
A CONTEMPORARY LOOK AT ZENO'S PARADOXES 

23. To summarize: I have tried to show that the popular mathematical refu
tation of Zeno's paradoxes will not do, because it simply assumes that Achilles 
can perform an infinite series of acts. By using the illustration of what would be 
involved in counting an infinite number of marbles, I have tried to show that 
the notion of an infinite series of acts is self-contradictory. For any material 
thing, whether machine or person, that set out to do an infinite number of acts 

i would be committed to performing a motion that was discontinuous and there-
f fore impossible. But Achilles is not called upon to do the logically impossible; 
j, the illusion that he must do so is created by our failure to hold separate the 
f finite number of real things that the runner has to accomplish and the infinite 

series of numbers by which we describe what he actually does. We create the 
illusion of the infinite tasks by the kind of mathematics that we use to describe 
space, time, and motion. 

Notes 

1 Grundgesetze der Arithmetik, 2 ( 1903), §124. Or see my translation in Translations 
from the Philosophical Writings ofGottlob Frege (Oxford, 1952), p. 219. 

2 Or class or set or aggregate, etc. 
3 An alternative arrangement would be to have three similar machines constantly cir

culating three marbles. 
4 Somebody might say that if the marble moved by Beta eventually shrank to nothing 

there would be no problem about its final location. 
5 Cf. Peirce: "I do not think that if each pebble were broken into a million pieces the · 

difficulty of getting over the road would necessarily have been increased; and I don't 
see why it should if one of these millions - or all of them - had been multiplied into 
an infinity" (Collected Papers[Cambridge, Mass., 1931], 6.182). 

15 A Contemporary Look at Zeno's Paradoxes: 
An Excerpt from Space, Time, and Motion* 

Wesley C. Salmon 

The Paradoxes of Motion 

Our knowledge of the paradoxes of motion comes from Aristotle who, in the 
course of his discussions, offers a paraphrase of each. Zeno's original formula
tions have not survived. 1 

* From Wesley C. Salmon, Space, Time, and Motion (Minneapolis: University of Minnesota Press, 
1980). Reprinted by permission ofthe author. 
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( l) Achilles and the Tortoise. Imagine that Achilles, the fleetest of Greek 
warriors, is to run a footrace against a tortoise. It is only fair to give the 
tortoise a head start. Under these circumstances, Zeno argues, Achilles 
can never catch up with the tortoise, no matter how fast he runs. In 
order to overtake the tortoise, Achilles must run from his starting point 
A to the tortoise's original starting point T0 (see figure 3). While he is 
doing that, the tortoise will have moved ahead to T 1• Now Achilles 
must reach the point T 1• While Achilles is covering this new distance, 
the tortoise moves still farther to T2• 

A 

Figure3 

Again, Achilles must reach this new position of the tortoise. And so it 
continues; whenever Achilles arrives at a point where the tortoise was, 
the tortoise has already moved a bit ahead. Achilles can narrow the gap, 
but he can never actually catch up with him. This is the most famous of 
all of Zeno's paradoxes. It is sometimes known simply as "The Achil
les." 

(2) The Dichotomy. This paradox comes in two forms, progressive and 
regressive. According to the first, Achilles cannot get to the end of any 
racecourse, tortoise or no tortoise; indeed, he cannot even reach the 
original starting point T 0 of the tortoise in the previous paradox. Zeno 
argues as follows. Before the runner can cover the whole distance he 
must cover the first half of it (see figure 4). 
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Figure4 

Then he must cover the first half of the remaining distance, and so on. 
In other words, he must first run one-half, then an additional one-fourth, 
then an additional one-eighth, etc., always remaining somewhere short 
of his goal. Hence, Zeno concludes, he can never reach it. This is the 
progressive form of the paradox, and it has very nearly the same force as 
Achilles and the Tortoise, the only difference being that in the Dichotomy 
the goal is stationary, while in Achilles and the Tortoise it moves, but at 
a speed much less than that of Achilles. 

The regressive form of the Dichotomy attempts to show, worse yet, 
that the runner cannot even get started. Before he can complete the full 
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distance, he must run half of it (see figure 5 ). But before he can com
plete the first half, he must run half of that, namely, the first quarter. 
Before he can complete the first quarter, he must run the first eighth. 
And so on. In order to cover any distance no matter how short, Zeno 
concludes, the runner must already have completed an infinite number 
of runs. Since the sequence of runs he must already have completed has 
the form of a regression, 

... Yl6, Ys, '14, Yz, 

it has no first member, and hence, the runner cannot even get started. 

( 3) The Arrow. In this paradox, Zeno argues that an arrow in flight is 
always at rest. At any given instant, he claims, the arrow is where it is, 
occupying a portion of space equal to itself. During the instant it can
not move, for that would require the instant to have parts, and an in
stant is by definition a minimal and indivisible-element of time. If the 
arrow did move during the instant it would have to be in one place at 
one part of the instant, and in a different place at another part of the 
instant. Moreover, for the arrow to move during the instant would re
quire that during the instant it must occupy a space larger than itself, 
for otherwise it has no room to move. As Russell says, "It is never mov
ing, but in some miraculous way the change of position has to occur 
between the instants, that is to say, not at any time whatever."2 This 
paradox is more difficult to understand than Achilles and the Tortoise 
or either form of the Dichotomy, but another remark by Russell is apt: 
"The more the difficulty is meditated, the more real it becomes." 

( 4) The Stadium. Consider three rows of objects A, B, and C, arranged as 
in the first position of figure 6. Then, while row A remains at rest, 
imagine rows B and C moving in opposite directions until all three rows 
are lined up as shown in the second position. In the process, C1 passes 
twice as many B's as A's; it lines up with the first A to its left, but with 
the second B to its left. According to Aristotle, Zeno concluded that 
"double the time is equal to hal£" 

First Position Second Position 
AI Az A3 AI Az A3 

Bl Bz B3 Bl Bz B3 
cl cz c3 c, cz c3 

Figure 6 

Some such conclusion would be warranted if we assume that the time 
it takes for a C to pass to the next B is the same as the time it takes to 
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pass to the next A, but this assumption seems patently false. It appears 
that Zeno had no appreciation of relative speed, assuming that the speed 
of C relative to B is the same as the speed of C relative to A. If that were 
the only foundation for the paradox we would have no reason to be 
interested in it, except perhaps as a historical curiosity. It turns out, 
however, that there is an interpretation of this paradox which gives it 
serious import. 

Suppose, as people occasionally do, that space and time are atomistic 
in character, being composed of space-atoms and time-atoms of non
zero size, rather than being composed of points and instants whose size 
is zero.3 Under these circumstances, motion would consist in taking up 
different discrete locations at different discrete instants. Now, if we sup
pose that the As are not moving, but the Bs move to the right at the rate 
of one place per instant while the Cs move to the left at the same speed, 
some of the Cs get past some of the Bs without ever passing them. C, 
begins at the right ofB2 and it ends up at the left ofB2, but there is no 
instance at which it lines up with B2; consequently, there is no time at 
which they pass each other - it never happens. 

It has been suggested that Zeno's arguments fit into an overall pattern.4 Achil
les and the Tortoise and the Dichotomy are designed to refute the doctrine that 
space and time are continuous, while the Arrow and the Stadium are intended 
to refute the view that space and time have an atomic structure. The paradox of 
plurality [not discussed here], also fits into the total schema. Thus, it has been 
argued, Zeno tries to cut off all possible avenues to escape from the conclusion 
that space, time, and motion are not real but illusory. 

It is extremely tempting to suppose, at first glance, that the first three of these 
paradoxes at least arise from understandable confusions on Zeno's part about 
concepts of the infinitesimal calculus. It was in this spirit that the American 
philosopher C. S. Peirce, writing early in the twentieth century, said of Achilles 
that "this ridiculous little catch presents no difficulty at all to a mind adequately 
trained in mathematics and logic. " 5 There is no reason to think he regarded any 
ofZeno's other paradoxes more highly. 

We should begin by noting that, although the calculus was developed in the 
seventeenth century, its foundations were beset with very serious logical diffi
culties until the nineteenth century - when Cauchy clarified such fundamental 
concepts as functions, limits, convergence of sequences and series, the deriva
tive, and the integral; and when his successors Dedekind, Weierstrass, et al., 
provided a satisfactory analysis of the real number system and its connections 
with the calculus. I am firmly convinced that Zeno's various paradoxes consti
tuted insuperable difficulties for the calculus in its pre-nineteenth-century form, 
but that the nineteenth-century achievements regarding the foundations of the 
calculus provide means which go far toward the resolution ofZeno's paradoxes. 
Let us see what light these purified concepts can throw on the paradoxes of 
motion.6 
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The Sum of an Infinite Series 

It is hard to guess how deep or subtle Zeno's actual reasoning was; experts 
differ on the point. 7 It may have been that Zeno's original version of Achilles 
and the Tortoise involved the following sort of argument: since Achilles must 
traverse an infinite number of distances, each greater than zero, in order to 
catch up with the tortoise, he can never do so, for such a process would take an 
infinite amount of time. Against this form of the argument Aristotle quite ap
propriately pointed out that the time span during which Achilles chases after 
the tortoise can likewise be subdivided into infinitely many non-zero intervals, 
so Achilles has infinitely many non-zero time intervals in which to traverse the 
infinitely many non-zero space intervals. But this response can hardly be ad
equate, for the question still remains: how can infinitely many positive intervals 
of time OR space add up to anything less than infinity? The answer to this ques
tion was not provided until Cauchy offered a satisfactory treatment of conver
gent series in the first half of the nineteenth century. 

The first concept we need is the limit of an infinite sequence. An infinite 
sequence is simply an ordered set of terms {Snl which correspond in a one-to
one fashion with the positive integers - each term of the sequence being coor
dinated by the subscript n to a positive integer. The sequence is said to be 
convewent if it has a limit. To say that such a sequence has a limit means that 
there is some number L (the limit) such that the terms of the sequence become 
and remain arbitrarily close to that value as we run through the successive terms. 
More precisely, for any number E greater than 0, there is some positive integer 
N such that for every term Sn with n > N, the difference between Sn and Lis less 
than E. In the sequence 

Yz, ~' Ys, ... , 1hn, ... 

the limit is 0, since the difference between the terms of the sequence and 0 is 
arbitrarily small for sufficiently large values of n. If, for example, we choose E = 
Yio, by the time we reach the fourth term S4 = Y16, the difference between that 
term and L ( = 0) is less than Vw, and the difference remains less than Yio for every 
subsequent member of the sequence. ForE= Vwo, lSn- 01 is less thanE for n = 
7, and the difference remains less than Yioo for every subsequent term. Similarly, 
E may be chosen as small as we like, say YJ,ooo,ooo or Yi.ooo,ooo,ooo, provided it is 
greater than zero, and there is some point in this sequence beyond which all 
remaining terms differ from L by less than E. It is easy to show, by completely 
parallel reasoning, that the sequence 

Yz, %, 'Is, ... , l - Yzn, ... 

converges to the limiting value of l. 
Mter the concept of the limit of a sequence has been defined, it can be used 

to define the sum of an infinite series. An infinite series is simply an infinite 
sequence of terms which are related to one another by addition; for example, 
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1h + lA + ~ + . . . + l.hn, + . . . 

Such a sum is not defined in elementary arithmetic, for ordinary addition is 
restricted to sums of finite numbers of terms, but this operation can be ex
tended very naturally to an infinite series. In order to define the sum of an 
infinite series 

we form the sequence of partial sums, 

sl = sl 
~=Sl+~ 
S3=SJ +S2+S3 

etc. 

Each of these partial sums is a sum with a finite number of terms, and it involves 
only the familiar operation of addition from elementary arithmetic. We have 
already defined the limit of an infinite sequence. If the sequence of partial sums, 

has a limit, we say that the infinite series 

is convergent, and we define its sum as the limit of the sequence of partial sums. 
This amounts to saying, intuitively, that the sum of a convergent infinite series 
is a number that can be approximated arbitrarily closely by adding up a suffi
cient (finite!) number of terms. Given this definition of the sum of an infinite 
series, it becomes perfectly meaningful to say that the infinitely many terms of a 
convergent series have a finite sum. 

Both the first form of the Dichotomy and the Achilles paradoxes present us 
with infinite series to be summed. In the Dichotomy, for instance, it is shown 
that the runner, to cover a racecourse that is one mile in length, must cover the 
following series of non-overlapping distances: 

Each term of this series is greater than zero. We form the sequence of partial 
sums 
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As we noted above, this sequence converges to the limit l; that is the sum of 
this convergent infinite series. Achilles and the Tortoise is quite analogous. If 
Achilles can run twice as fast as the tortoise, and the tortoise has a head start of 
one-half of the course, the infinite series generated by Achilles running to each 
subsequent starting point of the tortoise is precisely the one we have just summed. 
To whatever extent these paradoxes raised problems about the intelligibility of 
adding up infinitely many positive terms, the nineteenth-century theory of con
vergent sequences and series resolved the problem. 

Instantaneous Velocity 

An initial reaction to the paradox of the Arrow might be the suspicion that it 
hinges on a confusion between the concepts of instantaneous motion and in
stantaneous rest. Perhaps Zeno did feel that the only way for an arrow to be at 
a particular place was to be at rest- that the notion of instantaneous non-zero 
velocity was illegitimate. IfZeno argued- we have no way of knowing whether 
he did or not- that at every moment of its flight the arrow is at some place in its 
trajectory, and hence at every moment of its flight it has velocity zero, then he 
would have been correct in concluding that its velocity during the whole course 
of its flight would be zero, rendering the arrow motionless. Nineteenth-century 
mathematics showed, however, that one of these assumptions is incorrect. It is 
entirely intelligible to attribute non-zero instantaneous velocities to moving 
objects when an instantaneous velocity is understood as a derivative - namely, 
the rate of change of position with respect to time. This derivative is defined as 
the limit of the average velocity during decreasing non-zero intervals of time. 
Suppose, for example, that the arrow flies at a uniform speed. We find that in 
one second it covers ten feet, in one-tenth of a second it covers one foot, in 
one-hundredth of a second it covers one-tenth of a foot, and so on. As we take 
these average velocities over decreasing finite time intervals which converge to 
an instant t1, the average velocities approach a limit of ten feet per second, and 
this is, by definition, the instantaneous velocity of the arrow at t 1• The same can 
be said for every moment during its flight; it travels its whole course at ten feet 
per second, and its velocity at each moment is ten feet per second. If Zeno felt 
that the only intelligible instantaneous velocity is zero, nineteenth-century math
ematics proved him wrong. 

The infinitesimal calculus was, of course, developed in the seventeenth cen
tury, and it made use of instantaneous velocities. These were, unfortunately, 
considered to be infinitesimal distances covered in infinitesimal times. It was 
against such notions that Berkeley leveled his broadside in The Analyst, 8 charac
terizing infinitesimals as "ghosts of recently departed quantities." It is possible 
that Zeno's Arrow paradox was also directed against just such a conception. If 
we try to conceive of finite motion over a finite distance during a finite time as 
being composed of a large number of motions over infinitesimal distances dur
ing infinitesimal times, enormous confusion is likely to ensue. How much space 
does an arrow occupy during an infinitesimal time? Is it just as large as the 
arrow, or is it a wee bit larger? If it is larger, then how does the arrow get from 
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one part of that space to another? And if not, then how can the arrow be mov
ing at all? And how long is an infinitesimal time span? Does it have parts or not? 
If so, how can we characterize motion during its parts? If not, how can motion 
occur during this infinitesimal time? These are questions that Zeno and his 
fellow Greeks could not answer, and to which modern calculus prior to Cauchy 
had no satisfactory answer either. This is why I remarked earlier that nineteenth
century- not seventeenth-century- mathematics held an important key, in the 
concept of the derivative, to the resolution of Zeno's Arrow paradox. 

Mathematical Functions 

There is, however, still an underlying problem about instantaneous velocity. 
We have seen how such a concept can be defined intelligibly, but this definition 
makes essential reference to what is happening at neighboring instants. Instan
taneous velocity is defined as a limit of a sequence of average velocities over 
finite time intervals; without some information about what happens in tl?.ese 
intervals we can say nothing about the instantaneous velocity. If we know sim
ply that the center of the arrow was at the point s1 at time t 1 we can draw no 
conclusion whatever about its velocity at that instant. Unless we know what the 
arrow was doing at other times close to t 1 we cannot distinguish instantaneous 
motion from instantaneous rest. It was just this consideration, I believe, which 
led the philosopher Henri Bergson to say that Zeno's Arrow paradox calls at
tention to the absurd proposition" ... that movement is made of immobilities. "9 

Bergson concluded that the Arrow paradox proves that the standard mathematical 
characterization of motion must be wrong. We must look at this argument a 
little more closely. 

In modern physics, motion is treated as a functional relationship between 
points of space and instants of time. The formula for the motion of a freely 
falling body, for example, is 

X= f(t) = 'flgt2. 

Such formulas make it possible, by employing the function f, to compute the 
position x given a value of time t. But to understand this treatment of motion 
fully, it is necessary to have a clear conception of mathematical functions. Be
fore the nineteenth century there was no satisfactory treatment of functions; 
functions were widely regarded as things which moved or flowed. Such a con
ception is of no help in attempting to resolve Zeno's paradoxes; on the con
trary, Zeno's paradoxes of motion constitute severe difficulties for any such 
notion of mathematical functions. The situation was dramatically improved when 
Cauchy defined a function as simply a pairing of numbers from one set with 
numbers from another set. The numbers of the first set are the values of the 
a'fl]ument, sometimes called the independent variable; the numbers of the sec
ond set (which need not be a different set) are the values of the function, some
times called the dependent variable. For example, the function F( x) = y = x2 pairs 
real numbers with non-negative real numbers. With the number 2 it associates 
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the number 4, with the number -1 it associates the number l, with the num
ber lh it associates the number lA, and so forth. Now according to Cauchy, the 
mathematical function F simply is the set of all such pairs of numbers [namely, 
that shown in Table 1]. 

Table 1 

X F(x) = r 
l 1 
2 4 
3 9 
lh lf4 
y3 lAI 

-2 4 
-1 1 
etc. etc. 

Similarly, the function fused to describe the motion of a falling body is nothing 
more or less than a pairing of the values of the position variable x with values of 
the time variable t. At t = 0, x = 0; at t = l, x = 16; at t = 2, x = 64. This is how 
we say, in mathematical language, that a body starting from rest in the vicinity 
of the surface of the earth and falling freely travels 16 feet in the first second, 48 
feet in the next second, and so on. 

Let us now apply this conception of a mathematical function to the motion 
of an arrow; to keep the arithmetic simple, let it travel at the uniform speed of 
ten feet per second in a straight line, starting from x = 0 at t = 0. At any subse
quent time t, its position x = 1 Ot. Accordingly, part of what we mean by saying 
that the arrow moved from point A (x = 10) to point B (x= 30) is simply that it 
was at A when t = 1, and it was at B when t = 3. When we ask how it got from 
A to B, the answer is that it occupied each of the intervening points x ( 10 < x < 
30) at suitable times t ( 1 < t < 3) - that is, satisfYing the equation x = 1 Ot. For 
example, when t = 2, the arrow was at the point C (x = 20). When we ask how 
it got from A to C, the answer is again: by occupying the intervening positions 
at suitable times. Notice that this answer is not: by zipping through the inter
vening points at ten feet per second. The requirement is that the arrow be at 
the appropriate point at the appropriate time- nothing is said about the instan
taneous velocity of the arrow as it occupies each of these points. This approach 
has been appropriately dubbed "the at-at theory of motion." Once the motion 
has been described by a mathematical function that associates positions with 
times, it is then possible to differentiate the function and find its derivative, 
which in turn provides the instantaneous velocities for each moment of uavel. 
But the motion itself is described by the pairing of positions with times alone. 
Thus, Russell was led to remark, "Weierstrass, by strictly banishing all 
infinitesimals, has at last shown that we live in an unchanging world, and that 
the arrow, at every moment of its flight, is truly at rest. The only point where 
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Zeno probably erred was in inferring (if he did infer) that, because there is no 
change, therefore the world must be in the same state at one time as at another. 
This consequence by no means follows .... " 10 

What Russell is saying is basically sound, although he does perhaps phrase it 
overdramatically. It is not that the arrow is "truly at rest" during its flight; 
rather, the motion consists in being at a particular point at a particular time, 
and regarding each individual position at each particular moment, there is no 
distinction between being at rest at the point and being in motion at the point. 
The distinction between rest and motion arises only when we consider the po
sitions of the body at a number of different moments. This means that, aside 
from being at the appropriate places at the appropriate times, there is no addi
tionalprocess of moving from one to another. In this sense, there is no absurd
ity at all in supposing motion to be composed of immobilities. 11 

Although this way of viewing motion is, I believe, logically impeccable, it 
may be psychologically difficult to accept. Perhaps the problem can best be seen 
in connection with the regressive form of the Dichotomy paradox. Here we 
have Achilles at the starting point at the very moment at which the race begins. 
What, we ask, must he do first? Well, someone might say, first he has to run to 
the starting point of the tortoise. But that answer cannot be correct, for before 
he can do that, he must run to a point halfWay between his and the tortoise's 
respective starting points. Before he can do that, however, he must get to a 
point halfWay to the halfWay point. And so on. We are off on the infinite re
gress. It seems that there is no first thing for him to do; whatever we suppose his 
first task to be, there is another that must be completed before he can finish it. 
There is, in other words, no first interval for him to cross. This conclusion is 
true. But it does not follow that Achilles cannot get started. 

Consider the arrow once more. Suppose it is at point C midway in its flight 
path. When we ask how it gets from C to B we may be wondering, consciously 
or unconsciously, where it goes next- how it gets to the next point. But this 
question is surely illegitimate, for we are thinking of the arrow's path as a con
tinuous one. Since the points in a continuum are densely ordered, there is no 
next point. Between any two distinct points there is another (and, hence, infi
nitely many). The question about Achilles, which we just considered in connec
tion with the regressive Dichotomy, may arise from the same psychological 
source. We may feel that his first act must be to get to the point next to his 
starting point, but no such point exists. According to the at-at theory of mo
tion, this fact is no obstacle to motion. Both space and time are regarded as 
continuous, and hence, densely ordered. True, there is no next point of space 
for Achilles to occupy, but also there is no next moment of time in which he 
must do so. For each moment of time there is a corresponding point, and tor 
each spatial point there is a corresponding moment; nothing more is required. 

The psychological compulsion to demand a next point or a next moment 
may arise from the fact that we do not experience time as a continuum of in
stants without duration, but rather, as a discrete series of specious presents, 
each of which lasts perhaps a few milliseconds. Aside from anthropomorphism, 
however, there is no reason to try to impose the discrete structure of psycho-
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logical time upon the mathematical notion of time as a continuum, since the 
continuous conception has proved itself such an extremely fruitful tool fur the 
description of physical motion. 12 

Limits of Functions 

There is one final issue, arising out of the paradoxes of motion, that was signifi
cantly clarified by nineteenth-century foundations of mathematics. During the 
preceding two centuries, while the calculus floated on vague spatial and tempo
ral intuitions, there was considerable controversy about the ability of a function 
to reach its limit. Some functions seemed to do so; others did not. It was all 
quite baffling. This puzzle relates directly to Zeno's paradoxes of Achilles and 
the Tortoise and the progressive form of the Dichotomy. Achilles seems capa
ble of chasing the tortoise right up to the point of overtaking him, but can he 
reach that limiting point? Likewise, on the track by himself, Achilles seems ca
pable of traversing the various fractional parts of the course right up to the 
finish line, but can he achieve that limit? Again, the definitions of functions 
and limits provided in the nineteenth century come nicely to the rescue. A 
limit is simply a number. A function is simply a pairing of two sets of numbers. 
If the Limit happens to be one of the numbers in the set of values of the func
tion, then the function does assume the limiting value for some value of its 
argument variable. If not, then the function never assumes the limiting value. 
No further question about the ability of a function to "reach" its limit can 
properly arise. 

There can be no serious doubt that the aforementioned nineteenth-century 
mathematical developments went a long way in resolving the problems Zeno 
raised about space, time, and motion. The only question is whether there are 
any remaining problems associated with the paradoxes of motion. Beginning 
about 1950, a number of mathematically sophisticated writers, who were fully 
aware of the foregoing considerations, felt that an important problem still re
mained. One of the most articulate was Max Black, who argued that the analysis 
of Achilles' attempt to catch the tortoise into an infinite sequence of distinct 
runs introduces a severe logical difficulty. 13 The problem, specifically, is whether 
it even makes sense to suppose that anyone has completed an infinite sequence 
of runs. Black puts the matter forcefully and succinctly when he says that the 
mathematical operation of summing an infinite series will tell us where and 
when Achilles will catch the tortoise if he can catch the tortoise at all, but that is 
a big "if." There is, Black argues, a fundamental difficulty in supposing that he 
can catch the tortoise, for, he maintains, "the expression, 'infinite series of acts,' 
is self-contradictory. " 14 

Black's argument is based upon consideration of a number ofimaginary ma
chines that transfer balls from one tray to another. 15 Suppose, for instance, that 
there are two machines, Hal and Pal, each equipped with a tray in front. When 
a ball is placed in Hal's tray, he moves it to Pal's tray; when a ball is placed in 
Pal's tray, he moves it to Hal's tray. They have a sort of friendly rivalry about 
getting rid of the balls. Suppose, further, that they are programmed in such a 
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way that each successive transfer of the ball takes a shorter time; in particular, 
when the ball is first put into either tray, the machine takes 1h minute to move it 
to the other tray, next time it takes~ minute, next time 'Is minute, and so forth. 
(Actually, it is more like a frantic compulsion to get rid of the ball; they carry the 
maxim "It is more blessed to give than to receive" to a ridiculous extreme.) We 
begin by putting a ball in Hal's tray, and he takes ih minute to move it to Pal's 
tray. Pal then takes ih minute to put it back in Hal's tray, during which time Hal 
is resting. Then Hal takes ~ minute to transfer it to Pal's tray, while Pal is 
resting; in the next ~ minute Pal returns it to Hal's tray while Hal rests. As the 
process goes on, the pace increases until we see just a blur, but at the end of two 
minutes it is over, and both machines come to rest. The ball has been transfered 
infinitely many times; in fact, each machine has made infinitely many transfers 
(and enjoyed infinitely many rest periods) during the two minutes. 

Now, we must ask, where is the ball? Is it in Hal's tray? No, it cannot be in 
Hal's tray, because every time it was put in, Hal removed it. Is it in Pal's tray? 
No, because every time it was put there Pal removed it. Black concludes that the 
supposition that this infinite sequence of tasks has been completed leads to an 
absurdity. 

Another hypothetical infinity machine -perhaps the simplest- is the Thomson 
lamp. 16 This lamp is of a common variety; it has a single push-button switch on 
its base. If the lamp is off and you push the switch, the lamp turns on; if the 
lamp is on and you push the switch, the lamp turns off. Now suppose that 
someone pushes the switch an infinite number of times; he accomplishes this by 
completing the first thrust in Y2 minute, the second in '14 minute, the third in 'Is 
minute, much as the runner in the Dichotomy is supposed to cover the infinite 
sequence of distances in decreasing times. Consider the final state of the lamp 
after the infinite sequence of switchings. Is the lamp on or off? It cannot be on, 
for each time it was on it was switched off. It cannot be off, for each time it was 
off it was switched on. 

The speed of switching demanded is, of course, beyond human capability, 
but we are concerned with logical possibilities, not "medical" limitations. Moreo
ver, there are mechanical difficulties inherent in the speed required of Hal and 
Pal as well as Thomson's lamp, but we are not concerned with problems of 
engineering. Further, there is no use trying to evade the question by saying that 
the bulb would bum out or the switch would wear out. Even if we could cover 
such eventualities by technological advances, there remains a logical problem in 
supposing that an infinite sequence of switching (or ball transfers) has been 
achieved. The lamp must be both on and off, and also, neither on nor off. This 
is a thoroughly unsatisfactory state of affairs. 

Black and Thomson are not maintaining that Achilles cannot overtake the 
tortoise and finish the race. We all know that he can, and to argue otherwise 
would be silly. Black is arguing that it is incorrect to describe either feat as "com
pleting an infinite sequence of tasks," and Thomson draws a similar moral. 
They are suggesting that the paradoxes arise because of a misdescription of the 
situation. 

These authors have focused upon a fundamental point. We must begin by 
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realizing that no definition, by itself, can provide the answer to a physical prob
lem. Take the simplest possible case, the familiar definition of arithmetical addi
tion of two terms. We find, by experience, that it applies in some situations and 
not in others. If we have m apples in one basket and n oranges in another, then 
we will have m + n pieces of fruit if we put them together in the same container. 
(Popular folklore notwithstanding, we obviously can "add" apples and oranges.) 
However, as is well known, if we have m quarts of alcohol in one bucket, and n 
quarts of water in another, we will not have m + n quarts of solution if we put 
them together in the same container. The situation is simply another instance 
of the relation between pure and applied mathematics discussed in the preced
ing chapter [not included here] . We can define various mathematical opera
tions within pure mathematics, but that is no guarantee of their applicability to 
the physical world. If such operations are to be applied in the description of 
physical facts we must determine empirically whether a given physical operation 
is an admissible interpretation of a given mathematical operation. We have just 
seen that the combining of apples and oranges in fruit baskets is a suitable 
counterpart of arithmetical addition, while the mixing of alcohol and water is 
not. A more significant example occurs in Einstein's special theory of relativity, 
where composition of velocities is seen not to be a physical counterpart of standard 
vector addition. 

The same sort of question arises when we consider applying the (now stand
ard) definition of the sum of an infinite series. Does a given physical situation 
correspond to a particular mathematical operation, in this case, the operation of 
summing an infinite series? Black concludes that the running of a race does not 
correspond to the summing of an infinite series, for the completion of an infi
nite sequence of tasks is a logical impossibility. Thus, the running of a race 
cannot correctly be described as completing an infinite sequence of tasks. This 
conclusion has far-reaching implications for modern science. If it is right, the 
usual scientific description of the racecourse as an infinitely divisible mathematical 
continuum is fundamentally incorrect. It may be a useful idealization for some 
purposes, but Zeno's paradoxes show that the description cannot be literally 
correct. The inescapable consequence of this view would seem to be that math
ematical physics needs a radically different mathematical foundation if it is to 
deal adequately with physical reality. 

Before accepting any such result, we must examine the infinity machines more 
closely. They do involve difficulties, but Black and Thomson have not identi
fied them accurately. Consider Thomson's lamp. (The same considerations will 
apply to Black's infinity machines or any of the others.) Thomson has described 
a physical switching process that occupies one minute. Given that we begin at t0 

with the lamp off, and given that a switching occurs at t 1 = 112, t 2 = %, and so on, 
we have a description that tells, for any moment prior to the rime T = l (that is, 
one minute after t0 ), whether the lamp is on or off. For T = I, and subsequent 
times, it tells us nothing. For any time prior to Tthat the lamp is on, there is a 
subsequent time prior to Tthat the lamp is off, and conversely. But this does not 
imply that the lamp is both on and off at T; we can make any supposition we like 
without logical conflict. We have, in effect, a function defined over a half-open 

141 



WESLEY C. SALMON 

interval 0 ~ t< 1, and we are asked to infer its value at t= I. Obviously, there is 
no definite answer to such a question. If the function approached a limit at t = 

I, it would be natural to extend the definition of the function by making that 
limit the value of the function at the end point. But the "switching function" 
describing Thomson's lamp has no such limit, so any extension we might choose 
would seem arbitraryY The same goes for the position of the ball Hal and Pal 
pass back and forth. In the Dichotomy and the Achilles paradoxes, by contrast, 
the "motion function" of the runner does approach a limit, and this limit pro
vides a suitably appealing answer to the question about the location of the run
ner at the conclusion of his sequence of runs. 18 

One cannot escape the feeling, however, that there are significant and as yet 
unmentioned differences between the infinite sequence of runs Achilles must 
make to catch the tortoise and the infinite sequence of ball transfers executed 
by Black's machines (or the infinite sequence of switch pushes required by the 
Thomson lamp). And there is at least one absolutely crucial difference. Con
sider the motion of the ball as it is passed back and forth between Hal and Pal. 
Say that the trays are three inches apart. Then the ball is made to traverse this 
fixed positive distance infinitely many times. In order to do so, it must travel an 
infinite distance in a finite length of time. Now, no one is interested in showing 
that Achilles can run an infinite distance in a finite amount of time - he is fast, 
but not that fust. The problem is to show how he can run a finite distance that 
can be subdivided into an infinite number of subintervals. 

Achilles can make his run if he can achieve a fixed positive velocity; the ball 
which travels back and forth over the fixed distance between Hal and Pal must 
achieve velocities that increase without any bound. This difficulty could, of 
course, be repaired. Suppose we stipulate that the distances covered by the ball, 
like the distances Achilles must cover, decrease as the time available for each 
transit decreases. This can be done by making the trays of Hal and Pal move 
closer and closer during the two-minute interval, so that they coincide in the 
middle at the end of the infinite sequence of transfers. But now there is no 
problem at all about the position of the ball at the end - it is right in the middle 
in both trays! Similar considerations apply to the Thomson lamp. In order to 
accomplish a switching, the button must be moved a certain finite distance, say 
~ inch. If this is done infinitely many times, the finger which pushes the button 
and the button itself must traverse an infinite total distance. A necessary, though 
not sufficient, condition for the convergence of an infinite series is that the 
terms converge to zero. In order to overcome this difficulty, the switch would 
have to be modified in some suitable way, in which case an answer can be given 
to the question regarding the final on-off state of the lamp. 19 

In the literature on Zeno's paradoxes of motion, especially that concerned 
with the infinity machines, a good deal of emphasis has been placed on the 
question of whether Achilles can be said to perform an infinite series of distinct 
tasks. When we divide up the racecourse into an infinite series of positive 
subintervals, it is often claimed, we are artificially breaking up what is properly 
considered one motion into infinitely many parts which - so the allegation goes 
- cannot be considered as individual tasks. In order to clarifY this question, 
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Adolf Griinbaum has given Achilles a fictitious twin - a doppelganger - who 
runs a parallel racecourse, starting and finishing at the same time as the original 
Achilles. 20 

The new Achilles is a jerky runner. He starts out and runs the first half of the 
course twice as fast as his counterpart, and then stops and waits for him. When 
the slower one reaches the midpoint, the interloper runs twice as fust to the 
three-quarter mark, and again waits for the slower to catch up. He repeats the 
same performance for each of the remaining infinite series of subintervals. 
Griinbaum calls the original Achilles, who runs smoothly from start to finish, 
the legato runner; his new twin, who starts and stops, is called the staccato 
runner. The important facts about the staccato runner are: ( l) He reaches the 
end of the course at the same time as the legato runner; if the original Achilles 
can run the course, so can the staccato runner. (2) The staccato runner takes a 
rest of finite (non-zero) duration between each of his infinite succession of 
runs; hence, there can be no question that he performs an infinite sequence of 
distinct runs. (3) The staccato runner (while he is running) runs at a fixed veloc
ity which is simply twice that of his legato mate, so he is not involved in the 
kinds of ever-increasing velocities that were required in the unmodified Black 
and Thomson devices. 

There is just one final feature of the staccato Achilles which might be a source 
of worry. Although he is not required to achieve indefinitely increasing veloci
ties, he is required to do a lot of sudden stopping and starting, shifting instan
taneously from velocity zero to velocity 2 v (where vis the legato runner's velocity) 
and back again. This clearly involves infinite accelerations - and infinitely many 
of them. One could reasonably doubt the possibility of this degree of jerkiness. 
It turns out, however, that even the discontinuity in velocity is not a necessary 
feature of the staccato runner. The physicist Richard Friedberg has shown, by 
means of a complicated mathematical function, how to describe the motion of 
a more sophisticated (and less jerky!) staccato runner who covers each of the 
infinite sequence of subintervals by starting from rest, accelerating continuously 
to a maximum finite velocity, decelerating smoothly to rest, and remaining at 
rest for the required interval between runs. This staccato runner executes a 
motion conforming to a continuous function; his velocity (first derivative) and 
acceleration (second derivative) are continuous, as are all of the higher time
derivatives as well. Moreover, the peak velocities that occur in the successively 
shorter runs also decrease, converging to zero as the length of the run also 
converges to zero. 21 It is hard to see what kind oflogical (or conceptual) objec
tion can be raised against this kind of motion. But if the sophisticated staccato 
runner's series of tasks is feasible, so would be the motions of any of the appro
priately modified infinity machines. The motion of the ball passed between Hal 
and Pal, for example, could be described by a combination of two such func
tions - the first would describe a sequence of motions from left to right with 
interspersed periods of rest; the second would consist of a similar sequence, but 
with the motions from right to left. The second set of motions would be ex
ecuted during the periods of rest granted by the first function, and the first set 
of motions would occur during the rest periods granted by the second function. 
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It therefore appears that a suitably designed Hal-Pal pair of infinity machines 
are logically possible if the legato Achilles - the one we all granted from the 
beginning- can complete his ordinary garden-variety run. 

The Discrete vs the Continuous 

The infinitesimal calculus has long been - and still is - the basic mathematical 
tool in the description of physical reality. It employs variables that range over 
continuous sets of values, and the functions it deals with are continuous. Al
though the calculus has been completely "arithmetized," so that its formal de
velopment does not demand any geometrical concepts, it is still applied to 
phenomena that occur in physical space. Its applicability to spatial occurrences 
is achieved through analytic geometry, which begins with a one-to-one corre
spondence between the points on a line and the set of real numbers. The set of 
real numbers constitutes a continuum in the strict mathematical sense; conse
quently, the order-preserving one-to-one correspondence between the real num
bers and the points of the geometrical line renders the line a continuum as well. 
If, moreover, the geometrical line is a correct representation of lines in physical 
space, then physical space is likewise continuous. Motion is treated, moreover, 
as a function of a continuous time variable, and the function itself is continu
ous. The continuity of the motion function is essential, for velocity is regarded 
as the first derivative of such a function, and acceleration as the second deriva-
tive. Functions which are not continuous are not differentiable, and hence they , 
do not even have derivatives. Continuity is buried deep in standard mathemati- j 
cal physics. It is for this reason that we have concerned ourselves at length with l 
the problems continuity gives rise to. 22 

A serious objection might be raised, however, to the view that the math-
ematical continuum provides a precise and literal representation of physical re- 1 
ality. Since physics customarily uses such idealizations as frictionless planes, 
point-masses, and ideal gases, the argument could go, it might be reasonable to 
suppose that the mathematical continuum is another idealization that is con
venient for some purposes, but does not provide a completely accurate descrip-
tion of space, time, and motion. There is, in addition, ample precedent for 
treating magnitudes that are known to be discrete as if they were continuous. 
The law of radioactive decay, for example, employs a continuous exponential 
function even though it is universally acknowledged that the phenomenon it 
describes involves discrete disintegrations of individual atoms. Where very large 
finite numbers of entities are involved, the fiction of an infinite collection is 
often a convenient one which yields good approximations to what actually hap-
pens. In electromagnetic theory, for another example, the infinitesimal calculus 
is used extensively in dealing with charges, even though all the evidence points 
to the quantization of charges. It has sometimes been suggested that these 
considerations hold the solution to Zeno's paradoxes. For instance, the physi-
cist P. W. Bridgman has said, "With regard to the paradoxes of Zeno ... ifl 
literally thought of a line as consisting of an assemblage of points of zero length 
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and of an interval of time as the sum of moments without duration, paradox 
would then present itsel£ "23 

Although I am in complete agreement with the claim that physics uses 
idealizations to excellent advantage, it does not seem to me that this provides 
any basis for an answer to Zeno's paradoxes of plurality or motion. The first 
three paradoxes of motion purport to show a priori that motion, if it occurs, 
must be discontinuous. Indeed, Zeno's intention, as far as we can tell, seems to 
have been to prove a priori that motion cannot occur. With the exception of a 
very few metaphysicians of the stripe ofF. H. Bradley, most philosophers would 
admit that the question of whether anything moves must be answered on the 
basis of empirical evidence, and that the available evidence seems overwhelm
ingly to support the affirmative answer. Given that motion is a fact of the physi
cal world, it seems to me a further empirical question whether it is continuous 
or not. It may be a very difficult and highly theoretical question, but I do not 
think it can be answered a priori. Other philosophers have disagreed. Alfred 
North Whitehead believed that Zeno's paradoxes support the view that motion 
is atomistic in character, while Henri Bergson seemed to hold an a priori com
mitment to the continuity ofmotion.24 It seems to me that considerable impor
tance attaches to the analysis ofZeno's paradoxes for just this reason. Space and 
time may, as some physicists have suggested, be quantized, just as some other 
parameters, such as charge, are taken to be.25 If this is so, it must be a conclu
sion of sophisticated physical investigation of the spatio-temporal structure of 
the atomic and subatomic domains. A priori arguments, such as Zeno's para
doxes, cannot sustain any such conclusion. The fine structure of space-time is a 
matter for theoretical physics, not for a priori metaphysics, physicists and phi
losophers alike notwithstanding. The result of our attempts to resolve Zeno's 
paradoxes of motion is not a proof that space, time, and motion are continuous; 
the conclusion is rather that for all we can tell a priori it is an open question 
whether they are continuous or not. 

Before we finally leave Zeno's paradoxes, something should be said about the 
view of space, time, and motion as discrete quantities. The historical evidence 
suggests that some of Zeno's arguments were directed against this alternative; 
that is a plausible interpretation of the Stadium paradox at any rate. Zeno seems 
to have realized that, if space and time both have discrete structure, there is a 
standard type of motion that must always occur at a fixed velocity. If, for in
stance, an arrow is to fly from position A to position B in as nearly continuous 
a fashion as is possible in discrete space and time, then it must occupy adjacent 
space atoms at adjoining atoms of time. In other words, the standard velocity 
would be one atom of space per atom of time. To travel at a lesser speed, the 
arrow would have to occupy at least some of the space atoms for more than one 
time atom; to travel at a greater speed, the arrow would have to skip some of 
the intervening space atoms entirely, never occupying them in the course of the 
trip. All of this sounds a bit strange, perhaps, but surely not logically contradic
tory; this is the way the world might be. Moreover, it is possible, as Zeno's 
original Stadium paradox shows, for two arrows to pass one another traveling in 
opposite directions without ever being located next to one another. Imagine 
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two paths, located as dose together as possible in our discrete space, between A 
and B. Let one arrow travel one of these paths from A to B, while the other 
travels the other path from B to A (see figure 7). Suppose that the arrow traveling 
the upper track leaves A and occupies the first square on the left, while the 
arrow traveling the lower track leaves Bat the same (atomic) moment of time, 
occupying the first square on the right end of his path. Let each arrow move 
along its track at the rate of one square for each atom of time. At the fourth 
moment, the upper arrow is just to the left of the lower arrow; at the next 
moment, the upper arrow is just to the right of the lower arrow. At no moment 
are they side-by-side- they get past one another, but there is no event which 
qualifies as the passing (if we mean being located side-by-side traveling in the 
opposite directions). This is strange perhaps, but again, it is hardly logically 
impossible. 

Figure 7 

The mathematician Hermann Weyl has, however, posed a basic difficulty for 
those who would like to quantize space.26 If we think of a two-dimensional 
space as being made up of a large number of tiles (something like figure 7), we 
get into immediate trouble over certain geometrical relations. Suppose for ex
ample, that we have a right triangle ABC in such a space (see figure 8 ). Con
sider, first, the tiles drawn with solid lines. If the positions A, B, and Crepresent 
the respective corner tiles, then we see that the side AB is four units long, the 
side AC is four units long, and the hypotenuse BC is also four units long. The 
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Pythagorean theorem says, however, that the square of the hypotenuse equals 
the sum of the squares of the other two sides. This means that a right triangle 
with two legs offour units each should have a hypotenuse about 57f3 units long. 
The Pythagorean theorem is at least approximately true in physical space, as we 
have found by much experience. The result based upon tile-counting does not 
begin to approximate the correct result. 

This example shows something important about approximations. It is easy to 
see that discontinuous motion in discrete space and time would be difficult to 
distinguish from continuous motion if our space and time atoms were small 
enough. It might be tempting to suppose that our geometrical relations would 
approach the accustomed ones if we make our tiles small enough. This, unfor
tunately, is not the case, as you can see by taking the finer grid in Figure 8 given 
by the broken and solid lines together. Instead of 16 tiles, we now have 64 tiles 
covering the same region of space. But looking at our triangle ABC once more, 
we see that all three sides are now 8 units long. No matter how small we make 
the squares, the hypotenuse remains equal in length to the other two sides. No 
wonder this is sometimes called the "Weyl tile" argument! 27 This is one case in 
which transition to very small atoms does not help at all to produce the needed 
approximation to the obvious features of macroscopic space. It shows the dan
ger of assuming that such approximation will automatically occur as we make 
the divisions smaller and smaller. 

It is important to resist any temptation to account for the difficulty by saying 
that the diagonal distance across a tile is longer than the breadth or height of a 
tile, and that we must take that difference into account in ascertaining the length 
of the hypotenuse of the triangle. Such considerations are certainly appropriate 
if we are thinking of the tiles as subdivisions of a continuous background space 
possessing the familiar Euclidean characteristics. But the basic idea behind the 
tiles in the first place was to do away with continuous space and replace it by 
discrete space. In discrete space, a space atom constitutes one unit, and that is 
all there is to it. lr cannot be regarded as properly having a shape, for we cannot 
ascribe sizes to parts of it - it has no parts. 

Now, I do not mean to argue that there is no consistent way of describing an 
atomic space or time. It would be as illegitimate to try to prove the continuity 
of space and time a priori as it would be to try to prove their discreteness a 
priori. But, in order to make good on the claim that space and time are genu
inely quantized, it would be necessary to provide an adequate geometry based 
on these concepts. I am not suggesting that this is impossible, but it is no 
routine mathematical exercise, and I do not know that it has actually been done. 28 
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16 Grasping the Infmite * 

Jose A. Benardete 

Once upon a time, long ago, a great controversy broke out among the Gumquats, 
plunging that ancient, benighted people into a state of confusion perilously 
close to civil war. A young hero had arisen to challenge some of the most deeply 
cherished beliefs of the tribe. With all the truculence of youth and ambition, he 
insisted that, contrary to received opinion, it must be admitted that there are a 
definite number ofleaves in the jungle, a definite number of fish in the ocean, a 
definite number of stones in the valley. I twas a profound mistake, he argued, to 
suppose that the stones in the valley were really innumerable, uncountable, 
numberless, indeed so plentiful as to be quite without number. The Gumquats 
at this time were fortunate enough to possess a decimal system of counting, but 
they rarely had any occasion to count beyond 100. Ancient records were on 
hand to prove that the highest that anyone had ever counted, in all the recorded 
history of the tribe, was to the number 488. This number was popularly re
garded with almost sacred awe, it was chanted during the holy festivals, and it 
was held highly unlikely that anyone would ever count beyond it. It seemed to 
represent the very limit of human achievement. 

To the horror of the old, to the delight of the young, our hero gathered the 
whole tribe together and undertook to break the spell of superstition under 
which they languished. In full view of all, he proceeded to count up to 200, 
then on to 300, 400, and as he moved on to 486, 487, 488! a great hush fell 
upon the tribe, 489!- the young burst forth with cheers, the old clapped their 
hands upon their ears, refusing to listen to this transgression. Our hero was 
unable to reach 500. Spears and rocks were being hurled in all directions. It was 

* Portions of this paper originally appeared in Jose A. Benardete, Infinity: an Essay in Metaphysics 
(Oxford: Clarendon Press, 1964). Reprinted by permission of the author. 
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