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Overview

Suppose we settle the dispute between realism and instrumentalism. The
problem still remains of how exactly observation and evidence, the collec-
tion of data, etc., actually enable us to choose among scientific theories. On
the one hand, that they do so has been taken for granted across several cen-
turies of science and its philosophy. On the other hand, no one has fully
explained how they do so, and in this century the challenges facing the
explanation of exactly how evidence controls theory have increased.

A brief review of the history of British empiricism sets the agenda for an
account of how science produces knowledge justified by experience. Even if
we can solve the problem of induction raised by Hume, or show that it is a
pseudo-problem, we must face the question of what counts as evidence in
favor of a hypothesis. The question seems easy, but it turns out to be a very
complex one on which the philosophy of science has shed much light
without answering to every one’s satisfaction.

Modern science makes great use of statistical methods in the testing of
hypotheses. We explore the degree to which a similar appeal to probability
theory on behalf of philosophy can be used adequately to express the way
data support theory. Just as the invocation of probability in Chapter 2 leads
to questions of how we are to understand this notion, invoking it to explain
confirmation of hypotheses forces us to choose among alternative interpreta-
tions of probability.

Even if we adopt the most widely accepted account of theory confirma-
tion, we face a further challenge: the thesis of underdetermination, accord-
ing to which even when all the data is in, the data will not by themselves



choose among competing scientific theories. Which theory, if any, is the
true theory may be underdetermined by the evidence even when all the evid-
ence is in. This conclusion, to the extent it is adopted, not only threatens the
empiricist’s picture of how knowledge is certified in science but threatens
the whole edifice of scientific objectivity altogether, as Chapter 6 describes.

5.1 A brief history of empiricism as science’s epistemology

The scientific revolution began in central Europe with Copernicus, Brahe
and Kepler, shifted to Galileo’s Italy, moved to Descartes’s France and ended
with Newton in Cambridge, England. The scientific revolution was also a
philosophical revolution, and for reasons we have already noted. In the
seventeenth century science was “natural philosophy”, and figures that
history would consign exclusively to one or the other of these fields con-
tributed to both. Thus Newton wrote a good deal of philosophy of science,
and Descartes made contributions to physics. But it was the British empiri-
cists who made a self-conscious attempt to examine whether the theory of
knowledge espoused by these scientists would vindicate the methods which
Newton, Boyle, Harvey, and other experimental scientists employed to
expand the frontiers of human knowledge so vastly in their time.

Over a period from the late seventeenth century to the late eighteenth
century, John Locke, George Berkeley and David Hume sought to specify
the nature, extent and justification of knowledge as founded on sensory
experience and to consider whether it would certify the scientific discoveries
of their time as knowledge and insulate them against skepticism. Their
results were mixed, but nothing would shake their confidence, or that of
most scientists, in empiricism as the right epistemology.

Locke sought to develop empiricism about knowledge, famously
holding against rationalists like Descartes, that there are no innate ideas.
“Nothing is in the mind that was not first in the senses.” But Locke was
resolutely a realist about the theoretical entities which seventeenth-
century science was uncovering. He embraced the view that matter was
composed of indiscernible atoms, “corpuscles” in the argot of the time,
and distinguished between material substance and its properties on the
one hand, and the sensory qualities of color, texture, smell or taste, which
matter causes in us. The real properties of matter, according to Locke, are
just the ones that Newtonian mechanics tells us it has – mass, extension in
space, velocity, etc. The sensory qualities of things are ideas in our heads
which the things cause. It is by reasoning back from sensory effects to
physical causes that we acquire knowledge of the world, which gets sys-
tematized by science.

That Locke’s realism and his empiricism inevitably give rise to skepti-
cism, is not something Locke recognized. It was a philosopher of the next
generation, George Berkeley, who appreciated that empiricism makes
doubtful our beliefs about things we do not directly observe. How could
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Locke lay claim to the certain knowledge of the existence of matter or its
features, if he could only be aware of sensory qualities, which by their very
nature, exist only in the mind? We cannot compare sensory features like
color or texture to their causes to see whether these causes are colorless or
not, for we have no access to these things. And to the argument that we can
imagine something to be colorless, but we cannot imagine a material object
to lack extension or mass, Berkeley retorted that sensory properties and non-
sensory ones are on a par in this respect: try to image something without
color. If you think of it as transparent, then you are adding in the back-
ground color and that’s cheating. Similarly for the other allegedly subjective
qualities that things cause us to experience.

In Berkeley’s view, without empiricism we cannot make sense of the
meaningfulness of language. Berkeley pretty much adopted the theory of
language as naming sensory qualities that was sketched in the last chapter.
Given the thesis that words name sensory ideas, realism – the thesis that
science discovers truths about things we cannot have sensory experience of –
becomes false, for the words that name these things must be meaningless. 
In place of realism Berkeley advocated a strong form of instrumentalism 
and took great pains to construct an interpretation of seventeenth- and
eighteenth-century science, including Newtonian mechanics, as a body of
heuristic devices, calculating rules, and convenient fictions, we employ to
organize our experiences. Doing this, Berkeley thought, saves science from
skepticism. It did not occur to Berkeley that another alternative to the com-
bination of empiricism and instrumentalism is rationalism and realism. And
the reason is that by the eighteenth century, the role of experiment in
science was so securely established that no alternative to empiricism seemed
remotely plausible as an epistemology for science.

Indeed, it was David Hume’s intention to apply what he took to be the
empirical methods of scientific inquiry to philosophy. Like Locke and Berke-
ley he sought to show how knowledge, and especially scientific knowledge,
honors the strictures of empiricism. Unable to adopt Berkeley’s radical
instrumentalism, Hume sought to explain why we adopt a realistic interpre-
tation of science and ordinary beliefs, without taking sides between realism
and instrumentalism. But, as we saw in Chapter 3, Hume’s pursuit of the
program of empiricism led him to face a problem different from that raised
by the conflict of realism and empiricism. This is the problem of induction:
given our current sensory experience, how can we justify inferences from
them and from our records of the past, to the future and to the sorts of
scientific laws and theories we seek?

Hume’s argument is often reconstructed as follows: there are two and
only two ways to justify a conclusion: deductive argument, in which the
conclusion follows logically from the premises, and inductive argument, in
which the premises support the conclusion but do not guarantee it. A
deductive argument is colloquially described as one in which the premises
“contain” the conclusion, whereas an inductive argument is often described
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as one that moves from the particular to the general, as when we infer from
observation of 100 white swans to the conclusion that all swans are white.
Now, if we are challenged to justify the claim that inductive arguments –
arguments from the particular to the general, or from the past to the future
– will be reliable in the future, we can do so only by employing a deductive
argument or an inductive argument. The trouble with any deductive argu-
ment to this conclusion is that at least one of the premises will itself require
the reliability of induction. For example, consider the deductive argument
below:

1 If a practice has been reliable in the past, it will be reliable in the
future.

2 In the past inductive arguments have been reliable.

Therefore:

3 Inductive arguments will be reliable in the future.

This argument is deductively valid, but its first premise requires justifica-
tion and the only satisfactory justification for the premise would be the relia-
bility of induction, which is what the argument is supposed to establish.
Any deductive argument for the reliability of induction will include at least
one question-begging premise. This leaves only inductive arguments to
justify induction. But clearly, no inductive argument for induction will
support its reliability, for such arguments too are question-begging. As we
have had occasion to note before, like all such question-begging arguments,
an inductive argument for the reliability of induction is like underwriting
your promise to pay back a loan by promising that you keep your promises.
If your reliability as a promise keeper is what is in question, offering a
second promise to assure the first one is pointless. Hume’s argument has for
250 years been treated as an argument for skepticism about empirical
science, for it suggests that all conclusions about scientific laws, and all pre-
dictions science makes about future events, are at bottom unwarranted,
owing to their reliance on induction. Hume’s own conclusion was quite dif-
ferent. He noted that as a person who acts in the world, he was satisfied that
inductive arguments were reasonable; what he thought the argument shows
is that we have not yet found the right justification for induction, not that
there is no justification for it.

The subsequent history of empiricism shares Hume’s belief that there is a
justification for induction, for empiricism seeks to vindicate empirical
science as knowledge. Throughout the nineteenth century philosophers like
John Stuart Mill sought solutions to Hume’s problem. In the twentieth
century many logical positivists, too, believed that a solution could be found
for the problem of induction. One such positivist argument (due to Hans
Reichenbach) seeks to show that if any method of predicting the future
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works, then induction must work. Suppose we wish to establish whether the
oracle at Delphi is an accurate predictive device. The only way to do so is to
subject the oracle to a set of tests: ask for a series of predictions and deter-
mine whether they are verified. If they are, the oracle can be accepted as an
accurate predictor. If not, then the future accuracy of the oracle is not to be
relied upon. But notice that the form of this argument is inductive. If any
method works (in the past), only induction can tell us that it does (in the
future). Whence we secure the justification of induction. This argument
faces two difficulties. First, at most it proves that if any method works,
induction works. But this is a far cry from the conclusion we want: that any
method does in fact work. Second, the argument will not sway the devotee
of the oracle. Oracle-believers will have no reason to accept our argument.
They will ask the oracle whether induction works, and will accept its pro-
nouncement. No attempt to convince oracle-believers that induction sup-
ports either their method of telling the future or any other can carry any
weight with them. The argument that if any method works, induction
works, is question-begging, too.

Other positivists believed that the solution to Hume’s problem lay in dis-
ambiguating various notions of probability, and applying the results of a
century’s advance in mathematical logic to Hume’s empiricism. Once the
various senses of probability employed in science were teased apart, they
hoped either to identify the one that is employed in scientific reasoning from
data to hypotheses, or to explicate that notion to provide a “rational recon-
struction” of scientific inference that vindicates it. Recall the strategy of
explicating scientific explanation as the D-N model. The positivists spent
more time attempting to understand and explicate the logic of the experi-
mental method – inferring from data to hypotheses – than on any other
project in the philosophy of science. The reason is obvious. Nothing is more
essential to science than learning from experience; that is what is meant by
empiricism. And they believed this was the way to find a solution to Hume’s
problem.

Some of what Chapter 3 reports about interpretations of probability
reflects the work of these philosophers. In this chapter we will encounter
more of what they uncovered about probability. What these philosophers
and their students discovered about the logical foundations of probability
and of the experimental method in general, turned out to raise new prob-
lems beyond those which Hume laid before his fellow empiricists.

5.2 The epistemology of scientific testing

There is a great deal of science to do long before science is forced to invoke
unobservable things, forces, properties, functions, capacities and dispositions
to explain the behavior of things observable in experience and the lab. Even
before we infer the existence of theoretical entities and processes, we are
theorizing. A scientific law, even one exclusively about what we can observe,
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goes beyond the data available, because it makes a claim which if true is true
everywhere and always, not just in the experience of the scientist who for-
mulates the scientific law. This of course makes science fallible: the scientific
law, our current best-estimate hypothesis may turn out to be, in fact, usually
does turn out to be wrong. But it is by experiment that we discover this,
and by experiment that we improve on it, presumably getting closer to the
natural law we seek to discover.

It may seem a simple matter to state the logical relationship between the
evidence that scientists amass and the hypotheses the evidence tests. But
philosophers of science have discovered that testing hypotheses is by no
means an easily understood matter. From the outset it was recognized that
no general hypothesis of the form “All As are Bs” – for instance, “All
samples of copper are electrical conductors” – could be conclusively con-
firmed because the hypothesis will be about an indefinite number of As and
experience can provide evidence only about a finite number of them. By
itself a finite number of observations, even a very large number, might be
only an infinitesimally small amount of evidence for a hypothesis about a
potentially infinite number of, say, samples of copper. At most, empirical
evidence supports a hypothesis to some degree. But as we shall see, it may
also support many other hypotheses to an equal degree.

On the other hand, it may seem that such hypotheses could at least be fal-
sified. After all, to show that “All As are Bs” is false, one need only find an
A which is not a B: after all, one black swan refutes the claim that all swans
are white. And understanding the logic of falsification is particularly
important because science is fallible. Science progresses by subjecting a
hypothesis to increasingly stringent tests, until the hypothesis is falsified, so
that it may be corrected, improved, or give way to a better hypothesis.
Science’s increasing approximation to the truth relies crucially on falsifying
tests and scientists’ responses to them. Can we argue that while general
hypotheses cannot be completely confirmed, they can be completely or
“strictly” falsified? It turns out that general hypotheses are not strictly falsi-
fiable, and this will be a fact of the first importance in Chapter 6. Strict falsi-
fiability is impossible, for nothing follows from a general law alone. From
“All swans are white”, it does not follow that there are any white swans; it
doesn’t even follow that there are any swans at all. To test this generalization
we need to independently establish that there is at least one swan and then
check its color. The claim that there is a swan, the claim that we can estab-
lish its actual color just by looking at it, are “auxiliary hypotheses” or “auxil-
iary assumptions”. Testing even the simplest hypothesis requires “auxiliary
assumptions” – further statements about the conditions under which the
hypothesis is tested. For example, to test “All swans are white”, we need to
establish that “this bird is a swan”, and doing so requires we assume the
truth of other generalizations about swans besides what their color is. What
if the grey bird before us is a grey goose, and not a grey swan? No single fal-
sifying test will tell us whether the fault lies with the hypothesis under test
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or with the auxiliary assumptions we need to uncover the falsifying evid-
ence.

To see the problem more clearly consider a test of PV� rT. To subject
the ideal gas law to test we measure two of the three variables, say, the
volume of the gas container and temperature, use the law to calculate a pre-
dicted pressure, and then compare the predicted gas pressure to its actual
value. If the predicted value is identical to the observed value, the evidence
supports the hypothesis. If it does not, then presumably the hypothesis is
falsified. But in this test of the ideal gas law, we needed to measure the
volume of the gas and its temperature. Measuring its temperature requires a
thermometer, and employing a thermometer requires us to accept one or
more rather complex hypotheses about how thermometers measure heat, for
example, the scientific law that mercury in an enclosed glass tube expands as
it is heated, and does so uniformly. But this is another general hypothesis –
an auxiliary we need to invoke in order to put the ideal gas law to the test. If
the predicted value of the pressure of the gas diverges from the observed
value, the problem may be that our thermometer was defective, or that our
hypothesis about how expansion of mercury in an enclosed tube measures
temperature change is false. But to show that a thermometer was defective,
because, say, the glass tube was broken, presupposes another general hypoth-
esis: thermometers with broken tubes do not measure temperature accu-
rately. Now in many cases of testing, of course, the auxiliary hypotheses are
among the most basic generalizations of a discipline, like acid turns red
litmus paper blue, which no one would seriously challenge. But the logical
possibility that they might be mistaken, a possibility that cannot be denied,
means that any hypothesis which is tested under the assumption that the
auxiliary assumptions are true, can be in principle preserved from falsifica-
tion, by giving up the auxiliary assumptions and attributing the falsity to
these auxiliary assumptions. And sometimes, hypotheses are in practice pre-
served from falsification. Here is a classic example in which the falsification
of a test is rightly attributed to the falsity of auxiliary hypotheses and not
the theory under test. In the nineteenth century predictions of the location
in the night sky of Jupiter and Saturn derived from Newtonian mechanics
were falsified as telescopic observation improved. But instead of blaming the
falsification on Newton’s laws of motion, astronomers challenged the auxil-
iary assumption that there were no other forces, beyond those due to the
known planets, acting on Saturn and Jupiter. By calculating how much
additional gravitational force was necessary and from what direction, to
render Newton’s laws consistent with the data apparently falsifying them,
astronomers were led to the discovery, successively, of Neptune and Uranus.

As a matter of logic, scientific law can neither be completely established
by available evidence, nor conclusively falsified by a finite body of evidence.
This does not mean that scientists are not justified on the occasions at which
they surrender hypotheses because of countervailing evidence, or accept
them because of the outcome of an experiment. What it means is that confir-
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mation and disconfirmation are more complex matters than the mere deriva-
tion of positive or negative instances of a hypothesis to be tested. Indeed, the
very notion of a positive instance turns out to be a hard one to understand.

Consider the hypothesis that “All swans are white”. Here is a white bird
which is a swan and a black boot. Which is a positive instance of our
hypothesis? Well, we want to say that only the white bird is; the black boot
has nothing to do with our hypothesis. But logically speaking, we have no
right to draw this conclusion. For logic tells us that “All As are Bs” if and
only if “All non-Bs are non-As”. To see this, consider what would be an
exception to “All As are Bs”. It would be an A that was not a B. But this
would also be the only exception to “All non-Bs are non-As”. Accordingly,
statements of these two forms are logically equivalent. In consequence, all
swans are white if and only if all non-white things are non-swans. The two
sentences are logically equivalent formulations of the same statement. Since
the black boot is a non-white non-swan, it is a positive instance of the
hypothesis that all non-white things are non-swans, aka all swans are white.
The black boot is a positive instance of the hypothesis that all swans are
white. Something has gone seriously wrong here! Surely the way to assess a
hypothesis about swans is not to examine boots! At a minimum, this result
shows that the apparently simple notion of a “positive instance” of a hypoth-
esis is not so simple, and one we do not yet fully understand.

One conclusion drawn from the difficulty of this problem supports
Popper’s notion that scientists don’t or at least shouldn’t try to confirm
hypotheses by piling up positive instances. They should try to falsify their
hypotheses by seeking counterexamples. But the problem of scientific
testing is really much deeper than simply the difficulty of defining a positive
instance.

Consider the general hypothesis that “All emeralds are green”. Surely a
green emerald is a positive instance of this hypothesis. Now define the term
“grue” as “green at time t and t is before 2100 AD or it is blue at t and t is
after 2100 AD”. Thus, after 2100 AD a cloudless sky will be grue, and any
emerald already observed is grue as well. Consider the hypothesis “All emer-
alds are grue”. It will turn out to be the case that every positive instance so
far observed in favor of “All emeralds are green” is apparently a positive
instance of “All emeralds are grue”, even though the two hypotheses are
incompatible in their claims about emeralds discovered after 2100 AD. But
the conclusion that both hypotheses are equally well confirmed is absurd.
The hypothesis “All emeralds are grue” is not just less well confirmed than
“All emeralds are green”, it is totally without evidential support altogether.
But this means that all the green emeralds thus far discovered are not after
all “positive instances” of “All emeralds are grue” – else it would be a well-
supported hypothesis since there are very many green emeralds and no non-
green ones. But if green emeralds are not positive instances of the
grue-hypothesis, then we need to give a reason why they are not.

We could restate the problem as one about falsification, too. Since every
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attempt to falsify “All emeralds are green” has failed, it has also failed to
falsify “All emeralds are grue”. Both hypotheses have withstood the same
battery of scientific tests. They are equally reasonable hypotheses. But this is
absurd. The grue hypothesis is not one we would bother with for a moment,
whether our method was seeking to confirm or to falsify hypotheses. So, our
problem is not one that demanding science seek only falsification will solve.

One is inclined to respond to this problem by rejecting the predicate
“grue” as an artificial, gerrymandered term that names no real property.
“Grue” is constructed out of the “real properties” green and blue, and a
scientific hypothesis must employ only real properties of things. Therefore,
the grue-hypothesis is not a real scientific hypothesis and it has no positive
instances. Unfortunately this argument is subject to a powerful reply. Define
bleen as “blue at t and t is earlier than 2100 AD and green at t when t is later
than 2100 AD”. We may now express the hypothesis that all emeralds are
green as “All emeralds are grue at t and t is earlier than 2100 AD or bleen at
t and t is later than 2100 AD”. Thus, from the point of view of scientific lan-
guage, “grue” is an intelligible notion. Moreover, consider the definition of
“green” as “grue at t and t is earlier than 2100 AD or bleen at t and t is later
than 2100 AD”. What is it that prevents us from saying that green is the
artificial, derived term, gerrymandered from “grue” and “bleen”?

What we seek is a difference between “green” and “grue” that makes
“green” admissible in scientific laws and “grue” inadmissible. Following
Nelson Goodman, who constructed the problem of “grue”, philosophers
have coined the term “projectable” for those predicates which are admis-
sible in scientific laws. So, what makes “green” projectable? It cannot be that
“green” is projectable because “All emeralds are green” is a well-supported
law. For our problem is to show why “All emeralds are grue” is not a well-
supported law, even though it has the same number of positive instances as
“All emeralds are green”. The puzzle of “grue”, known as “the new riddle of
induction”, remains an unsolved problem in the theory of confirmation.
Over the decades since its invention philosophers have offered many solu-
tions to the problem, no one of which has gained ascendancy. But the
inquiry has resulted in a far greater understanding of the dimensions of
scientific confirmation than the logical positivists or their empiricist prede-
cessors recognized. One thing all philosophers of science agree on is that the
new riddle shows how complicated the notion of confirmation turns out to
be, even in the simple cases of generalizations about things we can observe.

5.3 Induction as a pseudo-problem: Popper’s gambit

Sir Karl Popper was among the most influential of twentieth-century philo-
sophers of science, perhaps more influential among scientists, especially
social scientists, than he was among philosophers. Popper is famous among
philosophers for arguing that Hume’s problem of induction is a sort of
pseudo-problem, or at least a problem which should not detain either scien-
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tists or those who seek to understand the methods of science. The problem
of induction is that positive instances don’t seem to increase our confidence
in a hypothesis, and the new riddle of induction is that we don’t even seem
to have a good account of what a positive instance is. These are not problems
for science, according to Popper, since science is not, and should not be in
the business of piling up positive instances that confirm hypotheses. Popper
held that as a matter of fact, scientists seek negative evidence against, not
positive evidence for, scientific hypotheses, and that as a matter of method,
they are correct to do so. If the problem of induction shows anything, it
shows that they should not seek to confirm hypotheses by adding to evid-
ence for them. Instead good scientific method, and good scientists, seek only
to falsify hypotheses, to find evidence against them, and when they succeed
in falsifying, as inevitably they will (until science is “complete” – a state of
affairs we won’t be able to realize we have attained), scientists do and should
go on to frame new hypotheses and seek their falsification, world without
end.

Popper’s argument for this methodological prescription (and the descrip-
tive claim that it is what scientists actually do) begins with the observation
that in science we seek universal generalizations and that as a matter of their
logical form, “All Fs are Gs”, they can never be completely confirmed, estab-
lished, verified, since the (inductive) evidence is always incomplete; but they
can as a matter of logic be falsified by only one counterexample. Of course as
we have seen, logically speaking, falsification is no easier than verification,
owing to the role of auxiliary assumptions required in the test of any general
hypothesis. If Popper did not recognize this fact initially, he certainly came
to accept that strict falsification is impossible. His claim that scientists do
and should seek to frame hypotheses, “conjectures” he called them, and
subject them to falsification, “refutation” he sometimes labeled it, must be
understood as requiring something different from strict falsification.

Recall in Chapter 2 the example of one sentence expressing more than a
single proposition. Depending on the emphasis the sentence “Why did Mrs
R kill Mr R with a knife?” can express three distinct questions. Now con-
sider the sentence, “All copper melts at 1,083 degrees centigrade.” If we
define copper as the “the yellowish-greenish metal which conducts electric-
ity and melts at 1,083 degrees centigrade”, then of course the hypothesis
“All copper melts at 1,083 degrees centigrade” will be unfalsifiable owing to
the meanings of the words. Now, suppose you define copper in the same
way, except that you strike from the definition the clause about melting
point, and then test the hypothesis. This will presumably eliminate the
unfalsifiability due to meaning alone. Now suppose that for many samples
you identify as copper, they either melt well below or well above 1,083
degrees centigrade on your thermometer, and in each case you make an excuse
for this experimental outcome: the thermometer was defective, or there were
impurities in the sample, or it wasn’t copper at all, but some similar yellow-
ish-greenish metal, or it was aluminum and illuminated by yellowish-greenish
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light, or you were suffering from a visual disorder when you read the ther-
mometer, or . . . The ellipses are meant to suggest that an indefinitely large
number of excuses can be cooked up to preserve a hypothesis from falsifica-
tion. Popper argued that such a stratagem – treating a hypothesis as unfalsi-
fiable – is unscientific. Scientific method requires that we envision
circumstances which we would count as actually leading us to give up our
hypotheses, and that we subject these hypotheses to test under these con-
ditions. Moreover, Popper argued the best science is characterized by
framing hypotheses that are highly risky – making claims it is easy to test,
testing them, and when they fail these tests (as eventually they must),
framing new risky hypotheses. Thus, as noted above, he characterized scien-
tific method as “conjectures and refutations” in a book of that title. Like
other philosophers of science, including the logical positivists with whom
Popper claimed to disagree on most fundamental issues in philosophy,
Popper had nothing much to say about the “conjecture” part of science.
Philosophers of science have held by and large that there is no logic of dis-
covery, no recipe for how to come up with significant new scientific
hypotheses. But Popper did hold that scientists should advance “risky”
hypotheses, ones it would be easy to imagine disconfirming evidence
against. And he held that the business of experiment is to seek such discon-
firmation.

So Popper’s claim about falsifiability may be best treated as a description
of the attitudes of scientists towards their hypotheses, and/or a prescriptive
claim about what the attitudes of good scientists should be, instead of a
claim about statements or propositions independent of attitudes towards
their testing. It was on this basis that he famously stigmatized Freudian psy-
chodynamic theory and Marx’s dialectical materialism as unscientific,
employing the possibility of falsification as a criterion to “demarcate” science
from pseudo-science. Despite the pretensions of the exponents of these two
“theories”, neither could be counted as scientific, for as “true believers” their
exponents would never countenance counterexamples to them that require
the formulation of new conjectures. Therefore, Popper held their beliefs were
not properly to be considered scientific theories at all, not even repudiated
ones. At one point Popper also treated Darwin’s theory of natural selection
as unfalsifiable, owing in part to the proclivity of biologists to define fitness
in terms of reproductive rates and so turn the PNS (see Chapter 4, Section
4.5) into a definition. Even when evolutionary theorists are careful not to
make this mistake, Popper held that the predictive content of adaptational
hypotheses was so weak that falsification of the theory was impossible. Since
repudiating Darwin’s theory was hardly plausible, Popper allowed that
though it was not a scientific theory strictly speaking, it was a valuable
metaphysical research program. Of course, Marxian and Freudian theorists
would have been able to make the same claim. More regrettably, religiously
inspired opponents of the theory of natural selection were only too happy to
cloak themselves in the mantle of Popper: they argued that either Christian
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metaphysics had to share equal time with Darwinian metaphysics in science
class-rooms, or the latter should be banished along with the former. It is
worth noting for the record that Darwin faced the challenge Popper
advances, of identifying circumstances that would falsify his theory, in
Chapter 6 of On the Origin of Species, entitled “Difficulties of the theory”.

This stigmatization of some theories as pseudo-science was subsequently
adopted, especially by economic theorists. This may well have been because
of Popper’s personal influence on them, or owing to his other writings
attacking Marxian political economy and political philosophy, with which
these social scientists found common cause. The embrace of Popper, by eco-
nomic theorists particularly, was ironic in two respects. First, their own
practice completely belied Popper’s maxims. For more than a century eco-
nomic theorists (including the Popperians among them) have been utterly
committed to the generalization that economic agents are rational preference
maximizers, no matter how much evidence behavioral, cognitive and social
psychologists have built up to disconfirm this generalization. Second, in the
last two decades of the twentieth century the persistence in this commit-
ment to economic rationality of consumers and producers despite substantial
counterevidence, eventually paid off. The development of game theory, and
especially evolutionary game theory, vindicated the economists’ refusal to
give up the assumption of rationality in spite of alleged falsifications.

What this history shows is that, at least when it comes to economics,
Popper’s claims seem to have been falsified as descriptions and to have been
ill-advised as prescriptions. The history of Newtonian mechanics offers the
same verdict on Popper’s prescriptions. It is a history in which for long
periods scientists were able to reduce narrower theories to broader theories,
while improving the predictive precision of the narrower theories, or
showing exactly where these narrower theories went wrong, and were only
approximately correct. The history of Newtonian mechanics is also the
history of data forcing us to choose between “ad hoc” adjustments to auxil-
iary hypotheses about initial conditions, and falsifying Newtonian mechan-
ics, in which apparently the “right” choice was preserving the theory. Of
course sometimes, indeed often, the right choice is to reject a theory as falsi-
fied, and frame a new hypothesis. The trouble is to decide in which situation
scientists find themselves. Popper’s one-size-fits-all recipe, “refute the
current theory and conjecture new hypotheses”, does not always provide the
right answer.

The history of physics also seems to provide counterexamples to Popper’s
claim that science never seeks, nor should it seek, confirmatory evidence,
positive instances, of a theory. In particular, scientists are impressed with
“novel” predictions, cases in which a theory is employed to predict a hith-
erto completely undetected process or phenomenon, and even sometimes to
predict its quantitative dimensions. Such experiments are treated not merely
as attempts to falsify that fail, but as tests which positively confirm.

Recall the problems physicists and empiricists had with Newton’s occult
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force, gravity. In the early twentieth century Albert Einstein advanced a
“General Theory of Relativity” which provided an account of motion that
dispensed with gravity. Einstein theorized that there is no such thing as
gravity (some of his arguments were methodological, or philosophical).
Instead, Einstein’s theory holds, space is “curved”, and more steeply curved
around massive bodies like stars. One consequence of this theory is that the
path of photons should be bent in the vicinity of such massive bodies. This
is not something Newton’s theory should lead us to expect since photons
have no mass and so are not affected by gravity – recall the inverse square
law of gravitational attraction in which the masses of bodies gravitationally
attracting one another effect the force of gravity between them. In 1919 at
great expense a British expedition was sent to a location in South America
where a total solar eclipse was expected, in order to test Einstein’s theory. By
comparing the apparent location in the sky of stars the night before the
eclipse and their apparent location during the eclipse (when stars are visible
as a result of the Moon’s blocking the Sun’s normal brightness in the same
region of the sky), the British team reported the confirmation of Einstein’s
hypothesis. The result of this test and others was of course to replace
Newton’s theory with Einstein’s.

Many scientists treated the outcome of this expedition’s experiment as
strong confirmation of the General Theory of Relativity. Popper would of
course have to insist that they were mistaken. At most, the test falsified
Newton’s theory, while leaving Einstein’s unconfirmed. One reason many
scientists would reject Popper’s claim is that in the subsequent 80 years, as
new and more accurate devices became available for measuring this and
other predictions of Einstein’s theory, its consequences for well-known phe-
nomena were confirmed to more and more decimal places, and more import-
ant, its novel predictions about phenomena no one had ever noticed or even
thought of, were confirmed. Still, Popper could argue that scientists are mis-
taken in holding the theory to be confirmed. After all, even if the theory
does make more accurate predictions than Newton’s, they don’t match up
100 percent with the data, and excusing this discrepancy by blaming the
difference on observational error or imperfections in the instruments, is just
an ad hoc way of preserving the theory from falsification. One thing Popper
could not argue is that the past fallibility of physics shows that probably
Einstein’s General Theory of Relativity is also at best an approximation and
not completely true. Popper could not argue this way, for this is an induc-
tive argument, and Popper agrees with Hume that such arguments are
ungrounded.

What can Popper say about theories that are repeatedly tested, whose pre-
dictions are borne out to more and more decimal places, which make novel
striking predictions that are in agreement with (we can’t say “confirmed
by”) new data? Popper responded to this question by invoking a new
concept: “corroboration”. Theories can never be confirmed, but they can be
corroborated by evidence. How does corroboration differ from confirmation?
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It is a quantitative property of hypotheses which measures their content and
testability, their simplicity and their previous track-record of success in
standing up to attempts to falsify them in experiments. For present purposes
the details of how corroboration differs from confirmation is not important,
except that corroboration cannot be a relationship between a theory and
already available data that either makes any prediction about future tests of
the theory, or gives us any positive reason at all to believe that the theory is
true or even closer to the truth than other theories. The reason is obvious. If
corroboration had either of these properties, it would be at least in part a
solution to the problem of induction, and this is something Popper began
by dispensing with.

If hypotheses and theories are the sorts of things that people can believe
to be true, then it must make sense to credit some of them with more credi-
bility than others, as more reasonable to believe than others. It may well be
that among the indefinitely many possible hypotheses, including all the ones
that never have and never will occur to anyone, the theories we actually
entertain are less well supported than others, are not even approximately
true and are not improving in approximate truth over their predecessors.
This possibility may be a reason to reject increasing confirmation as merely
short-sighted speculation. But it is an attitude difficult for working scien-
tists to take seriously. As between competing hypotheses they are actually
acquainted with, the notion that none is more reasonable to believe than any
other doesn’t seem attractive. Of course, an instrumentalist about theories
would not have this problem. On the instrumentalist view, theories are not
to be believed or disbelieved, they are to be used when convenient, and
otherwise not. Instrumentalists may help themselves to Popper’s rejection of
induction in favor of falsification. But, ironically, Popper was a realist about
scientific theories.

5.4 Statistics and probability to the rescue?

At some point the problems of induction will lead some scientists to lose
patience with the philosopher of science. Why not simply treat the puzzle of
grue and bleen as a philosopher’s invention, and get on with the serious but
perhaps more soluble problem of defining the notion of empirical confirma-
tion? We may grant the fallibility of science, the impossibility of establish-
ing the truth or falsity of scientific laws once and for all, and the role which
auxiliary hypotheses inevitably play in the testing of theories. Yet we may
still explain how observation, data collection and experiment test scientific
theory by turning to statistical theory and the notion of probability. The
scientist who has lost patience with the heavy weather which philosophers
make of how data confirm hypotheses will also insist that this is a problem
for statistics, not philosophy. Instead of worrying about problems like what
a positive instance of a hypothesis could be, or why positive instances
confirm hypotheses we actually entertain and not an infinitude of alternative
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possibilities we haven’t even dreamed up, we should leave the nature of
hypothesis-testing to departments of probability and statistics. This is
advice philosophers have resolutely tried to follow. As we shall see, it merely
raises more problems about the way experience guides the growth of know-
ledge in science.

To begin with, there is the problem of whether the fact that some data
raise the probability of a hypothesis makes that data positive evidence for it.
This may sound like a question trivially easy to answer, but it isn’t. Define
p(h, b) as the probability of hypothesis h, given auxiliary hypotheses b, and
p(h, e and b) as the probability of h given the auxiliary hypotheses, b, and
some experimental observations e. Suppose we adopt the principle that

e is positive evidence for hypothesis h if and only if p(h, e and b)
�p(h, b)

So, in this case, e is “new” data that count as evidence for h if they raise the
probability of h (given the auxiliary assumptions required to test h). For
example, the probability that the butler did it, h, given that the gun found at
the body was not his, b, and the new evidence e that the gun carried his fin-
gerprints, is higher than the hypothesis that the butler did it, given the gun
found at the body, and no evidence about fingerprints. It is the fingerprints
that raise the probability of h. That’s why the prints are “positive evidence”.

It is easy to construct counterexamples to this definition of positive evid-
ence which shows that increasing probability is by itself neither necessary
nor sufficient for some statement about observations to confirm a hypothesis.
Here are two:

This book’s publication increases the probability that it will be turned
into a blockbuster film starring Nicole Kidman. After all, were it never to
have been published, the chances of its being made into a film would be
even smaller than they are. But surely the actual publication of this book is
not positive evidence for the hypothesis that this book will be turned into a
blockbuster film starring Nicole Kidman. It is certainly not clear that some
fact which just raises the probability of a hypothesis thereby constitutes
positive evidence for it. A similar conclusion can be derived from the follow-
ing counterexample, which invokes lotteries, a useful notion when exploring
issues about probability. Consider a fair lottery with 1,000 tickets, 10 of
which are purchased by Andy and 1 is purchased by Betty. h is the hypothe-
sis that Betty wins the lottery. e is the observation that all tickets except
those of Andy and Betty are destroyed before the drawing. e certainly
increases the probability of h from 0.001 to 0.1. But it is not clear that e is
positive evidence that h is true. In fact, it seems more reasonable to say that
e is positive evidence that h is untrue, that Andy will win. For the probab-
ility that he wins has gone from 0.01 to 0.9. Another lottery case suggests
that raising probability is not necessary for being positive evidence; indeed a
piece of positive evidence may lower the probability of the hypothesis it con-
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firms. Suppose in our lottery Andy has purchased 999 tickets out of 1,000
sold on Monday. Suppose e is the evidence that by Tuesday 1,001 tickets
have been sold, of which Andy purchased 999. This e lowers the probability
that Andy will win the lottery from 0.999 to 0.998 . . . But surely e is still
evidence that Andy will win after all.

One way to deal with these two counterexamples is simply to require that
e is positive evidence for h if e makes h’s probability high, say above 0.5.
Then, in the first case, since the evidence doesn’t raise the probability of
Betty’s winning anywhere near 0.5, and in the second case the evidence does
not lower the probability of Andy’s winning much below 0.999, these cases
don’t undermine the definition of positive evidence when so revised. But of
course, it is easy to construct a counterexample to this new definition of
positive evidence as evidence that makes the hypothesis highly probable.
Here is a famous case: h is the hypothesis that Andy is not pregnant, while e
is the statement that Andy eats Weetabix breakfast cereal. Since the probab-
ility of h is extremely high, p(h, e) – the probability of h, given e, is also
extremely high. Yet e is certainly no evidence for h. Of course we have
neglected the background information, b, built into the definition. Surely if
we add the background information that no man has ever become pregnant,
then p(h, e and b) – the probability of h, given e and b – will be the same
as p(h, e), and thus dispose of the counterexample. But if b is the statement
that no man has ever become pregnant, and e is the statement that Andy ate
Weetabix, and h is the statement that Andy is not pregnant, then p(h, e
and b) will be very high, indeed about as close to 1 as a probability can get.
So, even though e is not by itself positive evidence for h, e plus b is, just
because b is positive evidence for h. We cannot exclude e as positive evid-
ence, when e plus b is evidence, just because it is a conjunct which by itself
has no impact on the probability of h, because sometimes positive evidence
only does raise the probability of a hypothesis when it is combined with
other data. Of course, we want to say that in this case, e could be eliminated
without reducing the probability of h, e is probabilistically irrelevant and
that’s why it is not positive evidence. But providing a litmus test for proba-
bilistic irrelevance is no easy task. It may be as difficult as defining positive
instance. In any case, we have an introduction here to the difficulties of
expounding the notion of evidence in terms of the concept of probability.

Philosophers of science who insist that probability theory and its inter-
pretation suffice to enable us to understand how data test hypotheses will
respond to these problems that they reflect the mis-fit between probability
and our common-sense notions of evidence. Our ordinary concepts are
qualitative, imprecise, and not the result of a careful study of their implica-
tions. Probability is a quantitative mathematical notion with secure logical
foundations that enables us to make distinctions ordinary notions cannot
draw, and to explain these distinctions. Recall the logical empiricists who
sought rational reconstructions or explications of concepts like explanation
that provide necessary and sufficient conditions in place of the imprecision
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and vagueness of ordinary language. Likewise, many contemporary students
of the problem of confirmation seek a more precise substitute for the ordin-
ary notion of evidence in the quantifiable notion of probability; for them
counterexamples such as the ones adduced above simply reflect the fact that
the two concepts are not identical. They are no reason not to substitute
“probability” for “evidence” in our inquiry about how data test theory. Some
of these philosophers go further and argue that there is no such thing as
evidence confirming or disconfirming a hypothesis by itself. Hypothesis
testing in science is always a comparative affair: it only makes sense to say
hypothesis h1 is more or less well confirmed by the evidence than is hypoth-
esis h2, not that h1 is confirmed by e in any absolute sense.

These philosophers hold that the mathematical theory of probability
holds the key to understanding the confirmation of scientific theory. And
this theory is extremely simple. It embodies only three very obvious assump-
tions:

1 Probabilities are measured in numbers from 0 to 1.
2 The probability of a necessary truth (like “4 is an even number”) is 1.
3 If hypotheses h and j are incompatible, then p(h or j)�p(h)�p(j).

It’s easy to illustrate these axioms with a deck of normal playing cards. The
probability of any one card being drawn from a complete deck is between 0
and 1. In fact it’s 1/52. The probability that a card will be red or black (the
only two possibilities) is 1 (it’s a certainty), and if drawing an ace of hearts is
incompatible with drawing a jack of spades, then the probability of drawing
one of them is 1/52�1/52, or 1/26, about 0.038461 . . .

From these simple and straightforward assumptions (plus some defini-
tions) the rest of the mathematical theory of probability can be derived by
logical deduction alone. In particular, from these three axioms of the theory
of probability, we can derive a theorem, first proved by a British theologian
and amateur mathematician in the eighteenth century, Thomas Bayes,
which has bulked large in contemporary discussions of confirmation. Before
introducing this theorem, we need to define one more notion, the condi-
tional probability of any one statement, assuming the truth of another state-
ment. The conditional probability of a hypothesis, h, on a description of
data, e, written p(h/e), is defined as the ratio of the probability of the truth
of both h and e to the probability of the truth of e alone:

p(h/e)��
df p(

p

h

(e

a

)

nd e)
�

Roughly, “the conditional probability of h on e” measures the proportion of
the probability that e is true, which “contains” the probability that h is also
true. Adapting an expository idea of Martin Curd and Jan Cover, we can
illuminate this definition with a few diagrams. Suppose we are shooting
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darts at a board on which two overlapping circles are drawn in the shape of a
Venn diagram:
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By contrast, consider the following diagram. Here e is small and h is
large. In this case the chance of a dart which lands in e also landing in h is
higher than in the previous case, and becomes even higher the more of e is
inside h. Again, the conditional probability of e on h is of course much
lower the smaller the h circle is and the less it overlaps e.

If a dart lands inside circle e, what is the probability that it will also land
inside circle h, i.e. the probability of landing in h, on the condition that it
lands in e, the conditional probability, p(h/e)? That depends on two things:
the area of overlap between circle e and circle h (the intersection e and h),
relative to the area of e, and the size of e compared to the size of h. To see
this, compare the two following diagrams. In this one, e is very large com-
pared to the size of h, so the chance that a dart thrown inside e also lands in
h is low. But it would be higher if more of h were inside e. On the other
hand, the chance that a dart which lands in h also lands in e is much higher,
and increases as the proportion of h inside e grows.

Figure 1 Circles e and h are the same size, and between them cover most of the rec-
tangle, to suggest that the probability of a dart hitting one of them (and not
the other) is large and about the same.

Figure 2 Circle e is much larger than circle h, so the probability of the dart hitting e
is much higher than the probability of the dart hitting h. The shaded inter-
section e & h is much smaller than e, and a relatively large proportion of h.
Thus p(h/e) is low, and p(e/h) is much higher than p(h/e).



The definition of conditional probability incorporates these two factors on
which conditional probability depends. The numerator reflects the size of
the overlap of e and h relative to the sizes of e and h, and the denominator
measures that size in units of e’s size.

Now if h is a hypothesis and e is a report of data, Bayes’ theorem allows
us to calculate the conditional probability of h on e, p(h/e). In other words,
Bayes’ theorem gives us a mathematical formula for calculating how much
more or less probable a bit of evidence, e, makes any hypothesis, h. The
formula is as follows:

Bayes’ theorem: p(h/e)��
p(e/h

p

)

(

�

e)

p(h)
�

Bayes’ theorem tells us that once we acquire some data, e, we can calculate
how the data e change the probability of h, raising or lowering it, provided
we already have three other numbers:

p(e/h) – the probability that e is true assuming that h is true (as noted
above, not to be confused with p(h/e), the probability that h is true,
given e, which is what we are calculating). This number reflects the
degree to which our hypothesis leads us to expect the data we have
gathered. If the data are just what the hypothesis predicts, then of
course p(e/h) is very high. If the data are nothing like what the
hypothesis predicts, p(e/h) is low.

p(h) – the probability of the hypothesis independent of the test which the
data described by e provides. If e reports new experimental data, then
p(h) is just the probability the scientist assigned to h before the
experiment was conducted.

p(e) – the probability that the statement describing the data is true
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Figure 3 Circle h is much larger than circle e, so the probability of the dart hitting h
is much higher than the probability of the dart hitting e. The shaded inter-
section e & h is much smaller than h, and is a relatively large proportion of
e. Thus p(h/e) is high, and p(e/h) is much lower than p(h/e).



independent of whether h is true or not. Where e is a surprising
result which previous scientific theory and evidence (independent of
h) does not lead us to expect, p(e) will be low.

To see how easily Bayes’ theorem follows from the axioms of probability and
our definition of conditional probability, return to any of the dartboard dia-
grams above. If we can calculate p(e/h) by comparing the relative sizes of the
circles and the ratio of their intersections to their sizes, we can also calculate
p(h/e) the same way. Of course the figures for each conditional probability
will be different (as each of the diagrams illustrates).

By drawing e- and h-circles and intersections of them of different sizes, it
is easy to see that the probability of a dart which hits the e-circle also
hitting the h-circle, p(h/e), will vary directly as the ratio of the intersection
of the two circles to the size of the e-circle, and inversely as the ratio of the
sizes of the e-circle to the size of the h-circle. And this is exactly what Bayes’
theorem says: it makes p(h/e) equal to p(e/h) – the ratio of the intersection
of e and h to the size of e – times the fraction p(h)/p(e), which is the ratio of
the size of h to the size of e.

Two simple examples may help us see how Bayes’ theorem is supposed to
work: Consider how data on the observed position of Halley’s comet provide
a test for Newton’s laws. Suppose, given prior observations, that p(e), the
probability that Halley’s comet will be observed in a particular location of
the night sky, is 0.8. This allows for imperfections in the telescope, atmos-
pheric irregularities, all the factors that eventually led astronomers to take
many photographs of the stars and planets and to average their positions to
make estimates of their expected positions in the sky. p(e/h) is also high, the
expected position of Halley’s comet in the night sky is very close to what the
theory predicts it would be. Let’s set p(e/h) at 0.95. Let’s assume that prior
to the acquisition of e, the new data about Halley’s comet, the probability
that Newton’s laws are true is, say, 0.8. Thus, if Halley’s comet appears
where expected, p(h/e)� (0.95 . . .)� (0.8)/(0.8)�0.95. Thus, the evidence
as described by e has raised the probability of Newton’s laws from 0.8 to
0.95.

But now, suppose we acquire new data about, say, the precession of the
perihelion of Mercury – that is, data which shows that the elliptical orbit of
Mercury around the Sun is itself swinging so that the closest point between
Mercury and the Sun keeps shifting. Suppose, as was indeed the case, that
the figure turns out to be much higher than Newton’s laws (and the auxil-
iary hypotheses used to apply them) would lead us to expect, so that p(e/h)
is low, say, 0.3. Since Newton’s laws did not lead us to expect this data, the
prior probability of e must be low, so let’s let p(e) be low, say, 0.2; and the
prior probability of such unexpected data, given Newton’s laws plus auxil-
iary hypotheses, will also be quite low, say, p(e/h) is 0.1. If p(h) for Newton’s
laws plus auxiliaries is 0.95, then Bayes’ theorem tells us that for the new e,
the precession data for Mercury, the p(h/e)� (0.1)� (0.95)/(0.2)�0.475, a

Epistemology of scientific theorizing 131



significant drop from 0.95. Naturally, recalling the earlier success of
Newton’s laws in uncovering the existence of Neptune and Uranus, the
initial blame for the drop was placed on the auxiliary hypotheses. Bayes’
theorem can even show us why. Though the numbers in our example are
made up, in this case, the auxiliary assumptions were eventually vindicated,
and the data about the much greater than expected precession of the perihe-
lion of Mercury undermined Newton’s theory, and (as another application of
Bayes’ theorem would show), increased the probability of Einstein’s altern-
ative theory of relativity.

Philosophers and many statisticians hold that the reasoning scientists use
to test their hypotheses can be reconstructed as inferences in accordance with
Bayes’ theorem. These theorists are called Bayesians. Some philosophers and
historians of science among them seek to show that the history of acceptance
and rejection of theories in science honors Bayes’ theorem, thus showing that
in fact, theory testing has been on firm footing all along. Other philo-
sophers, and statistical theorists, attempt to apply Bayes’ theorem actually to
determine the probability of scientific hypotheses when the data are hard to
get, sometimes unreliable, or only indirectly relevant to the hypothesis
under test. For example, they seek to determine the probabilities of various
hypotheses about evolutionary events like the splitting of ancestral species
from one another, by applying Bayes’ theorem to data about differences in
the polynucleotide sequences of the genes of currently living species.

How much understanding of the nature of empirical testing does
Bayesianism really provide? Will it reconcile science’s empiricist epis-
temology with its commitment to unobservable events and processes that
explain observable ones? Will it solve Hume’s problem of induction? To
answer these questions, we must first understand what the probabilities are
that all these ps symbolize and where they come from. We need to make
sense of p(h), the probability that a certain proposition is true. There are at
least two questions to be answered: First, there is the “metaphysical” ques-
tion of what fact is it about the world, if any, that makes a particular
probability value, p(h), for a hypothesis, h, the true or correct one? Second,
there is the epistemological question of justifying our estimate of this
probability value. The first question may also be understood as a question
about the meaning of probability statements, and the second about how to
justify inductive conclusions about general theories and future eventualities.

Long before the advent of Bayesianism in the philosophy of science, the
meaning of probability statements was already a vexed question. There are
some traditional interpretations of probability we can exclude as unsuitable
interpretations for the employment of Bayes’ theorem. One such is the inter-
pretation of probability as it is supposed to figure in fair games of chance
like roulette or black jack. In a fair game of roulette the chance of the ball
landing in any trap is exactly 1/37 or 1/38 because there are 37 (or in
Europe 38) traps into which the ball can land. Assuming it is a fair roulette
wheel, the probability of the hypothesis that the ball will land on number 8

132 Epistemology of scientific theorizing



is exactly 1/37 or 1/38 and we know this a priori – without experience,
because we know a priori how many possibilities there are and that each is
equally probable (again, assuming the roulette wheel is fair, a bit of know-
ledge we could never have acquired a priori any way!). Now, when it comes
to hypotheses that can account for a finite body of data, there is no limit to
the number of possibilities and no reason to think that each of them has the
same probability. Accordingly, the probabilities of a hypothesis about, say,
the number of chromosomes in a human nucleus, will not be determinable 
a priori, by counting up possibilities and dividing 1 by the number of
possibilities.

Another interpretation of probabilities involves empirical observations,
for example, coin flips. To establish the frequency with which a coin will
come up heads, one flips it several times and divides the number of times it
comes up heads by the number of times it was flipped. When will this fre-
quency be a good estimate of the probability of heads? When the number of
coin flips is large, and the frequencies we calculate for finite numbers of coin
flips converge on one value and remain near that value no matter how many
times we continue flipping. We can call this value, if there is one, the long-
run relative frequency of heads. And we treat it as a measure of the
probability the coin comes up heads. But is the long-run relative frequency
of heads identical to the probability it will come up heads? This sounds like
a silly question, until you ask what the connection is between the long-run
relative frequency’s being, say 50 percent and the chance that the very next
toss will be heads. Notice that a long-run relative frequency of 50 percent is
compatible with a run of ten, or a hundred, or a million heads in a row, just
so long as the total number of tosses is very large, so large that a million is a
small number in comparison to the total number of tosses. If this is right,
the long-run relative frequency is compatible with any finite run of all
heads, or all tails, and of course perfectly compatible with the coin’s coming
up tails on the next toss. Now, suppose we want to know what the proba-
bility is that the coin will come up heads on the next toss. If the probability
that the coin will come up heads on the next toss is a property of that
particular toss, it is a different thing from the long-run relative frequency of
heads (which is perfectly compatible with the next 234,382 tosses all being
tails). We need some principle that connects the long-run to the next toss.
One such principle which gets us from the long-run relative frequency to
the probability of the next toss being heads is to assume that coins do in any
finite run what they do in the long run. But this principle is just false. A
better principle for connecting long-run relative frequencies to the probab-
ility of the next occurrence is something like this: If you know the long-run
relative frequency, then you know how to bet on whether the coin will land
heads or tails, and if you take all bets against heads at odds greater than even
money, you will win. But notice this is a conclusion about what you should
do as a gambler, not a conclusion about what the coin will in fact do. We
will come back to this insight.
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Could long-run relative frequencies provide the probability values for a
hypothesis without a track record? It is hard to see how. Compare a novel
hypothesis to a shiny new penny about to be flipped. Long-run relative fre-
quencies data provide some reason to ascribe a probability of 50 percent to
the chances of heads on the new penny. Is there a track record of previous
hypotheses relevant to the new one? Only if we can compare it to the right
class of similar hypotheses the way we can compare new pennies to old ones.
But hypotheses are not like pennies. Unlike pennies, they differ from one
another in ways we cannot quantify as we would have to were we to grade
them for similarity to one another. Even if we could identify the track record
of truth and falsity for similar hypotheses formulated over the past history of
science, we would have the problems of (a) justifying the inference from a
finite actual sequence to a long-run relative frequency; and (b) justifying the
inference from a long-run relative frequency to the next case, the new
hypothesis. Recall that in the case of coin flipping, the only connection
appears to be that relative frequencies are our best guide to how to lay our
bets about the next toss. Perhaps the kind of probability which theory
testing invokes is the gambler’s kind, what has come to be called “subjective
probability”. “Subjective” because it reflects facts about the gambler, and
what the gambler believes about the past and the future, and “probability”
because the bets the gambler makes should honor the axioms of probability.

It is the claim that in scientific testing, the relevant probabilities are
subjective probabilities, gambler’s odds, that is the distinctive mark of the
Bayesian. A Bayesian is someone who holds that at least two of the three prob-
abilities we need to calculate p(h/e) are just a matter of betting odds and that
within certain weak constraints they can take on any values at all. You and I
may think that the best betting odds are those which mirror our previous
experience of actual frequencies or our estimate of long-run relative frequen-
cies, but this is no part of Bayesianism. The Bayesian holds that in the long
run it doesn’t matter what values they start with, Bayes’ theorem will lead the
scientist inexorably to the (available) hypothesis best supported by the evid-
ence. These remarkable claims demand explanation and justification.

Calculating the value of p(e/h) is a matter of giving a number to the
probability that e obtains if h is true. This is usually easy to do. If h tells us
to expect e, or data close to e, then p(e/h) will be very high. The problem is
that using Bayes’ theorem also requires we calculate input values, so-called
“prior probabilities”, p(h) and p(e). p(h) is especially problematical: after
all, if h is a new theory no one has ever thought of, why should there be any
particular right answer to the question of with what probability it is true?
And assigning a value to p(e), the probability that our data description is
correct may involve so many auxiliary assumptions, that even if there is a
correct number, it is hard to see how we could figure out what it is. The
Bayesian asserts that these are not problems. Both values, p(h) and p(e) (and
p(e/h) for that matter), are simply degrees of belief, and degrees of belief are
simply a matter of what betting odds the scientist would take or decline on
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whether their beliefs are correct. The higher the odds one takes, the stronger
the degree of belief. Here the Bayesian takes a page from economists and
others who developed the theory of rational choice under uncertainty. The
way to measure a degree of belief is to offer the believer wagers against the
truth of his or her belief. Other things being equal, if you are rational, and
you are willing to take a bet that h is true at odds of 4:1, then your degree of
belief that h is true is 0.8. If you are willing to take a 5:1, then your degree
of belief is 0.9. Probabilities are identical to degrees of belief. The other
things that have to be equal for this way of measuring the strength of your
beliefs to work are (a) that you have enough money so that you are not so
averse to the risk of losing that it swamps your attraction to the prospect of
winning; (b) that the degrees of belief you assign to your beliefs obey the
rules of logic and the three laws of probability above. So long as your
degrees of belief, aka probability assignments, honor these two assumptions,
the Bayesian says, the initial values or “prior probabilities” you assign to
them can be perfectly arbitrary, in fact may be arbitrary, but it doesn’t really
matter. In the parlance of the Bayesians, as more and more data come in, the
prior probabilities will be “swamped”, that is, when we use Bayes’ theorem
to “update” prior probabilities, i.e. feed new p(e)s into the latest values for
p(e/h) and p(h/e), the successive values of p(h/e) will converge on the
correct value, no matter what initial values for these three variables we start
with! Prior probabilities are nothing but measures of the individual scien-
tists’ purely subjective degrees of belief before applying Bayes’ theorem. In
answer to our metaphysical question about what facts about the world prob-
abilities report, prior probabilities report no facts about the world, or at least
none about the world independent of our beliefs. In answer to the epis-
temological question of what justifies our estimates of probabilities, when it
comes to prior probabilities, no more justification is needed or possible than
that our estimates obey the axioms of probability.

There is no right answer or wrong answer as to what the prior probabili-
ties of p(h) or p(e) are, so long as the values of these probabilities obey the
rules of probability and logical consistency on betting. Logical consistency
simply means that one places one’s bets – that is, assigns strengths to one’s
degrees of belief in such a way that bookies can’t use you for a money pump:
that is, make bets with you so that no matter which propositions come out
true or false you lose money. What is more, another theorem of the probab-
ility theory shows that if we apply Bayes’ theorem relentlessly to “update”
our prior probabilities as new evidence comes in, the value of p(h) all scien-
tists assign will converge on a single value no matter where each scientist
begins in his or her original assignment of prior probabilities. So not only
are prior probabilities arbitrary but it doesn’t matter that they are! Some sci-
entists may assign prior probabilities on considerations like simplicity or
economy of assumptions, or similarity to already proven hypotheses, or sym-
metry of the equations expressing the hypothesis. Other scientists will
assign prior probabilities on the basis of superstition, aesthetic preference,
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number worship, or by pulling a ticket out of a hat. It doesn’t matter, so
long as they all conditionalize on new evidence via Bayes’ theorem.

It is not much of an objection to this account of scientific testing that scien-
tists actually offer good reasons for their methods of assigning prior probabili-
ties. To begin with, Bayesianism doesn’t condemn these reasons, at worst, it is
silent on them. But if features like the simplicity of a hypothesis or the sym-
metry of its form do in fact increase its prior probability, this will be because a
hypothesis having features like this will, via Bayes’ theorem, acquire a higher
posterior probability than other hypotheses with which it is competing that
lack these features. More important, attempts to underwrite the reasoning of
scientists who appeal to considerations like economy, simplicity, symmetry,
invariance, or other formal features of hypotheses, by appeal to the claim that
such features increase the objective probability of a hypothesis, come up
against the problem that the only kind of probability that seems to make any
sense for scientific testing is Bayesian subjective probability.

Furthermore, so understood, some Bayesians hold that probabilities can
after all deal with some of the traditional problems of confirmation. Recall
the black boot/white swan positive instance-puzzle discussed above, accord-
ing to which a black boot is positive evidence for “All swans are white”. Not
on Bayesianism. After all, the prior conditional probability of a boot being
black, conditional on all swans being white, is lower than the prior probab-
ility of the next swan we see being white, conditional on all swans being
white. When we plug these two priors into Bayes’ theorem, if the prior
probabilities of seeing a white swan and a black boot are equal, the probab-
ility of “All swans are white” is raised much more by the latter conditional
probability.

One of the major problems confronting Bayesianism, and perhaps other
accounts of how evidence confirms theory, is the “problem of old evidence”.
It is not uncommon in science for a theory to be strongly confirmed by data
already well known long before the hypothesis was formulated. Indeed, as
we saw, this is an important feature of situations in which scientific revolu-
tions take place: Newton’s theory was strongly confirmed by its ability to
explain the data on which Galileo’s and Kepler’s theories were based. Ein-
stein’s general theory of relativity explained previously recognized but
highly unexpected data such as the invariance of the speed of light and the
precession of the perihelion of Mercury. In these two cases p(e)�1, p(e/h) is
very high. Plugging these values into Bayes’ theorem gives us

p(h/e)��
1�

1

p(h)
��p(h)

In other words, on Bayes’ theorem the old evidence does not raise the poste-
rior probability of the hypothesis – in this case Newton’s laws, or the special
theory of relativity – at all. Bayesians have gone to great lengths to deal
with this problem. One stratagem is to “bite the bullet” and argue that old
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evidence does not in fact confirm a new hypothesis. This approach makes
common cause with the well-established objection to hypotheses which are
designed with an eye to available evidence. Scientists who construct
hypotheses by intentional “curve fitting” are rightly criticized and their
hypotheses are often denied explanatory power on the grounds that they are
ad hoc. The trouble with this strategy is that it doesn’t so much solve the ori-
ginal Bayesian problem of old evidence as combine it with another problem:
how to distinguish cases like the confirmation of Newton’s and Einstein’s
theories by old evidence from cases in which old evidence does not confirm a
hypothesis because it was accommodated to the old evidence. The altern-
ative approach to the problem of old evidence is to supplement Bayes’
theorem with some rule that gives p(e) a value different from 1. For
example, one might try to give p(e) the value it might have had before e was
actually observed in the past, or else try to rearrange one’s present scientific
beliefs by deleting e from them and anything which e makes probable; then
go back and assign a value to p(e), which presumably will be lower than 1.
This strategy is obviously an extremely difficult one to actually adopt. And
it is (subjectively) improbable that any scientist consciously thinks this way.

Many philosophers and scientists who oppose Bayesianism do so not
because of the difficulties which are faced by the program of developing it as
an account of the actual character of scientific testing. Their problem is with
the approach’s commitment to subjectivism. The Bayesian claim that no
matter what prior probabilities the scientist subjectively assigns to hypothe-
ses, their subjective probabilities will converge on a single value, is not suffi-
cient consolation to opponents. Just for starters, values of p(h) will not
converge unless we start with a complete set of hypotheses that are exhaus-
tive and exclusive competitors. This seems never to be the case in science.
Moreover, objectors argue, there is no reason given that the value on which
all scientists will converge by Bayesian conditionalization is the right value
for p(h). This objection of course assumes there is such a thing as the right,
i.e. the objectively correct, probability, and so begs the question against the
Bayesian. But it does show that Bayesianism is no solution to Hume’s
problem of induction, as a few philosophers hoped it might be.

And the same pretty much goes for other interpretations of probability. If
sequences of events reveal long-run relative frequencies that converge on
some probability value and stay near it forever, then we could rely on them
at least for betting odds. But to say that long-run relative frequencies will
converge on some value is simply to assert that nature is uniform, that the
future will be like the past and so begs Hume’s question. Similarly, hypoth-
esizing probabilistic propensities that operate uniformly across time and
space also begs the question against Hume’s argument. In general, probabil-
ities are useful only if induction is justified, not vice versa. Still, as noted,
only a handful of philosophers have sought explicitly to solve Hume’s
problem by appeal to probabilities.

There is a more severe problem facing Bayesianism. It is the same
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problem that we came up against in the discussion of how to reconcile
empiricism and explanation in theoretical science. Because empiricism is the
doctrine that knowledge is justified by observation, in general, it must
attach the highest probability to statements which describe observations,
and lower probability to those which make claims about theoretical entities.
Since theories explain observations, we may express the relation between
theory and observation as (t and t→h), where t is the theory and t→h
reflects the explanatory relation between the theoretical claims of the theory,
t, and an observational generalization, h, describing the data that the theory
leads us to expect. The relation between t and h may be logically deductive,
or it may be some more complex relation. But p(h) must never be lower
than p(t and t→h), just because the antecedent of the latter is a statement
about what cannot be observed whose only consequence for observation is h.
Bayesian conditionalization on evidence will never lead us to prefer (t and
t→h) to h alone. But this is to say that Bayesianism cannot account for why
scientists embrace theories at all, instead of just according high subjective
probability to the observational generalizations that follow from them. Of
course, if the explanatory power of a theory were a reason for according it a
high prior probability, then scientists’ embracing theories would be ratio-
nal from the Bayesian point of view. But to accord explanatory power such
a role in strengthening the degree of belief requires an account of explana-
tion. And not just any account. It cannot, for example, make do with the
D-N model, for the principal virtue of this account of explanation is that it
shows that the explanandum phenomenon could be expected with at least
high probability. In other words, it grounds explanatory power on
strengthening probability, and so cannot serve as an alternative to probab-
ility as a source of confidence in our theories. To argue, as seems tempting,
that our theories are explanatory in large part because they go beyond and
beneath observations to their underlying mechanisms is something the
Bayesian cannot do.

5.5 Underdetermination

The testing of claims about unobservable things, states, events or processes
is evidently a complicated affair. In fact the more one considers how observa-
tions confirm hypotheses and how complicated the matter is, the more one is
struck by a certain inevitable and quite disturbingly “underdetermination”
of theory by observation.

As we have noted repeatedly, the “official epistemology” of modern
science is empiricism – the doctrine that our knowledge is justified by
experience – observation, data collection, experiment. The objectivity of
science is held to rest on the role which experience plays in choosing
between hypotheses. But if the simplest hypothesis comes face to face with
experience only in combination with other hypotheses, then a negative test
may be the fault of one of the accompanying assumptions, a positive test
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may reflect compensating mistakes in two or more of the hypotheses
involved in the test that cancel one another out. Moreover, if two or more
hypotheses are always required in any scientific test, then when a test-
prediction is falsified there will always be two or more ways to “correct” the
hypotheses under test. When the hypothesis under test is not a single state-
ment like “All swans are white” but a system of highly theoretical claims
like the kinetic theory of gases, it is open to the theorist to make one or
more of a large number of changes in the theory in light of a falsifying test,
any one of which will reconcile the theory with the data. But the large
number of changes possible introduces a degree of arbitrariness foreign to
our picture of science. Start with a hypothesis constituting a theory that
describes the behavior of unobservable entities and their properties. Such a
hypothesis can be reconciled with falsifying experience by making changes
in it that cannot themselves be tested except through the same process all
over again – one which allows for a large number of further changes in case
of falsification. It thus becomes impossible to establish the correctness or
even the reasonableness of one change over another. Two scientists begin-
ning with the same theory, subjecting it to the same initial disconfirming
test, and repeatedly “improving” their theories in the light of the same set of
further tests will almost certainly end up with completely different theories,
both equally consistent with the data their tests have generated.

Imagine, now, the “end of inquiry” when all the data on every subject is
in. Can there still be two distinct equally simple, elegant, and otherwise sat-
isfying theories equally compatible with all the data, and incompatible with
one another? Given the empirical slack present even when all the evidence
appears to be in, the answer seems to be that such a possibility cannot be
ruled out. Since they are distinct theories, our two total “systems of the
world” must be incompatible, and therefore cannot both be true. We cannot
remain agnostic about whether one is right nor ecumenical about embracing
both. Yet it appears that observation would not be able to decide between
these theories.

In short, theory is underdetermined by observation. And yet science does
not show the sort of proliferation of theory and the kind of unresolvable
theoretical disputes that the possibility of this underdetermination might
lead us to expect. But the more we consider reasons why this sort of under-
determination does not manifest itself, the more problematic becomes the
notion that scientific theory is justified by objective methods that make
experience the final court of appeal in the certification of knowledge. For
what else besides the test of observation and experiment could account for
the theoretical consensus characteristic of most natural sciences? Of course,
there are disagreements among theorists, sometimes very great ones, and yet
over time these disagreements are settled to almost universal satisfaction. If,
owing to the ever-present possibility of underdetermination, this theoretical
consensus is not achieved through the “official” methods, how is it achieved?

Well, besides the test of observation, theories are also judged on other
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criteria: simplicity, economy, consistency with other already adopted theo-
ries. But these criteria simply invoke observations, albeit somewhat indi-
rectly. A theory’s consistency with other already well-established theories
confirms that theory only because observations have established the theories
it is judged consistent with. Simplicity and economy in theories are them-
selves properties that we have observed nature to reflect and other well-
confirmed theories to bear, and we are prepared to surrender them if and
when they come into conflict with our observations and experiments. One
alternative source of consensus philosophers of science are disinclined to
accept is the notion that theoretical developments are epistemically guided
by non-experimental, non-observational considerations, such as a priori
philosophical commitments, religious doctrines, political ideologies, aes-
thetic tastes, psychological dispositions, social forces or intellectual fashions.
Such factors we know will make for consensus, but not necessarily one that
reflects increasing approximation to the truth, or to objective knowledge.
Indeed, these non-epistemic, non-scientific forces and factors are supposed to
deform understanding and lead away from truth and knowledge.

The fact remains that a steady commitment to empiricism coupled with a
fair degree of consensus about the indispensability of scientific theorizing
strongly suggests the possibility of a great deal of slack between theory and
observation. But the apparent absence of arbitrariness fostered by under-
determination demands explanation. And if we are to retain our commit-
ment to science’s status as knowledge par excellence, this explanation had
better be one we can parlay into a justification of science’s objectivity as
well. The next chapter shows that prospects for such an outcome are clouded
with doubt.

Summary

Empiricism is the epistemology which has tried to make sense of the role of
observation in the certification of scientific knowledge. Since the eighteenth
century, if not before, especially British philosophers like Hobbes, Locke,
Berkeley and Hume have found inspiration in science’s successes for their
philosophies, and sought philosophical arguments to ground science’s
claims. In so doing, these philosophers and their successors set the agenda of
the philosophy of science and revealed how complex the apparently simple
and straightforward relation between theory and evidence is.

In the twentieth century the successors of the British empiricists, the
“logical positivists” or logical empiricists as some of them preferred, sought
to combine the empiricist epistemology of their predecessor with advances
in logic, probability theory, and statistical inference, to complete the project
initiated by Locke, Berkeley and Hume. What they found was that some of
the problems seventeenth- and eighteenth-century empiricism uncovered
were even more resistant to solution when formulated in updated logical and
methodological terms. “Confirmation theory”, as this part of the philosophy
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of science came to be called, has greatly increased our understanding of the
“logic” of confirmation, but has left as yet unsolved Hume’s problem of
induction, the further problem of when evidence provides a positive instance
of a hypothesis, and the “new riddle of induction” – Goodman’s puzzle of
“grue” and “bleen”.

Positivists and their successors have made the foundations of probability
theory central to their conception of scientific testing. Obviously much
formal hypothesis testing employs probability theory. One attractive late
twentieth-century account that reflects this practice is known as Bayesian-
ism: The view holds that scientific reasoning from evidence to theory pro-
ceeds in accordance with Bayes’ theorem about conditional probabilities,
under a distinctive interpretation of the probabilities it employs.

The Bayesians hold that scientists’ probabilities are subjective degrees of
belief, betting-odds. By contrast with other interpretations, according to
which probabilities are long-run relative frequencies, or distributions of
actualities among all logical possibilities, this frankly psychological inter-
pretation of probability is said to best fit the facts of scientific practice and
its history.

The Bayesian responds to complaints about the subjective and arbitrary
nature of the probability assignment it tolerates by arguing that, no
matter where initial probability estimates start out, in the long-run using
Bayes’ theorem on all possible alternative hypotheses will result in their
convergence on the most reasonable probability values, if there are such
values. Bayesianism’s opponents demand it substantiate the existence of
such “most reasonable” values and show that all alternative hypotheses are
being considered. To satisfy these demands would be tantamount to
solving Hume’s problem of induction. Finally, Bayesianism has no clear
answer to the problem which drew our attention to hypothesis testing: the
apparent tension between science’s need for theory and its reliance on
observation.

This tension expresses itself most pointedly in the problem of underdeter-
mination. Given the role of auxiliary hypotheses in any test of a theory, it
follows that no single scientific claim meets experience for test by itself. It
does so only in the company of other, perhaps large numbers of, other
hypotheses’ need to effect the derivation of some observational prediction to
be checked against experience. But this means that a disconfirmation test, in
which expectations are not fulfilled, cannot point the finger of falsity at one
of these hypotheses and that adjustments in more than one may be equival-
ent in reconciling the whole package of hypotheses to observation. As the
size of a theory grows, and it encompasses more and more disparate pheno-
mena, the alternative adjustments possible to preserve or improve it in the
face of recalcitrant data increase. Might it be possible, at the never-actually-
to-be-reached “end of inquiry”, when all the data are in, that there be two
distinct total theories of the world, both equal in evidential support, sim-
plicity, economy, symmetry, elegance, mathematical expression or any other
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desideratum of theory choice? A positive answer to the question may
provide powerful support for an instrumentalist account of theories. For
apparently there will be no fact of the matter accessible to inquiry that can
choose between the two theories.

And yet, the odd thing is that underdetermination is a mere possibility.
In point of fact, it almost never occurs. This suggests two alternatives. The
first alternative, embraced by most philosophers of science, is that observa-
tion really does govern theory choice (else there would be more competition
among theories and models than there is); it’s just that we simply haven’t
figured it all out yet. The second alternative is more radical, and is favored
by a generation of historians, sociologists of science and a few philosophers
who reject both the detailed teachings of logical empiricism, and also its
ambitions to underwrite the objectivity of science. On this alternative,
observations underdetermine theory, but it is fixed by other facts – non-
epistemic ones, like bias, faith, prejudice, the desire for fame or at least
security, or power-politics. This radical view, that science is a process, like
other social processes, and not a matter of objective progress, is the subject
of the next two chapters.

Study questions

1 Discuss critically: “Lots of scientists pursue science successfully without
any regard to epistemology. The idea that science has an ‘official one’,
and that empiricism is it, is wrong-headed.”

2 Why would it be correct to call Locke the father of modern scientific
realism and Berkeley the originator of instrumentalism? How would
Berkeley respond to the argument for realism as an inference to the best
explanation of science’s success?

3 We have defined grue and bleen by way of the concepts of green and
blue. Construct a definition of green and blue which starts with grue
and bleen. What does this show about the projectability of green and
blue?

4 What advantages do riskier hypotheses have over less risky ones in
science?

5 Give examples, preferably from science, in which all three concepts of
probability are used: subjective, relative frequency and probabilistic
propensity. Hint: think of weather reports.

6 Argue against the claim that two equally well-confirmed total theories
which appear to be incompatible are only disguised terminological vari-
ants of one another.

Suggested reading

The relationship between science and philosophy, and especially the role of
science in the dispute between empiricism and rationalism during that
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period are treated in E.A. Burtt, Metaphysical Foundations of Modern Science.
John Locke’s Essay on Human Understanding is a long work, George Berke-
ley’s Principles of Human Knowledge is brief but powerful. The last third
develops an explicitly instrumental conception of science which he contrasts
to Locke’s realism. Berkeley argued for idealism – the thesis that only what
is perceived exists, that the only thing we perceive is ideas, that therefore
only ideas exist. His argument turns on the very same theory of language
which the logical empiricists initially embraced: the meaning of every term
is given by the sensory idea it names. About this work, Hume wrote, “it
admits no refutation, and carried no conviction”, in his Inquiry Concerning
Human Understanding. In this work he develops the theory of causation dis-
cussed in Chapter 2, the theory of language common to empiricists from
Berkeley to the logical positivists, and the problem of induction. Bertrand
Russell’s famous paper, “On Induction”, reprinted in Balashov and Rosen-
berg, Philosophy of Science: Contemporary Readings, brought Hume’s argument
to central stage in twentieth-century analytical philosophy.

J.S. Mill, A System of Logic, carried the empiricist tradition forward in the
nineteenth century, and proposed a canon for experimental science still
widely employed under the name, Mill’s methods of induction. The physi-
cist Ernst Mach, The Analysis of Sensation, embraced Berkeley’s attack on
theory as empirically unfounded against Ludwig Boltzman’s atomic theory.
This work was greatly influential on Einstein. In the first half of the twenti-
eth century logical empiricists developed a series of important theories of
confirmation, R. Carnap, The Continuum of Inductive Methods, H. Reichen-
bach, Experience and Prediction. Their younger colleagues and students wres-
tled with these theories and their problems. Essays on confirmation theory in
Hempel, Aspects of Scientific Explanation are of special importance, as is 
N. Goodman, Fact, Fiction and Forecast, where the new riddle of induction is
introduced along with Goodman’s path-breaking treatment of counterfactu-
als. Peter Achinstein’s paper, “The Grue Paradox”, which appears in print
initially in Balashov and Rosenberg, is an invaluable exposition of
Goodman’s new riddle, and a novel solution.

W. Salmon, Foundations of Scientific Inference, is a useful introduction to the
history of confirmation theory from Hume through the positivists and their
successors. D.C. Stove, Hume, Probability and Induction, attempts to solve the
problem of induction probabilistically.

Objection to the logical empiricist theory of testing was early advanced
by Karl Popper, The Logic of Scientific Discovery, first published in German in
1935. In that work, and in Conjectures and Refutations (1963), Popper
advanced a quite striking thesis about which theories to accept and why. An
excellent critical discussion of Popper’s views is to be found in W. Newton
Smith, The Rationality of Science. Balashov and Rosenberg reprint a portion of
Popper’s Conjectures and Refutations, along with his attack on the theory of
natural selection, “Darwinism as a Metaphysical Research Program”, and the
relevant portion of Darwin’s On the Origin of Species.
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The arguments against strict falsification of W.V.O. Quine, From a
Logical Point of View, and Word and Object, followed a much earlier work, 
P. Duhem, The Aim and Structure of Physical Theory. The recognition that the
role of auxiliary hypotheses makes strict falsification impossible limited the
influence of Popper’s views among philosophers.

L. Savage, Foundations of Statistics, provides a rigorous presentation of
Bayesianism, as does R. Jeffrey, The Logic of Decision. A philosophically
sophisticated presentation is P. Horwich, Probability and Evidence. An intro-
duction to Bayesianism is to be found in Salmon’s Foundations of Scientific
Inference. Salmon defends the application of the theorem to cases from the
history of science in “Bayes’ Theorem and the History of Science”, reprinted
in Balashov and Rosenberg.

The problem of old evidence, among other issues, has led to dissent from
Bayesianism by C. Glymour, Theory and Evidence.

Peter Achinstein, The Book of Evidence, anthologizes several papers that
reflect the complexities of inference from evidence to theory.

The possibility of underdetermination is broached first in Quine, Word
and Object. It has been subject to sustained critical scrutiny over the succeed-
ing half-century. For an important example of this criticism, see J. Leplin
and L. Laudan, “Empirical Equivalence and Underdetermination”. 
C. Hoefer and A. Rosenberg, “Empirical Equivalence, Underdetermination
and Systems of the World”, respond to their denial of underdetermination.
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