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This article argues that quantum observables can include not just self-adjoint operators but
any member of the class of normal operators, including those with nonreal eigenvalues. Con-
crete experiments, statistics, and symmetries are all expressed in this more general context.
However, this more general class of observables also requires a new restriction on sets of
operators that can be interpreted as observables at once, called ‘sharp sets’.
1. Introduction. There is an extraordinary freedom of labeling when using
language to describe physical phenomena. Consider how a primitive society
might label four locations on a rock. Using language that is available to them,
they might use cave drawings to identify the four poles, as in figure 1.

More advanced societies might label the same four locations using pairs
of real numbers like (1, 0), (0, 1), (21, 0) and (0,21). Or, they might label
the locations using complex numbers: 1, i,21, and2i. Nothing at this stage
prevents us from labeling the rock however we please. Of course, the term
‘imaginary’ was introduced historically to refer to some complex numbers.
However, nothing about this historical fact prevents us from using them to-
day. Indeed, complex numbers are often used in the context of classical phys-
ics, to represent everything from concrete physical quantities like the amplitude
and phase of a wave to more abstract quantities like complex-valued classical
fields.

Meanwhile, in quantummechanics, the situation is not so egalitarian. The
textbooks are nearly unanimous in declaring that it is impossible to use com-
plex numbers to represent observable phenomena. Only the real-number eigen-
values of self-adjoint (or Hermitian) operators are permitted to represent ob-
servations—or so the orthodoxy goes. From a random sampling of textbooks,
we find: “the expectation value of an observable quantity has got to be a real
number (after all, it corresponds to actual measurements in the laboratory, us-
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ing rulers and clocks and meters)” (Griffiths 1995, sec. 3.3). And again, “we
expect on physical grounds that an observable has real eigenvalues. . . . That
is why we talk about Hermitian observables in quantummechanics” (Sakurai
1994, sec. 1.3).

This orthodoxy is often repeated by philosophers. For example, Albert
introduces his “principle (B),” that linear operators represent measurable prop-
erties, and then writes, “it’s clear from principle (B) (since, of course, the val-
ues of physically measurable quantities are always real numbers) that the
operators associated with measurable properties must necessarily be Her-
mitian operators” (1992, 40). For each example of this orthodoxy, there are
many more textbooks assuring us of the same thing: observable outcomes in
quantum theory must be associated with real-number eigenvalues.

The thesis of this note is that the orthodoxy is mistaken. Operators with
nonreal eigenvalues can play the role of observables too, in which case one
might call them ‘unreal observables’. Indeed, many of the very arguments that
have been used to establish self-adjointness as a criterion for observables can
be applied to non-self-adjoint operators as well. In what follows, I identify
some of these arguments, as well as one limitation that restricts which sets
of non-self-adjoint operators can be interpreted as observables at once.

To keep this discussion short, I restrict attention to one tractable class of
operators, the so-called normal operators (to be defined below). This will al-
low us to see in simple terms how operators with nonreal eigenvalues may
play the role of observables in quantum theory. However, this is only the be-
Figure 1. Labeling freedom on the surface of a rock.
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ginning: the non-self-adjoint operators can be generally disassembled, classi-
fied, and shown to provide fruitful ways to extend orthodox quantum theory
when considered as observables (Roberts 2016). These more general classes
of observables allow new philosophical interpretations and, in some cases,
some new physics.

The article proceeds as follows. After introducing the mathematics of
self-adjoint and normal operators in section 2, we turn in section 3 to one
of the earliest historical arguments for self-adjointness, Dirac’s ‘simultaneous
measurability argument’, showing that it is actually an argument for unreal ob-
servables as well. Section 4 shows how the statistical predictions of quantum
theory work with unreal observables, and section 5 observes that symmetries
make sense in this context as well. However, there can be too much of a good
thing: in section 6, we turn to a limitation of this perspective, by identifying a
restriction on the sets of normal operators that can be interpreted as observa-
bles at once, called ‘sharp sets’.

2. Mathematics of Normal Operators. We begin with some mathemati-
cal background. Let H be a Hilbert space with a countable basis. In finite
dimensions, a linear operator A satisfying Aw 5 A*w for all vectors w is
called self-adjoint, or sometimesHermitian. In infinite dimensions, an addi-
tional condition is needed to guarantee self-adjointness: A and A* must
have the same domain (although nothing about the current discussion will
turn on the complications arising from infinite dimensions). A normal oper-
ator A :H→H is a linear operator that commutes with its adjoint, AA* 5
A*A. So, every self-adjoint operator is normal, but not conversely. For exam-
ple, a unitary operator is normal but not self-adjoint.

A normal operator can always be written in terms of an ‘independent
pair’ of self-adjoint operators, in the following sense. Every linear operator
A can be written A 5 B 1 iC, with B and C self-adjoint, by defining B ≔
(A* 1 A)=2 and C ≔ i(A* 2 A)=2. A simple calculation then shows that,
when written in this form, A satisfies the condition AA* 2 A*A 5 2i(CB 2
BC). If the left-hand side of this equation is zero, which is what being nor-
mal means, then B and C commute and vice versa. So, A 5 B 1 iC is normal
if and only if BC 5 CB. In quantum theory, commuting operators describe
observables that are statistically independent; thus, one can view a normal op-
erator A 5 B 1 iC as consisting in a pair of independent self-adjoint oper-
ators B and C.

Given a linear Hilbert space operator A, the set of complex numbers l
such that A 2 lI has no inverse is called the spectrum of A. Those l that
can be written in the form Aw 5 lw for some w are called eigenvalues. A
discrete or pure point spectrum operator is one whose spectrum consists en-
tirely of eigenvalues, which is the case whenever H has finite dimensions.
It is a simple exercise to show that a self-adjoint operator has a spectrum con-
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sisting entirely of real numbers.1 However, the central fact of interest for us
is that for normal operators, the converse is also true:
1. In
l ∈ C
inner

2. Th
berg

se sub
Fact. A normal operator has an entirely real spectrum if and only if it is
self-adjoint (Rudin 1991, theorem 12.26).
This means that every non-self-adjoint normal operator has a spectrum that
is not entirely real. For this reason, we dub such operators ‘unreal’. Our aim
is now to understand the extent to which they can be observables, too.

3. Dirac’s Simultaneous Measurability Argument. We will soon turn to
a practical discussion of experimental statistics for unreal observables. But it
is instructive to begin with an interesting early argument for self-adjointness,
due to Paul Dirac.2 In the first edition of his influential textbook, he called a
quantum observable “analogous to the value of a variable at a particular in-
stant of time” in classical physics (Dirac 1930, 25). However, after intro-
ducing the algebraic properties of observables, Dirac goes on to suggest that
observables in quantum mechanics involve an extension that goes beyond
this classical analogy: “It is convenient to count sums and products of any
observables as other observables. This involves, as we shall see shortly, an
extension of the meaning of an observable to include the analogues of com-
plex functions of classical dynamical variables. . . . An observable is thus not
necessarily a quantity capable of direct measurement by a single observation,
but is a theoretical generalization of such a quantity” (27–28). Dirac is speak-
ing here about an “algebra of observables” in a way that remains common
today and that includes both Hermitian and non-Hermitian operators. How-
ever, he is quick to add (as also remains common) that when it comes to the
physical interpretation, observables “must be understood to be all real ob-
servables” (30).

This hedge against non-Hermitian or “complex” operators became con-
siderably more positivistic in the second edition, where Dirac began to refer
to non-Hermitian or “complex” operators as having “no meaning” as ob-
servables: “Such a complex function may, of course, be considered formally
as a complex observable, but since no meaning can be attached to the mea-
surement of a complex observable, it is preferable to restrict the word ‘ob-
servable’ to refer to real functions of dynamical variables and to introduce a
corresponding restriction on the linear operators that represent observables”
finite dimensions: letA 5 A* and letw be a (nonzero) eigenvector ofAwith eigenvalue
.Thenl h w, w i5 h w, lw i 5 h w, Aw i5 h Aw, w i5 h lw, w i5 l* h w, w i. The
product is nondegenerate, so h w, w i ≠ 0. Therefore, l 5 l*.

e original arguments for self-adjointness were stated by Born, Jordan, and Heisen-
in the 1920s; see Roberts (2016) for a more detailed discussion of the history.
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(1935, 28–29). His argument for this was given in a brief footnote in the
second edition,3 which is expanded in the third edition into the main text.
Having already discussed the fact that any operator can be written in the
form A 5 B 1 iC with B and C self-adjoint, Dirac writes: “One might think
one could measure a complex dynamical variable by measuring its real and
pure imaginary parts. But this would involve two measurements or two ob-
servations, which would be all right in classical mechanics, but would not
do in quantum mechanics, where two observations in general interfere with
one another. . . . We therefore have to restrict the dynamical variables that
we can measure to be real” (1947, 35). In other words, a linear operator A 5
B 1 iC cannot in general be observed via a single direct measurement be-
cause the joint observation of the two Hermitian components B and C might
not itself be an observable. Dirac thus concludes that we must restrict observ-
ables to the Hermitian operators.

However, if two operators commute, then they can be ‘jointly observed’
in exactly the sense required by Dirac, in that there exists a common set of
eigenvectors (or more generally a spectral decomposition) for the two oper-
ators. This leaves open a possibility: Dirac’s concern can be satisfied whenever
A 5 B 1 iC is such that B and C commute. As we have seen, this turns out
to be equivalent to the condition that A is normal. Thus, what Dirac’s argu-
ment actually shows is that all normal operators, and not just the self-adjoint
ones, are candidates for observables in quantum theory.

4. Experiments with Unreal Observables. Let us now turn to amore con-
crete discussion of experiments and statistics using unreal observables. In
quantum theory, observables associate experimental states with symbols. Like
the practice of labeling a rock, the symbols we use do not need to be real
numbers; the relevant quantitative information can be expressed by complex
numbers as well. For example, when a fermion deflects up or down along the
z-axis after passing through the Stern-Gerlach apparatus, we conventionally
label the outcomes 11 (spin up) and 21 (spin down), the eigenvalues of the

Pauli matrix jz 5
�
1

21

�
. But we could equally have labeled those out-
comes 1i and 2i, the eigenvalues of the anti-Hermitian matrix ijz. This ma-
trix has the same eigenvectors as jz and can be associated with commutation
relations that look very similar to the usual ones. The principal difference is
that ijz has complex eigenvalues: it is an unreal observable. But this is no dif-
ference of physical interest since these are just alternative labels for the same
physical experiment, illustrated in figure 2.
3. Dirac’s footnote reads: “It would not do to measure separately the real and pure imag-
inary parts, because this would mean two measurements, which in general interfere with
one another” (1935, 29).
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The statistics for normal operators like ijz works out the same as for self-
adjoint ones because the statistics depends only on the eigenvectors and not
the eigenvalues. Let A be an operator with complex eigenvalue l and corre-
sponding eigenstate J. Then the transition probability from an arbitrary state
w to J is given by the usual Born rule, j h J, w i j2. In particular, since ijz has
the same eigenvectors as jz, it displays the same statistics. Moreover, if the
eigenvectors of any observable A form an orthonormal basis, then its expec-
tation value when the state w is prepared will still be given by h w, Aw i 5
on

i51lij h Ji, w i j2. Such an expectation value is generally a complex number
when A is normal. But this is to be expected because the eigenvalues are
complex.

Normal operators conveniently allow the ordinary quantum statistical
rules because the spectral theorem applies to them.4 In finite dimensions,
the spectral theorem implies that given a self-adjoint operator A, there exists
an orthonormal basis of eigenvectors J1, J2, . . . , Jn of A. That fact is what
allowed Born to view a vector w as defining a probability distribution pw(Ji) ≔
j h Ji, w i j2 since it implies on

i pw(Ji) 5 1. In other words, part of the phys-
ical significance of the spectral theorem is that it allows us to view a state as
defining a probability distribution on definite experimental outcomes.

Although it is not often emphasized in quantum theory textbooks, the spec-
tral theorem holds not only for self-adjoint operators but for normal operators
Figure 2. Spin up and spin down labeled with complex numbers.
4. A precise statement and proof can be found in many textbooks, such as Conway
(1990, theorem X.4.11). For a more detailed discussion in the context of non-self-adjoint
observables, see Roberts (2016).
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(Roberts 2016). So, the statistical foundation for quantum theory is guaranteed
for all normal operators, even when they do not have a real spectrum.

In his classic textbook on quantum mechanics, Messiah used the spectral
theorem as an argument that we should treat self-adjoint (Hermitian) operators
as observables, writing, “all . . . operators do not possess a complete, orthonor-
mal set of eigenfunctions. However, the Hermitian operators capable of rep-
resenting physical quantities possess such a set. For this reason we give the
name ‘observable’ to such operators” (1999, sec. V.9). Like Dirac, it turns
out that Messiah’s argument actually implies that we should give the name
‘observable’ to the much larger class of normal operators as well since all these
operators possess a ‘complete, orthonormal set of eigenfunctions’ in the re-
quired sense.

5. Symmetries. If we allow normal operators without a real spectrum to
be observables, can we still make sense of symmetry in quantum theory?
One might take what follows to be a concern. There is a fundamental rela-
tionship between self-adjoint operators and continuous groups of symme-
tries in quantum theory, which is given by Stone’s theorem (see, e.g., Blank,
Exner, and Havlíček 2008, theorem 5.9.2). This says that, if Us is a strongly
continuous one-parameter unitary group that satisfies UrUs 5 Ur1s for all r,
s ∈ R, then there exists a unique self-adjoint operator A such that Us 5 e isA

for all s. A notable feature of the symmetry group Us is that it commutes
with A. This has the consequence that A is conserved along the unitary
group parameter s, in that A(s) ≔ U*

s AUs 5 A.
This result, reminiscent of Noether’s theorem for symmetries of a Lagrang-

ian in variational theories, plays an important role in physical reasoning. Trans-
lation symmetries are associated with a measurable quantity known as mo-
mentum that is conserved along the translations; rotational symmetries have
angular momentum that is conserved along rotations, and so on. One can imag-
ine an interlocutor arguing that this is a characteristic property of observables:
an observable generates a canonical group of symmetries along which it is
conserved. This would allow one to conclude that observables must be self-
adjoint.

However, such a requirement is difficult to justify in a principled way. The
argument makes no appeal to ‘observation’ but rather to the nature of contin-
uous symmetries; as a consequence, it is difficult to justify using it to define
observables. And after all, the generator of the unitary group Us 5 eisA is not
strictly speaking the self-adjoint operator A but rather the anti-Hermitian op-
erator iA. So, as an argument for self-adjoint observables this observation car-
ries little force.

Moreover, even if one did find such an argument convincing, there is a
generalization of Stone’s theorem that holds for normal operators as well.
Suppose that one is mainly convinced that an observable should generate
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a group along which the observable is conserved, whether or not that turns
out to be a group of symmetries. That property turns out to hold of all normal
operators. In particular, every bounded normal operator A generates a strongly
continuous one-parameter semigroup Sb 5 ebA of bounded normal opera-
tors along which it is conserved, and conversely, every strongly continuous
semigroup of bounded normal operators Sa has a bounded normal generator
A, in the sense that Sb 5 ebA (Rudin 1991, theorem 13.38). Thus, the argu-
ment from Stone’s theorem for self-adjoint observables is difficult to moti-
vate, and at any rate, there are interesting generalizations of Stone’s theorem
that hold for all normal operators as well.

6. The Limitation of Sharp Sets. The discussion above shows that a nor-
mal operator can be treated as an observable, just as a self-adjoint operator can.
This sort of egalitarianism led Penrose to write that “I shall demand only that
my quantum ‘observables’ be normal linear operators, rather than the stronger
conventional requirement that they be Hermitian” (2004, 539). Lévy-Leblond
(1976) adopted a similar position, observing that since a self-adjoint operator
has spectral decompositionA 5 oiliEi, everyBorel function f of a self-adjoint
operator does too. However, the suggestion that all of the normal operators
may be observables may go too far. There is an important sense in which not
all sets of normal operators can be interpreted as observables at once.

To see why, let us return to the Stern-Gerlach apparatus. Our discussion
above showed that self-adjoint operators like the Pauli spin matrices can be
treated as observables in much the same sense as their anti-Hermitian, nor-
mal operator counterparts. However, we should not go so far as to assume that
we may choose any set of normal operators we like to represent the outcomes
of spin experiments in the same interpretation. The problem arises out of the
facts that

jyjz 5 ijx, jzjx 5 ijy, jxjy 5 ijz:

Supposewe adopt an interpretation inwhich the ordinary Pauli matrices jx, jy,
and jz are observables. Then the products jyjz, jzjx, and jxjywould each repre-
sent the ‘joint’ observation of spin in two orthogonal directions. But the joint
observation of spin in orthogonal directions is not possible. Famously, a spin
eigenstate in any given direction is a superposition of eigenstates in the or-
thogonal directions. As a consequence, if jx, jy, and jz are observables, then it
follows that ijx 5 jyjz, ijy 5 jzjx, and ijz 5 jxjy are not.

But, suppose we adopt an interpretation in which the non-self-adjoint
operators ijx and ijy are observables, in addition to jz. These three operators
are mutually incompatible observables, so their products do not correspond to
any physical observations. This implies by the relations

ijyð Þ ijxð Þ 5 ijz, jz ijyð Þ 5 jx, ijxð Þjz 5 jy
This content downloaded from 158.143.086.202 on January 31, 2018 11:38:55 AM
se subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



UNREAL OBSERVABLES 1273
that ijz, jx, and jy are not observables. So, we have a choice available to us.
We have the freedom to interpret the set {jx, jy, jz} as containing observables
or the set {ijx, ijy, ijz} as containing observables. This is our prerogative in
choosing how to label the outcomes of the Stern-Gerlach experiment. How-
ever, the result is not a free-for-all: if we take the first set as observables, then
the second is not and vice versa.

If not all sets of normal operators can be interpreted as observables at
once, which ones can? Here is a proposal. When two normal operators fail
to commute, they are called incompatible. Incompatible observables do not
have a common basis of eigenvectors (or more generally a common spectral
resolution). As a consequence, if A and B are incompatible observables, their
‘joint observation’AB is not defined. So, a product of incompatible observ-
ables may be viewed as an ‘unobservable’ in quantum theory. Incompatible
observables are an essential aspect of quantum theory and cannot be elimi-
nated. Instead, the proposal here is that an adequate set of observables can-
not contain any products of incompatibles. This is captured by the following
definition.
All 
Definition. A sharp set S of Hilbert space operators is one such that, if
A 5 BC for some A, B, and C in S, then BC 5 CB. A maximal sharp
set S with respect to an operator algebra A is one such that R ⊆A is a
sharp set with S ⊆R only if R ⊆ S.
Our proposed restriction is that, if we wish to interpret multiple normal
operators as observables at once, then those operators must form a sharp set.
Any given normal operator may be an observable, but a collection of them
must be sharp. Moreover, given an operator algebra A (such as the set of
matrices on a two-dimensional Hilbert space), if we wish for our set of ob-
servables to be ‘as large as it can be’, then the set of all observables must be
a maximal sharp set inA.

A few observations about sharp sets: every set of self-adjoint operators
is sharp. For, given any self-adjoint operators A, B, and C such that A 5 BC,
we have that

BC 5 A 5 A* 5 BCð Þ*5 C*B* 5 CB,

so the set is sharp. In particular, S 5 fjx, jy, jzg is a sharp set. However, there
are also many sharp sets containing non-self-adjoint operators, such as S0 5
fijx, ijy, jzg. In contrast, the union S [ S0 is not a sharp set since ijx 5 jyjz

is a product of noncommuting operators, and all three are normal operators in
the set.

There is a great deal that remains to be understood about the structure of
the maximal sharp sets apart from these simple facts. For example, one would
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like to be able to identify a maximal sharp set containing S0 5 fijx, ijy, jzg
among the 2 � 2 matrices and to understand the relationship between this
set and the maximal sharp set of self-adjoint operators. For now, these remain
open problems. Given the discussion above, it seems to be a reasonable hy-
pothesis that transforming between two such sets would be a symmetry of
quantum theory, in that it would preserve the predictive structure up to a re-
labeling. Notably, such a transformation would not generally be unitary since
unitary transformations preserve the spectra of operators. Sharp sets thus in-
troduce an apparently new kind of symmetry into quantum theory.

7. Conclusion. Unreal observables, taken to be normal operators that are
not self-adjoint, serve just as well to represent observations in quantum the-
ory as self-adjoint observables do. We have seen that nothing is lost in the
predictive structure of quantum theory by making use of these more general
observables and that the standard reasons given for ignoring unreal observ-
ables fall short. Real numbers are a red herring, the quantum statistical al-
gorithm includes unreal observables, and quantum symmetries make sense in
the context of unreal observables as well. There is however a new limitation
introduced by opening up observables to all normal operators, which is that
products of incompatible observables are not themselves observable. Re-
stricting observables to sharp sets avoids this problem and also introduces
an interesting new notion of symmetry into quantum theory. But this is not a
reason to avoid unreal observables; if anything, it is a reason for further study
of their rich structure.
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