
11 

Infinite Pains: 
The Trouble with Supertasks 

John Earman and John D. Norton 

1 Introduction 

A supcrtask is a task which requires that an infinite number of acts or 
operations be performed in a finite span of time. Supcrtasks have tor
mented us ever since Zcno noticed that a runner must traverse an infinite 
number of ever smaller intervals if he is to complete the race. The 
torment has proven immensely profitable, since it has forced us to clarify 
our notions of infinity. continuity and continuum. a process that has been 
significantly furthered even within the last century. However. in spite of 
millennia of work, the literature on supertasks. to which Paul Bcnaccrraf 
( 1962) made a seminal contribution, remains in an unfinished and un
satisfactory state. 

Our purpose in this paper is pessimistic and optimistic. On the one 
hand we wish to indicate a direction of research on supertasks which we 
believe is no longer philosophically informative. On the other we will 
indicate a new direct ion which promises to he revealing in so far as it 
succeeds in drawing together notions of infinity and logic with some of 
the most vexing, outstanding problems in spacetime physics. And we 
shall indicate how Paul Bcnacerraf's work has pointed towards both our 
conclusions. 

Our pessimistic conclusion is that our notions of infinity and continu
ity are now so well developed that supertasks have lost their power to 
force refinement of these notions. That is not to say that supertasks arc 
now unworthy of study, for puzzling contradictions arc still delivered by 
them. Our point is that the contradictions they deliver no longer reveal 
deliciencics in our concepts. We shall urge that the contradictions arising 
in known supertasks derive from fallacious reasoning or indefensible 
assumptions and these contradictions can be removed without requiring 
us to assume some conceptual incoherence in the very notion of 
supertask. In sections 2 to 7, in order to make good this claim, we will 
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review ami <.lcfuse a selection of supcrtask paradoxes which, by general 
consensus, represent the most serious challenges to the coherence of 
supcrtasks. In section ~ we will then try to identify some patterns of 
fallacious reasoning that have contributed to the notion that supcrtasks 
arc incoherent. 

Our optimism pertains to a new species of supcrtask that can be used 
to address within the philosophy of mathematics finitist scruples indi
cated by Weyl in section 9. Traditionally we conceive of the finite time 
duration of the supcrtask as experienced by the person or machine 
attempting to carry out the infinite number of acts. These we call "proper 
supertasks." If an infinity of time is allowed to the agent that carries out 
the infinity of tasks but a separate observer witnesses the completion of 
the infinity of acts in a finite time, then we have a "bifurcated supcrtask." 
We will show in section I 0 how bifurcated supcrtasks may be carried out 
in certain relativistic spacetimes. In such spacetimcs, we may build an 
infinity machine which would allow an observer to witness the comple
tion of an infinite computation. In section II we will indicate how these 
may be used to construct computing machines that transcend the normal 
boundaries of finite computation am( in section 12, we will explore the 
computational limits of these machines. In section 13 we will consider 
the implications of these machines for the philosophy of mathematics. 
finally, section 14 offers some concluding remarks. 

2 Zeno 's Dichotomy 

The archetype of the supertask is Zeno 's celebrated "Dichotomy." 
According to it, a runner can never complete the race since he must 
first run to the half way point, and then to the half way point of 
the remainder and so on indefinitely. 1 The standard resolution simply 
accepts as unobjectionable Zeno 's notion that to complete a journey 
from A to B. a runner must complete an infinite number of subjourncys 
- from A to the midpoint of A H, then from there to the three-quarter 
point, etc. but claims that this of itself does not prevent completion of 
the journey. 

Max Rlack (1950-51) was unconvinccd. Like most modern skeptics of 
the standard resolution, he accepted that the total distance traversed 
1/2 + 1/4 + 1/8 + ... approaches the finite value of unity in some suitable 
sense of the limit. The difficulty he identified lay deeper. He reasoned 
that it is logically impossible to complete an infinite number of journeys 
in a finite time, no matter how much faster or easier each successive 
journey becomes. John Wisdom (1951-52) agreed in the main with 
Black but added his own alternative resolution which appealed to the 
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idea that points of physical space have a finite extension. Whit row ( 1980, 
section 4.4) sought a similar escape in the assumption that time is not 
continuous. 

Black's fallacy lies in confusion of two senses of "incomplctablc" and 
its allure lies in the case with which we can slide between the two scnscs.c 
An infinite sequence of acts is incomplctahle in the sense that we can 
nominate no last act, the act that completes it. An infinite sequence of 
acts may also be incomplctable in the sense that we cannot carry out the 
totality of all its acts. even though each act individually may be cxccul
ahlc. This may become the case, for example, in the runner's journey, if 
the runner is required to spend equal time in each of the infinitely many 
intervals. ;\n infinite sequence of acts cannot he completed in the first 
sense, but that certainly docs not entail that it cannot be completed in the 
second sense. 

The deeper problem with 13lack and Wisdom's conclusion is that it 
preempts the usc of continua in physical theories involving motion. If 
Wisdom's escape were correct. we would have a philosophical demon
stration of the falsity of the major theories of modern physics, all of 
which take for granted that spacetime is a continuum. Of course, it is 
conceivable that allcmpls to marry quantum physics and the general 
theory of relativity will force the abandonment of the continuum concept 
for space and time. But the notion that armchair philosophizing - and 
not very good armchair philosophizing at that- can achieve the same aim 
gives philosophy a bad name. 

While this unhappy outcome would seem to protect Zcno 's runner 
from charges of logical inconsistency, that protection need not extend to 
all supcrtasks. Such was James Thomson's ( 1954-55) claim. He agreed 
with Black that it is logically impossible to complete an infinity of acts
as long as they arc honest-to-goodness acts and not the debased imita
tions that Zeno has tried to slip by us in the Dichotomy. Here is 
Benaccrraf's admirable summary of Thomson's position. 

If we have made a continuous uninterrupted journey from A to 
B ... [then] our motion can be analyzed as covering in turn AA' [ 112 of 
AB]. A'A" [1/4 of AB]. etc. [But] to say of someone that he has completed 
an infinite number of journeys (in this sense) is just to describe in a 
different (and possibly somewhat peculiar) way the act he performed in 
completing the single continuous journey from A to n. No absurdity is 
involved with the feat. If, however, we think of "completing an infinite 
number of journeys" as completing an infinite number of physically dis
tinct acts, each with a beginning and an end, and with, say, a pause of finite 
duration between any two, then according to Thomson ... it is logically 
absurd that one should have completed an infinite number of journeys. 
( Bcnacerraf, 1962. p. I 05) 
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Thomson's idea is that a genuine supertask involves an infinity of 
"physically distinct acts" and that genuine proper supertasks arc logically 
impossible. 

This attempt to separate the genuine and impossible supertasks from 
the fake and achievable fails in so far as it turns out to be possible to 
represent the journey of Zeno 's runner as an infinite sequence of distinct 
acts. Therefore any inherent impossibility of a supcrtask would still be 
inherited by motion in continun. To sec this, suppose that finite pauses 
between subtasks arc required of "physicnlly distinct acts," e.g. the run
ner is required to run in a staccato fashion. pausing at the one-half mark, 
the three-quarter mark, etc. Mathematically there is no problem in con
structing such an example, the most obvious prescription being that the 
runner traverses 1/2 of A B in 1/4 second and then rests for 1/4 second 
traverses the next 1/4 of AB in 1/R second and then rests for 1/R second: 
etc. However. as Gri.inbaum (1969, p. 212; 1970, p. 212) notes, since this 
prescription hns the runner complete each of the staccato runs at the 
same average speed, at the terminal instant his velocity will have a finite 
d~scontinuity while his acceleration will have an infinite discontinuity. 
Smce there are no hard and fast criteria for what counts as kinematically 
and dynamically possible in the Newtonian set ling, it is unclear whether 
such discontinuities disqualify the staccato runner from such a status. 
Fortunately there is no need to dwell on this matter since Richard 
f<ricdberg (as reported by Gri.inbaum 1969, pp. 213-14: 1970, pp. 215-16) 
has shown how the constant average velocity of the above simple minded 
staccato runner can be replaced with diminishing average velocities in 
s~ch a. w;~~ that his velocity and acceleration functions display no 
d1scontmu1t1cs. If a(t) is the acceleration function of this sophisticated 
staccato runner and 111 is his mass, then the force function is defined to be 
F(t) =: ma(t). We can imagine that in some possible Newtonian world 
F(t~ is the ~orce that the runner experiences, say, as a result of being in an 
ant1-Eieatwn field. Newton's laws of motion then guarantee that the 
runner performs a supertask. 

What this example and the one in the following section furnish arc 
relative co~sistency proofs- proofs of the consistency of the proposition 
that a genume proper supcrtask is completed. relative to the assumption 
that Newtonian mechanics harbors no internal contradictions. We can 
offer no proof of the latter assumption and, hence, no absolute proof of 
the consistency of genuine proper supertasks. At the same time, we see 
no reason to think that the completability of supertasks within the 
Newtonian framework gives any reason to suspect that the framework is 
not consistent. 

Of course, hy loading demands onto the runner, we can assure tlwt his 
staccato run is incompatible with plausible constraints for kinematical or 
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dynamical possibility within the Newtonian framework. f<or example, 
Griinbaum (1969, 1970) notes that requiring the runner not only to pause 
between successive subruns but also to plant a flag, which must be 
rotated each time through a minimal angle, leads at the terminal instant 
to nn infinite discontinuity in the velocity of his hands.i But the fact that 
some supertasks arc kinematically or dynamically impossible is no more 
surprising or disturbing than the fact that some ordinary tasks arc 
kinematically or dynamically impossible. 

3 The Bouncing Ball 

Can an infinity of physically distinct actions be completed in a finite 
time? The analysis of the staccato run seems to suggest it can. However 
our imagination may balk at the problem of conceiving circumstances in 
which the anti-Elcatic force function F(t) may nrisc. That problem disap
pears if we consider the bouncing ball, which seems to give as compact an 
illustration as we can expect of the logical consistency of completing an 
infinity of acts in a finite time, even when there arc discontinuities in the 
physical quantities. 

A ball bounces on a hard surface. The successive bounces arc. we 
submit, "physically distinct'' even though there is no pause between 
them. With each bounce its speed on rebound is reduced to a fraction k 
of its speed immediately prior to the bounce, where 0 < k < I (sec Figure 
11.1 ). W c assume a somewhat idealized ball which is perfectly elastic and 

....... ------- M=/k -----... ~ 

Figure 11.1 The bouncing ball 
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for which each bounce takes no time. Under these assumptions, the ball 
cannot come to (vertical) rest after finitely many bounces. For no bounce 
can be the last: each is followed hy another with a fraction k of its initial 
speed. In classical mechanics, the time between bounces is directly pro
portional to the initial speed of the ball. Therefore if we assume that the 
time between the first and second bounce is unit time, the times between 
the successive bounces will form a geometric series, I, k, k 2

, k', ... The 
sum of the series is 1/(1 ~ k), which is finite. So the ball completes an 
infinite number of bounces in coming to rest in a finite time, thereby 
completing a supertask. 

The bouncing hall is not paradoxical in any obvious way, unless one is 
simply offended by the notion that it will complete infinitely many 
bounces in a finite time. Of course, only an idealized hall can behave in 
this way. All real balls arc deformed somewhat on bouncing and will 
cease to bounce off the table's surface after some finite number of 
bounces. However, the issue is not whether the idealized hall could he 
realized in our world. It is whether there is some consistent setting in 
which it can execute its behavior. Our claim is that there is a consistent 
setting and, moreover, one that is not all that far away in possibility space 
from the actual world. 

4 The Thomson Lamp 

There seems little prospect Zeno 's Dichotomy hides genuine paradox or 
that the very notion of completing an infinite sequence of acts is logically 
contradictory. Yet, in his quest to prove the latter, Thomson (1954~55) 
generated a supertask that purports to be logically contradictory. 1 

Starting at 11:59 PM a lamp is switched ON and OFF more and more 
rapidly according to the following schedule: 

Stage 

2 

3 

etc. 

Operation 

Switch the lamp to the 
ON position 

Switch the lamp to the 
OFF position 

Switch the lamp to the 
ON position 

etc. 

Time of COIIIflldion 

li:YJ.5 I'M 

11.59.75 PM 

11.59.1)75 PM 

etc. 

At 12:00 PM the lamp must he either he in the ON state or the OFF state. 
Thomson argued that neither state is possible. The lamp cannot be ON 
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(he reasoned) because for every time 1 < 12:00 PM such that the lamp is 
ON there is at' such that 1 < 1' < 12:00 PM such that the lamp is OFF. 
For the exactly similar reason the lamp can't be OFF at 12:00 PM. 
Contradiction. 

The argument is seductive. but fallacious and Benacenaf (I %2) 
showed how. From Thomson's schedule of switching 

it follows only that there is no time between I 1 l..'ilJ PMJ and J12:00 I'MJ at 
which the lamp was on and which was not followed hy a time also before 
J12:00 PM J at which it was off. Nothing whatever has bet:n ~aid about the 
lamp at J12:00 PMJ or later. ( p. I 07) 

Indeed if the supcrtask is to force a contradiction then we must 

suppose that a description of the physical stak of the lamp at 112:00 I'M I 
(with respect to the property of being on or off) is a logical con~equence of 
a description of its stale (with respect to the same property) at times prior 
to Ji2:00 I'MJ (p. lOX) 

To put it another way. the lamp is not paradoxical since any lamp 
setting at 12:00 I'M is compatible with the schedule of switching prior to 
12:00 PM. 

The point is made by observing that we can conceive of plausible 
consistent mechanisms which execute the above supcrtask and leave 
the lamp in any nominated setting at 12:00 PM. C1ri.inbaum ( 1970, 
pp. 233-7) gave an example of how such a mechanism can be con
structed. where the details of the switching mechanism arc filled in so 
that the outcome is that the lamp is ON at 12:00 PM. The idea is to have 
the distance the moving part of the switch has to travel to make electrical 
contact diminish with each successive punch in such a way that at 
12:00 PM the switch is in, and remains in, the contact position. The 
mechanism can be generalized by using the bouncing hall to effect the 
switching in a way compatible with Newtonian dynamics. Moreover 
slight alterations in the mechanism allow it to leave the lamp either ON 
or OFF at 12:00 I'M. Sec Figure 11.2 in which the ball executes and 
infinite series of bounces that are completed at 12:00 PM exactly. The 
ball has a conductive coating and makes electrical contact with the plate 
upon each bounce. In the first circuit depicted, contact with the plate 
conducts electricity to the lamp, switching it ON, so that the final state of 
the lamp at 12:00 PM is ON. In the second circuit depicted, contact with 
the plate diverts current from the lamp switching it OFF, so that the final 
state at 12:00 PM is OFF. 

If Bcnacerraf is right that the history of switching prior to 12:00 PM 
fails to specify the lamp state at 12:00 PM, then what remains to he 
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f 
Contact switches lamp ON 

~] 
Contact switches lamp OFF 

Figure 11.2 Allerniltive switching mechanisms for Thompson"s lamp 

explained is why so many naturally conclude otherwise and as a result 
believe that a contradiction is straining to emerge. This conclusion. we 
urge, depends upon tacitly introducing an assumption about the familiar 
behavior of lamps. That assumption is benign in normal circumstances 
but invites disaster when supertask switching is invoked. Informally we 
assume that if a lamp is left unswitched, it persists in its current state. 
Therefore the state of the lamp at a time when it is not switched is 
automatically fixed by the prior history of switching. 

To see why this persistence property fails. represent the lamp state 
numerically at time t as lamp(t) - 0 or I according to whether the lamp 
is OFF or ON. This persistence property amounts 

to requiring that lamp(t) = Lim lamp(t') at the time t at 
1'--'1-/ 

which there is no switching. If this persistence property is to determine 
the state of the lamp at t = 12:00 PM from the history of prior switching, 
then clearly we arrive at a contradiction. That history of switching has 
been contrived precisely to ensure that the limit invoked in the property 
fails to exist. Our conclusion is not that the completion of the inlinitc 
schedule of switching is contradictory. Rather it is contradictory when 
coupled with the assumption of the persistence property. Notice that the 
infinite switching machines such as in Figure 11.2 arc able to yield a 
dclinite lamp state at 12:00 PM exactly because a property other than 
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persistence lixcs their state at 12:00 PM. Any attempt to construct a 
mechanism for Thomson's lamp that uses the persistence property to set 
the lamp at 12:00 PM must fail. The machine must be constructed to 
satisfy an inconsistent specification. This is clearly impossible in any 
consistent physical setting.' 

5 Ross' Paradox 

While the Thomson lamp depends on the non-existence of a limit, an
other supcrtask purports to be paradoxical 1

' precisely because a limit 
exists- hut it is not the one we expect! Imagine an urn of infinite capacity 
and an infinite pile of balls labeled I, 2, 3, .... Starting at 11 :5Y PM the 
halls arc put into and taken out of the urn according to the following 
schedule: 

Stages 

2 

3 

etc. 

Operation 

Put in halls 1-10; 
remove ball I 

Put in balls 11-20; 
remove ball 2 

Put in balls21-30; 
remove ba II 3 

etc. 

Completion time 

11:5Y.5 PM 

11:5Y.75 PM 

II :5Y.875 PM 

etc. 

At 12:00 PM the system will have passed through an infinity of stages. In 
each of the stages a net of 9 balls has been added to the urn. So we can 
reason that at 12:00 PM the urn will contain Y X x = x balls. However, 
we can also reason that at 12:00 PM the urn will be empty, since for every 
ball there is a stage at which it was removed. (J\11 the balls arc numbered. 
and balln was removed at stage n.) 

J\s matters stand, it is meaningless to speak of the resolution of Ross' 
paradox since the problem is undcrdescribed. (This is a not uncommon 
feature of the discussion of supcrtasks.) The difliculty is that there arc 
two natural conditions each of which fix the number of balls in the vase 
at 12:00 PM, but at different values. And the account of the paradox docs 
not clearly allow a choice between them. First is the assumption that the 
history of each ball can be represented in a spacetime by a world line (or 
world tube). These world lines arc assumed to be continuous and once 
the world line (or world tube) of a ball exits the spacetime region corre
sponding to the urn, it never reenters. It follows that at 12:00 PM the urn 
is empty. Second, we can consider the number function N(t) which 
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counts the number of balls in the urn at timet and require this function 
to be continuous at any time t at which no ball is added or removed 
from the vase. That is. at such a t, N(t) = lim N(t' ). Since t = 12:00 PM 
is such an instant and the appropriate limit Ji~erges, it would follow that 
the urn contains infinitely many balls at 12:00 PM. 

We follow Allis and Koetsier ( 1991) in choosing the condition of 
world line continuity which entails that the urn is empty at 12:00 PM. 
This choice is favored by the numbering of the balls. which suggests that 
they retain their individual identity through time. It also follows from 
choosing the simplest spacetime picture for the kinematics of the balls. 7 

The condition of world line continuity can be maintained con~istcntlv 
provided we allow the failure of the requirement of continuity of th~ 
number function N(t) at 12:00 PM. That is, the number function in
creases without limit with each stage as 12:00 PM is approached, where
upon it falls discontinuously to zero. 

Suppose that the above schedule is changed so that at each stage 
10 balls arc added while at stage n ball number I On is removed. Then 
on the analysis we favor. the urn will contain an infinite number of 
balls at 12:00 PM. So some schcd(ilcs of adding a net of 9 halls at 
each stage lead ultimately to an empty urn while others lead to a stuffed 
urn. This makes it interesting to ask what will happen if at each stage 
the hall to be removed is chosen randomly. Ross ( I9RR, pp. 6R-70) 
shows that with probability I the urn will be empty at 12:00 PM. 

Van Bendcgcm ( 1994) has been unable to resist the charms of each of 
the conditions of world line and number function continuity. I Ic accepts 
both and concludes that Ross' paradox represents an impossible 
supcrtask. lie attempts to explain the contradiction hy showing that the 
operations involved arc incompatible with the following assumptions: 
(Kl) Infinite speeds arc not allowed, (K2) Infinite accelerations arc not 
allowed. and (K3) There is a largest speed L I Iowcvcr, the invocation of 
the relativistic constraint (K3) seems to us inappropriate since what is 
being claimed is not that Ross's paradox represents a physically impossi
ble supertask in the actual world but a conceptually impossible 
supertask. 

What remains is to make more plausible the possibility of failure of 
continuity of the number function N(t). What is puzzling is that 
the number count. which one moment is growing without bound. 
suddenly evaporates the next. In brief this evaporation is simply an 
artefact of our subtraction of one infinite set from another. It is 
surprising but not contradictory. Such evaporation cannot happen 
with the subtraction of finite sets, where our intuitions arc Jcvclopcd. 
Perhaps we can make this evaporation more comfortable by considering 
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a structurally similar case in which it occurs- hut in which the evapora
tion is anxiously anticipated. 

6 The Pyramid Marketing Scam 

This common scam involves the sale of ucalcrships in a product whose 
nature is incidental to the scheme. To initiate the scam. an agent sells a 
dealership to two new agents for some unit amount- say $I ,000. At the 
end of this first stage, the first agent has made a net profit of $2,000. The 
two new agents have a net loss of $1.000 each. To recoup their losses, 
the two new agents each sell a dealership to two more agents. introduc
ing four new agents in total. The three old agents each now show a profit 
individually and a net total profit of $4.()00: the lour new agents show a 
loss totaling $4,000. At the nth stage 2" new agents arc sold dealerships. 
The 2" - I old agents from stages I ..... n - I, have a total profit of 
$2" X I ,000. The 2" new agents a total loss of $2" X I,O()(l. Sec Figure 11.3. 
The scheme proceeds in this way. 

New agents enter, willing to pay their $1,000 for the certainty of 
regaining $2,000 in the next stage. This is where the scheme becomes a 
scam. The profit of each new level of agents can be secured only if the 
pyramid of agents can be allowed to grow exponentially and with it a 
huge, exponentially growing debt in the form of losses of agents on the 
newest level. The scheme collapses in debt as the exponential growth 
rapidly exhausts the pool of new agents willing to join. 

Stage 1 Stage 2 Stage= 

CD+$2ooo CD+$2ooo (D+$2000 

1\ 1\ 1\ 
® ® ® +$1000 @+$1000 ®+$1000 @+$1000 

-$1000 -$1000 1\ 1\ 1\ 1\ 
@ ® ® 0 @ ® ® 0 

-$1000 -$1000 -$1000 -$1000 +$1 000 +$1 000 +$1 000 +$1 000 
If I I I 1 
I I I 1 

Figure II.J Pyramid marketing scam 
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Consider, however, what would happen if this pool were infinitely 
large and if the addition of new agents is accelerated so that the infinite 
pyramid is completed in finite lime as a superlask. As the stages forming 
the pyramid proceed. the total debt will balloon without limit. Yet at the 
completion of the pyramid, this debt would evaporate. Fach agent in the 
pyramid would now show a net profit, for each would have recouped his 
loss in recruiting two more agents. The debt evaporation is the result 
eagerly foreseen in the propaganda used to recruit new. honest agents. 
who must only be convinced that the availability of a very large pool of 
agents is somehow close enough to an infinite pool for the evaporation to 
be realized." The naturalness of the cvaporat ion is precisely what enables 
these schemes to flourish. 

7 Black's Transfer Machine 

While continuity of world lines allowed escape from Ross' paradox, in 
this case, it becomes the sticking point.9 Imagine two trays, one on the 
left ("L") and one on the right (R"). which may move further apart 
from one another as time goes on but which may not come closer to one 
another than some finite distancc. 111 Starting at II :59 PM a marble is 
shuttled back and forth between the two according to the following 
schedule: 

Stage Operation Time of completion 

1 Move the marble from L to R II :5lJ.5 PM 
2 Move the marble from R to L II :5lJ.75 PM 

3 Move the marble from L to R 11:59.R75 PM 
etc. etc. etc. 

There arc various ways to try to show that an antinomy results from 
this schedule. The analogy to the Thomson lamp is obvious (substitute L 
for ON and R for OFF), so those arguments of section 4 could be 
rehearsed in suitably translated form. Black gave an argument with a 
novel twist. In its most elementary form, it exploits symmetries in the 
sequence of transfers. Assume that the sequence of transfers indicated 
above results in the marble resting in some cldinitc tray at 12:00 PM, say, 
the right tray: 

R, L, R, L, R, L, ... ~ R 

Since the trays arc alike, this operation is the mtrror unagc of the 
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sequence of transfers which hegins with the marble 111 the right tray 
and which therefore must result in a marble in the left tray at 
12:00 PM: 

L. H, 1., R, I , I~. . . ____., 1. 

The outcome of the first series of cxchangcs would surely he unchanged 
if we began with the second stage, so that the marble began in the 
right tray and was first moved left. But then the sequence of transfers 
would be identical with the second sequence ( cxccpting minor altera
tions in timing) and that sequence results in a marble in the left tray. 
contradiction! 

As with thc other examples. this contradiction can be resolved with
out us having to renounce the logical possibility of a supcrtask. The 
resolution is essentially Bcnacerraf's resolution of the Thomson lamp. 
All Black's argument shows is that the history of transfers prior to 
12:00 PM cannot determine the position of the marble at 12:00 PM. The 
arguments that yield a contradiction arc merely reductio demonstrations 
of thc untenability of assuming otherwise. 

I lowevcr. this example is more perplexing than the ones we have seen 
so far. Black (1951-52) suggested that the completion of an infinite 
number of transfers is impossible on thc grounds that the ball "would be 
committed to performing a motion that was discontinuous and therefore 
impossible" (p. Rl). On Black's behalf. we can put the argument this way. 
To resolve Ross' paradox we invoked continuity in the form of the 
postulate that the world line of a particle must be continuous. But sauce 
for the goose is sauce for the gander. So applying the world line postulate 
to the transfer machine we get the conclusion that at 12:00 PM the 
marble cannot be in the L tray, nor can it be in the R tray. But the ball 
has to be someplace. Contradiction. 

Moreover, it may seem useless to try to usc Newtonian mechanics to 
dissolve this paradox, for the marble's velocity increases without limit, 
as docs the kinetic energy that must he supplied to enable its motion. 
Y ct. it has been proven that Newtonian mechanics allows a closely 
related infinite transfer for idealized point mass particles! Consider 
four point mass particles confined to a line in Euclidean space. When 
the particles have positive separation they arc assumed to interact 
via Newton's l/r2 law. If there is a binary collision the singularity is 
regularized on the model of the clastic bounce. If there is a triple 
collision the solution ceases to exist. Mather and McGhee (1975) 
established that there is a non-empty set of initial conditions for the 
particles such that as 1 ~ 12:00 PM, the particle positions obey the 
following conditions: x 1(t) ~ -x, .r1(t), x4(t) ~ +c.c, and the coordinate 
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x 2(t) of the messenger particle passes through 0 an infinite number of 
times, each time covering a larger distance than before. because it 
bounces back and forth an inllnitc number of times between binary 
collisions with particles 1 and 3. At 12:00 PM positions arc no longer 
specified for the four particles. They have. so to speak. escaped to 
infinity. 

In a sense these particles violate world line continuity, but it is 
important to be clear about what this sense is. There is no ~iolation of 
the basic postulate - used above in our resolution of Ross' paradox 
and assumed routinely in classical physics- that world lines of particles 
do not have breaks or endpoints. But there is a violation of the condition 
that the position of a particle at any instant can he obtained by taking 
the limit of its position at I as t approaches the instant in question: for 
at 12:00 PM the limits of the positions of the Mather-Mcfihcc particles 
diverge. In the case of particles l, 3 and 4, we have a ready answer to 
the question of where the particles went: 1 went to negative infinity; 3 
and 4 went to positive infinity. But these infinities arc not hona 
fide places in space. The notion that the particle 3 is "at spatial infinity" 
is an intuitively comforting fable that tannot bear scrutiny. By the same 
reasoning, particle 2 would have to be at hoth positive and negative 
inllnity at 12:00 PM. The correct answer to where arc the particles at 
12:00 PM is that their positions arc indeterminate. or, more precisely, 
that the second condition of world line continuity fails to specify them. 
In this regard they arc exactly akin to the position of the marble in 
Black's transfer machine at 12:00 PM. Further, particle 2 has mimicked 
the marble in so far as it has crossed the origin infinitely often in a 
finite time. 

In the version of Black's transfer machine where the particle is con
fined to a finite box there is a violation of a third condition of continuity, 
which states that if y is a world line of a particle satisfying the basic 
continuity postulate (no breaks or end points) then y is not trapped in a 
compact set K of spacetime, i.e. if y enters Kit must reemerge. It is worth 
noting that this requirement can be violated in general relativistic 
spacetimes even for a geodesic y (see Hawking and Ellis. 11.)73 for exam
ples). But the price to he paid for the violation is the presence of "almost 
closed" causal curves (in the form of a violation of strong causality- see 
Hawking and Ellis II.J73, p. li.J.'i). This leads one to wonder whether in 
Newtonian mechanics 1/r2 interactions for point mass particles can be 
used to violate the no trapping condition, say, by having the particles 
spiral around each other at an ever faster rate. We think that the answer 
is negative since we conjecture that in order to have a non-collision 
singularity of Newton's equations for 1/r2 interactions at least one of the 
particles must escape to infinity. 
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8 The Pervasive Persuasiveness of Supertask Paradoxes 

The supertasks we have examined here ;ne representative of the types of 
supcrtask paradoxes presently in the literature. They point to the same 
moral. The contradictions that inhere in them do not arise from any 
intrinsic impossibility of supertasks. Each contradiction can be removed 
by careful excision of fallacies or unwarranted assumptions in a way that 
leaves the possibility of supertasks intact. In this analysis some further 
patterns begin to form. In particular, there is one major fallacy 
which appears to contribute materially to the seductiveness of supertask 
paradoxes. 

We can conceive of the time development of a supertask as effected 
by a sequence of operations that carry us from one stage to the next. Any 
finite stage results from a finite composition of these operations. The 
final stage results from an in!initc composition. Now it is a commonplace 
of mathematics that finite and infinite compositions differ in their prop
erties (e.g. a finite intersection of open sets always yields an open set: but 
an infinite intersection of open sets can yield a closed set). Thus if some 
property is preserved at any finite stage nf the supertask. that is no 
guarantee that it will be preserved in the transition to the infinite stage. 
Many of the trouble-making assumptions that we eliminated in analyzing 
the supcrtasks can be introduced exactly by this illegitimate projection. 
We take properties preserved as we step from finite to finite stage and 
illicitly assume they will be preserved in the transition to the final, infinite 
stage. 

In the Dichotomy, for example, we saw a confusion of two senses of 
completable. At any finite stage, the two senses coincide. They fail to do 
so, however, in the infinite stage. In Thomson's lamp. at any finite stage 
the setting of the lamp is !lxed by the history of switching: it fails to be at 
the infinite stage. In Ross's paradox, the condition of number count 
continuity obtains at any finite stage. It can fail at the infinite stage. 
Finally in Black's transfer machine, the marble's position is determined 
by its prior history at any finite stage: it fails to be at the infinite stage. 
Once these assumptions are made explicit, we become less likely to 
project them illicitly. While they remain tacit. as is usually the case, the 
projection is easy to fall into. -

Many paradoxes of the infinite depend upon the case with which we 
fall into projecting incorrectly properties from finite to inllnite composi
tion. The "proof" that 2 = rc is a classic example from the paradox 
literature (see Northrup 1971, pp. 135-6 ). Consider the straight line 
segment AB of unit length of Figure 11.4. We can approximate it 
somewhat clumsily by a semicircular arc C 1• We can improve the 



2<-th .IOIIN L;\IUvi;\N ;\NIJ IOIIN P. NORION 

Figure 11.4 "Proof" that 2 = rc 

approximation by an operation which replaces the arc C 1 by two con
nected semicircular arcs to yield C2 • The operation can be repeated 
indefinitely as indicated yielding arcs C,, Cb ... until, in the limit, the arc 
C will consist of a set of points that coincides exactly with AIJ. 

Now the fallacious inference: the curves of family C1, C2, ••• approxi
mate the interval AB better and better, achieving coincidence in the 
limit. Therefore the lengths of the curves C1, C2, ••• must approach 
the length of A/J in the limit. Elementary geometry however tells us that 
the length of each semicircular arc is just rr/2 times that part of the 
interval A H thai the arc spans. It now follows that all of Cr. C2 , ••• have 
the same length: 

Length C 1 = Length C2 = Length C, = Length C = ... = rr/2 

so that if we insist that the limiting length of C 1, C2, ••• is equal to the unit 
length of AB we arrive at the "result" 2 = rr. 

The problem concerns the operation that replaces a semicircular arc 
with two connected semicircular arcs. Under this operation, the length of 
the curve is preserved. Under(initely many of these operations the length 
of the curve is preserved. But under infinitely many, the length of the 
curve is not preserved. To understand why, we recall that the length of a 
curve is not fixed directly by the locus of the curve, but by an integration 
over the tangent vectors to the curve. The locus of C1, C2, ••• approach 
AR in the limit. But the tangents to C1, C2, ••• do not approach the 
tangent vectors of AB in the limit. As it turns out. this limit is undefined. 
Therefore we have no basis for expecting the limit of the lengths of C

1
, 

C2, ••• to approach AB. 11 

9 Supertasks and Infinite Computation 

Rlack and Wisdom were not alone in their willingness to draw conclu
sions about the continuum from a contemplation of supertasks. They 
were preceded by the distinguished mathematician and physicist, 
Hermann Weyl. In a remarkable passage in l'hilosophy of Mat!tc!llalics 
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and !Valllml Suence, Wcyl ( ILJ4l)) also drew infinlle computation into the 
web of supertasks: 

If the segmenl of length I really consists of infinitely many ~ubsegments of 
length 1/2, 114. 1/X, .... as "chopped-off" wholes. then it is incmnpatihle 
with the character of the infinite as "incompletable" that Achilles should 
have heen a hie to traverse it all. If one admits this possibility, then there is 
no reason why a machine should not he capable of completing an infinite 
sequence of distinct acts of decision within a finite amount of time; say, by 
supplying the first result after 1/2 minute, the second after 1/4 minute. the 
third 1/X minute later than the second, etc. In this way il would he possible. 
provided the receptive power of the brain would function similarly. to 
achieve a lraversal of all the natural numbers and thereby a sure yes~or~rw 
decision regarding any existential question about natural numbers' 
( ll)4l). p. 42) 

The exclamation point indicates a silent modus to/lens. Wcyl seeks to usc 
the presumed impossibility of the traversal of all natural numbers to 
reject the notion that a segment of length I really consists of infinitely 
many "chopped-off" wholes. We shall return shortly to the broader 
views behind Wcyl's remarks. 

Clearly we sec no problem in either the infinite traversal of the natural 
numbers of Zeno's runner completing his run, even if a unit length is 
conceived as composed of infinitely many parts. The possibility of a 
traversal of all natural numbers has implications for the philosophy of 
mathematics, as noted by Bcnacerraf and Putnam in their introduction to 
The Philosophy of Mathematics: 

If we take the stand that "non-constructive" procedures- i.e. procedures 
that require us to perform infinitely many operations in a finite time- arc 
conceivable ... then we can say that there docs "in principle" exist il 

verification/refutation procedure for number theory ... [and hence 
thatJ the notion of "truth" in number theory is not a dubious one. 
( ll)Xl), p. 20) 

In the remainder of the paper, we will try to put flesh on the bones of the 
idea that a supertask may be used to generate a decision procedure for 
number theory and then try to understand some of its consequences. 

10 Bifurcated Supertasks in Relativistic Spacetimes 

The core of our infinite computing machines arc bifurcated supcrtasks. 
One part- the Slave -consists of a computer which can devote infinite 
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a longstanding philosophical tradition to the effect that supcrtasks are 
logically or conceptually impossible. Bifurcated supertasks arc surely 
neither since they use mathematically well-dclincd spacctimcs. But 
additionally these spacetimes are more than mere conceptual possibili
ties. Among them arc ones that satisfy Einstein's field equations of 
gravitation and standard energy conditions (guaranteeing, for example, 
non-negative energy densities). Though such spacetimcs arc problematic 
in various ways, they arc, we contend, not beyond the pale of physical 
possibility. If the Creator had a taste for the bizarre we might lind that we 
arc inhabiting one of them. 

11 Simple Infinity Machines 

There is a clear moral in our earlier analysis of supertask paradoxes. 
While relativistic spacctimcs provide a consistent arena for bifurcated 
supertasks, they cannot protect us from paradox if we insist on assuming 
impossible properties for machines that execute the supcrtasks. Indeed 
infinite computing machines must resort to a device like a bifurcated 
supertask exactly to avoid such paradoxes. Thomson ( 1954--55, p. 95) 
already foreshadowed what may happen otherwise. If we assume a super 
computer able to complete an infinity of computations and then continue 
as normal, nothing would prevent it computing the complete decimal 
expansion of 11 and, as each decimal was generated, setting a register 
according to its parity. When the computation was complete, that 
register would indicate the parity of the last digit of 11- and paradoxically 
so, since there is no last digit! 

If further such paradoxes arc to be avoided, we must carefully specify 
precisely what our super computer is assumed capable of doing. To this 
end we introduce what is intended to be the simplest usc of a bifurcated 
supertask in computation. In particular, it will exploit just one supertask. 
(We shall return briefly to cases of machines that exploit compounded 
supertasks, once the properties of the simple case have been investi
gated.) A simple infinity machine is just a Turing machine that is allowed 
to complete a countable infinity of steps and comprises the Slave part of 
the bifurcated supertask; the outcome of the calculation is read by the 
Master through signals from the Slave_ The extra power of the machine 
derives solely from the fact that failure of the Slave Turing machine to 
halt is no longer uninformative. It no longer means that the machine is 
either about to halt or will never halt. In a simple infinity machine, it 
means the latter. 

There are only two means available for the Slave to signal results to 
the Master. It may report them as: 
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!\ signal that the machine has halted alter l1111tcly many steps and 
(optionally) the signal may contain the code number of an output. 
(This is the usual output of an ordinary Turing machine on halting.) 

2 A failure to haiL which the Master will recognize from the lack of 
transmission of the signal of (I). 

We must rule out stronger possibilities, at least in the !irst case, on pain 
of paradox: 

• The Slave cannot leave a tape for inspection by the Master as output. 
Otherwise, if the Slave program simply alternates 0 and I indefinitely 
in some cell, then the !ina! state of the cell fails to reflect the limiting 
result of the computation- since there is no limit. 19 To assume other
wise reproduces the Thomson lamp paradox. Known examples of 
Malament-Hogarth spacetimes automatically implement this form of 
censorship. They do not permit survival of the Slave's tape, sending 
the tape falling into a spacetime singularity or off to infinity. 

• The Master may not infer results of computation by reading the 
limiting behavior of an infinite sequence of signals emitted by the 
Slave in the course of computation. To assume otherwise would 
violate the assumption that a simple infinity machine exploits just one 
supertask, for the reading of the infinite sequence of signals by the 
Master amounts to a second supertask. 

While we do not admit it for a simple infinity machine, we should not 
be too hasty in judging the reading of an infinite sequence of signals as 
inherently paradoxical. We may avoid paradox if we arc modest in 
our assumptions over what the reader could do. It could accommodate 
an infinitely alternating sequence of signals, 0, I, 0, 1, ... without 
Thomson lamp paradoxes if it could sense the failure to converge of 
such a sequence.20 However, this escape may be short lived. It may well 
be that the idealizations needed to admit such convergence sensing 
devices will also admit paradoxical consequences. For example, if the 
resources are sufficient to allow the device to store the latest signal in a 
register that faithfully records, then we do recreate a Thomson lamp 
paradox_ 

12 The Power of a Simple Infinity Machine 

A simple inllnity machine can decide the truth of any proposition 
of number theory that is purely existentially or purely universally 
quantified in prcnex normal form, where the relation quantified over is 
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~ecursive. Its ~lave simply checks the relation in the scope of the quanti
hers sequentwlly for all values of its arguments, looking for a 
counterexample of the former or for a verifier for the latter. Thus 
Fermat's last theorem. whose status at the time of writing remains unre
solved. would succumb to a simple infinity machine. since it has the 
prencx normal form (Vx)(Vy)(Vz)(V11) , F(x. y, z. 11) and F is recursive. 

Of course, even if Fcrm<Jt's last theorem is verified as true. this docs 
not settle the status of its thcormhood in your favorite axiomatization of 
ari~hmetic. But this too can be resolved by a simple infinity machine. 
wh1ch can be used to check whether an arbitrarily given integer 11 is 
a. mem~cr of a rccurs~vcly enumerable (r.c.) set of integers. Thus, 
Chur~h s theorem notw1thstanJing. it wouiJ seem that a simple infinity 
mach me can be useJ to check for theorcmhooJ in anything that deserves 
to be called a formal system. a system for which there is a recursive 
mcthoJ for determining whether a sequence of formulas constitutes a 
proof_ and, hence, for which the theorems arc r.c. Applying this to your 
favontc system of formal arithmetic. if it w<Js founJ th<Jt neither FLTnor 
-FL_J: is a _theorem, we wouiJ have a mathematically interesting example 
of (HJdcl mcomplctcncss. ; 

. It may well seem that a simple infinity machine is capable of ovcrcom
mg all the usual harriers to computation. The celebrated halting prob
lem, for example. succumbs. A simple infinity machine can simulate the 
behavior of any Turing machine on any input and decide whether it will 
hall or not. I Iowever simple infinity machines turn out only to carve off 
the smalle~l slice of the great turkey of the uncomputable. l:his is already 
s~1gg~sted 1f we attempt to decide propositions with mixed quantifiers. 
( ons1der, for example. the proposition that there is some ultimate 
number 11 that stanJs in (recursive) relation R to all numbers. That is. 
C3n)(V~)R(n. x). A simple infinity machine may seek to deciJc this 
propos1t1on by sequentially checking each 11. For each 11, it proceeds to 
run through_ values of x. computing R(n, x), until a falsifier is founJ, 
wher~upon It moves on to the next value of 11. This program fails since 
the failure of the program to halt will be ambiguous. It may either mean 
that the Slave h~s found the ultimate number and is running through all 
values of x; or 1! may mean that no ultimate number is found ·md the 
machine is trapped in checking unsuccessfully the infinite ca~didate 
values for 11. The Master has no way to decide which. 

Since the procedure sketched is.just one of infinitely many that we 
co_uiJ employ_ to decide (311)(\fx)R(II, x), we may well wonder if its 
fmlure t? dc~1de. such propositions derives from our incompetence or 
lack of 1magmallon at programming simple infinity machines at this 
type of task. We can quickly convince ourselves thai this is not so in so 
far as "most" (in a natural sense) Turing uncomputable tasks remain 
uncomputable for simple infinity machines. To sec this. consider a family 
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of propositions S(z) ~: (3x)(\fy)R(.\, y, z) in number theory. where R is 
a recursive relation. It turns out that there arc Rs such that no simple 
infinity machine can decide the truth of an arbitrary sentence of the 
corresponding family S(O), S( I) ..... To sec this assume otherwise. That 
is. assume that there is a simple infmily machine that can dcciJc the truth 
of S(z) for any value of z. In accord with out earlier discussion, if the 
simple infinity machine is to succeed, its Slave Turing program must 

perform one of the following four ways: 

(a) for all z. the program halts finitely; 
(h) for all z. failure to halt means that S(z) is false; 
(c) for all z. failure to halt means that S(z) is true; 
( J) for some z. failure to ha It means that S( z) is true anJ, for some z, 

failure to halt means that S(z) is false. 

In case (d), the meaning of failure to hall must he finitely computable for 
each z. That is, the set of all numbers z must be recursively Jivisiblc into 
two sets such that if the program fails to halt on input z. then, if z lies in 
the first sci, S(z) is false and, if z lies in the second >ct. S(z) is true. 
Otherwise failure to halt of the Slave program cannot be interpreted 
unambiguously by the Master. so that the simple infinity machine wouiJ 

fail to decide S(z) for all z. 21 

In case (a). the formula S(z) will be expressible as ,\,,(z) = /(,(z) where 

/(, is a recursive predicate. 
In case (b), the Slave program is guaranteed to halt only when S(z) is 

true. That is, when S(z) is true, a halting condition is satisfied in a finite 
number of steps. The satisfaction of the halting condition appears most 
generally as the confirmation that some recursive relation 

R'(11, u', ... , z) is satisfied for some values of 11,11' •... so that 

S(z) will have the general form 
(::Ju) (::Ju') ... R'(u, u', .... z). Projecting the tuple 

(11. 11' .... ) onto a unique single number by the usual methods, 
we find that .'l(z) is expressible as S0(Z) = (3y)Rh(y, z) for some 

recursive relation Rh. 

In case (c), the Slave program is guaranteed to halt only when S(z) is 
false, that is, when ~s(z) is true. It follows similarly to case (b) that 
~s(z) can be expressed by (::Jx)H'(x, z) for some recursive relation R'. 
Setting K =: "H' we have that S(z) can be expressed as S(z) = Sc(z) = 

(Vx)Rc(x, z). 
In case (d). S(z) will be expressible by sentences of the forms Sh(z) or 

.\(z) according as to whether z lies in the set in which the failure to 
halt of the Slave machine means that S(z) is false or S(z) is true. It 
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follows that S(z) is expressible as Siz) = [(3y)R~ 1 (y, z)v('v'x)R"7(x, z)] 
where Rdl and R"2 are recursive relations. We have assumed that it can 
be decided finitely for each z which of the two sets it lies in. In forming 
Siz): w.c assum~ that the code that decides this is incorporated into 
the l.unng .machmes computing the relations R" 1 <Jnd R"2 so that each 
rnachme. wtll only seck to verify that it is satisfied by z if z is of the 
appropnate typc.n 

The final result follows immediately from the result that there is a 
recursive relation R such that the corresponding family of sentences 
,~(z) = (:=lx)('v'y)R(x, )', z) cannot he expressed in any of the forms S,(z), 
·\(z) •. 5Az), or ~-~(z). 2' Therefore, in these cases, no simple infinity 
machn~c can deCide the truth of the family of sentences S(z). 24 

Whtl~ this limitation to the power of simple infinity machines is 
~eve:e, tt can ~1e broken if we arc prepared to set infinitely many simple 
mfin1ty machmes to a task - and even infinite hierarchies of such 
~~~c~ines. for example (:=Jn)(Vx)R(n, x) could be decided if we set 
mf1111tc!~ many simple infinity machines to decide the inllnitcly many 
propositions ('v'x)R( I, x), (Vx)R(2, x), ., .. and collected the results with 
another infinity machine. These prospects have been investigated by 
Hog~rth ( 1994 ). wl~o fi~ds that the infinitely bifurcated supertasks 
reqUired can be realized 111 relativistic spacetimes. 

13 Implications for the Philosophy of Mathematics 

A~ we mentioned, Bcnacerraf and Putnam (1989) held that if it is con
c.eptually possible to perform an infinite number of operations in a llnite 
ttme, then there is a verification/refutation procedure for arithmetic 2< 

and, hence, the notion of truth in arithmetic cannot be held to be dul~i
ous. T~e 1:r?bl~m is that this conditional has little polemical force; for 
thos~ mtllltiOmsts whose scruples make them dubious about truth arc 
~rccr.sely t~10sc who deny the conceptual coherence of completing an 
m~mte senes of acts. Weyl is a prime example. 

fhe rer~arks we quoted earlier from Weyl's magisterial Philosophy of' 
Mathematl~s an~! Natural Science arc but a fragment of a finitism that 
pc~vades hts phtlosO(_Jhical writing. His skepticism about an infinity ma
chmc that c?uld dectde any existential question in number theory was 
not a reflectiOn of the uncomputability of certain tasks. His words were 
first published in 1927 prior to the work of Church, Turing and others on 
uncomputability.2h Rather his core claim is that arithmetic assertions arc 
not meaningful if their truth conditions require the complete running 
through of an infinite sequence of numbers. Thus, considering some 
freely chosen sequence of numbers, he insisted that 
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statements concerning this sequence have meaning only if their truth can 
be decided at a llnitc stage of the development For example, we may ask 
if the number I occurs among the numbers of the sequence up to the 10th 
stage, but not whether 1 occurs at all, ~ince the sequence never reaches 

completion. (WeyL 1932, p. 66) 

What justilles this claim and claims like it 27
• according to Weyl, is that 

they ,;spring from the nature of the infmitc" ( 1932, p. 73 ). Here he 
presumably refers to the "the essence of the infinite, the 'incomplc
tablc · ." ( 1932, p. 59). Thus, where we may be untroubled to think of an 
inllnity machine deciding fermat's last theorem, Weyl held that 

mathematics owes is greatness precisely to the fact that in nearly all its 
theorems what is essentially infinite is given fmite resolution .... "Fermat's 
last theorem." is intrinsically meaningful and either true or false. 13ut 1 
cannot rule on its truth or f<Jlsity hy employing il systematic procedure for 
sequentially inserting all numbers in both sides of Fermat's equation. Even 
though, viewed in this light. this task is inllnite, it will be reduced to a finite 
one hy the m<Jthematical proof (which, of course, in this notorious case. 

still eludes us.) (1994, p. 4X) 

These finitist scruples extend to his treatment of the continuum. The 
reals arc to be constructed by llnitist methods. essentially using 
Dcdekind cuts. and he rejected the conception of the continuum as 
composed of the inllnitely many "'chopped off' wholes" of the Zeno 
Dichotomy. (Sec also Wey1 (1932. p. 59: 1994, Chapter 2).) In sum, 
Weyl abandons the "infinite totality of numbers" as meaningless, as 
"a realm of absolute existences which is 'not of this world"' ( 1929, 

p. 154).2K 

We believe that the bifurcated infinity machines discussed in section 
I 0 provide an effective response to Weyl. ln the first place, the bifurca
tion obviates the need to perform a proper supertask, and it leaves Weyl 
and his fellow travelers free to think of the inllnity of tasks assigned to 
the Slave as belonging to the uncompletablc. The verification/falsifica
tion procedure comes not from completing an infinite number of checks 
in a finite time but in having direct causal access to the fruits of all of 
these acts. ln the second place, as a leading proponent of and contributor 
to general relativity, Wcyl was hardly in a position to claim that the 
spacetime structures needed to implement the bifurcated supertasks are 
not conceptually well-dellncd possibilities. Furthermore, in hindsight, 
Wcyl might well have agreed that these spacetimcs arc more than mere 
conceptual possibilities. Wcyl produced a family of axisymmetric solu
tions to Einstein's lleld equations. a subfamily of which is called the 
Curzon solution. Recently Scott and Szekeres ( 19R6) constructed the 
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maximal extension of the monopole C:urzon solution, which turns out to 
contain a ring-like singularity. Some of the timelike half curves that 
terminate on the singularity have infinite proper length. We conjecture 
that there are spacetime points p such that l(p) contains such cu~vcs. If 
so, this spacetime supports bifurcated supertasks. 

It may seem extraordinary that facts about spacetime structure can 
have implications for the concept of truth in mathematics. We too 
think that this is extraordinary - so much so that we would prefer to 
say that what has been learned is not something about the concept of 
truth hut about the implausibility of certain philosophical scruples about 
truth. 

Do bifurcated supcrlasks have implications for Church's thesis (or 
better, proposal) that effective/mechanical computability is to be identi
fied with recursiveness or Turing computability? Our answer is: some hut 
no profound ones. In the context of bifurcated supertasks, Church's 
proposal is most plausibly construed as applying to what the Slave 
machine can do, the thesis being that Turing computability serves as an 
upper bound for any such machinc.19 

( lt is an upper bound because no 
actua_lmachinc has an unlimited mcmo.ry storage or unlimited comput
l~g t1~11c. Nor can the machine be speeded up indefinitely without 
vw_latmg the _relativistic prohibition against supcrluminal velocities.) 
1 h1s proposal1s not unchallengeable-- indeed, one of us thinks that there 
are successful challenges~0 

- hut that is a matter to be reserved for 
~mot~cr occa:ion._ The relevant point here is that realizability of simple 
mfimty machmes 1_n general relativistic space times is compatible with any 
account of effective/mechanical computability for the Slave machine. 
Th~n, given an account- Church's or other- that implies that some sets 
of 1ntcg~rs are cf~cctively/mcchanically enumerable but not effectively/ 
mechanically decidable, the Slave-Master arrangement in Malament
Hoga~th spacetirnes provides a procedure that plausibly can be said to 
effectively/mechanically decide membership in the set and thus to outdo 
any Turing machine. But the core of Church's proposal. as we have 
construed it. remains untouched. 

14 Conclusion 

The discussion of the paradoxical infinity machines has led to some 
interesting facets of motion in a Newtonia;1 setting. But as far as we can 
tell, such machines have nothing new to teach us about the nature of 
infinities or ~~e continuum. This may be a little disappointing but it is 
hardly surpnsmg. Over the centuries paradoxes of infinity have played 
an honor~ble role in pointing to fundamental questions in logic, 
mathematiCS, and the physics of motion. That they no longer have the 
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power to generate new knowledge is due to the fact that they have 

fulfilled the function of good paradoxes all too well. 
We arc not so naive as to think that we have had the last word on 

supcrtasks. Since it is the business of philosophers to uncover logical and 
conceptual difficulties, we would not be surprised if there were to be 
continued assertions that supertasks arc by their very nature contradic
tory, paradoxical, or puzzling- not surprised, but certainly disappointed. 
We take it as established as clearly as anything can be in this area that 
some non-trivial supcrtasks are unproblematic. Others arc paradoxical 
in the proper sense of that word. But they arc not paradoxical because 
of any inherent incoherence in the notion of a supcrtask. To assume 
otherwise is to preclude consideration of conceptual devices that have 
most interesting consequences in areas that transcend the simple domain 
of lamps and urns. The inlinitc computing machines of Malament

llogarth spacetimcs may well just be one example. 

Notes 

We arc gratdul lo Ulrich Maier. Robert Nola, and Wesley Salmon for 
helpful discussion . .John Earman would like to take the liberty of mentioning 
that during his junior year at Princeton, Paul Benacerraf handed him a reprint of 
his just published article "Tasks, Super-Tasks, and Modern Eleat ics·· ( 1 lJ62). It 
has taken him a third of a century to make (what he hopes is) an advance on 

this article. 
1 In his review of Zeno's paradoxes. Salmon (1970, pp. 9-10) considers a 

second form of the dichotomy according to which the runner cannot even 
get started. He must first run to the half way point, but before that he must 
run half way to the half way point and so on inclctinitcly. The original form 
of the dichotomy is essentially equivalent to the" Achilles·· paradox of Zcno 
according to which the faster runner cannot overtake the slower. The faster 
would first have to run to the place the slower had just left, and then to the 
place to which the slower had moved and so on indclinitcly. 

2 r:or further discussion. see Vlastos ( 1967, pp. 372-4). 
3 This assumes that the runner's hands clon"t "ny off to spatial inllnity," an 

assumption that is plausible if they remain attached to his body and don't 
stretch beyond all bounds. The relevance of this caveat will emerge below. 

4 Thomson ( 1954-55). For critical discussions, sec Benaccrraf ( 1962). 

Chihara (1%5), and Grtinbaum (1969, 1970). 
5 Thus Grtinbaum ( 1970, pp. 239-40). at AI .Janis' suggestion. describes a 

switching mechanism in which the lamp state depends on the direction of 
approach of a pointer that executes infinitely many oscillations about a mid 
point in a finite time, ending, let us say, at 12:00 PM. The direction of 
approach is undefined at 12:00 PM and the directions prior approach no 
limit. Therefore no consistent mechanism can continue faithfully to set the 
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h~mp ~tate from ~he direc_tion of approach at 12:00 PM. either by using the 
dJrcctJon 1mmed1ately prror or projecting it via the persistence property. 

Any attempt to construct such a mechanism will either fail (but possibly 
:~1~1am cons1st~nt) or be wracked with inconsistency. 

fi I his P<Hadox IS due to Ross (19RR). It is discussed in Allis and Koctsicr 
( 1991 ), v~n Bcndegem ( 1994) and Holgate ( 1994 ). 

Mamta1n1ng the continuity of the number function instead would require 

f~rfcl!mg o_f th1s simple ~pncctime picture. It would be an interesting exer-

7 

Cise to dcv1se a kmemat1cs of hall transfers that would allow the number 

comht10n to he maintained. It may prove incompatible with the numbering 
scheme used for the halls. unless the identity of the halls c:1nnot he main
tamed or unless a plausible mechanism for generating new halls can be 

lllult 111. for none of the original numbered halls can remain in the vase at 
12:00 PM. This calls to mind the failure of world line continuity to he 

explored'~ Black's transfer machine below. We also think of the particles of 

quantum held theory for they arc not conserved and need not retain their 
mchvJdual Identities in the course of interactions. 

Of C<~urse the dishonest agents need only be convinced that their stage is 
suf_fiCJcntlyrcmotc from the stage at which the scheme collapses' 

9 lh1s mach1nc was Introduced by Black (1950-.'il). It is discussed by 
Grtinhaum ( 1970. p. 240). 

10 This precludes a less interesting variant of the paradox in which the dis

tances ~overed by the marble in each transfer diminish to zero. just as do the 
successive bounces of the bouncing hall. 

To sec this in more detail, describe a curve in the usual manner as some 

functiOn y(x) Ill a Euclidean space with Cartesian coordinates (x. 1'). The 

II 

12 

lJ 
14 

functions v (r) v ( r) tl1 t · 1 (' · · f . "1 · • • '" • • • • a corrcsponc to 1• C,, ... do approach the 
unction r"~'(x) that corresponds to 1113 in the limit. llowcvcr the length of 

each curv~ IS not gJvcnchrcctly as a function ofv(x): it is given as a function 

of the dcnvat1vc v'(x) = dv(x)ldr: that is. the length is J,(T+\•''(x))d.r. But 
the dcnvat1vcs rl'(r). r,'(.l), ... do not approach the derivative v"

1
'(1) in 

the lnnlt. It_ fo_llows that the lengths of C
1

• C, .... need not approach that of 
A IJ 111 the hn11t. 

A timclikc half-curve is a timclikc curve which has a past endpoint and 
wh1ch IS extended as far as possible in the future direction. 
llcre r stands for proper time. 

For a spacetime point fi, l(p) denotes the chronological past of p, i.e. the set 

of all pomts q such that there is a non-trivial future directed timclikc curve 
from q top. If X is a set of spacetime points /(X) =· u /( ) 

15 Tl' . . ' . reX fl . 
. 11s assumes that ?IOiogJCal aging is proportional to proper time. 

I fi 1 he total acceleratiOn Til (y) of y is defined to he TA(y) =· J ·tcit h. , . 
· 1 . ··' , w ere d 
IS t 1c magnitude of the four-acceleration of y. If m, and 111""' ar~ respectively 
the fin.al mass of the rocket and the mass of the fuel expended, then even 

assum111g perfec~ly efficient rocket motors. a rocket propelled purely by its 
motors must satJsfy (Malamcnt 1 985) -

m,l(m, + m,.,c~) -s cxp(-T!I(y)) 
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17 For an attempt to dispel the air of paradox here, sec Earman ( 1994a). 

18 At least they can satisfy what is called the condition of stable causality which 

implies that there is a global time function which increases along every 

future directed timclike curve (sec llawking and Ellis. 1973, p. 198). How

ever. they cannot he causal in the sense of allowing for global Laplacian 

determinism: technically, they cannot be globally hyperbolic. 
19 To ilssume that the Slave machine incorporates a device that inserts a special 

no-convergence code in the cell is to assume that the machine employs a 

second supcrtask, contrary to our assumption. This second supcrtask may 

also invite paradox: see below. 
20 Such devices may be possible if we arc prepared to admit sufficient 

idcalit.ations. including infinitely fine discrimination in pointer readings. 
( ·onsidcr. for example, a reader with a pointer scak from ·- I to f I. The 

pointer starts at I and its position is reset to± 1/2. ::': 1/4, ::': 1/H .... each time 
the data stream flips from() to I or from I to 0: the former flip resets to 

positive values and the latter flip to negative values. With the completion of 

the supcrtask. a positive pointer reading corresponds to a convergence to 1. 

a negative pointer reading to a convergence to 0, and a zero reading to a 
failure to converge. 

21 Of course. in general in case (h) there will he some ~ for which S( z) is false 

hut whose falsity is determined in finitely many steps by the program. For 

such z. S(z) ~ R'(z). for some recursive R'. This trivially has the existentially 

quantified form required since /?'(z) is equivalent to (:=ly)(/?'(z) & (y = y)). 
22 The Turing machine for !(11 will only attempt to complete its calculation for 

those z in the set for which failure to halt entails that S(z) is false. Similarly. 

the Turing machine for Rd~ will only attempt to complete its calculation for 

those z in the set for which failure to halt entails that S(z.) is true. 

2] This result follows from the structure of the Klccnc arithmetic hierarchy 

(sec Rogers. 19X7. Chapter 14: Enderton. 1972, Chapter J). The set of 

numbers that satisfies S(z), [z: S(z)j.lies in I 2 of the hierarchy. Correspond
ingly, [z: .\,(z)jlies in l:11 .[z: S,(z)jlics in I,.[z: S,.(z)Jiics in fl 1• and [z: S,(z)J 
lies in fl.. To sec the last case. we need only add dummy variables to 

the sentence Sd(z.) = j(:=ly)R,11 (y, z)v(Vx)R",(x. z)J to get it into the 
form [('\l'x)(:=ly)(R,,(y, z) & (x = x) )v(Vx)(3y)R",(.r. z) & (y = y)] = 

(Vx)(:=ly)/(.(x, y, z) for a recursive relation /?". Thus. S"(z) has the 
quantifier structure of "V:=l" so the corresponding set lies in fl 2. The core 

result for our purposes is that there arc sets in I, that fail to lie in any of I", 
r,. n,, or n,. 

24 The arithmetic hierarchy gives a precise sense in which "most .. Turing 

uncomputable tasks remain uncomputable for a simple infinity machine. 
The I 11 sets arc recursive. r, sets arc recursively enumerable. Simple infinity 

machines extend the power of Turing machines up just one level of the 

hierarchy in so far as they enable sets of I, to be decided. They fail to decide 

l:2 sets and higher in the hierarchy. 
25 Subject, as we now must observe. to the restrictions mapped out in the last 

section. A simple infinity machine suffices to decide purely universal or 

purely existential propositions. 
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2(1 The same passage appears in the original German edition. Weyl (1921. 
p. 224 ). 

27 Similar claims appeal elsewhere in his writings. Weyl ( JlJ71. p 224) finds it 
meaningless to speak of running through all numbers to find if there is a 
prime of form 2''"' '' -1 1. Flsewhcrc the simple existential claim "there exists 
an even number'" is denounced on Brouwer\; ever present authority as an 
"infinite logical summation·· and "not a propmition in the propn sense that 
asserts a fact"" ( 1949. p. 50). ( 'orrespondingly "AIInumlwrs ;1re even"" is an 
infinite logical product "I is even. and 2 is even. and 3 i' even ..... which 
"obviously has no meaning ... ( 1929. p. l.'i2.) 

2X Sec also Wcyl (1949. p. 3X: 1932. pp. 62-3.) and ( llJ\2, p. X3) for the 
conclusion that "the compll'ted. the actual infinite as a clllscd realm of 
absolute existence is not within its !the minds intuitive! reach ... 

2lJ This way of construing Church's thesis/proposal is to he found in Endcrton 
( 1972). 

30 Sec Earman ( 19X(J): sec also Pitowsky ( 1990). 
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