝑎(𝐴∩𝐵)

𝐴𝑟𝑒𝑎(𝐵)
 

We link all shapes which do not belong to a candidate pair to the empty set. 

 

One to One Matching 

First we consider candidate pairs to be links on their own. For each pair, we calculate the overlay ratio 

as the intersection area over union area, so if A and B are candidate pair, we find: 

 

𝑅𝐴𝐵 =
𝐴𝑟𝑒𝑎(𝐴 ∩ 𝐵)

𝐴𝑟𝑒𝑎(𝐴 ∪ 𝐵)
=

𝐴𝑟𝑒𝑎(𝐴 ∩ 𝐵)

𝐴𝑟𝑒𝑎(𝐴) + 𝐴𝑟𝑒𝑎(𝐵) − 𝐴𝑟𝑒𝑎(𝐴 ∩ 𝐵)
 

 

One to Many Matching  
For each time period separately, we identify all candidate pair links for which their intersection to area 

ratio is above threshold 𝜃. For shape A we define a group = {𝐵; 𝑟𝐵𝐴 ≥ 𝜃} . Now we calculate the overlay 

ratio of one to many links as the intersection area over union area ratio: 

𝑅𝐴𝐺 =
𝐴𝑟𝑒𝑎(𝐴 ∩ ⋃ 𝐵𝐵∈𝐺 )

𝐴𝑟𝑒𝑎(𝐴 ∪ ⋃ 𝐵𝐵∈𝐺 )
=

∑ 𝐴𝑟𝑒𝑎(𝐴 ∩ 𝐵)𝐵∈𝐺

∑ 𝐴𝑟𝑒𝑎(𝐴 ∪ 𝐵)𝐵∈𝐺
 

 

Many to Many Matching 
Here we have two cases, one when the shapes are fairly similar, which we capture in previous sections 

(one to one, or many to one). The other is inconsistent shapes that form the same structure. To capture 

these we consider both time periods at the once, we clean the candidate pair list, keeping links for which 

either ratio is above a threshold 𝜃1: 

𝐿𝐶 = {(𝐴, 𝐵); 𝑟𝐴𝐵 ≥ 𝜃1 𝑜𝑟 𝑟𝐵𝐴 ≥ 𝜃1} 

 Then we condition to only keep shape for which the total ratio intersection is above threshold 𝜃2, so 

shape A will be included if  ∑ 𝑟𝐴𝐵𝐵∈{𝑥|(𝐴,𝑥)∈𝐿𝐶} ≥ 𝜃2. Now we are left with a new candidate list, which 

we convert to sets 𝐿𝐶 = {({𝐴}, {𝐵})} and start merging them: 

𝑖𝑓 𝐺𝑖 ∩ 𝐺𝑗 ≠ ∅ 𝑜𝑟 𝐻𝑖 ∩ 𝐻𝑗 ≠ ∅: 𝐿𝐶 = {(𝐺𝑖 ∪ 𝐺𝑗 , 𝐻𝑖 ∪ 𝐻𝑗)} ∪ 𝐿𝐶/{(𝐺𝑖, 𝐻𝑖), (𝐺𝑗, 𝐻𝑗)}, i ≠ j 

We keep doing this until we can no longer merge any two rows. At this point we calculate the overlay 

ratio of many to many links as the intersection area over union section ratio: 

𝑅𝐺𝐻 =
𝐴𝑟𝑒𝑎(⋃ 𝐴𝐴∈𝐺 ∩ ⋃ 𝐵𝐵∈𝐻 )

𝐴𝑟𝑒𝑎(⋃ 𝐴𝐴∈𝐺 ∪ ⋃ 𝐵𝐵∈𝐻 )
 

 

ICP Translation 

We encounter a problem when the two shapes or groups of shapes are similar but do not overlap well, 

this usually stems from the angle at which the images were taken, and is especially prevalent with tall 

buildings. To address this issue, we translate one trace towards the other, and then recalculate the 

overlay ratio. As in Besl and McKay (1992), we use the iterative closest point (ICP) method to estimate 

this translation. To perform the ICP we ignore any cavity points as we found they often cause less 

suitable translation. We found that for similar shapes this will optimize the intersection area. 

 

Optimal Linking 

In the end, we rank all links by their overlay ratio. We iteratively keep the link with the highest overlay 

ratio, or discard it if at least one of the buildings in the link has already been confirmed in a separate 

link. From the list of optimal links, we define a link to be a match if its overlay ratio, or the overlay 

ratio after ICP translation is above 0.5. We then define all matched candidates as unchanged, and the 

remaining candidates as redeveloped. All buildings that were not considered as candidates are defined 

as infill, if from 2015, and demolished, if from 2004. 

 

Accuracy Assessment 

 



In order to assess the performance of the polygon matching algorithm we manually classified links 

between 2004 and 2015 for a random sample of buildings.  We sampled 48 150x150m grid cells, 

stratifying over slum, non-slum within 3km, non-slum within 6km, and non-slum further than 6km to 

the CBD. The sample consists of over 2,250 buildings in 2004 and 3,500 buildings in 2015. 

Results 

We first break down matches by their mapping type. There are five types of manual link: 

redeveloped/infill/demolished (0), one to one match (1), one to many match (2), many to one match (3), 

and many to many match (4). For the algorithm we further split (0) into infill/demolished (-1) and 

redeveloped (0). Appendix table 1 shows the correspondence between the two mappings by building 

(a) and roof area (b). We can see that most errors come from the one to one matches, however, the many 

to many matches have the worst performance. Overall the diagonal values are quite high, which means 

not only are we matching buildings well, but also the algorithm is recognising the clumping of buildings 

as a human does (bear in mind that, for example, the one to one matches which we ‘misclassify’ as 

many to many will still be classified as match in the final data). Finally, we have perfect correspondence 

for demolition and in 2015 nearly perfect for infill.  

Next we compare buildings that were matched by the algorithm and those matched manually. For now 

we use a cut-off of the overlay ratio of 0.5, later we explore the effect of different cut-offs on 

performance. As seen in appendix table 1 infill and demolition are classified with almost perfect 

correspondence. For this reason we ignore buildings with these mappings and focus on accuracy of 

redevelopment and unchanged. In appendix table 2 we condense mappings 1, 2, 3, and 4 into category 

1, while redevelopment, or category 0, remains the same.   

We define precision P (negative predictive value NPV) as the fraction of buildings classified as 

unchanged (redeveloped) by the algorithm that are correct, recall R (true negative rate TNR) as the 

fraction of buildings classified as unchanged (redeveloped) by hand that the algorithm gets correct, and 

the F1 score (F) as the weighted average of the two.  

𝑃 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
, 𝑁𝑃𝑉 =

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
, 𝑅 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
, 

  𝑇𝑁𝑅 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
, 𝐹 =

2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 

The confusion matrix in table 2 is done across all sampled buildings in 2004 and weights observations 

by buildings (1) and roof area (2). The F1 score is high in both cases, but in part this is due to relative 

success classifying unchanged buildings: precision for buildings that were classified as redeveloped by 

the algorithm is 76% of buildings and 72% of roof area, while recall of true redeveloped buildings is 

83% of buildings and 74% of roof area 

In our first attempt we arbitrarily picked 50% as a cut off of the overlay ratio. Here we take a closer 

look at this choice. Using our manually classified links we can maximize the F1 score with respect to 

the cut off. In appendix figure 1 we plot the F1 score weighted by roof area against cut-offs of the 

overlay ratio for the 2004 data. We find that the highest F1 score comes just below 50% suggesting our 

first estimate was not far off.  

In figure 1 we plot lines for each method of calculating the overlay ratio: without ICP, with ICP, and 

the maximum of the two. Around 50% we can see that the maximum performs best, but with only a 

very slight improvement over the ICP alone, which is in turn marginally better than without the ICP. 

 

 



Appendix Table 2.1 – Mapping Correspondence 2004 

a) Weighted by Building 

 Algo=-1 Algo=0 Algo=1 Algo=2 Algo=3 Algo=4 

Manual=0 280 433 41 16 11 20 

Manual=1 0 25 712 10 1 25 

Manual=2 0 29 21 266 0 20 

Manual=3 0 18 6 0 137 1 

Manual=4 0 65 52 24 63 135 

b) Weighted by Area (sq-m) 

 Algo=-1 Algo=0 Algo=1 Algo=2 Algo=3 Algo=4 

Manual=0 12708 28187 4913 2780 943 1043 

Manual=1 0 908 112762 4180 279 1775 

Manual=2 0 3575 2328 89472 0 2819 

Manual=3 0 910 1053 0 14148 23 

Manual=4 0 5317 5528 4795 4464 14262 
Mapping definitions: -1 demolition or infill; 0 redevelopment; 1 one to one match; 2 one to many 

match; 3 many to one match; 4 many to many match 

 

Appendix Table 2.2 – Matching all areas 2004 

a) Weighted by Building  

 Algo=0 Algo=1 Recall 

Manual=0 433 88 0.83 

Manual=1 137 1473 0.91 

Precision 0.76 0.94 F=0.93 

b) Weighted by Area (sq-m)  

 Algo=0 Algo=1 Recall 

Manual=0 28187 9679 0.74 

Manual=1 10710 257888 0.96 

Precision 0.72 0.96 F=0.96 

 

 



Appendix Figure 2.1 

  

 

Appendix Table 2.3: List of public uses 

Recreational 

a) Impala club, Kenya Harlequins, and 

Rugby Union of East Africa (0.14kmsq) 

b) Golf Course (0.9kmsq) 

c) Arboretum (0.25kmsq) 

d) Central park, Uhuru park, railway club, 

railway golf course (0.5kmsq) 

e) Nyayo stadium (0.1kmsq) 

f) City park, Simba Union, Premier Club 

(1.1kmsq) 

g) Barclays, Stima, KCB, Ruaraka, Utali 

clubs, and FOX drive in cinema (0.3kmsq) 

  

Undeveloped 

a) Makdara Railway Yard (1kmsq) 

b) John Michuki Memorial Park (0.1kmsq) 

 

Special use -- Includes poorly traced areas 

a) State House 

b) Ministry of State for Defence 

c) Forces Memorial Hospital and 

Administration Police Camp 

d) Langata Army Barracks 

e) Armed Forces 

f) Moi Airbase 

 

Public utility 

a) Dandora dump (0.5kmsq)  

b) Sewage works (0.25kmsq) 

g) Kahawa Garrison Public use 

a) Communications Commission of Kenya (0.1kmsq) 

b) Langata Womens prison (0.2kmsq) 

c) Nairobi and Kenyatta hospitals, Milimani Police 

Station, Civil Service club 

d) Mbagathi hospital, Kenya Medical Research 

Institute, Monalisa funeral home 

e) National museums of Kenya 

f) Kenya convention centre and railway museum 

g) Industrial area prison 

h) Mathari mental hospital, Mathare police station, 

traffic police, Kenya police, Ruaraka complex, and 

National youth service 

i) Jamahuri show ground 

  

Educational (not primary and secondary schools) 

a) University of Nairobi and other colleges 

b) Kenya Institute of Highways & Built Technology 

c) Railway Training Institute 

d) Kenya Veterinary Vaccines Production Institute 

e) Moi Forces Academy 

f) NYS engineering, Kenya Institute of Monetary 

Studies, KCA university, KPLC training, Utali 

college 
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