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Infinite Pains:
The Trouble with Supertasks

John Earman and John D. Norton

1 Introduction

A supcrtask is a task which requires that an infinite number of acts or
operations be performed in a finite span of time. Supertasks have tor-
mented us ever since Zeno noticed that a runner must traverse an infinite
number of cever smaller intervals if he is to complete the race. The
torment has proven immensely profitable, since it has forced us to clarify
our notions ol infinity, continuity and continuum, a process that has been
significantly furthered even within the last century. However, in spite of
millennia of work, the literature on supertasks, to which Paul Benacerraf
(1962) madc a seminal contribution, remains in an unfinished and un-
satisfactory state. :

Our purpose in this paper is pessimistic and optimistic. On the onc
hand we wish 1o indicate a direction of rescarch on supertasks which we
believe is no longer philosophically informative. On the other we will
indicate a ncw dircction which promises to be revealing in so far as it
succeeds in drawing together notions of infinity and logic with some of
the most vexing, outstanding problems in spacetime physics. And we
shall indicate how Paul Benacerraf’s work has pointed towards both our
conclusions.

Our pessimistic conclusion is that our notions of infinity and continu-
ity are now so well developed that supertasks have lost their power to
force refinement of these notions. That is not to say that supertasks are
now unworthy of study, for puzzling contradictions arc still delivered by
them. Our point is that the contradictions they deliver no longer reveal
deliciencics in our concepts. We shall urge that the contradictions arising
in known supertasks derive from [allacious reasoning or indefensible
assumptions and these contradictions can be removed without requiring
us to assume some conceptual incoherence in the very notion of
supertask. In sections 2 to 7, in order to make good this claim, we will
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review and defuse a sclection of supertask paradoxes which, by general
consensus, represent the most serious challenges to the coherence of
supertasks. In scction 8 we will then try to identify some patterns of
fallacious reasoning that have contributed to the notion that supcrtasks
arc incohcerent.

Our optimism pertains to a new specics of supertask that can be used
to address within the philosophy ol mathematics finitist scruples indi-
cated by Weyl in section 9. Traditionally we conceive of the finite time
duration of the supertask as experienced by the person or machine
altempling to carry out the infinite number of acts. These we call “proper
supertasks.”™ If an infinity of timc is allowed to the agent that carrics out
the infinity of tasks but a separate observer witnesses the completion of
the infinity of acts in a {inite time, then we have a “bilurcated supertask.™
We will show in section 10 how bifurcated supertasks may be carried out
in certain relativistic spacetimes. In such spacetimes, we may build an
infinity machine which would allow an observer to witness the comple-
tion of an infinite computation. In section 11 we will indicate how these
may be used to construct computing machines that transcend the normal
boundaries of finitc computation and, in section 12, we will explore the
computational limits of these machines. In section 13 we will consider
the implications of these machines for the philosophy of mathcmatics.
Finally, scction 14 offcrs some concluding remarks.

2 Zeno’s Dichotomy

The archetype of the supertask is Zeno's celebrated “BDichotomy.”
According to it, a runner can never complete the race since he must
first run to the hall way point, and then to the hall way point of
the remainder and so on indefinitely.’ The standard resolution simiply
acceplts as unobjectionable Zeno's notion that to complete a journey
f[rom A to B, a runner must complete an infinite number of subjourncys
- [rom A to the midpoint ol AB, then from there to the threc-quarter
point, etc. but claims that this of itself does not prevent completion ol
the journey.

Max Black (1950-51) was unconvinced. Like most modern skeptics of
the standard resolution, he accepted that the total distance traversed
1/2 + 1/4 4+ 1/8 + .. . approaches the finite valuc of unity in some suitable
sense of the limit. The difficulty he identified lay deeper. He reasoned
that it is logically impossible to complete an infinite number of journcys
in a finite time, no matter how much laster or casicr cach successive
journey becomes. John Wisdom (1951-52) agreed in the main with
Black but added his own alternative resolution which appealed o the
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idea that points of physical space have a finite extension. Whitrow (1980,
scction 4.4) sought a similar escape in the assumption that time is not
continuous.

Black’s fallacy lics in confusion of two senses ol “incomplctable™ and
its allure lics in the case with which we can shide between the two senses.®
An infinite sequence of acts is incomplctable in the sense that we can
nominatc no last act, the act that completes it. An infinite sequence of
acts may also be incompletable in the sense that we cannot carry out the
totality of all its acts, even though cach act individually may be execut-
able. This may become the case, for example, in the runner’s journey, il
the runner is required to spend equal time in each of the infinitely many
intervals. An infinite sequence of acts cannotl be completed in the first
sense, but that certainly does not entail that it cannot be completed in the
sccond sensc.

The deeper problem with Black and Wisdom’s conclusion is that it
preempts the use of continua in physical theories involving motion. If
Wisdom’s escape were correct, we would have a philosophical demon-
stration of the falsity of the major theorics of modern physics, all of
which take for granted that spacetime is a continuum. Of coursc, it is
conceivable that attempts to marry quantum physics and the general
theory of relativity will force the abandonment of the continuum concept
for spacc and time. But the notion that armchair philosophizing — and
not very good armchair philosophizing at that — can achieve the same aim
gives philosophy a bad name.

While this unhappy outcome would seem to protect Zeno's runner
from charges of logical inconsistency, that protection nced not extend to
all supertasks. Such was Jamcs Thomson’s (1954-55) claim. He agreed
with Black that it is logically impossible to complete an infinity of acts —
as long as they are honest-to-goodness acts and not the debased imita-
tions that Zeno has tried to slip by us in the Dichotomy. Here is
Benacerral's admirable summary of Thomson’s position.

Il we have made a continuous uninterrupted journey from A to
B ... [then] our motion can be analyzed as covering in turn AA’ [172 of
ABLA'A" [1/4 of AB], etc. [But] to say of someonc that he has completed
an infinite number of journeys (in this sense) is just to describe in a
different (and possibly somewhat peculiar) way the act he performed in
completing the single continuous journey from A to A. No absurdity is
involved with the feat. If, however, we think of “completing an infinite
number of journeys™ as completing an infinitc number of physically dis-
tinct acts, each with a beginning and an end, and with, say, a pausc of finite
duration between any two, then according to Thomson ... it is logically
absurd that one should have completed an infinite number of journcys.
(Benacerraf, 1962, p. 105)
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Thomson’s idca is that a genuine supertask involves an infinity of
“physically distinct acts™ and that genuine proper supertasks are logically
impossible.

This attempt Lo separate the genuine and impossible supertasks from
the fake and achievable fails in so far as it turns out to be possible to
represent the journey of Zeno's runner as an infinite sequence of distinct
acts. Therefore any inhcrent impossibility of a supertask would still be
inherited by motion in continua. To see this, supposc that finite pauses
between subtasks are required of “physically distinct acts,” c.g. the run-
ner is required to run in a staccato fashion, pausing at the onc-half mark,
the three-quarter mark, ctc. Mathematically there is no problem in con-
structing such an example, the most obvious prescription being that the
runner traverses 1/2 of AB in 1/4 second and then rests for 1/4 second,
traverses the next 1/4 of AB in 1/8 second and then rests for 1/8 sccond,
ete. However, as Griinbaum (1969, p. 212; 1970, p. 212) notcs, since this
prescription has the runner complete cach of the staccato runs at the
same average speed, at the terminal instant his velocity will have a finite
discontinuity while his accelcration will have an infinite discontinuity.
Since there are no hard and fast criteria for what counts as kinematically
and dynamically possible in the Newtonian sclting, it is unclear whether
such discontinuitics disqualify the staccato runner from such a status.
Fortunately there is no need to dwell on this matter since Richard
Fricdberg (as reported by Griinbaum 1969, pp. 213-14: 1970, pp. 215-16)
has shown how the constant average velocity of the above simple minded
staccato runncer can be replaced with diminishing average velocitics in
such a way that his velocity and acceleration functions display no
discontinuities. If a(r) is the acceleration function of this sophisticated
staccato runner and m is his mass, then the force function is defined to be
F(1) =:ma(1). We can imaginc that in some possible Newtonian world
£(1) 1s the force that the runner expericnces, say, as a result of being in an
anti-Eleatian ficld. Newton’s laws of motion then guarantee that the
runner performs a supertask,

What this example and the one in the following section furnish are
relative consistency proofs — proofs of the consistency of the proposition
that a genuine proper supertask is completed, relative to the assumplion
that Newtonian mechanics harbors no internal contradictions. We can
offer no proof of the lattcr assumption and, hence, no absolute proofl of
the consistency of genuine proper supertasks. At the same time, we see
no reason to think that the completability of supertasks within the
Newtonian framework gives any reason to suspect that the framework is
not consistent.

Of course, by loading demands onto the runner, we can assure that his
staccato run is incompatible with plausible constraints for kinematical or
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dynamical possibility within the Newtonian framcwork. For ¢xample,
Griinbaum (1969, 1970) notes that requiring the runner not only (o pausc
between successive subruns but also to plant a flag, which must be
rotated cach time through a minimal angle, leads at the terminal instant
to an infinite discontinuity in the velocity of his hands.* But the fact that
some supertasks arc kinematically or dynamicaily impos:siblc is no more
surprising or disturbing than the fact that some ordinary tasks are
kincimatically or dynamically impossible.

3 The Bouncing Ball

Can an infinity of physically distinct actions be completed in a finile
time? The analysis of the staccato run scems to suggest iF can. Howcv_cr
our imagination may balk at the problem of concciving circumstances in
which the anti-Eleatic force function F(r) may arisc. That problem disap-
pears if we consider the bouncing ball, which scems to give as compact an
itlustration as we can expect of the logical consistency of completing an
infinity of acts in a finite time, even when there are discontinuitics in the
physical quantitics. .

A ball bounces on a hard surface. The successive bounces are, we
submit, “physically distinct™ even though there is no pause l)etyvccn
them. With each bounce its speed on rebound is reduced to a fracq()n k
of its speed immediately prior to the bounce, where 0 <Ck < I (sce I.Tlgure
11.1). We assume a somewhat idealized ball which is perfectly elastic and

e

A=k  At=k? At=kK3

At=1

Figure 11.1  The bouncing ball
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for which each bounce takes no time. Under these assumptions, the ball
cannot come to (vertical) rest after finitely many bounces. IFor no bounce
can be the last: cach is followed by another with a fraction & of its initial
speed. In classical mechanics, the time between bounces is directly pro-
portional to the initial speed of the ball. Therefore il we assume that the
time between the first and second bounce is unit time, the times between
the successive bounces will form a gcometric scrics, 1, k, k%, k%, ... The
sum of the series is 1/(1 — k), which is finitc. So the ball completes an
infinitc number ol bounces in coming to rest in a finite time, thereby
compleling a supertask.

The bouncing ball is not paradoxical in any obvious way. unless one is
simply offended by the notion that it will complete infinitely many
bounces in a finite ime. Of course, only an idealized ball can behave in
this way. All real balls arc deformed somewhat on bouncing and will
ceasc Lo bounce off the table's surface alter some finite number of
bounces. However, the issue is not whether the idealized ball could be
realized in our world. It is whether there is some consistent sctling in
which it can execute its behavior. Our claim is that there is a consistent
selting and, moreover, one that is not all that far away in possibility space
from the actual world.

4 The Thomson Lamp

There secms little prospect Zeno's Dichotomy hides genuine paradox or
that the very notion of completing an infinite sequence of acts is logically
contradictory. Yet, in his quest to prove the latter, Thomson (1954-55)
generated a supertask that purports to be logically contradictory.

Starting at 11:59 PM a lamp is switched ON and OFF more and more
rapidly according to the following schedule:

Stage Operation Tinmie of completion

1 Switch the lamp to the 11:59.5 PM
ON position

2 Switch the lamp to the 11.59.75 PM
OFF position

3 Switch the lamp to the 11.59.875 PM

ON position

etc. clc. cle.

At12:00 PM the lamp must be cither be in the ON state or the OFF state.
Thomson argued that neither state is possible. The lamp cannot be ON
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{(he reasoned) because for every time 7 <2 12:00 PM such that the lamp is
ON there is a " such that ¢ << ¢ < 12:00 PM such that the lamp is OFF.
For the exactly similar rcason the lamp can’t be OFF at 12:00 PM.
Contradiction.

The argument is seductive, but fallacious and Benacerral (1962)
showed how. From Thomson’s schedule of switching

it follows only that there is no time between [11.59 PM] and {12:00 PM} at
which the lamp was on and which was not followed by a time also before
[12:00 PM] at which it was off. Nothing whatever has been said about the
lamp at [12:00 PM] or later. (p. 107)

Indced il the supertask is to force a contradiction then we must

suppose that a deseription of the physical state of the lamp at [12:00 PM|
(with respect to the property of being on or off) is a logical conscquence of
a description of its state (with respect to the same property) at times prior
Lo {12:00 PM]. (p. 108)

To put it another way, the lamp is not paradoxical since any lamp
sctting at 12:00 PM is compatible with the schedule of switching prior to
12:00 PM.

The point is made by observing that we can conccive of plausible
consistent mechanisms which cxecute the above supertask and Icave
the lamp in any nominated sctting at 12:00 PM. Grinbaum (1970,
pp- 233-7) gave an cxample of how such a mechanism can be con-
structed. where the details of the switching mechanism arc filled in so
that the outcome is that the lamp is ON at 12:00 PM. The idca is to have
the distance the moving part of the switch has to travel to make clectrical
contact diminish with cach successive punch in such a way that at
12:00 PM the switch is in, and remains in, the contact position. The
mechanism can be generalized by using the bouncing ball to clfect the
switching in a way compatible with Newtonian dynamics. Morcover
slight alterations in the mechanism allow it to leave the lamp cither ON
or OFF at 12:00 PM. Sce Figure 11.2 in which the ball exccutes and
infinite series of bounces that are completed at 12:00 PM exactly. The
ball has a conductive coating and makes clectricat contact with the plate
upon each bounce. In the first circuit depicted, contact with the plate
conducts clectricity 1o the lamp, switching it ON, so that the final state of
the lamp at 12:00 PM is ON. In the sccond circuit depicted, contact with
the plate diverts current from the lamp switching it OFF, so that the final
state at 12:00 PM is OFF.

If Benacerral is right that the history of switching prior to 12:00 PM
lails to specily the tamp state at 12:00 PM, then what remains (o be
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1

Contact switches lamp ON

i A

Contact switches lamp OFF

— 2=

Figure 11.2  Alternative switching mechanisms for Thompson's lamp

explained is why so many naturally conelude otherwisc and as a result
believe that a contradiction is straining to emerge. This conclusion, we
urge, depends upon tacitly introducing an assumption about the familiar
behavior of lamps. That assumption is benign in normal circumstances
but invites disaster when supcertask switching is invoked. Informally we
assume (hat if a lamp is left unswitched, it persists in its current state.
Therclore the state of the lamp at a time when it is not switched is
automatically fixed by the prior history of switching.

To see why this persistence property [ails, represent the lamp state
numerically at time ¢ as lamp(¢) = 0 or 1 according to whether the lamip
is OFF or ON. This persistence property amounts

lo requiring that tamp(s) = Lim lamp(s') at the time ¢ at
[y

which there is no switching. If this persistence properly is to determine
the state of the lamp at ¢ = 12:00 PM from the history of prior switching,
then clearly we arrive at a contradiction. That history of switching has
been contrived precisely to ensure that the limit invoked in the property
fails to exist. Our conclusion is not that the completion of (he infinite
schedule of switching is contradictory. Rather it is contradictory when
coupled with the assumption of the persistence property. Notice that the
infinite swilching machines such as in Figure 11.2 arc able to yicld a
definite lamp state at 12:00 PM exactly because a property other than
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persistence fixes their state at 12:00 PM. Any attempt to construct a
mechanism for Thomson’s lamp that uses the persistence property Lo sel
the lamp at 12:00 PM must fail. The machine must be constructed to
satisfy an inconsistent specification. This is clearly impossible in any
consistent physical sctting’

S Ross’ Paradox

While the Thomson lamp depends on the non-existence of a limit, an-
other supertask purports to be paradoxical  preciscly because a fimit
exists — but it is not the one we expect! Iimagine an urn ol infintte capacity
and an infinite pile of balls labeled 1, 2,3, .. .. Starting at 11:59 PM the
balls arc put into and taken out of the urn according to the following
schedule:

Stages Operation Completion tine

] Put in balls {-10; 11:59.5 PM
remove ball |

2 Put in balls 11-20; 11:59.75 PM
recmove ball 2

3 Put in balls 21-30; 11:59.875 PM

remove ball 3

cle. elc. cte.

A1 12:00 PM the system will have passed through an infinity of stages. In
cach of the stages a net of 9 balls has been added to the urn. So we can
reason that at 12:00 PM the urn will contain 9 X = = = balls. However,
we can also rcason hat at 12:00 PM the urn will be empty, sinee [or cvery
ball there is a stage at which it was removed. (All the balls are numbcered,
and ball n was removed at stage n.)

As matiers stand, it is meaningless to speak of the resolution ol Ross’
paradox since the problem is underdescribed. (This is a not uncommon
feature of the discussion of supertasks.) The difficulty is that there are
two natural conditions cach of which fix the number of balls in the vase
at 12:00 PM, but at different values. And the account of the paradox does
not clearly allow a choice between them. First is the assumption that the
history of cach ball can be represented in a spacctime by a world line (or
world tube). These world lines arc assumed to be continuous and once
the world line (or world tube) of a ball exits the spacetime region corre-
sponding to the urn, it never reenters. It follows that at 12:00 PM the urn
is emply. Sccond, we can consider the number function N(r) which
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counts the number ol balls in the urn at time ¢ and requirc this function

to be continuous at any time ¢ at which no ball is added or removed
from the vase. That is, at such a r, N(1) = lim N(f'). Since ¢ = 12:00 PM
is such an instant and the appropriate limi( dwcrgcq it would lollow that
the urn contains infinitely many balls at 12:00 PM.,

We follow Allis and Koetsier (1991) in choosing the condition of
world line continuity which entails that the urn is empty at 12:00 PM.
This choice is favored by the numbering of the balls, which suggests that
they retain their individual identity through time. It also follows from
choosing the simplest spacctime picture for the kinematics of the balls”
The condition of world line continuity can be maintained consistently
provided we allow the failure of the requirement of continuity of the
number [unction N(r) at 12:00 PM. That is, the numbcr [unction in-
creases without limit with each stage as 12:00 PM is approached, where-
upon it [alls discontinuously to zcro.

Suppose that the above schedule is changed so that at cach stage
10 balls are added while at stage n ball number 101 is removed. Then
on the analysis we favor, the urn will contain an infinitc number of
balls at 12:00 PM. So some schedbles of adding a net of 9 balls al
cach stage lead ultimately to an empty urn while others lead to a stulfed
urn. This makes it interesting to ask what will happen il at cach stage
the ball to be removed is chosen randomiy. Ross (1988, pp. 68-70)
shows that with probability | the urn will be empty at 12:00 PM.

Van Bendcgem (1994) has been unable to resist the charms of cach of
the conditions of world line and number function continuity. He accepts
both and concludes that Ross’ paradox represents an impossible
supertask. He attempts to explain the contradiction by showing that the
operations involved are incompatible with the following assumptions:
(K1) Infinite speeds are not allowed, (K2) Infinite accelerations arc not
allowed, and (K3) Therc is a largest speed L. [Towever, the invocation of
the relativistic constraint (K3) seems to us inappropriate since what is
being claimed is not that Ross’s paradox represents a physically impossi-
ble supertask in the actual world but a conceptually impossible
supertask.

What remains is to make more plausible the possibility of failure of
continuity of the number function N(¢). What is puzzling is that
the number count, which one moment is growing without bound,
suddenly evaporates the next. In bricl this cvaporation is simply an
artefact of our subtraction of one infinitc sct from another. It is
surprising but not contradictory. Such evaporation cannot happen
with the subtraction of finite sets, where our intuitions are developed.
Perhaps we can make this evaporation more comfortable by considering

\
o
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a structurally similar case in which it occurs — but in which the evapora-
tion is anxiously anticipated.

6 The Pyramid Marketing Scam

This common scam involves the sale of dealerships in a product whose
naturc is incidental to the scheme. To initiate the scam, an agent sells a
dealership to two new agents for some unit amount —say $1.000. At the
end of this first stage, the first agent has made a net profit of $2,000. The
two new agents have a net loss of $1.000 cach. To recoup their losses,
the two new agents cach sell a dealership to two more agents., introduc-
ing four new agents in total. The three old agents cach now show a profit
individually and a net total profit of $4.000; the four new agents show a
loss totaling $4,000. At the nth stage 2" new agents are sold dealerships.
The 20 — 1 old agents from stages 1...., n — 1, have a total prolit of
$20 x 1,000. The 2" new agents a (otal loss of $2° % 1.000. See Figure 11.3.
The scheme proceeds in this way.

New agents enter, willing to pay their $1,000 for the certainty of
regaining $2.000 in the next stage. This is where the scheme becomes a
scam. The profit of cach new level of agents can be secured only il the
pyramid of agents can be allowed to grow exponcentially and with it a
huge. exponentially growing debt in the form of losses of agents on the
newest fevel. The scheme collapses in debt as the exponential growth
rapidly exhausts the pool of new agents wilting to join.

Stage 1 Stage 2 Stage ~
(1)+$2000 (1) +$2000 . (1) +$2000

ANA

® +$1000 (@) +$1000 (@+$1000  (@)+$1000

YA

-$1000 -$1000 ~$1000 -$1000 +$1000 +$1900 +$j 000 +$]OOO

O~—__

' \

Y o Y
o DR « o
. . . [} ' .
' [} ' 1 v [
. . . [ ' "

' ' ’ [l v [

Figure 11.3  Pyramid marketing scam
£ y !
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Consider, however, what would happen if this pool were infinitely
large and if the addition of new agents is accelerated so that the infinite
pyramid is completed in finite time as a supertask. As the stages forming
the pyramid proceed. the total debt will balloon without limit. Yet at the
completion of the pyramid, this debt would evaporate. Each agent in the
pyramid would now show a net profit, for cach would have recouped his
foss in recruiting two more agents. The debt evaporation is the result
eagerly forescen in the propaganda used (o recruit new. honest agents,
who must only be convinced that the availability of a very large pool of
agents is somehow close cnough to an infinite pool for the cvaporation (0
be realized * The naturalness of the evaporation is precisely what cnables
these schemes to flourish.

7 Black’s Transfer Machine

While continuity of world lines allowed cscape from Ross' paradox, in
this case, it becomes the sticking point.? Imagine (wo trays, onc on the
left (“L") and one on the right (“R"). which may move further apart
from one another as time goes on but which may not come closer to one
another than some finite distance.” Starting at 11:59 PM a marble is
shuttled back and forth between the two according to the following
schedule:

Stage Operation Time of completion
1 Move the marble from L to R 11:59.5 PM
Move the marble from R to L 11:59.75 PM
Move the marble from L to R 11:59.875 PM
etc. cte. cle.

There arc various ways to try to show that an antinomy results from
this schedule. The analogy to the Thomson lamp is obvious (substitute L
for ON and R for OFF), so those arguments of scction 4 could be
rehearsed in suitably translated form. Black gave an argument with a
novel twist. In its most clementary form, it exploits symmetries in the
sequence of translers. Assume that the sequence of transfers indicated
above results in the marble resting in some definite tray at 12:00 PM, say,
the right tray:

R LR LR L ...oR

Since the trays are alike, this opcration is the mirror image of the
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sequence of transfers which begins with the marble in the right tray
and which therefore must result in a marble in the left tray at
12:00 PM:

The outcome of the first series of exchanges would surcly be unchanged
il we began with the sccond stage, so that the marble began in the
right tray and was first moved left. But then the sequence of transfers
would be identical with the sccond sequence (excepting minor altera-
tions in timing) and that sequence results in a marble in the left tray.
contradiction!

As with the other examples, this contradiction can be resolved with-
out us having to renounce the logical possibility of a supertask. The
resolution is essentially Benacerral's resolution of the Thomson lamp,
All Black’s argument shows is that the history of transfers prior to
12:00 PM cannot determine the position of the marble at 12:00 PM. The
arguments that yicld a contradiction arc merely reductio demonstrations
of the untenability of assuming otherwise.

However, this example is more perplexing than the ones we have seen
so far. Black (1951-52) suggested that the completion of an infinite
number of translers is impossible on the grounds that the ball “would be
committed to performing a motion that was discontinuous and therefore
impossible™ (p. 81). On Black’s behalf. we can put the argument this way.
To resolve Ross’ paradox we invoked continuity in the form of the
postulate that the world line of a particte must be continuous. But sauce
[or the goose 1s sauce for the gander. So applying the world line postulate
to the transfer machine we get the conclusion that at 12:00 PM the
marble cannot be in the L tray, nor can it be in the R tray. But the ball
has to be someplace. Contradiction.

Morcover, it may secm uscless to try to use Newtonian mechanics to
dissolve this paradox, for the marble’s velocity increases without limit,
as doces the kinetic encrgy that must be supplied to enable its motion.
Yet. it has been proven that Newtonian mechanics allows a closcly
related infinite transfer for idealized point mass particies! Consider
four point mass particles confined to a hine in Cuclidean space. When
the particles have positive separation they are assumed to interact
via Newton’s 1/r? law. If there is a binary collision the singularity is
regularized on the model of the elastic bounce. If there is a triple
collision the solution ceases to exist. Mather and McGhee (1975)
established that there is a non-cmpty set of initial conditions for the
particies such that as ¢+ — 12:00 PM, the particle positions obey the
following conditions: x,(f) = —2=, x,(f), x,(f) = +=, and the coordinate
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X,(1) of the messenger particle passes through O an infinitc number of
times, each time covering a larger distance than before. because it
bounces back and forth an infinite number of times between binary
collisions with particles | and 3. At 12:00 PM positions arc no longer
specified for the four particles. They have, so o speak, cscaped to
infinity.

In a sense these particles violate world line continuity, but it is
important to be clear about what this sense is. There is no violation of
the basic postulate — used above in our resolution of Ross” paradox
and assumcd routinely in classical physics — that world lines of particles
do not have breaks or endpoints. But there is a violation of the condition
that the position of a particle at any instant can be obtained by taking
the limit of its position at t as ¢ approaches the instant in question; for
at 12:00 PM the limits of the positions of the Mather-McGhee particles
diverge. In the casc of particles 1, 3 and 4, we have a rcady answer to
the question of where the particles went: 1 went o negative infinity; 3
and 4 went o positive infinity. But these infinitics arc not bona
fide places in spacc. The notion that the particle 3 is “at spatial infinity”
is an intuitively comforting fable that tannot bear scrutiny. By the same
reasoning, particle 2 would have o be at both positive and negative
infinity at 12:00 PM. The correct answer to where arc the particles at
12:00 PM is that their positions are indeterminate, or, more precisely,
that the second condition of world line continuity fails to specify them.
In this regard they arc exactly akin to the position of the marble in
Black’s transfer machine at 12:00 PM. Further, particle 2 has mimicked
the marble in so far as it has crossed the origin infinitely often in a
finite time.

In the version of Black’s transfer machine where the particle is con-
fined to a finite box there is a violation of a third condition of continuity,
which states that if v is a world line of a particle satislying the basic
continuity postulate (no breaks or end points) then y is not trapped in a
compact set K of spacetime, i.c. il y enters K it must reemerge. Itis worth
noting that this requirement can be violated in general relativistic
spacetimes even for a geodesic y (see I[Mawking and Ellis, 1973 for cxam-
ples). But the price 1o be paid for the violation is the presence of *almost
closed” causal curves (in the form of a violation of strong causality — sce
IHawking and Ellis 1973, p. 195). This lcads one to wonder whether in
Newtonian mechanics 1/r? interactions for point mass particles can be
used 1o violate the no trapping condition, say, by having the particles
spiral around each othcr at an ever faster rate. We think that the answer
is negative sincc we conjecture that in order to have a non-collision
singularity of Newton's equations for 1/r? interactions at least on¢ of the
particles must escape 1o infinity.
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8 The Pervasive Persuasiveness of Supertask Paradoxes

The supertasks we have examined here are representative of the types of
supertask paradoxes presently in the literature. They point to the same
moral. ‘The contradictions that inhere in them do not arise from any
intrinsic impossibility of supertasks. Each contradiction can be rcmoved
by careful excision of fallacies or unwarranted assumptions in a way that
leaves the possibility of supertasks intact. In this analysis some further
patterns begin to form. In particular, there is onc major fallacy
which appears to contribute materially to the seductiveness of supertask
paradoxes.

We can conceive of the time development of a supcertask as cffected
by a sequence of operations that carry us from one stage to the next. Any
finite stage results from a finite composition of thesc opcrations. The
final stage results from an infinite composition. Now it is a commonplace
of mathematics that finite and infinitc compositions differ in their prop-
crties (c.g. a finite intersection of open sets always yields an open sct; but
an infinite intersection of open sets can yield a closed set). Thus if some
properly is prescrved at any finite stage of the supertask, that is no
guarantce that it will be preserved in the transition to the infinite stage.
Many of the trouble-making assumptions that we climinated in analyzing
the supertasks can be introduced exactly by this ilfegitimate projection.
We take properties preserved as we step from finite to finite stage and
illicitly assume they will be preserved in the transition to the final, infinite
stagc.

In the Dichotomy, for example, we saw a confusion of Iwo senses of
completable. At any linite stage, the two senses coincide. They fail to do
50, however, in the infinite stage. In Thomson’s lamp, at any linite stage
the sctting of the lamp is fixed by the history of switching; it fails to be at
the infinite stage. In Ross’s paradox, the condition of number count
continuity obtains at any finite stage. It can fail at the infinite stage.
Finally in Black’s transfer machine, the marble’s position is determined
by its prior history at any finite stage: it fails to be at the infinite stage.
Once these assumptions are made explicit, we become less likely to
project them illicitly. While they remain tacit, as is usually the case, the
projection is easy to [all into.

Many paradoxes of the infinite depend upon the case with which we
fall into projecting incorrectly properties from finite to infinite composi-
tion. The “proof™ that 2 = m is a classic example [rom the paradox
literature (sce Northrup 1971, pp. 135-6). Consider the straight line
segment AB of unit length of Figure 11.4. We can approximale it
somewhat clumsily by a semicircular arc C,. We can improve the
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approximation by an operation which replaces the arc C, by two con-
nected semicircular arcs to yield C,. The operation can be repeated
indcfinitely as indicated yielding arcs C.. C,, . . . until, in the limit, the arc
C. will consist of a set of points that coincides exactly with A3,

Now the fallacious inference: the curves of family C,, C,, . . . approxi-
mate the interval AB better and betier, achieving coincidence in the
limit. Therefore the lengths of the curves C,, C,, ... must approach
the length of A in the limit. Elementary geometry however (ells us that
the length of each semicircular arc is just #/2 times that part of the
interval A that the arc spans. It now follows that all of C,, C,, . .. have
the same length:

Length €, = Length C, = Length Cy = Length C, = ... = n/2

so that if we insist that the limiting length of C,, C,, . . . is equal to the unit
length of AB wc arrive at the “result™ 2 = 1,

The problem concerns the operation that replaces a semicircular arc
with two connected semicircular arcs. Under this operation, the length of
the curve is preserved. Under finitely many of these operations the length
of the curve is preserved. But under infinitelv many, the length of the
curve is not preserved. To understand why, we recall that the length of a
curve is not fixed directly by the locus of the curve, but by an intcgration
over the tangent vectors to the curve. The locus of C, C,, ... approach
AB in the limit. But the tangents to C, C,,...do not approach the
tangent vectors of AB in the limit. As it turns out, this limit is undefined.
‘Therefore we have no basis for expecting the limit of the lengths of €,
C,....10 approach AB."

9 Supertasks and Infinite Computation

Black and Wisdom were not alone in their willingness to draw conclu-
sions about the continuum from a contemplation of supertasks. They
were preceded by the distinguished mathematician and physicist,
Hermann Weyl. In a remarkable passage in Philosophy of Matlhematics
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and Natural Science, Weyl (1949) also drew infinite computation into the
web of supertasks:

If the scgment of length 1 really consists of infinilely many subsegments of
length 1/2, 174, 1/8. .. .. as “chopped-off” wholes, then it is incompatible
with the character of the infinite as “incompletable” that Achilles should
have been able to traverse it all. If one admits this possibility, then therc is
no reason why a machine should not be capable of completing an infinite
sequence of distinct acts of decision within a finite amount of time; say, hy
supplying the first result after 1/2 minute, the second after 174 minute. the
third 1/8 minutc later than the second, etc. In this way it would be possible,
provided the receptive power of the brain would function similarly, to
achieve a traversal of all the natural numbers and thereby a sure yes-or-no
decision regarding any cxistential question aboul natural numbers!
(1949, p. 42)

The exclamation point indicates a silent modus tollens. Weyl seeks to use
the presumed impossibility of the traversal of all natural numbers to
reject the notion that a segment of length 1 really consists of infinitely
many “chopped-off” wholes. We shall return shortly o the broader
views behind Weyl's remarks.

Clearly we sce no problem in cither the infinite traversal of the natural
numbers of Zeno's runner completing his run, even il a unit length is
conceived as composed of infinitely many parts. The possibility of a
traversal of all natural numbers has implications for the philosophy of
mathematics, as noted by Benacerral and Putnam in their introduction to
The Philosophy of Mathematics:

If we take the stand that “non-constructive™ procedures — i.e. procedures
that require us to perform infinitely many operations in a finite time - are
conceivable . .. then we can say that there docs “in principle” cxist a
verilication/refutation  procedure for number theory ... [and hence
that] the notion of “truth” in number theory is not a dubious one.
(1989, p. 20)

In the remainder of the paper, we will try to put flesh on the bones of the
idca that a supertask may be used to generate a decision procedure for
number theory and then try to understand some of its consequences.

10 Bifurcated Supertasks in Relativistic Spacetimes

The core of our infinite computing machines arc bifurcated supcriasks.
One part - the Slave — consists of a computer which can devote infinite
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a longstanding philosophical tradition to the cffect that supertasks are
logically or conceptually impossible. Bifurcated supertasks are surely
ncither since they use mathemaltically well-defined spacetimes. But
additionally these spacetimes are more than mere conceptual possibili-
ties. Among them are ones that satisfly Einstein's field cquations of
gravilation and standard energy conditions (guaranteeing, for example,
non-negative cnergy densities). Though such spacetimes are problematic
in various ways, they are, we contend, not beyond the pale of physical
possibility_ If the Creator had a taste for the bizarre we might find that we
are inhabiting one of them.

11 Simple Infinity Machines

There is a clear moral in our carlicr analysis of supertask paradoxcs.
While relativistic spacetimes provide a consistent arcna for bifurcated
supertasks, they cannot protect us from paradox if we insist on assuming
impossible properties for machines that exccute the supertasks. Indeed
infinite computing machines must resort to a device like a bilurcated
supertask exactly to avoid such paradoxes. Thomson (1954-55, p. 95)
already foreshadowed what may happen otherwise. Il we assume a super
computer able to complete an infinity of computations and then continue
as normal, nothing would prevent it computing the complete decimal
expansion of © and, as cach decimal was gencraled, sctling a register
according o its parity. When the computation was complete, that
register would indicate the parity of the last digit of © — and paradoxically
s0, since there is no last digit!

H further such paradoxes are 10 be avoided, we must carcfully specily
precisely what our super computer is assumed capable of doing. To this
end we introduce what is intended to be the simplest use of a bilurcated
supertask in computation. In particular, it will cxploit just one supertask.
(We shall return briefly to eases of machines that exploit compounded
superlasks, once the propertics of the simple casc have been investi-
gated.) A simple infinity machine is just a Turing machine that is allowed
o complete a countable infinity of steps and comprises the Slave part of
the bilurcated supertask; the outcome of the calculation is read by the
Master through signals from the Slave. The extra power of the machine
derives solely from the fact that failure of the Slave Turing machine to
halt is no longer uninformative. It no longer means that the machine is
either about to halt or will never halt. In a simple infinity machine, it
means the latter.

There are only two mecans available for the Slave to signal results to
the Master. It may report them as:
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I A signal that the machine has halted atter hnitcly many steps and
(optionally) the signal may contain the code number ol an output.
(This is the usual output of an ordinary Turing machinc on halting.)

2 A failure to halt, which the Master will recognize from the lack of
transmission of the signal of (1).

We must rule out stronger possibilitics, at lcast in the first case, on pain
ol paradox:

e The Slave cannot leave a tape for inspection by the Master as output.
Otherwisc, if the Slave program simply alternates 0 and | indefinitely
in some cell, then the final state of the cell fails to reflect the limiting
result of the computation — since there is no limit."” To assumc other-
wisc reproduces the Thomson lamp paradox. Known examples of
Malament-Hogarth spacctimes automatically implement this form of
censorship. They do not permit survival of the Slave’s tape, sending
the tape falling into a spacctime singularity or off to infinity.

e The Master may not infer results of computation by reading the
limiting behavior of an infinite scquence of signals emitted by the
Slave in the course of computation. To assumc otherwise would
violate the assumption that a simple infinity machinc cxploits just onc
supertask, for the reading of the infinite sequence of signals by the
Master amounts to a sccond supertask.

While we do not admit it for a simple infinity machine, we should not
be too hasty in judging the reading of an infinitc sequence of signals as
inherently paradoxical. We may avoid paradox il we arc modest in
our assumplions over what the reader could do. It could accommaodate
an infinitcly alternating sequence of signals, 0, 1, 0. 1,.. . without
Thomson lamp paradoxes if it could sense the failure to converge of
such a scquence.® However, this cscape may be short lived. It may well
be that the idealizations needed to admit such convergence sensing
devices will also admit paradoxical consequences, For example, if the
resources are sufficient to allow the device to store the latest signal in a
register that faithfully records, then we do recrcatec a Thomson lamp
paradox.

12 The Power of a Simple Infinity Machine
A simple infinity machine can decide the truth of any proposition

of number theory that is purely existentially or purely univecrsally
guantified in prenex normal form, where the relation quantified over is
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recursive, Its Slave simply checks the relation in the scope of the quanti-
fiers sequentially for all values of its arguments, looking for a
counterexample of the former or for a verifier for the latter. Thus
Fermat's fast theorem, whose status at the time of writing remains unre-
solved. would succumb to a simple infinity machine, since it has the
prenex normal form (Vx)(Vy)(Vz)}(Vn) =~ I(x, y, z, n) and I is recursive.

Of course, cven if Fermat's Tast theorem is verified as true, this docs

not settle the status of its thecormhood in your favorite axiomatization of

arithmetic. But this too can be resolved by a simple infinity machine,
which can be used to check whether an arbitrarily given integer n is
a member of a recursively enumerable (r.¢.) set of integers. Thus,
Church’s thcorem notwithstanding, it would scem that a simple infinity
machine can be used to check for theoremhood in anything that deserves
to be called a formal system, a system for which there is a recursive
mcthod for determining whether a sequence of formulas consltitutes a
proof and, hence, for which the theorems are r.e. Applying this to your
favorite system of formal arithmetic, if it was found that neither F°/L 7T nor
~FFL.T is a theorem, we would have a mdlhunﬂlncally interesting cxample
of Godel incompletencss.

ftmay well scem that a simple infinity machinc is capable of overcom-
ing all the usual barriers to computation. The celebrated halting prob-
lem, for example. succumbs. A simple infinity machine can simulate the
behavior of any Turing machine on any input and decide whether it will
halt or not. lowever simple infinity machines turn out only 1o carve off
the smallest slice of the great turkey of the uncomputable. This is already
suggested il we attemnpt to decide propositions with mixed quantifiers.
Consider, for example, the proposition that therc is some ultimale
number # that stands in (recursive) relation R to all numbers. That is,
(Fn)(Vx)R(n, x). A simple infinity machine may scek (o decide this
proposition by sequentially checking cach n. For cach n, it proceeds to
run through values of x, computing R(n, x), until a falsificr is found,
whereupon it moves on to the next value of n. This program [ails since
the failure of the program to halt will be ambiguous. It may eithcr mean
that the Slave has found the ultimate number and is running through ali
values of x; or it may mean that no ultimate number is found and the
machinc is trapped in checking unsuccessfully the infinite candidate
values for n. The Masler has no way Lo decide which.

Since the procedure sketched is just one of infinitcly many that we
could employ to decide (3n)(Vx)R(n, x), we may well wonder if its
failurc to decide such propositions derives from our incompetence or
lack of imagination at programming simple infinity machines at this
type of task. We can quickly convince ourselves that this is not so in so
far as “most™ (in a natural sense) Turing uncomputable tasks remain
uncomputable for simple infinity machines. To sce this, consider a family
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of pl()posm(ms S(z) =: @Ax)(Vy)R(x, y, 2) in number theory. where R is
a recursive relation. 1t turns out that there are Rs such that no simple
infinity machince can decide the truth of an arbitrary sentence of the
corresponding family S(0), S(1), . ... To sec this assume otherwise. That
is, assume that there is asimple mﬁmly machine that can decide the truth
of S(z) for any valuc of z. In accord with out carhq discussion, if the
simple infinity machine is to succeed, its Stave Turing program must
perform one of the following four ways:

a) for all z, the program halts finitely:

b) for all z, failure to halt means that S(z) is lalsc;

)y for all z, failurc to halt means that $(z) is true;

d) for some z. failure to halt means that S(z) is true and, for some z,
failure to halt means that S(z) is falsc.

In casc (d), the meaning of failure to halt must be finitely cmnpulablg for
cach z. That is. the set of all numbers z must be recursively divisible into
two sets such that if the program fails to halt on input z, then, if z lies in
the first set, S(z) is false and, if z lies in the sccond set, $(z) is truc.
Otherwise failure to halt of the SldVC program cannot be interpreted
unambiguously by the Master. so that the simple infinity machine would
fail to decide S(z) for all z.2

In casc (a). the formula S(z) will be expressible as §,(z) = K,(z) where
R, is a recursive predicate.

In casc (b), the Slave program is guaranteed to halt only when 5(z) is
truc. That is, when S(z) is true, a halting condition is satislicd in a finite
number of steps. The satisfaction of the halting condition appears most
generally as the confirmation that some recursive rclation

R'(u,u',. .., z)is satisficd for some values of i, w'....so that
5(z) will have the general form

(Gu) Gu') ... R'(u, u', ..., z). Projecting the tuple
(1,1, .. .) onto a unique single number by the usual methods,

we find that $(z) is expressible as Sy(z) = (Fy)Ry(y, z) for some
recursive relation Ry,

In case (c), the Slave program is guarantced (o halt only when S(z) is
false, that is, when ~S(z) is true. It follows similarly to case (b) that
=S(z) can be cxpressed by (3x)R'(x, z) for some recursive rclation R’.
Setting R, =: "R’ we have that §(z) can be expressed as S(z) = S(z2) =
(VO)R(x, <)

In case (d), $(z) will be expressible by sentences of the Torms S,(z) or
S.(z) according as to whether z lics in the set in which lhc failure to
halt of the Stave machine means that S(z) is false or $(z) is true. It
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follows that S(z) is expressibie as $,(z) = [(Ay)Ray, 2)v(VX)R(x, 2)]
where _Rm and R,, are recursive relations. We have 'a;;sﬁmcd lh;: il‘c'}m
be decided finitely for each z which of the two sets it lies in. In formi;lg
Sd(z)1 we assume that the code that decides this is incorporated into
the Tlurmg machines computing the relations Ry, and R, so that cach
machme. will only seck to verify that it is salishcd by ;if z is of (lhc
appropriate type.? ‘

The. final result follows immediately from the result that there is a
recursive relation R such that the corresponding family of scnlcnécs
S,(Z) = (Ax)}(Vy)R(x, y, z) cannot be expressed in any of the forms S (-)&
‘Sh(z),‘ S.(z), or S,(z).2 Therefore, in these cascs, no simple mh|n|<lv
lnachll}c can decide the truth of the family of sentences $(z).* '

Wlnllc this limitation to the power of simple infinity ‘mzlchincs is
severe, it can be broken if we arc prepared to sct infinitely many s1m Ié
mﬁnll'y machines to a task — and even infinite hicrarchies of 91[1)ch
_ma‘cl']mcs. For example (3m){Vx)R(n, x) could be decided if wc; sel
mhmlc.ly' many simple infinity machines to decide the infinitely mnan
propositions (VX)R(1, x), (Vx)R(2, x), .. . and collected the results with
another infinity machine. These prospects have been invcsligaléd b
Hoggrlh (1994), who finds that the infinitety bifurcated <upcrl"lsk)s/
required can be realized in relativistic spacetimes. ) N

13 Implications for the Philosophy of Mathematics

As we mentioned, Benacerraf and Putnam (1989) held that if it is con-
c{cplually possible to perform an infinite number of operations in a finite
time, then there is a verification/refutation procedure for arithmetic,”
and, ’hence, the notion of truth in arithmetic cannot be held to be dul;i-
ous. The p'r.oblcm is that this conditional has little polemical force; for
lhoss: intuitionists whose scruples make them dubious about lrulh’ arc
.prcu'sely those who deny the conceptual coherence of completing an
mﬁwte series of acts. Weyl is a prime cxample. ¢
The relparks we quoled earlier [rom Weyl’s magisterial Philosophy of
Mathemnngs and Natural Science arc but a fragment of a finitism that
pc.rvades his philosophical writing. His skeplicisin aboul an in[i]iity ml"l—
chine that could decide any existential question in number thcor wfls
not a reﬂ'cclion of the uncomputability of certain tasks. His wordsywecrc
first published in 1927 prior 1o the work of Church, Turing and others on
uncompul.abilily.z" Rather his core claim is that arithmetic asscrli()m‘ are
not meaningful if their truth conditions require the complélc ru1{n(ill
through of an infinite sequence of numbers. Thus, considerin 9()m§
[reely chosen sequence ol numbers, he insisted that’ .
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statements concerning this sequence have meaning only if their truth can
be decided at a finite stage of the development. For example. we may ask
if the number | occurs among the numbers of the sequence up to the 10th
stage, but not whether 1 occurs at all, since the sequence never rcaches
completion. (Weyl. 1932, p. 66)

What justifies this claim and claims like it¥7, according to Weyl, is that
they “spring from the naturc of the infinite™ (1932, p. 73). Here he
presumably refers to the “the cssence of the infinite, the ‘incomple-
table™.” (1932, p. §9). Thus, where we may be untroubled to think of an
infinity machine deciding Fermat's last theorem, Weyl held that

mathematics owes is greatness preciscly to the fact that in ncarly all its
{heorems what is essentially infinite is given finite resodution. . . . “Fermat's
last theorem,™ is intrinsically meaningful and cither true or false. But 1
cannot rule on its truth or falsity by employing a systematic procedure for
sequentially inserting all numbers in both sides of Fermat's equation. Even
though, vicwed in this light. this task is infinite. it will be reduced to a finite
one by the mathematical proof {which. of course, in this notorious ¢ase,
still cludes us.) (1994, p. 48)

These finitist scruples cxtend to his treatment of the continuum. The
reals are to be constructed by finitist methods, essentially using
Dedekind cuts. and he rejected the conception of the continuum as
composed of the infinitely many “chopped off* wholes™ of the Zeno
Dichotomy. (Sce also Weyl (1932, p. 59: 1994, Chapter 2).) In sum,
Weyl abandons the “infinite totality of numbers™ as mcaningless, as
“q realm of absolule cxistences which is ‘not of this world™™ (1929,
p. 154).3
We believe that the bifurcated infinity machines discussed in section
10 provide an effective response to Weyl. In the first place, the bifurca-
tion obviates the nced to perform a proper supertask, and it leaves Weyl
and his fellow travelers free to think of the infinity of tasks assigned to
the Slave as belonging to the uncompletable. The verification/falsifica-
tion procedure comes not from completing an infinitc number of checks
in a finite time but in having direct causal access 10 the fruits of all of
these acts. In the sccond place, as a leading proponent of and contributor
to gencral relativity, Weyl was hardly in a position to claim that the
spacetime structurcs needed to implement the bifurcated supertasks are
not conceptually well-defined possibilities. Furthermore, in hindsight,
Weyl might well have agreed that these spacetlimes arc more than mere
conceptual possibilitics. Weyl produced a family of axisymmetric solu-
tions to Einstein's ficld equations, a subfamily of which is called the
Curzon solution. Recently Scott and Szekeres (1986) constructed the
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maxnrpal cx!cnsi()n of the monopole Curzon solution, which turns out to
conlam a ring-like singularity. Some of the timelike half curves that
terminate on the singularity have infinite proper length, We conjecture
that l!lcrc are spacetime points p such that /(p) contains such curves. If
s0, this spacctime supporis bifurcated supertasks. '

It may scem extraordinary that facts about spacctime structure can
ha'vc implications for the concept of truth in mathematics. We oo
think that this is extraordinary — so much so that we would prefer to
say that what has been learned is not something about the concept of
::3:: but about the implausibility of certain philosophical scruples about

Do bifurcated supertasks have implications for Church’s thesis (or
l?etler.. proposal) that effective/mechanical computability is to be id‘cnli~
ficd with recursiveness or Turing computability? Our answer is: some but
no profoupd ones. In the context of bifurcated superu\sks“(fhurch’s
pr()p(?sal is most plausibly construed as applying to whzlt’thc SI’IV(‘J
machine can do, the thesis being that Turing computability serves ilsl an
upper bound for any such machine.” (It is an upper bound bcca‘u;c: 1(10
?CIUZI.] machine has an unlimited mcnufry storage or unlimited C()[;l -
ing ll.mC. Nor can the machine be speeded up indefinitely will{oul
vFo'latlng the .relalivislic prohibition against superluminal velocitics.)
This proposal is not unchallengeable - indeed, one of us thinks that Ihcrvc
are successful challenges™ - but that is a matter to be reserved for
fln()lhcr occasion. The refevant point here is that realizability of simple
infinity machines in gencral relativistic spacetimes is compatible with "En
aycoun{ of elfective/mechanical computability for the Slave machi(ncy
1 h_en, given an account — Church’s or other — that implies that some scls:
of lntcglcrs are cffectively/mechanically enumerable but not effccliv;l ‘/
mechanically decidable, the Slave-Master arrangement in Malamcnlyf
H()garlh spacetimes provides a procedure that plausibly can be said to
cffec'l!ve.ly/mechanically decide membership in the set and thus l(; outdo
any Turing machine. But the core of Church's proposal. as we have
construcd it, remains untouched. o (

14 Conclusion

Thc dlS.CUSSiOH of the paradoxical infinity machines has led to some
intercsting facets of motion in a Newtonian setting. But as {ar as wlc can
'tcll, _sn_Jch machines have nothing new to teach us about the n‘aturc (of
infinities or the continuum. This may be a little disappointing but it is
hardly surprising. Over the centuries paradoxes of infinity have playcd
an honorflble role in pointing to fundamental questions in logic
mathemalics, and the physics of motion. That they no longer have lhc:
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powcer to generate new knowledge is duc to the fact that they have
fulilled the function of good paradoxes all 100 well.

We are not so naive as 1o think that we have had the last word on

supertasks. Since itis the business of philosophers to uncover logical and
conceptual difficultics, we would not be surprised if there were 1o be
continucd assertions that supertasks are by their very nature contradic-

tory. paradoxical, or puzzling - not surprised, but certainly disappointed.

We take it as established as clearly as anything can be in this arca that

some non-trivial supertasks are unproblematic. Others are paradoxical
in the proper sense ol that word. Bul they are not paradoxical becausce
of any inherent incoherence in the notion of a supertask. To assume
otherwise is to preclude consideration of conceptual devices that have
most interesting consequences in arcas that transcend the simple domain
of lamps and urns. The infinite computing machines of Malament-
Hogarth spacctimes may well just be one example.

Notes

We are grateful to Ulrich Maicr. Robert Nola, and Wesley Salmon for
helpful discussion. John Earman would like to take the liberty of mentioning
that during his junior year at Princeton, Paul Benacerraf handed him a reprint of
his just published article “Tasks. Super-Tasks. and Modern Eleatics™ (1962). It
has taken him a third ol a century 10 make (what he hopes is} an advance on
this article.

| In his review of Zeno's paradoxes, Salmon (1970, pp. 9-10) considers a
second form of the dichotomy according to which the runner cannot even
get started. He must first run o the half way point. but before that he must
run half way to the half way point and so on indetinitely. The original form
of the dichotomy is essentially equivalentto the “Achilles”™ paradox of Zeno
according to which the faster runner cannaot overtake the stower. 'The faster
would first have to run to the place the slower had just feft, and then to the
place to which the slower had moved and so on indefinitely.

2 For further discussion, sce Viastos (1967, pp. 372-4).

3 This assumes that the runner’s hands don't “fly off to spatial infinity,” an
assumption that is plausible il they remain attached to his body and don’t
stretch beyond all bounds. The relevance of this caveat will cmerge below.

4 Thomson (1954-55). For critical discussions, sce Benacerraf (1962).
Chihara (1965), and Griinbaum (1969, 1970).

5 Thus Gritnbaum (1970, pp. 239-40). at Al Janis’ suggestion. describes a
switching mechanism in which the lamp state depends on the direction of
approach ol a pointer {hat executes infinitely many oscillations about a mid
point in a finite time, ending, let us say, at 12:00 PM. The direction of
approach is undefined at 12:00 PM and the dircctions prior approach no
limit. Therefore no consistent mechanism can continue faithfully to set the
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13
14

15
16

la_mp slalc' from the dircction of approach at 12:00 PM. either by using the
direction immediately prior or projecting it via the persistcncé pmirlv
Any .atlemp.t to construct such a mechanism will either fail (but p()Lsihi&
rematn consistent) or be wracked with inconsistency. )
This paradox is due to Ross (198R). 1t is discussed in Allis and Koctsier
(19(.)1).'vfm Bendegem (1994) and Holgate (1994). | ‘
Mam'lz‘unmg the continuity of the number function instead would require
fgrfcﬂmg o.[ this simple spacetime picture. It would be an interesting clxcr»
cise lo devise a kinematics of ball transfers that would allow the number
condition to be maintained. [t may prove incompatible with the numbering
schcme used for the balls. unless the identity of the b :
lalpcq or unless a plausible mechanism for generating new balls can be
built in, f()r' none of the original numbered balls can remain in lhé v;lsc ;\Ll
12:00 PM. This calls to mind the failure of world line continuity l;) be
explored in Black's transfer machine below. We also think of the p'lriiclcx of
guqn?um ficld theory for they are not conscrved and need not rc(l'n'n ll‘ ]
individual identitics in the course of intcractions. ( o
of course the dishonest agents necd only be convinced that their stage is
;Fllf'ﬁcrenllifl‘rcmole from the stage at which the scheme collapses! e
1S machine was introduce ¢ ¢ is i
Grimbam (1970 N 24())'cluccd by Black (1 950-51). Tt is discussed by
This precludes a less interesting variant of the paradox in which the dis-
tances cj‘overed by the marble in each transfer diminish to zero, just as d(& lh\ J
successive bounces of the bauncing ball. S ’
To see this in more detail, describe a curve in the usual manner as some
funclfon ¥(x) in a Euclidean space with Cartesian coordinates (x \) The
functions y,(x). ¥a(x), ... that correspond to C,, C,... . do app-r(.),-qcl.l the

alls cannot be main-

(f;nfllon _\'A!,(x) lh:!l corrgsponds Lo AL in the limit. However the length of

O}C[l] ct(jrw.: fs not gllvcn dircetly as a function of y(x)iitis given as & function

o :Jc erivative ,‘: (X) = dv(x)/dv: that is, the lengthis [ (1 + y2(x))dx. But

lhz ]isr.ltvaltll\rc;l v (,\‘;. ¥2'(x)....do not approach the derivative Vap (1) in
-t dHolows that the dengths of ¢, ¢ f '

: s < Ghooooneed not approac i

e - C d not approach that of

A} Flrlmf.hke half-curve is a timelike curve which has a past endpoint and

Whichiis extended as far as possible in the future direction.

Here v stands for proper time.

For a spacetime point P A(p)

. denotes the chronotogical pas i > S
of all points q such that there is a non-trivial fulurf dircr::‘:::ld(:grllzgl.ii-clI::;:\?cl
fr()m g lop 1l X'is a set of spacetime points, /(X) =: U 1(p)

T}us assumes that biological aging is proportional to pmprr)gr lin;c

.Thc total af:cc]eration TA(y) of y is defined (0 be TA(y) =: ildt. where a
is the magnitude of the four-acccleration of Y. Il and m arc rcs‘ ccliveI(
the ﬁn.al mass of the rocket and the mass of the fucl cx;l)uélnded tl?cn cvcr)ll
assuming perfectly efficient rocket motors. a rocket propelied p‘urel by it
motors must satisfy (Malament 1985) e

m /(e + my) < exp(—TA(y))

17
18

21

22

23

24

n
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For an attempt to dispel the air of paradox here, sce Earman (1994a).
At least they can satisfy what is catled the condition of stable causality which
implies that there is a global time function which increases along every
future directed timelike curve (sce Iawking and Lllis, 1973, p. 198). How-
ever. they cannot be causal in the sense of allowing for global Laplacian
determinism; technically, they cannot be globally hypcerbolic.
To assume that the Slave machine incorporates a device that inserts a special
no-convergence code in the cell is to assume that the machine employs a
sccond supertask, contrary to our assumption. This sccond supertask may
also invite paradox: see below.
Such devices may be possible if we are prepared to admit sufficient
idealizations, including infinitely fine discrimination in pointer readings.
Consider, for example, a reader with a pointer scale from ~1 to -+ 1. The
pointer starts at 1 and its position is reset to = 1/2, = 1/4, £1/8, ... cach time
the data stream flips from 0 to | or from 1 to (1 the former Mlip resets to
positive values and the latter flip to negative values. With the completion of
the supertask, a positive pointer reading corresponds Lo a convergence to 1,
a negative pointer reading to a convergence to 0, and a zero reading to a
failure to converge.
Of coursc, in general in case (b) there will be some z for which S(z) is false
but whose falsity is determined in finitely many steps by the program. For
such z, 8(z) = R'(z), for some recursive R'. This trivially has the existentially
quantified form required since R'(z) is equivalent to (Ay)(R'(z2) & (v = y)).
The Turing machine for Ry, will only attempt to complete its calculation for
those z in the set for which failure to halt entails that S(z) is false. Similarly,
the Turing machine for R, will only attempt to complele its calculation for
those z in the set for which fatlure to halt entails that S(z) is true.
This result follows from the structure of the Kieene arithmetic hicrarchy
(see Rogers, 1987, Chapter 14: Enderton, 1972, Chapter 3). The set of
numbers that satisfies S(z), {z: $(z)}. lies in X, of the hierarchy. Correspond-
ingly, {o: S,(2)} liesin X, {z: S.(2)} lies in £, {z: S{2)} licsin 1, and {z: S4(z)}
lics in 1. To sce the Jast case. we need only add dummy variables to
the sentence Si(z) = [(@)R(y, 2)v(Vx)Rp(x, 2)] to get it into the
form [(VO)EY)(Ra(y. 2) & (x = x)WYDENRe(. 2) & (v = v)] =
(V)(3y)R,(x, y, z) for a recursive relation R, Thus, S,(z) has the
quantifier structure of “¥3” so the corresponding set lies in T1,. The core
result for our purposes is that there are sets in X, that fail to lie in any of %,
%, 11, or 11,.
The arithmetic hierarchy gives a precise sense in which “most™ Turing
uncomputable tasks remain uncomputable for a simple infinity machine.
The I, sets are recursive. I, sels arc recursively enumerable. Simple infinity
machines extend the power of Turing machines up just onc level of the
hierarchy in so far as they enable sets of I, to be decided. They fail to decide
%, sets and higher in the hierarchy.
Subject, as we now must observe, to the restrictions mapped out in the last
scction. A simple infinity machine suffices to decide purely universal or
purely existential propositions.
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26 The same pass: i
: passage appears in the original G iti
s al German editio J
o3 a tion, Weyl (1921,
27 Similar el ] . -
§|mll.'.1r claims appeal clsewhere in his writings. Weyl (1921, p. 224) finds it
mea > { i i y nd it ‘
e mn%lfnss to §p1e(\k of running through all numbers to find if there is a
prime of form 27" - dIsewhere i i i st
!m e orm 2 - t 1. Elsewhere the simple existential claim “there exists
‘ en nunl\hct is denounced on Brouwer's cver present authority as an
in > i ation™ “ it e th
nite If»;:lml summation™ and “not a proposition in the proper sense that
asserts a fact™ (194¢ orr i ven ‘
et sa ld-(I (1949, p. 50). ( orrespondingly “ Al numbers are even™ is an
“n inite logical product 1 is even, and 2 is cven, and 3 is even . " which
obviously has no meaning.™ (1929 p. 152) B
28 Sce ¢ : ¢ 381932 pp. 62
C(mddlsf) Weyl (“l M9, p. 381932, pp. 62-3,) and (1932, p. 83) for the
| lumon 'ﬂml the completed. the actual infinite as a closed realm of
abs DR o e 1 y H N N
. ";-[ﬁ() ute gx{mlulu 18 not within its {the minds intuitive] reach.”
2 ns way of construing Church’ Si i !
) ! ch’s thesis/ al is > fi i
(ory 2 proposal is to be found in Enderton
30 Sce Earman (1986): sce also Pitowsky (1990).
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