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Abstract. I point out that some common folk wisdom about time reversal in-
variance in classical mechanics is strictly incorrect, by showing some explicit ex-
amples in which classical time reversal invariance fails, even among conservative
systems. I then show that there is nevertheless a broad class of familiar classical
systems that are time reversal invariant.
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1. Introduction

A physical law is time reversal invariant if whenever a motion is allowed by
the law, there is a nemesis “time-reversed” motion that is also allowed by the law,
corresponding roughly to what one would see if a film of the original motion were
played in reverse. A time reversal invariant law lacks the structure to distinguish
future-directed motion from past-directed motion. In this sense it does not admit an
“arrow of time.” The laws of many familiar classical systems do have this interesting
property. But despite what is often said, time reversal invariance is not a general
property of the laws of classical mechanics – not without further qualification.

1.1. The meaning of time reversal. In the Newtonian “force” formulation of
classical mechanics, time reversal is simply the reversal of the order of events in a
trajectory x(t). That is, if x(t) is the curve describing the position x of a particle
in space at every moment in time t, then the time-reversed motion is given by the
curve x(−t), which describes the same positions occurring in the reverse order.

In the Hamiltonian formulation of classical mechanics, reversing the order
of events in a trajectory is not enough. Since time reversal transforms a rightward-
moving body into a leftward-moving body, the momentum of an instantaneous state
is reversed, T (q, p) = (q,−p).

The operator T appearing in the first part of the transformation is referred
to as the time reversal operator. One can speak quite generally about time reversal
operators, in a way that applies to both the Hamiltonian and the Newtonian for-
mulations. In general, the time reversal operator is a bijection on a theory’s space
of states, whatever that space may be. In the Hamiltonian description of a particle
on a string, it is an operator on phase space, T : R2 → R

2. In the Newtonian de-
scription, it is a transformation of physical space, T : R → R. The latter is easy to
miss, because it is simply the identity transformation T (x) = x. The former is more
conspicuous, because it is in general not the identity. When we say time reversal,
we mean both the application of the time reversal operator on states, together with
the reversal of the order of states in trajectories.

1.2. Time reversal invariance. Invariance of a law under a transformation means
that if one motion is possible according to the law, then the transformed motion is
possible as well. More precisely:

Definition 1 (time reversal invariance). Let γ(t) : R → M be a curve through some
manifold of states M, which characterizes a dynamical trajectory. Let T : M → M
be the time reversal operator with respect to M. A theory of curves on M is
called T -reversal invariant (or simply time reversal invariant) if, whenever γ(t) is
a possible trajectory according to the theory, then so is Tγ(−t).

We say “the time reversal operator with respect to M” because, at this level
of generality, one cannot say much more than that about T . Its meaning depends on
physical facts about the degrees of freedom that the space of states M represents.
If M = R

3 represents the location of a particle in space, T is the identity operator.
On the other hand, if M = R

6 represents the position and linear momentum of a
particle, T is not the identity.
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1.3. Two useful facts. Let me conclude this section by stating two useful (though
not novel) facts, which will facilitate the identification of time reversal invariance in
the remainder of our discussion.

Lemma 1. The statement that h(q, p) = h(q,−p) + k (for some k ∈ R) is equiv-
alent to the statement that (q(−t),−p(−t)) satisfies Hamilton’s equations whenever
(q(t), p(t)) does.

Proof. (⇒): Suppose h(q, p) = h(q,−p) + k. Let (q(t), p(t)) satisfy Hamilton’s
equations with h(q, p). Since these equations hold for all t, we can substitute t 7→ −t

to get dq(−t)
d(−t) = ∂h(q,p)

∂p
and dp(−t)

d(−t) = −∂h(q,p)
∂q

. The former implies dq(−t)
dt

= ∂h(q,−p)
∂(−p) ,

and the latter implies d(−p(−t))
dt

= −∂h(q,−p)
∂q

, by simply pushing negative signs around

and by our hypothesis that h(q, p) = h(q,−p) + k. But this just says that the time-
reversed trajectory (q(−t),−p(−t)) satisfies Hamilton’s equations.

(⇐): Suppose that (a) (q(t), p(t)) and (b) q(−t),−p(−t) are both solutions.

Substituting t 7→ −t into Hamilton’s equations with (a) gives d
d(−t)q(−t) = ∂h(q,p)

∂p

and d
d(−t)p(−t) = −∂h(q,p)

∂q
. Hamilton’s equations with (b) give d

dt
q(−t) = ∂h(q,−p)

∂(−p)

and d
dt
(−p(−t)) = −∂h(q,−p)

∂q
. Combining, we find that

∂h(q, p)

∂p
=

∂h(q,−p)

∂p
,

∂h(q, p)

∂q
=

∂h(q,−p)

∂q
.

This implies that h(q, p) = h(q,−p)+f(q, p), for some function f such that ∂f/∂q =
∂f/∂p = 0. But the only such function is a constant function, so h(q, p) = h(q,−p)+
k (for some k ∈ R). �

Lemma 2. Let F (x, v, t) be a force that might depend on position, time, or veloc-
ity v = dx/dt. The statement that F (x,−v,−t) = F (x, v, t) is equivalent to the
statement that Newton’s equation is time reversal invariant, i.e. that x(t) satisfies
Newton’s equation only if x(−t) does.

The proof of this statement is very similar to that of Lemma 1, and so I
omit it.

2. What does not underpin classical TRI

Overzealous textbook authors have been known to make the following sweep-
ing claim.

Claim 1. Classical mechanics is time reversal invariant.

Philosophers have sometimes fallen for this ruse as well. For example, Frigg
(2008) writes that time reversal invariance (TRI) cannot fail in the Hamiltonian
formulation of classical mechanics (which he calls HM).

HM is TRI in this sense. This can be seen by time-reversing the
Hamiltonian equations: carry out the transformations t → τ [where
τ = −t] and (q, p) → R(q, p) and after some elementary algbraic ma-
nipulations you find dqi/dτ = ∂H/∂pi and dpi/dτ = −∂H/∂pi, i =
1, . . . ,m. Hence the equations have the same form in either direction
of time. (Frigg 2008, p.181)
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Frigg’s conclusion, like Claim 1, is strictly incorrect. A simple counterexample is a
classical system with a so-called “dissipative” force1. For example, Newton’s laws
(and Hamilton’s equations) allow trajectories in which a block slides along a smooth
surface, subject to the force of friction, until eventually coming to a stop. However,
the time-reversed trajectory of a block that spontaneously begins accelerating from
rest is not a possible solution. These systems are described by Hamiltonians for
which h(q, p) 6= h(q,−p) + k. As we observed in Lemma 1, this is sufficient for
the failure of time reversal invariance. The significance of such examples for time
reversal has been emphasized by Hutchison (1993).

More charitably, Frigg and other authors sympathetic to Claim 1 must make
a tacit assumption about the scope of classical mechanics. For example, we can avoid
dissipative forces in the description of elementary classical systems by requiring (for
example) that dH/dt = 0 in the Hamiltonian formulation. One might hope to con-
clude time reversal invariance on the basis of such an assumption. Indeed, Callender
(1995) responds to Hutchison by arguing that systems with dissipative forces like
friction are not “interesting” examples of classical systems, at least from a founda-
tional perspective. The apparent “force” of friction only arises out of an incomplete
description of the block on the surface. If the more elementary interactions between
the block and the surface were accounted for, then the force describing the system
would take a very different form. Time reversal invariance would stand a chance of
being regained.

However, we are not out of the woods yet. These authors are suggesting the
following.

Claim 2. Classical mechanical systems that are “conservative” are time reversal
invariant.

For example, Callender (1995, p.334) writes that, on the assumption that
there are no non-conservative forces, “it is easy to verify that classical mechanics
is TRI.” The correctness of that claim, however, hinges on the precise definition
of the term ‘conservative.’ There are two points that I would like to make about
this. First, on the usual definition of a conservative system, as one that “conserves
work” or “conserves energy,” Claim 2 is simply false. Even the assumption that
dH/dt = 0 is not enough for Frigg to conclude that the Hamiltonian formulation
is time reversal invariant. I provide counterexamples in Sections 2.1 and 2.2 below.
Second, there is a stronger definition of “conservative” that requires the force F (x, t)
(or the Hamiltonian h(q, p)) to take a certain functional form, which depends only
on position. This is sufficient for time reversal invariance. However, the physical
motivation for that stronger requirement has not yet been made clear. I will discuss
this point in Section 2.3.

2.1. Conservative but not TRI, part I. Velocity-dependent forces can be con-
servative in a natural sense, but still fail to be time reversal invariant. To see this,
we’ll make use of a textbook definition of “conservative” in the Newtonian formula-
tion. Consider a segment of a smooth curve x(t) through configuration space, with

1To put an even finer point on the problem with Frigg’s statement: there are many Hamiltonians
with the property that h(q, p) 6= h(q,−p). As we noted at the end of the last section, this is sufficient
for the failure of time reversal invariance.
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an initial point x(t1) and a final point x(t2). The work required to transport the
system from x(t1) to x(t2) is given by the work integral,

W (x(t1), x(t2)) =

∫ t2

t1

(F · v) dt,

where v = dx/dt. We say2 that a system is conservative if, whenever the curve x(t)
is a closed loop with x(t1) = x(t2), it follows that the work done around the loop
is zero. For example, if a particle sets out along a path through space that ends
where it started, then no work is accrued during the round-trip journey. Work is
“conserved” along such a loop, in the sense that nothing is added or lost.

Although many conservative forces depend only on position, this definition
of a conservative system makes perfect sense when a force depends on velocity as
well. For example, consider a particle in a force field F : R3×R

3 → R
3, which exerts

a force F (x, v) on the particle when it has position and velocity (x, v). Defining the
work integral as before, we can again take a conservative system to be one in which
work is conserved on a closed loop x(t) through configuration space R

3. We must
only take care that some other well-known definitions of a conservative system, such
as one involving path-independence, may not be mathematically well-defined in this
context3.

Here is a simple example of a system that is conservative in this sense but not
time reversal invariant4. Take a particle in three spatial dimensions, with position
x = (x1, x2, x3). As a shorthand, we will write v = dx/dt, and thus denote the
particle’s velocity by v = (v1, v2, v3). Suppose the particle is subject to a force field
defined by the cross-product,

F = x× v.

This describes a force on a particle that is orthogonal to both its position and
velocity vectors, which is strange but easy to model5.

This system is “conservative” on the definition above. The reason is that
the cross product (x× v) is orthogonal to v. So, the integral characterizing work W
along a section of any curve x(t) vanishes:

W (x(t1), x(t2)) =

∫ t2

t1

(F · v) dt =

∫ t2

t1

((x× v) · v)dt = 0.

2(c.f. Goldstein et al. 2002, p.3).
3It is often said that a system is conservative if work is path independent, in that the work

integral depends only on the initial position x(t1) and the final position x(t2). This is equivalent to
our definition when the force F depends only on position; however, it is not necessarily well-defined
in the presence of velocity-dependent forces. This is because there can be many velocity-dependent
force vectors F (x, v) at the same position x, corresponding to the different values of v. A work
integral depending only on initial and final position is not well-defined in such cases, since a position
x is not enough to determine the value of F (x, v). I thank David Malament for pointing this out
to me.

4I thank Wayne Myrvold for pointing out this example.
5There is an animation of the motion for a typical initial state available at

http://www.youtube.com/watch?v=-3hv3-YVA-E. I thank Peter Distelzweig for showing me how
to simulate this motion using vPython.
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No work is ever done along any path whatsoever, and the system is trivially conser-
vative. There are also less trivial conservative forces of this kind, such as,

F = x+ (x× v).

This is a less trivial force, in the work done is not always zero. However, it is still a
conservative force, because it is the sum of conservative forces.

Nevertheless, both systems fail to be time reversal invariant. To verify
this formally, we simply observe that F (x,−v,−t) = x × (−v) = −F (x, v, t). So,
F (x,−v,−t) 6= F (x, v, t), and time reversal invariance fails by Lemma 2.

2.2. Conservative but not TRI, part II. There is another natural definition of
a “conservative” system in the context of Hamiltonian mechanics. Namely, since we
interpret the Hamiltonian h to represent a system’s total energy, “conservative” can
naturally be taken to mean that h is a conserved quantity, dh/dt = 0.

However, there are many conservative systems of this kind that violate time
reversal invariance. A simple example is the system for which h(q, p) = p3 at every
point (q, p) ∈ R

2. Another is h(q, p) = 1
2(p − q)2. Since each satisfies dh/dt =

∂h/∂t = 0, each system is conservative in the required sense6. However, since
h(q,−p) 6= h(q, p) + k, Lemma 1 implies that each system violates time reversal
invariance.

2.3. ‘Strong’ Conservative implies TRI. In the context of Newtonian force
mechanics, Arnold (1989, p.22) defines a conservative system to be one in which all
forces have a particular functional form:

F (x, t) = ∇V (x),

for some scalar field V (x), which (crucially) depends only on position. We might
refer to this as “strong” conservativeness. On this definition, Newton’s equation
is manifestly time reversal invariant, because the force has no time or velocity de-
pendence. Thus F (x, v, t) = F (x,−v,−t), and we have time reversal invariance by
Lemma 2.

This is one way to guarantee time reversal invariance. But it would be nice
to determine physical conditions that guarantee time reversal invariance, in a way
that is more informative than just demanding forces have a certain functional form.
It is certainly the case the many familiar forces appear to have a form that is time
reversal invariant. But is it possible to explain why this is the case?

The question has an analogue in the Hamiltonian formulation. If the Hamil-
tonian h has its “common” form h = (m/2)p2 + v(q), then h(q, p) = h(q,−p), and
we are guaranteed time reversal invariance. But what reason do we have to think
that the Hamiltonian must have this functional form? One would like to go beyond
the superficial fact that many classical systems happen to be that way, and ask why
familiar classical Hamiltonians (or classical force fields) tend to have a form that is
time reversal invariant. In the next section, I will point out two ways to answer this
question.

6 Here I make use of the fact that dh/dt = ∂h/∂t.
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3. What does underpin classical TRI

We have seen some common claims that do not guarantee time reversal
invariance. Now let us turn to some examples of claims that do. We noticed before
that many “familiar” classical systems are time reversal invariant. This is, I claim,
because some properties that make a classical system “familiar” are also sufficient
to guarantee time reversal invariance. In the first place, a classical system is familiar
if it satisfies p = mv, the property of having momentum proportional to velocity. In
the second place, familiar classical systems often satisfy certain symmetries, such as
invariance under translations and Galilei boosts. I will show that each guarantees
time reversal invariance.

3.1. Velocity-momentum proportionality and TRI. Suppose a classical sys-
tem is described by a 2n-dimensional phase space P and a Hamiltonian function
h : P → R. Such a system is only time reversal invariant if h(q, p) = h(q,−p),
according to Lemma 1. Nevertheless, time reversal invariance is guaranteed in the
presence of velocity-momentum proportionality.

Claim 3. If the momentum of a system is proportional to its velocity, p = mv, then
the system is time reversal invariant.

For example, we saw in Section 1.1 that p = mv is an essential part of what
it means to be a classical bob on a spring. Indeed, part of what makes many classical
systems familiar is that they have their momentum pointed in the same direction as
their velocity. Such systems, it turns out, are always time reversal invariant. This
can be shown by the following simple calculation.

Proposition 1. Suppose p = mv on every trajectory (q(t), p(t)) of a system with
Hamiltonian h(q, p), where m is a constant and v = dq/dt. Then h(q, p) = 1

2mv2 +
f(q) for some function f , and the system is time reversal invariant.

Proof. Taking partial derivatives of p = mv with respect to v gives ∂p = m∂v. So,
we may substitute m∂v in for the ∂p appearing in hamilton’s equations,

v =
d

dt
q =

∂h(q, p)

∂p
=

∂h(q, p)

m∂v
.

Now multiply by m∂v on both sides, so that we can integrate for h to get

h(q, p) =

∫

mv∂v = 1
2mv2 + f(q)

for some function f(q) of q alone. This Hamiltonian obviously satisfies h(q, p) =
h(q,−p), and so we have time reversal invariance by Lemma 1. �

This provides a first step toward understanding the extent to which classical
mechanics is time reversal invariant. It may be summarized as follows. Classical
mechanics does allow a variety of “anomalous” systems that are not time reversal
invariant, even among those systems that conserve energy. But, if the momentum
of a particle is proportional to its velocity, then none of these anomalous systems
are allowed. Time reversal invariance is guaranteed.
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3.2. Galilei invariance and TRI. Another aspect of familiar classical systems
is that they have certain symmetries. For example, one may be used to the idea
of obtaining the same results when the same experiment is set up in two different
locations in space. This is known as invariance under spatial translations. Similarly,
one might think that if an experiment were done in the cabin of a boat moving
with constant velocity across the sea, then we would find the same result as if the
experiment were set up on shore. This is known as invariance under Galilei boosts.
There is a precise sense in which systems that satisfy these familiar properties are
guaranteed to be time reversal invariant as well. A rough statement of this fact
may be summarized as follows, although it is no substitute for the more precise
expression given in Proposition 2 below.

Claim 4. If a classical Hamiltonian system is invariant under spatial translations
and Galilei boosts, then it is also time reversal invariant.

Settling this statement requires a precise language in which to talk about
symmetries in the Hamiltonian formulation. Unfortunately, talk of symmetries in
classical mechanics is often reduced to imprecise language involving “preserving the
form” of an equation of motion. In order to avoid risking the pitfalls of that language
and of coordinate-based approaches in general, I have chosen in what follows to
adopt a more precise geometric formalism, in which Claim 4 can be clearly stated
and settled. The price is that a fair amount of mathematical machinery must be
introduced along the way. I proceed hoping that the precise result might be worth
the cost.

3.2.1. Notation. The geometric formalism for Hamiltonian mechanics7 eliminates
the assumption that classical phase space has the topology of R2n, and eliminates
any preferred coordinate system (q, p). Instead, we focus on coordinate-invariant
structures built on a smooth 2n-dimensional manifold P (for “Phase space”), which
may or may not be R

2n. Each point x ∈ P is still interpreted as a “possible state”
of a classical system, and we can still think of an observable quantity (like energy
or spatial position) as a function f : P → R. I adopt Penrose’s “abstract index”
notation to talk about invariant structures on phase space, denoting a vector va on P
with an index upstairs, and a covector wa with an index downstairs. The operation
of contraction (sometimes called “interior multiplication” or “index summation”)
between tensors will be indicated by a common index in both upper and lower
positions, such as wava. The unique exterior derivative on k-forms of a manifold
will be denoted da. I denote8 the symplectic form Ωab, its inverse by Ωab, and the
Poisson bracket by {· , ·}.

To describe how a classical system changes over time, we equip our symplec-
tic manifold (P,Ωab) with a distinguished smooth function h : P → R, which we
call the “Hamiltonian.” This h represents the energy at each point in phase space,
and also generates the possible trajectories of the system, given by the integral
curves that thread the associated vector field Ha := Ωbadbh. We denote the group

7For a reference on this approach, try (Geroch 1974) or (Marsden and Ratiu 2010).
8A symplectic form Ωab is a 2-form on P, which is closed (daΩbc = 0) and non-degenerate

(Ωabv
a = 0 ⇒ va = 0. The Poisson bracket on a pair of functions f, h : P → R is defined by

{f, h} := Ωab(dah)(dbf). In coordinate form, it is usually written in terms of partial derivatives,

{f, h} = ∂f

∂q
∂h
∂p

− ∂f

∂p
∂h
∂q

.
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of transformations describing how a system evolves along those possible trajectories
by ϕh

t : P → P, which maps an initial state x ∈ P to the state x(t) that occurs a
duration of time t later. Each ϕh

t has the property that d
dt

(

f ◦ ϕh
t

)∣

∣

t=t0
= Hadaf ,

for all functions f : P → R.

3.2.2. Defining invariance under translations and boosts. We noted that the pres-
ence of certain symmetries, such as invariance under spatial translations and Galilei
boosts, may make a classical system (P,Ωab, h) look “familiar.” In this section, we
will motivate and give precise expression to those symmetries. The beautiful gen-
erality of the Hamiltonian formulation is that a state in phase space can represent
anything at all, from the position of a particle to the angle of a swinging pendulum.
But we must now talk about spatial translations and Galilei boosts. This requires
introducing additional structure to guarantee we’re talking about position.

Following Woodhouse (1991, §4.5), we will talk about position in terms of
what is called a “maximal orthogonal set” (or sometimes a “real polarization”) on
P.

Definition 2. A maximal orthogonal set for a 2n-dimensional manifold P is a set

{
1

q,
2

q, . . . ,
n
q} of n smooth functions

i
q : P → R such that (i) {

i
q,

j

q} = 0 for each
i, j = 1, . . . , n, and (ii) if f is another smooth function satisfying {f,

i
q} = 0 for all

i, then f = f(q) = f(
1

q, . . . ,
n
q) is a function of the

i
q.

For example, if think of positions as points in R
n, and represent phase space

by the cotangent bundle P = T ∗
R
n, then the analogues of those positions in P form

a maximal orthogonal set9. This particular maximal orthogonal set allows us to
talk about position on the manifold P = T ∗

R
n. A maximal orthogonal set in the

abstract allows us to talk about position in classical mechanics for any arbitrary
manifold P.

Now that we have a structure we can refer to as “position,” we can define
“velocity” or instantaneous change in position over time. Since change over time
is given by the phase flow ϕh

t generated by h, the velocity of a function q is given
by q̇(t) := d

dt
(q ◦ ϕh

t ). In what follows, we will make use in particular of the initial
velocity q̇ of a classical system, given by

q̇ := q̇(0) =
d

dt
(q ◦ ϕh

t )

∣

∣

∣

∣

t=0

= Hbdbf = {q, h}.

With a definition of position and velocity in hand, we may now define what spatial
translations and Galilei boosts mean.

Definition 3 (Translations and Boosts). We take a translation and boost group
for a classical system (P,Ωab, h) to be a 2n-parameter family of diffeomorphisms
Φ(σ, ρ) : P → P, which forms a representation of R2n, and such that

(1) q ◦ Φ(σ, ρ) = q + σ
(2) q̇ ◦ Φ(σ, ρ) = q̇ + ρ

9That is, given a Cartesian coordinate chart {
1

q,
2

q, . . . ,
n

q} on R
n, the set {

1

q ◦ π,
2

q ◦ π, . . . ,
n

q ◦ π}
is a maximal orthogonal set for P, where π is the canonical projection, π : (q, p) 7→ q (Woodhouse
1991, §4.5).

8



Copyright Philosophy of Science 2013
Preprint (not copyedited or formatted)

Please use DOI when citing or quoting Bryan W. Roberts

where q = {
1

q, . . . ,
n
q} is a maximal set of orthogonal functions, and q̇ is the corre-

sponding initial velocity. We define two associated diffeomorphism groups ϕs
σ :=

Φ(σ, 0) and ϕr
ρ := Φ(0, ρ), and refer to them as the translation group and the boost

group, respectively. When these groups have a generator, we denote those gen-
erators by s : P → R and r : P → R respectively, and ask that they satisfy

{
i
s,

j

s} = {
i
r,

j

r} = 0 for all i, j, to guarantee the translations and boosts are defined
in n independent directions.

The notion of “invariance” under translations and boosts will be similar to
what we have discussed so far: if a trajectory is possible, then so is the transformed
trajectory. We may state this precisely as follows. Let Ha be a vector field for a
given Hamiltonian h, which represents a set of possible trajectories. Let Φ : P → P
some transformation, and let us use a starred Φ∗ and Φ∗ to denote its pullback and
pushforward. For a classical system to be invariant under Φ means that transformed
trajectories H̃a := Φ∗H

a are also a set possible dynamical trajectories with respect
to some Hamiltonian function h̃; that is, H̃a = Ωbadbh̃ for some smooth h̃ : P → R.

One can show that H̃a := Φ∗H
a if and only if Φ is symplectic, meaning that it

preserves the symplectic form: Φ∗Ωab = Ωab (Marsden and Ratiu 2010, Proposition
2.6.1). So, requiring classical systems to be invariant under translations and boosts
can be expressed by the requirement that translations and boosts be symplectic.
This motivates the following simple definition.

Definition 4 (Translation and Boost Covariance). A classical system (P,Ωab, h)
is invariant under translations and boosts if there exists a translation and boost
group Φ(σ, ρ) on P such that each element of the group is symplectic, in that
Φ∗(σ, ρ)Ωab = Ωab for all σ, ρ.

3.2.3. Establishing time reversal invariance. With these definitions in hand, we may
now formulate our main result. We take the time reversal operator to be a transfor-
mation τ : P → P such that τ∗q = q and τ∗q̇ = −q̇. The time reverse of a classical
system (P,Ωab, h) with Hamiltonian vector field Ha is then the transformation that
takes each integral curve c(t) of Ha to τ ◦ c(−t).

Proposition 2. If a classical system (P,Ωab, h) is invariant under translations and
boosts, then it is time reversal invariant, in that if c(t) is an integral curve of the
Hamiltonian vector field generated by h, then so is τ ◦ c(−t).

The proof of this proposition makes use of a lemma, which shows that trans-
lation and boost invariance places strong constraints on the form of the Hamiltonian
and of q and q̇ (for a proof, see Roberts 2013).

Lemma 3. If (P,Ωab, h) is translation and Galilei boost invariant with respect to a
maximal orthogonal set {

1

q, . . . ,
n
q}, then q and µq̇ form a local orthonormal coordinate

chart {q, µq̇} = 1 for some (non-zero) µ ∈ R, and h = (µ/2)q̇2 + v(q) for some
function v of q alone.

From this lemma our result follows straightforwardly.

Proof of Proposition 2. The lemma shows that q and µq̇ form a local orthonormal
coordinate chart. This implies that the symplectic form Ωab can be expressed as the

9



Copyright Philosophy of Science 2013
Preprint (not copyedited or formatted)

Please use DOI when citing or quoting Bryan W. Roberts

product Ωab = (daq)(dbµq̇). Let τ : P → P be the mapping such that τ∗q̇ = −q̇ and
τ∗q = q. Then,

τ∗Ωab = τ∗(daq)(dbµq̇) = (daτ
∗q)(dbτ

∗µq̇) = −(daq)(dbµq̇) = −Ωab.

Moreover, since the lemma guarantees that h = (µ/2)q̇2 + v(q), we have τ∗h =
(µ/2)(−q̇)2 + v(q) = h. But if τ∗Ωab = −Ωab and τ∗h = h, then it follows from
Proposition 4.3.13 of Abraham and Marsden (1978, p.308) that (P,Ωab, h) is time
reversal invariant in the sense we have stated. �

4. Conclusion

The common dogma that classical mechanics is time reversal invariant re-
quires careful qualification. There are various ways that it can go awry, even for
conservative systems, in the presence of uncommon interactions such as velocity-
dependent forces. So, what makes the “familiar” classical systems time reversal
invariant? I have argued that two familiar ways of characterizing classical mechani-
cal systems are enough. Time reversal invariance is guaranteed when momentum is
proportional to velocity, and it is guaranteed when we have invariance under spatial
translations and Galilei boosts. Although these are not the only kinds of time rever-
sal invariant systems, I hope that they may provide a start toward understanding
what kinds of classical systems are.
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