1

Introduction

The links between philosophy and mathematics are ancient and complex.
The two disciplines are in a sense coeval: for both, the Ancient Greeks
were the first to introduce systematicity, rigor, and the centrality of
justification to their practice. Indeed, Plato (428-348(7) BCE) had it
inscribed on the gates of his Academy that no one should enter who
knew no mathematics. There have since been few major philosophers in
the Western tradition who have not labored mightily to understand the
phenomenon of mathematics.

Yet it might at first seem a surprise that philosophy, which often
concerns itself with fundamental issues arising out of everyday life,
should focus so on perhaps the most abstract discipline, one whose
subject matter and methods seem, as we shall soon see, so removed
from ordinary experience. While there is surely no one explanation for
this, and certainly no one answer that can be summarized without some
injustice, we might point to at least the following.

Our knowledge of mathematical facts is often thought to be justified
by pure ratiocination, perceptual observation via any of our five sensory
modalities being neither necessary nor even relevant. Because mathemat-
ical knowledge seems to be unconstrained by experience, and so to enter
the world touched only by the hand of reflection, analysis of it promises
to reveal something important about rational thought itself. Since the
nature of rationality has always gripped the philosophical imagination, it
is perhaps no mystery after all that philosophers regularly direct their
attention to mathematics. Mathematics is the purest product of concep-
tual thought, which is a feature of human life that both pervasively
structures it and sets it apart from all else.

Other reasons for philosophical interest in the nature of mathematics
will emerge as we proceed. It might be useful to pause, however, and to
ask what distinguishes a philosophical interest in mathematics from
other kinds of concern. Although the question of what counts as such
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an interest admits of no briefer or simpler an answer than does that about
what philosophy itself is, we can approach it helpfully, if indirectly, by
first describing the kinds of study of mathematics we are #ot interested in
here.

To begin with, we shall not engage in a bistorical investigation into the
development of mathematics. The etiology of mathematical ideas, how-
ever interesting, is not something whose study promises to reveal much
about the structure of thought: for the most part, the origin and develop-
ment of mathematical ideas are simply far too determined by extraneous
influences. The same holds for a sociological inquiry into the role of
mathematics and mathematicians in our society, the forces that shape
research interests and structure professional activity, and so on: again,
these aspects of the doing of mathematics bear the imprint of countless
varied factors and so it is difficult, if not impossible, to distill from such
inquiries information pertinent to central philosophical concerns.

Since these concerns focus on the nature of rational thought, it might
appear especially strange that we are likewise not going to pursue any
kind of psychological inquiry into mathematical thinking or develop-
ment. Such research often takes for granted a conception of thought,
usually undeveloped, and asks such questions as “What brain, or neural
activity, or cognitive architecture makes mathematical thought pos-
sible?” or “What kind of environment is needed to facilitate the develop-
ment of the capacity for such thought?” Again, while of great interest,
such studies focus on phenomena that are really extraneous to the nature
of mathematical thought itself. Indeed, to repeat, they often proceed
without a developed account of what such thoughts are, and they con-
centrate rather on the neural states that somehow carry thought, or on
the environmental or genetic factors that make those states realizable.
Philosophers, by contrast, are interested in the nature of those thoughts
themselves, in the content carried by the neural vehicles (if that is indeed
the right picture). A philosophical study of mind is interested in an
analysis of the thoughts that the workings of mind give one access to,
but not in an account of the conditions or the mechanisms - environ-
mental, genetic, neurophysiological ~ to whose influence and operation
we owe our access to such thoughts.

We should add, finally, that a philosophical inquiry into mathematics
differs from a mathematical one. (It is interesting to note that perhaps the
only discipline other than philosophy so clearly amenable to such self-
analysis, so fitted to take its own methods and problems as a focus of
inquiry, is mathematics.) What precisely the application of mathematics
to itself might consist in is something that we shall take up later. And
although we shall then find this self-application of great interest, its
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import is not philosophically transparent. Rather, as we shall see, it
provides data for a satisfying philosophical analysis, but it cannot substi-
tute for that analysis.

Let us turn now to a more positive characterization of a philosophical
approach to mathematics. It will be helpful to focus on instances of
actual mathematics, so let us consider a few theorems and their proofs,
and then survey the kinds of typically philosophical issues they raise. The
first two both involve the distinction between rational and irrational
numbers. A rational number is one that can be expressed as a fraction;
for example, 3/5, —19/12, and 8/1 are all rational numbers. An irrational
number ~ 7, for instance — is one that cannot be expressed as such a
fraction. The rationals and irrationals together make up the real
numbers. Our first theorem dates from Ancient Greece; it is usually
atttributed to a member of the school of Pythagoras, although precisely
who first proved it is not known. The English mathematician G. H.
Hardy (1877-1947) called it a theorem “of the highest class. [It] is as
fresh and significant as when it was discovered — two thousand years
have not written a wrinkle” on it."

THEOREM 1.1. /2 is irrational.

Proof. By reductio ad absurdum. Assume that /2 = a/b, for some
integers a, b. By reducing the fraction a/b to lowest terms if necessary,
we may assume that a and b have no common factor. Then 2 = (a/b)*.
That is, 2 = a®/b*. Hence, 2b*> = a?. But then a? is even. So, since the
square of an odd number is always odd, a is even; that is, a = 2c¢, for
some ¢, and a®> = 4c%. Substituting, we get that 2b* = 4c?; that is,
b* = 2c%. Hence, b is even. But this contradicts our assumption that a
and b have no common factor (since if they were both even, they would
have a common factor of 2). Therefore, v2 # (a/b), for any integers a,
b; that is, v/2 is irrational. |

This demonstrates that not all magnitudes — in particular, not the
length of the hypotenuse of a right-angled triangle of unit base and height
- can be treated by the theory of numerical proportion upon which the
mathematics of Ancient Greece was based. It must have thus constituted
something of a revolution.

Our second example is of more recent vintage.”

" Hardy (1967, 92).
" The earliest published reference known to us is Jarden (1953).
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THEOREM 1.2. There are irrational numbers a, b such that a® is ra-
tional.

Proof. By argument by cases. Either \/fﬁ is rational or it is not.

Case 1: \/Z\/z is rational. By Theorem 1.1, we know that v2 is
irrational; so let @ = b = v/2. Then a, b are irrational and 4 rational,
as required.

Case 2: \/Z\/i is not rational. Let a = \/Z\/z and let b = /2. Then

ab = (\/zﬁ)ﬁ = \/zﬁ\/Z = \/22 = 2, which is rational.
In either case, then, the theorem is shown to be true. ]

Finally, we give an example of a proof that uses mathematical in-
duction. Mathematical induction is an important method for proving
general statements about the natural numbers: the numbers 0, 1, 2,
and so on. To prove a statement of the form “For all natural numbers
n, P(n)” by mathematical induction, one first proves that P(0) is true (the
base case of the induction), and one then proves that for every natural
number 7, if P(n) is true, then so is P(n + 1) (the induction step). The
assumption in the induction step that P(n) is true is called the inductive
hypothesis. To see why this establishes the desired conclusion, note that
according to the induction step with » = 0, if P(0) is true then P(1) is
true. But by the base case, P(0) is true, so it follows that P(1) is also true.
Applying the induction step with » = 1, we see that if P(1) is true then
P(2) is true; since we have just shown that P(1) is true, P(2) is also true.
Continuing in this way, we can establish P(n) for every natural num-
ber #. In other words, the statement “For all natural numbers n, P(n)” is
true.

TrEOREM 1.3. For every matural number n, 0+1+2+ ... +n =
n(n+1)/2.
Proof. By mathematical induction.

Base case: When n = 0, both sides of the equation are equal to 0.

Induction step: Suppose that 0 + 1 +2+ ... +n = n(n+ 1)/2. Then

0+1424...4m+1) = (0+14+2+...4+n) +(n+1)

_ n(n2+ 1) +(n+1) (by the inductive

hypothesis)
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nn+1)+2(n+1)
2
_ (n+D((m+1)+1)
5 .

These examples are in a way paradigmatic mathematics. To be sure,
mathematics is filled with proofs that are much longer and more compli-
cated, and with theorems that involve concepts far more intricate than
those appearing above. But most philosophical questions about math-
cmatics can already be raised with regard to such simple examples. We
shall briefly examine a few of these in turn.

To begin with, note that (assuming you had not seen these proofs
before) you now know three more truths than you did a few moments
ago. How did you acquire this knowledge? One way you did not acquire
it is through observation. It is true that you used your eyes to read the
sentences of the proofs. But this was by no means necessary. You could,
after all, have thought up the proofs yourself (as did those who first
arrived at them). And anyway, seeing that the ink is arrayed just so on the
page is not what shows you that the theorems are true, for the theorems
are not about the disposition of ink on paper.

In this connection, philosophers often distinguish between a priori and
a posteriori knowledge. The latter kind of knowledge requires sensory
experience for its justification, whereas the former requires none. Math-
ematical truths, unlike, say, truths about the natural world, are known a
priori. You now know that /2 is irrational, not on the basis of any
measurements or observations, but rather on the basis of pure reflection.
This is quite unlike your knowledge that this book weighs less than you
do, which is a posteriori in that it cannot possibly be justified without
some kind of recourse to observation.

To be sure, it might be the case that sensory experience is required in
order for us to acquire the language by means of which we can under-
stand the thoughts involved in the above theorems and their proofs. But
we must distinguish between what is needed in order for one to grasp the
content of these theorems and what is relevant to their justification. The
present distinction between a priori and a posteriori knowledge pertains
to the latter only. For example, there is a sense in which you would not
have known that Theorem 1.1 holds had (say) page 3 been missing from
this book (assuming, still, that you learned it here for the first time); sense
experience, in particular your sensory interaction with the appropriate
page, is relevant to your acquisition of the knowledge that this theorem
obtains. The physical page and its properties are not, however, relevant
to your justification for believing that Theorem 1.1 is true. By contrast,
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the fact that any fraction can be reduced to lowest terms is something
upon which the justification of Theorem 1.1 depends. One might express
this by saying that, should the claim about reducing fractions to lowest
terms not hold, then we would not be said to know that Theorem 1.1 is
true. But one should not assimilate this situation to that arising from the
missing page. The latter leads to an impediment to our acquisition of
knowledge, whereas the former presents an obstacle to our justification.
To determine whether a claim is known a priori or not, we must examine
the kind of evidence upon which the justification of the claim rests; in
particular, we must determine whether any of it is based on sensory
experience. Theorem 1.1, for example, is an instance of a priori know-
ledge because, in spite of the fact that sensory experience is required in
order to come to know it, its justification does not depend on any claims
known through experience. The same holds for Theorems 1.2 and 1.3.

The above theorems, then, are known a priori. Now this feature of
mathematical knowledge, that its justification makes no reference to
facts known through observation, appears at first glance to clash with
empiricism, a most influential and long-lived doctrine according to
which all our knowledge is ultimately based on our sensory experience.
Of course, if “based on” means merely “would not be possible without,”
then empiricism cannot be gainsaid any more than other patent truths. So
understood, it is not quite a tautology, for there is perhaps nothing
absurd in supposing that a being could come to acquire a language and
knowledge on the basis of no experience at all, but even the most cursory
examination of how it is with humans will show one that it is true.
Consequently, if empiricism is to rise above the more than obvious,
then “based on” must be interpreted otherwise.

In fact, the doctrine is typically interpreted more strongly to hold that
all knowledge is ultimately justified on the basis of sensory experience.
And it is with this familiar interpretation of the doctrine that the a priori
nature of mathematical knowledge is in conflict. The clash is a serious
one in so far as empiricism is a plausible doctrine. And it is not hard to
see why many have found it such. For much of our knowledge does seem
to be rationally based on observations of the world. It might even appear
difficult to see how one could have knowledge of the external world
except through its rationally impinging upon one in some way. Since our
only channels of information are the five sensory modalities, it seems that
all knowledge of the world must ultimately be justified by data that are
transmitted through them. And yet knowledge of the above three the-
orems is not.

One way of alleviating the present pressure is to reject the view that
these theorems are about the world. Empiricism, after all, appears to be
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motivated by considering how knowledge of the external world could be
justified. Perhaps, then, the entire conflict can be defused by denying that
mathematics tells us anything about the natural world. But if it is not
about the natural world, then what is the subject matter of its claims?
One very powerful answer is that mathematics concerns a world that
exists quite as independently of us as does the natural world, only one
that is not located anywhere in space or time. Hardy eloquently describes
this doctrine as follows:

By physical reality I mean the material world, the world of day and night,
earthquakes and eclipses, the world which physical science tries to de-
scribe.

I hardly suppose that, up to this point, any reader is likely to find trouble
with my language, but now I am near to more difficult ground. For me, and
I suppose for most mathematicians, there is another reality, which I will call
“mathematical reality.” [...] I believe that mathematical reality lies outside
us, that our function is to discover or observe it, and that the theorems
which we prove, and which we describe grandiloquently as our “cre-
ations,” are simply our notes of our observations.’

This view of mathematics is often called platonism.

Platonism, as just described, in fact involves two distinct ways of
characterizing a realm of reality. The first is ontological in nature, that
is, it proceeds by describing the kind of entities that inhabit the particular
realm in question. Mathematical platonists usually insist that mathemat-
ical entities are abstract in not being spatiotemporally located and thus in
not having any causal powers. If we think about this aspect of platonism
in connection with our three theorems, we cannot but acknowledge its
plausibility. For instance, it would be quite odd for someone to think that
V2 is actually a locatable and datable entity. The request for its location
or for the time it came into existence admits of no answer that does not
confuse a vehicle for referring to that number (for example, ink marks on
paper, brain states of a human) with the number itself. Likewise, it seems
implausible that the infinitude of natural numbers should remain an open
question until physics determines whether the universe is infinite; but if
we insist on identifying each of the infinitely many natural numbers with
a distinct spatiotemporally located bit of matter, then this is precisely
what we shall have to accept.

Platonism provides a second way of characterizing the realm of math-
ematics, one that we might call doxastic in that it describes the relation
between, on the one hand, truths about the realm in question and, on the

3 Hardy (1967, 122-4).
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other, what we believe. Along this dimension, platonism insists that
mathematics is mind-independent, in the sense that whether a math-
ematical statement holds is quite independent of what we think. We
can imagine certain realms in which the beliefs of observers in effect
settle what is true and what is not. But mathematics, according to the
platonist, is not like this: the truth or falsity of a mathematical claim is
not determined by what anyone believes about its truth value. This, too,
is a plausible position with regard to the theorems above. For instance,
the square root of 2 is irrational regardless of whether anyone believes or
wants it to be; indeed, its irrationality is not contingent on anyone’s
having beliefs about it at all. This result obtains, Hardy insisted, “not
because we think so, or because our minds are shaped in one way rather
than another, but because it is so, because mathematical reality is built
that way.”*

There are other senses of mind-independence with which this last
should not be confused. One might claim that mathematics is mind-
independent in that the entities that make up its subject matter are
distinct from items of the mind. (Whether this is entailed by the onto-
logical component of platonism depends on whether mental items are
themselves spatiotemporally located.) Or one might hold that mathemat-
ical entities are mind-independent in that their existence does not
presuppose the existence of minds. (The latter conception of mind-inde-
pendence clearly entails the former. But not conversely: for someone
could consistently maintain that just as an artifact, although an object
distinct from the artisan, is dependent for its existence on the latter’s
activities, so mathematical entities, although not themselves mental,
would nevertheless not exist were it not for minds.) We shall return to
some of these notions later, but for now let us simply observe that they
are both to be distinguished from the claim of mind-independence that
we are taking to be part of platonism. For even if mathematical entities
are identical to mental items, one can still maintain that truths about
these entities hold regardless of our beliefs about them: there is no reason
why facts about our minds must be in principle accessible to us. We
might note, finally, that a generalization of this last observation shows
that the two features of platonism we have isolated are distinct: that the
truths of mathematics hold regardless of our recognition that they do
fails to settle the ontological nature of the entities these truths concern.

We first encountered platonism as a way of viewing mathematics that
defuses its threat to empiricism. But does it really succeed in this? One
might well wonder whether talk of abstract entities is less a solution to

4 Hardy (1967, 130).
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the empiricist’s problem of how a priori knowledge is possible than it is a
label for the problem. For it remains to be explained how we, creatures
located in space and time, can acquire information about entities that are
not so located. Because these latter are causally impotent and so cannot
affect us in any way, it seems a mystery how we could come to have
knowledge about them. To say that thought happens to permit direct
access to this independently existing, though causally quarantined, world
might seem, again, less a solution than a colorful description of the
originally puzzling situation.

In addition, even if one does grant that mathematics is about some
nonphysical reality, the fact remains that mathematical knowledge is very
applicable to physical reality. Mathematics, from the humblest of arith-
metical calculations to the most recondite of theories, finds itself useful in
the description and prediction of natural phenomena. Physicists are of
course particularly aware of this. Albert Einstein (1879-1955) wrote of
“an enigma [that] presents itself which in all ages has agitated inquiring
minds. How can it be that mathematics, being after all a product of
human thought which is independent of experience, is so admirably
appropriate to the objects of reality? Is human reason, then, without
experience, merely by taking thought, able to fathom the properties of
real things?”® As the American physicist Steven Weinberg (1933~ ) put
it, “It is positively spooky how the physicist finds the mathematician
has been there before him or her.”® Johannes Kepler (1571-1630), the
German astronomer and mathematician, likewise impressed by this fact,
suggested that “God himself was too kind to remain idle, and began to
play the game of signatures, signing his likeness into the world; therefore
I chance to think that all nature and the graceful sky are symbolized in
the art of geometry.” If the applicability of mathematics calls for some
explanation, then the mystery is only deepened by taking mathematics to
be about a realm disjoint from the natural world.

Faced with these initial hurdles for platonism, one might be tempted to
rethink one’s strategy for safeguarding empiricism from the a priori
nature of mathematical knowledge. And there is indeed another measure
to hand, namely the proposal that, contrary to all appearances, math-
ematical truths are in fact known a posteriori. Although some philoso-
phers have attempted to elaborate such a view, it is hard to see how they
can overcome the fact aiready emphasized: that mathematical arguments
do not seem to be justified by any empirical observations. In addition, the

* From a lecture delivered to the Prussian Academy of Sciences in Berlin on

January 27, 1921: see Einstein (1983, 28).
¢ Weinberg (1986).
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very nature of justification in mathematics, namely proof, appears quite
different from that usually operative in arguments to conclusions about
the natural world. The latter inferences are often inductive or statistical
in character, and so not truth-preserving: that is, the truth of their
premises does not guarantee the truth of their conclusions, but may
make them merely probable to some degree or other. By contrast, the
inferences found in mathematical proofs are all valid: the truth of such an
inference’s premises necessitates the truth of its conclusion. It seems,
then, that mathematical truths not only fail to be known on the basis
of empirical evidence, but they also fail to be justified by inferences of the
kind typically used to reason about the natural world. This proposal
really does appear a counsel of despair.

This last point draws our attention to yet another feature of math-
ematics that has puzzled philosophers: the validity of the inferences that
figure in its deductions. Consider the form of inference at work in
Theorem 1.1. We can analyze it as having the following structure:”

(1) A— -A.
Therefore,
(2) -A.

This argument, known as reductio ad absurdum, has the distinctive
property that if (1) is true, then (2) must be true as well.? The claim is
not merely that (2)’s truth is made very likely by the truth of (1) but,
rather, that it is made necessary. Although the proof of Theorem 1.2 is
supported by a different logical skeleton, it shares this property. Its
structure is as follows:

(3) AV-A,
(4) A—B,

7 In this book, we use the following logical notation: “~P” means not P,

“P A Q” means P and Q, “P vV Q” means P or Q, “P — Q” means if P then
Q, “P « Q” means P if and only if Q, “VxP” means for all x, P, and “IxP” means
there exists at least one x such that P.

8 Hardy memorably said of this form of inference that it “is one of a mathema-
tician’s finest weapons. It is a far finer gambit than any chess gambit: a chess
player may offer the sacrifice of a pawn or even a piece, but a mathematician
offers the game.” (Hardy, 1967, 94).
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(5) -A— B.
Therefore,
(6) B.

The unique force of the “therefore™ here is just this: that should (3)—(5) be
true, then necessarily (6) is as well. The Austrian philosopher Ludwig
Wittgenstein (1889-1951) called this the “hardness of the logical must,””
and many have found its source quite mysterious. For instance, the
Scottish philosopher David Hume (1711-76) argued that such a neces-
sary connection between states of affairs is illusory, for nothing like it is
given to us in experience; at best, we observe that one kind of state of
affairs regularly follows another, but the necessity of this link is nowhere
to be seen."® This necessity is one source of the aesthetic fascination that
mathematics exerts. The English philosopher Bertrand Russell (1872-
1970) once told a story that illustrates this:

My friend G. H. Hardy, who was Professor of pure mathematics, enjoyed
this pleasure in a very high degree. He told me once that if he could find a
proof that I was going to die in five minutes he would of course be sorry to
lose me, but this sorrow would be quite outweighed by pleasure in the
proof. I entirely sympathized with him and was not at all offended.*

The bewitchingly mysterious necessity of proof highlights yet another
aspect of mathematics that is difficult to accommodate within an empiri-
Cist perspective.

There is a final feature of mathematics, already obliquely mentioned,
that deserves comment here. This is that the knowledge justified by
mathematical proof is often infinitary in nature: the content of what is
known involves reference to an infinite range of objects. Consider, for
example, Theorem 1.1, whose infinitary content might not at first be
obvious, since it seems to be about just one entity, the square root of 2.
The fact is that the property being attributed to this entity, that of
irrationality, when rendered fully explicit, makes reference to an infinite
collection. For to say that v/2 is irrational is just to say that

—3x3y(x is an integer Ay is an integer A V2 = x/y).

?  Wittgenstein (1978).
10 See, for instance, Hume (1748).
" Russell (1956, 14).
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And this is logically equivalent to

VxVy((x is an integer Ay is an integer) — v2 # x/y).

As the universal quantifiers ranging over the totality of integers reveal,
the claim that v/2 is irrational is an infinitary one. Now this feature of
mathematics can appear puzzling. We are, after all, finite creatures: our
powers, such as our memory and computational speed, are finite, as are
the durations for which we can exercise these powers, namely our lives.
Consequently, we have the capacity to survey no more than a finite
amount of evidence. How, then, do we manage to arrive at infinitary
knowledge? One might even begin to find it mysterious that we finite
beings are able so much as to comprebend statements about an infinite
range of objects. As the French writer Voltaire (1694-1778) said, the
infinite “astonishes our dimension of brains, which is only about six
inches long, five broad, and six in depth, in the largest heads.”'?

Mathematics, in short, seems to be a discipline through which we
acquire knowledge about infinitely many entities with which we can in
no way causally interact, by means of finite inferences which make no use
of empirical premises and which yield their conclusions with the force of
necessity. We began by noting that it might seem surprising that math-
ematics should be the object of so much philosophical attention. But
perhaps what should surprise is any display of intellectual equanimity
before the phenomenon of mathematics.

Philosophers have not been alone in trying to understand mathematics,
however distinctive their own perplexities and approaches might be.
Mathematicians, spurred especially by dissatisfaction with their under-
standing of analysis, the mathematics that underpins the calculus, have in
their own way sought to arrive at a deeper understanding of the founda-
tions of their discipline. These attempts were especially sustained in the
nineteenth century, although the worries dated from before. The Irish
philosopher Bishop Berkeley (1685-1753), complaining in his The Ana-
lyst, or a Discourse Addressed to an Infidel Mathematician (1734) about
Newton’s formulation of the calculus, quipped that: “He who can digest
a second or third fluxion, a second or third difference, need not,
methinks, be squeamish about any point in divinity.”** Although many
struggled to clarify these matters, the mathematician N. H. Abel (1802~
29) could still complain in 1826, almost a century later, of “the surprising
obscurity one finds undoubtedly in analysis today. It lacks all plan and

12 Quoted in Moritz (1958, 336).
13 Reprinted in Ewald (1996, vol. 1, 62-92; 65, para. 7).
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unity [...] the worst is that it has not at all been treated with rigor. There
are only a very few theorems in advanced analysis which are proved with
complete rigor.”'* Indeed, at that time mathematicians were still lacking
definitions of basic analytic notions such as limit, continuity, the distinc-
tion between pointwise and uniform convergence, and the derivative.

Yet by the end of the nineteenth century, conceptual clarity regarding
the foundations of analysis had been largely achieved. The rigor whose
absence was lamented by Abel was now in place, and it made possible
not only a deeper understanding of previous results (and errors), but also
suggested new, formerly unthinkable avenues of exploration. This en-
hanced focus developed as mathematics, the calculus especially, under-
went a systematic analysis in terms of the familiar natural numbers and
the usual operations defined on them. Of particular note in this connec-
tion is the accomplishment, due primarily to the German mathematician
Richard Dedekind (1831-1916), of defining the integers, rationals and
reals, taking only the system of natural numbers for granted.

It suffices now to say that for some this process of analysis looked to be
at an end, on the grounds that there was nothing more basic than the
natural numbers to which they in turn could be reduced. In this spirit, the
German mathematician Leopold Kronecker (1823-91) famously an-
nounced that “God made the integers, all the rest is the work of
man.”"® This attitude does not entail that no further progress can be
made in understanding the basis of mathematics, but only that we should
not look to mathematics itself for deeper illumination; in the natural
numbers, we have hit mathematical rock-bottom. Should still greater
insight be achievable through a philosophical analysis of natural number,
someone with this attitude might urge, we must not expect it also to
provide anything that could pass for a mathematical account.

In the next chapter, we shall consider how in fact some sought to
achieve both goals simultaneously.

""" Abel (1902, 23), quoted in Sieg (1984).
" Quoted in Bell (1937, 477).
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