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On the Speed of Sound in Air and Water
BY M. LAPLACE.

(Read before the Academy of Sciences the 23rd of December, 1816.)

Newton, in the second book of Mathematical Principles of Natural Philosophy,

gave the expression for the speed of sound. The manner in which he derived it is one of
the most remarkable traits of his genius. The speed according to this expression is a little

less than one sixth of the speed determined by careful experiment by members of the

Academy in 1738, in experiments done with great care. Newton had already recognized
this discrepancy in the experiments of his time, and tried to explain it. But modern

discoveries about the nature of atmospheric air have destroyed this explanation, along
with those proposed by various other mathematicians. Fortunately, these discoveries

present us with a phenomenon which appears to me to be the true cause of the

discrepancy between the observed and the calculated speed of sound, which most
mathematical physicists have now accepted. This phenomenon is the heat that air

develops when it is compressed. When one raises the temperature of air while
maintaining constant pressure, only one part of the caloric received actually produces this

effect; the other part, which becomes latent, produces an increase in volume. It is this part

which manifests [se developpe] when one compresses the expanded air and reduces it to
its original volume. The heat released by the approach of two neighboring molecules of a

vibrating arial fiber elevates their temperature, and gradually diffuses into the air and the
surrounding bodies. But this diffusion and propagation occurs extremely slowly relative

to the speed of the vibrations, and one can assume without noticeable error that, in the

period of a single vibration, the quanitity of heat stays the same between two neighboring
molecules. Thus the molecules, in coming together, are repelled all the more: first,

because as their temperature is assumed to be constant, their mutual repulsion increases
in inverse proportion to their distance; and second, because the latent caloric which

manifests [se developpe] increases their temperature. Newton had only considered the

first of these two causes of repulsion, but it is clear that the second cause must increase
the speed of sound, since it increases the elasticity of air. In entering this into the

equation, I arrived at the following theorem:

The actual speed of sound is equal to the product of the speed given by the Newtonian

formula and the square root of the ratio of the specific heat of air under constant

atmospheric pressure and varying temperature to its specific heat at a constant volume.

[Note: See the Collected Works of Laplace, vol. 5, pp. 105, 134, 157.]

If we now assume, like many physicists, that the heat contained in a quanitity of

air under constant pressure and varying temperature is proportional to its volume (which

can’t be far from the truth), the square root above becomes the square root of the ratio of
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the difference of two pressures to the difference of the quantities of heat which develop

two equal volumes of atmospheric air with respect to these pressures, in passing from a
given temperature to a lesser one, with the smallest of these quantities of heat and the

smallest of these pressures being taken as units.
Wanting to compare this theorem to experimental fact, I was fortunate enough to

find the observational conditions [données d’observation] assumed by my theorem

among the numerous results of the interesting work that Mr. La Roche and Mr. Berard
have done on the specific heat of gas. These able physicists have measured the quantities

of heat which are released from two equal volumes of atmospheric air when the
temperature is lowered by about 80 degrees; one quantity is compressed by the weight of

the atmosphere, the other compressed the same weight increased by thirty-six hundredths.

They found that the heat released relative to the greater pressure was 1.24, with the heat
relative to the smaller pressure being taken as a unit. In order to calculate the actual speed

of sound it is thus necessary, by the previous theorem, to multiply the speed deduced by

Newton’s formula by the square root of the ratio of 36 hundredths to 24 hundredths, or by
the square root of 3/2. At a temperature of six degrees, this formula gives 282.42 meters

per second. In multiplying by √(3/2), we get 345.45 meters per second. Members of the

French Academy found it to be 337.18. The difference between these two results might
amount to experimental uncertainty. But the smallness of this discrepancy unarguably

establishes that the difference between the observed speed of sound and the speed

calculated by the Newtonian formula is due to the latent heat produced by the
compression of air.

It is the result of all this that, given constant pressure, if one increases a given
volume of air by raising its temperature, and then reduces it by compression to its original

volume, it will release in this compression one third of the heat employed in its

expansion. It remains for physicists to determine, by direct experiment, the ratio of the
specific heats of air under constant pressure and at a constant volume; a ratio which we

have just found to be 1.5. The speed of sound, as observed by members of the French
Academy, gives 1.4254 for this ratio; perhaps, in light of the difficulty of direct

experiments, this speed is the most accurate means of obtaining it.

I have concluded (page 166, October Workbook) that the speeds of sound in
rainwater and sea-water are equal to 2642.8 and 2807.4 meters per second. These

numbers were calculated on the basis of the experiments of Canton on the compression of

these liquids, and with regard only to the linear decrease of the dimensions of the
compressed volume. I recognized that it is necessary to consider the total decrease of this

volume, and thus that the preceding numbers must be divided by √3, reducing them to

1525.8 and 1620.9. Hence, the speed of sound in fresh water is four and a half times
larger than in air.


