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What Scientific Theories Could Not Be*

Hans Halvorson†‡

According to the semantic view of scientific theories, theories are classes of models. I
show that this view—if taken literally—leads to absurdities. In particular, this view
equates theories that are distinct, and it distinguishes theories that are equivalent.
Furthermore, the semantic view lacks the resources to explicate interesting theoretical
relations, such as embeddability of one theory into another. The untenability of the
semantic view—as currently formulated—threatens to undermine scientific structur-
alism.

1. Introduction. The twentieth century saw two proposed formal expli-
cations of the concept of a “scientific theory.” First, according to the
syntactic view of theories, a theory is a set of axioms in a formal (usually
first-order) language. This view was so dominant during the first half of
the twentieth century that Hilary Putnam dubbed it the “received view.”
But during the 1960s and 1970s, philosophers of science revolted against
the received view and proposed the alternative semantic view of theories,
according to which a theory is a class of models. Thus, Bas van Fraassen
states that “if the theory as such, is to be identified with anything at all—
if theories are to be reified—then a theory should be identified with its
class of models” (1989, 222). Within a few short decades, the semantic
view has established itself as the new orthodoxy. According to Roman
Frigg (2006, 51), “Over the last four decades the semantic view of theories
has become the orthodox view on models and theories.” One only has to
glance at recent writings on the philosophy of science to verify Frigg’s
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184 HANS HALVORSON

claim: the semantic view is now assumed as the default explication of the
notion of a scientific theory.

The received view was an attempt to give a precise explication of a
vague concept. The view was, accordingly, judged by exacting standards,
and it failed to meet these standards. It would be natural to assume, then,
that the semantic view fares better when judged by these same standards—
else, why do so many philosophers see the semantic view as superior to
the syntactic view? Regrettably, philosophers have been too quick to jump
onto the semantic bandwagon, and they have failed to test the semantic
view as severely as they tested the received view. In this article, I put the
semantic view to the test, and I find that it falls short. In particular, I
show that the semantic view makes incorrect pronouncements about the
identity of theories, as well as about relations between theories. Conse-
quently, the semantic view must be fixed, as must any position in phi-
losophy of science that depends on this inadequate view of theories.

2. What Is at Stake. If you were to make a list of the top 10 most
important philosophical questions, I doubt that the syntactic versus se-
mantic view of theories would be near the top. But of course, logical
connections do exist between one’s preferred explication of the concept
of a scientific theory and one’s views on the big questions about the nature
of science and of scientific knowledge—these connections just lie a bit
below the surface. Thus, I devote this first section to bringing these con-
nections to the surface, in hopes that it will motivate the reader to engage
seriously with the more arcane discussion to follow.

First, I recall why some philosophers claim that the scientific realism-
antirealism debate hinges in part on the tenability of the semantic view
of theories. Second, I discuss some consequences of the semantic view of
theories in the philosophy of the particular sciences.

2.1. Scientific Realism and Antirealism. Versions of the semantic view
were already present in the work of the Dutch philosopher Evert Beth as
well as in the early work of Patrick Suppes. But these philosophers did
not press the semantic view into the service of a particular philosophical
agenda. The semantic view first became philosophically charged in the
1970s, when Bas van Fraassen used it to rehabilitate antirealism in phi-
losophy of science.

At times, van Fraassen has indicated that his version of antirealism
stands or falls with the semantic view of theories—or at least that his
version of antirealism leans on the semantic view of theories. For example,
in responding to a criticism of the observable-unobservable distinction
(which is presupposed by van Fraassen’s antirealism), Muller and van
Fraassen ascribe blame to the syntactic view of theories: “we point to a
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WHAT SCIENTIFIC THEORIES COULD NOT BE 185

flaw in these and similar criticisms [of the observable-unobservable dis-
tinction]: they proceed from the syntactic view of scientific theories whereas
constructive empiricism is and has always been wedded to the semantic
view” (2008, 197). Thus, the syntactic view supposedly provides premises
for an argument against constructive empiricism, and rejecting the syn-
tactic view allows one to neutralize these objections.

The semantic view has not only been thought to help constructive
empiricism. Some (e.g., Ronald Giere and Fred Suppe) have also found
the semantic view to be helpful for elaborating a realist philosophy of
science. But perhaps the most interesting and nontrivial application of
the semantic view is in developing a structural realist philosophy of sci-
ence.

Recall that structural realism is the view that (stated loosely) what is
important in a scientific theory is the structure that it posits or describes.
In particular, suppose that T is a scientific theory that we believe to be
true. What sort of attitude is this belief in T ? In old-fashioned realism,
believing T means believing in the existence of the entities in its domain
of quantification and believing that they stand in the relations asserted
by the theory. But, as we very well know, old-fashioned realism makes it
look like we change our minds about ontology during every scientific
revolution. Thus, structural realism counsels a modified attitude toward
T; namely, we should believe that the world has the structure that is posited
by T.

Since James Ladyman’s seminal article, many structural realists have
hitched their wagon to the semantic view of theories. Ladyman urges that
“the alternative ‘semantic’ or ‘model-theoretic’ approach to theories,
which is to be preferred on independent grounds, is particularly appro-
priate for the structural realist” (1998, 417). Ladyman then suggests that
structural realists adopt Giere’s account of theoretical commitment: to
accept a theory means believing that the world is similar or isomorphic
to one of its models. For example, a model of the general theory of
relativity is a four-dimensional Lorentzian manifold; thus, believing the
general theory of relativity means believing that space-time has the struc-
ture of a four-dimensional Lorentzian manifold. In the words of Paul
Thompson, “the application of the model(s) to a particular empirical
system requires the extra-theoretical assumption that the model(s) and
the phenomena to which they are intended to apply are isomorphic” (2007,
495). Others, such as van Fraassen, claim that isomorphism cannot hold
between a model and the world because “being isomorphic” is a relation
that holds only between mathematical objects. Nonetheless, van Fraassen
and all other semanticists claim that a theory is adequate to the extent
that one of its models “represents” the world.
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186 HANS HALVORSON

2.2. The Semantic View Applied to Particular Sciences. The semantic
view of theories has trickled down into the consciousness of the next
generation of philosophers of science. Many of these next-generation phi-
losophers of science style themselves as “philosophers of X,” where X is
some particular science—for example, philosophers of physics, philoso-
phers of biology, philosophers of psychology. Moreover, these philoso-
phers imbibed the semantic view with their mother’s milk, and their Aus-
bildung influences, for better or for worse, their judgment of issues in their
subdisciplines. In this section, I remind the reader of some of the more
obvious ways in which the semantic view manifests itself in the philosophy
of the particular sciences.

2.2.1. Philosophy of Biology. The semantic view of theories has played
a visible and central role in the philosophy of biology since the 1980s.
Already in 1979, John Beatty mounted a criticism of the “received view”
of evolutionary theory (1979, 1980), and in her 1984 PhD thesis, Elisabeth
Lloyd claims that “a semantic approach to the structure of theories offers
a natural, precise framework for the characterization of contemporary
evolutionary theory. As such, it may provide a means with which progress
on outstanding theoretical and philosophical problems can be achieved”
(1984, iii). Suffice it to say that some of the most important recent work
in the philosophy of biology has rested on, or drawn on, the semantic
view of scientific theories.1

2.2.2. Philosophy of Psychology. The semantic view of theories has also
changed the landscape in the philosophy of psychology, which is centrally
concerned with questions of how the mind can be reduced to the brain—
or, rephrased in the lingo of philosophers of science, of how naive folk
theories of the mind can be reduced to neuroscience. But when we ask
what it means to say that one theory is reducible to another, the answer
we give will depend on our conception of what a “theory” is. As pointed
out by Jordi Cat, “the shift in the accounts of scientific theory from
syntactic to semantic approaches has changed conceptual perspectives
and, accordingly, formulations and evaluations of reductive relations and
reductionism” (2007). As a specific example of Cat’s claim, John Bickle
(1993) applies the semantic view of theories to support a claim that neu-
roscientific eliminativism is “principled” (see also Hardcastle 1994). Sim-
ilarly, in a recent discussion, Colin Klein (2011) argues that multiple re-
alizability arguments depend for their plausibility on the syntactic view

1. See also Thompson (1983, 1989) and Lloyd (1994). For a recent review and further
sources, see Thompson (2007).
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WHAT SCIENTIFIC THEORIES COULD NOT BE 187

of theories and that, from the perspective of the semantic view, these
arguments are unmotivated.

2.2.3. Philosophy of Physics. Up to this point, I have attempted only
to describe cases in which philosophers have explicitly claimed that the
semantic view of theories makes a difference for some other philosophical
thesis or position. But now I want to make my own claim about the
importance of the semantic view: in application to the philosophy of
physics, the semantic view of theories has led to false conclusions. One
such conclusion is

Model isomorphism criterion for theoretical equivalence. If theories T
and T ′ are equivalent, then each model of T is isomorphic to a model
of T ′.

To see what is meant by this criterion, let’s look at a couple of cases
where it has been tacitly invoked.

First, Jill North applies a sort of isomorphism criterion when she argues
that Hamiltonian mechanics and Lagrangian mechanics are inequivalent
theories. She says that “the equivalence of theories is not just a matter
of physically possible histories, but of physically possible histories through
a particular statespace structure. Hamiltonian and Lagrangian mechanics
are not equivalent in terms of that structure. This means that they are not
equivalent, period” (North 2009, 79). In other worlds, the statespaces of
Hamiltonian and Lagrangian mechanics are nonisomorphic; therefore,
the two theories impute different structure to the world; therefore, the
two theories are inequivalent.

Similarly, Erik Curiel applies a version of the model isomorphism cri-
terion to argue that Hamiltonian and Lagrangian mechanics are inequi-
valent or, more particularly, that Hamiltonian mechanics does not have
the resources to describe all the facts that Lagrangian mechanics describes.
Curiel says, “the family of kinematically possible evolutions of a dynam-
ical system, in so far as they are characterized by interactions with no
prior assumption of a geometrical structure . . . cannot be naturally rep-
resented as Hamiltonian vector fields on phase space, for by definition
an affine space is not isomorphic to a Lie algebra over a vector space. It
follows that there is no analogous structure in the Hamiltonian represen-
tation of a system isomorphic to a dynamical system’s family of interaction
vector fields” (2009, 20). In other words, Lagrangian mechanics imputes
affine structure to the world, but Hamiltonian mechanics does not impute
affine structure; therefore, these theories are inequivalent.

The model isomorphism criterion should seem obviously correct to a
structural realist who elaborates that position in terms of the semantic
view of theories. For according to semantic structural realism, to accept
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188 HANS HALVORSON

a theory is to believe that the world is isomorphic to one of its models.
Thus, if two theories posit different structure (e.g., one posits affine struc-
ture, and one posits Lie structure), then they cannot both provide accurate
representations of the structure of the world.

But if you think about it for a moment, you will see that this view
cannot be correct. For example, Heisenberg’s matrix mechanics is equiv-
alent to Schrödinger’s wave mechanics. But a matrix algebra is obviously
not isomorphic to a space of wave functions; hence, a simpleminded
isomorphism criterion would entail that these theories are inequivalent.
So, something goes seriously wrong if we take the semantic view of theories
seriously.

3. Preliminary Precisifications. Before I begin my argument against the
semantic view of theories, I should clarify the terms that I will be using.
The semantic view of theories claims that

(S1) A theory is a class of models.

In the earliest articulations of the semantic view, the word “model” was
taken to denote some sort of mathematical object. Many philosophers of
science now disagree that models should be mathematical objects. Those
views will not be subject to the critique that I develop in this article. My
critique is aimed at views that try to explicate the concept of a scientific
theory using the concepts of contemporary mathematics.

So, within the bounds of mathematics, what is a model? We begin with
the standard “elementary” concept due to Alfred Tarski. If L is a (one-
sorted) first-order language, then an L structure consists of a set S (the
domain of quantification) as well as an assignment R . [[R]] P S #

for each n-place predicate symbol R of L. A first-order theory. . . # S
in L consists of a set T of sequents. Here, a sequent is of the form

J j w,
¯ ¯x,y

where is a sequence of variables containing all the free ones in J, andx̄
is a sequence of variables containing all the free ones in w. I assumeȳ

that the reader is familiar with the definition of when an L structure
satisfies a sequent. If satisfies all sequents in T, then it is said to[[7]] [[7]]

be a model of T.
When semanticists say that a theory is a class of models, then they

must not intend exactly the Tarskian definition of “model” because then
their definition would be circular. (A theory would be a class of models
. . . of a theory.) But to a first approximation, the semanticists are just
saying that

(S2) A theory is a class of L structures, for some language L.
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WHAT SCIENTIFIC THEORIES COULD NOT BE 189

This second definition might still be unacceptably language bound in the
eyes of van Fraassen: “The impact of Suppes’ innovation is lost if models
are defined, as in many standard logic texts, to be partially linguistic
entities, each yoked to a particular syntax. In my terminology here the
models are mathematical structures, called models of a given theory only
by virtue of belonging to the class defined to be the models of the theory”
(1989, 366).

So, van Fraassen would have us revise the definition of “model,” or
more accurately, of “structure”: structures are not mappings from lan-
guages to (the category of ) sets but are simply the resulting “structured
sets.” In other words, one way to get a class of models (in van Fraassen’s
sense) is to take a first-order theory T and construct its class Mod(T ) of
models. But once we have arrived at Mod(T ), we should throw away the
ladder: we should forget that we used the language L in order to define
the class of models. More generally, any other class of mathematicalM
structures will also count as a theory—we do not even need a first-order
language L to begin with.

But what sorts of things are allowed to be in the class of models? What
is a mathematical structure? The first-order case provides a paradigmatic
example of a mathematical structure: an n-tuple of the form AS, R1, . . . ,
Rn�1S, where the Ri are relations on the set S. Granted, for a structure
such as AS, R1, . . . , Rn�1S, we can easily find a language L for which it
is an L structure. But there are more complicated cases of mathematical
structures—such as topological spaces—that cannot be derived in this
way from a first-order language.

At present, semanticists seem to prefer the account of mathematical
structures given in Nicholas Bourbaki’s Theory of Sets (see Da Costa and
French 2003). But the argument of this article will not depend on any
nuances about the notion of a mathematical structure. For my argument
to go through, I only need the semanticist to grant a weak sufficient
condition on theory-hood: the class Mod(T ) of models of a first-order
theory T is (the mathematical part of a) theory in their sense.2

4. Identity Crisis for Theories. I first show that the semantic view gives
an incorrect account of the identity of theories. Its failure here is complete:
it identifies theories that are distinct, and it distinguishes theories that are
identical (or at least equivalent by the strictest of standards).

2. A point of clarification is in order: obviously, semanticists do not reduce theories
to a mere class of models. As explicated by Giere, Suppe, and van Fraassen, a theory
is a class of models plus a theoretical hypothesis. But my attack has nothing to do
with this second component of the semantic view of theories. I mean only to show
that the first component is a mistake; i.e., a class of models is not the correct math-
ematical component of a theory.
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190 HANS HALVORSON

According to the semantic view, a theory is a class of models. So, if
you encounter two classes of models, say and , under what con-′M M
ditions should you say that they represent the same theory? The Anglo-
American semanticists/structuralists (e.g., Giere, Ladyman, Suppe, van
Fraassen) have been reasonably averse to the technomania of their pre-
decessors, and so it is no surprise that they have not offered any sort of
explicit definition of the form

(X) is the same theory as if and only if (iff) . . .′M M

Perhaps the closest we can find to such a definition is Suppe’s claim that
“the theories will be equivalent just in case we can prove a representation
theorem showing that and are isomorphic (structurally equivalent)”′M M
(2001, 526). But Suppe’s suggestion just pushes the question back one
level—we must now ask what it means to say that two classes of models
are “isomorphic” or “structurally equivalent.” In fact, this section will
show that there is no good notion of isomorphism between classes of
models, and so the semantic account fails to provide a satisfactory account
of the identity of theories.

Consider the following three proposals for defining the notion of an
isomorphism between and , in ascending order of strictness:′M M

(E: Equinumerous) is the same theory as iff ; that′ ′M M M � M
is, there is a bijection .3′F : M r M
(P: Pointwise isomorphism of models) is the same theory asM

, just in case there is a bijection such that each model′ ′M F : M r M
is isomorphic to its paired model .′m � M F(m) � M

(I: Identity) is the same theory as , just in case .′ ′M M M p M

By seeing how these three proposals fail, it will become clear that it is
impossible to formulate good identity criteria for theories when they are
considered as classes of models.

4.1. The Semantic View Identifies Distinct Theories. We begin by con-
sidering criterion E, which says that theories and are equivalent′M M
iff their sets of models and are isomorphic, qua sets. That criterion′M M
is intuitively far too permissive: it will equate too many theories. Let’s
drive this point home with a simple example from propositional logic. In
what follows, we use T or T ′ to denote theories of first-order logic, where
their individual languages (not assumed the same) are implicitly under-

3. Let’s ignore for the time being the problems with the set/class distinction. Let’s
suppose instead that the semantic view identifies theories with sets of models.
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WHAT SCIENTIFIC THEORIES COULD NOT BE 191

stood. When we need to be explicit, we write L(X ) for the language of
theory X.

Example: Propositional Theories. Let L(T ) be a propositional language
with a countable infinity of 0-place predicate symbols (i.e., propositional
constants) p1, p2, . . . . We work throughout with classical logic, so L(T)
is equipped with connectives . Let T be the empty theory in∧, ∨ , r , ¬
L(T ), that is, the theory whose only consequences are tautologies. Let
L(T ′) add to L(T ) a new propositional constant q, and let T ′ be given by
the infinite set of axioms .{q j p : i � �}i

Fact. Let be the set of models of T, and let be the set of′M M
models of T ′. Then has the same cardinality as .′M M
Proof. Obviously T has models, that is, truth valuations. For T ′,t02
let be a truth valuation. On the one hand, if , thenv v(q) p 1

for all i. On the other hand, is consistent withv( p ) p 1 v(q) p 0i

any assignment of truth-values to the . Thus, T ′ has models.t0p 2i

QED

Thus, criterion E tells us that T and T ′ are the same theory. But these
theories are intuitively inequivalent, and our intuition here is backed by
the standard account of definitional equivalence of (syntactically for-
mulated) theories.

Definition. Let T and T ′ be theories. Let be a map′F : L(T ) r L(T )
of the underlying languages that takes variables to variables and n-
ary predicate symbols to wffs (well-formed formulas). Then, F can
be canonically extended to map terms of L(T ) to terms of L(T ′) and
formulas of L(T ) to formulas of L(T ′). We say that F is an inter-
pretation of T in T ′, just in case for each axiom of S,J j w

is a theorem of T ′.4F(J) j F(w)

Of course, if there is no interpretation of T into T ′, then the two theories
cannot be definitionally equivalent.

Definition. Let T and T ′ be theories, and let and′F : T r T G : T r

be interpretations. We say that G is a weak inverse of F, just in′T
case for each wff J of L(T ), GF(J) is T-provably equivalent to J,
and for each wff w of L(T ′), FG(w) is T ′ -provably equivalent to w.
If there is a weakly invertible interpretation , then T and′F : T r T
T ′ are said to be definitionally equivalent.

4. For variations on this definition, see Szczerba (1977, 133) and Hodges (1993, 219).
We allow predicate symbols to be mapped to formulas—thus allowing, e.g., interpre-
tations that take a predicate to an open sentence.
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192 HANS HALVORSON

Fact. The theories T and T ′ are not definitionally equivalent.

Proof. Suppose for reductio ad absurdum that and′F : T r T
give a definitional equivalence. Then Gq is a T atom under′G : T r T

the implication relation. Indeed, if , then . Sincer j Gq Fr j FGq � q
q is an atom relative to T ′ provability, either or . InFr � ⊥ Fr � q
the former case, ; in the latter case, .r � GFr � ⊥ r � GFr � Gq
Thus, Gq is an atom relative to T provability, which is a contra-
diction.5 QED

To summarize this example, there is a standard criterion of equivalence
of syntactically formulated theories, namely, definitional equivalence. By
this criterion, the theories T and T ′ are inequivalent. But the semantic
view of theories reduces T and T ′ to their respective sets of models,
Mod(T ) and Mod(T ′), and these two sets are isomorphic (i.e., equinu-
merous). Moreover, the semanticist cannot distinguish Mod(T ) from
Mod(T ′) on the grounds that the former consists of mappings from the
language L(T ) and the latter consists of mappings from the language
L(T ′). Indeed, the semanticist has precluded reference to language in in-
dividuating theories. Therefore, the semantic view identifies theories that
should be treated as distinct.

Example: From Propositional to Predicate. The semanticist might not
know how to respond to the previous example: when he thinks of a
“model,” his paradigm example is an L structure, where L is a predicate
language. Since the previous example uses 0-place predicates (i.e., prop-
osition symbols), one might worry that it is not typical. However, we can
easily modify the example to overcome this worry.

Let L(T ) be the language with a countable infinity of 1-place predicate
symbols P1, P2, P3, . . . , and let T have a single axiom (therea x(x p x)p1

is exactly one thing). Let L(T ′) be the language with a countable infinity
of 1-place predicate symbols Q0, Q1, Q2, . . . , and let T ′ have axioms

as well as for each .a x(x p x) Q x j Q x i � �p1 0 x i

Clearly T and T ′ have the same number of models, so they are equiv-
alent according to criterion E. What is more, every model of T is iso-
morphic to a model of T ′ and vice versa. Indeed, a model of T has a
domain with one object that has a countable infinity of monadic prop-
erties, and model of T ′ also has a domain with one object that has a

5. It is perhaps easier to see what is going on here if one looks at the Stone space of
the corresponding Lindenbaum algebras. The Stone space for T is the Cantor space
C. The Stone space for T ′ is . These spaces have the same cardinality but areC � {∗}
not homeomorphic.
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WHAT SCIENTIFIC THEORIES COULD NOT BE 193

countable infinity of monadic properties. Therefore, T and T ′ are equiv-
alent according to criterion P.

And yet, T and T ′ are intuitively inequivalent. We might reason as
follows: the first theory tells us nothing about the relations between the
predicates, but the second theory stipulates a nontrivial relation between
one of the predicates and the rest of them. Again, our intuition is backed
up by the syntactic account of equivalence: the theories T and T ′ are not
definitionally equivalent. Therefore, both E and P identify theories that
they should not.

Example: Categorical Theories. For this example, we recall that there
is a pair of first-order theories T and T ′, each of which is k categorical
for all infinite k, but they are not definitionally equivalent to each other.6

By categoricity, for each cardinal k, both T and T ′ have a unique model
(up to isomorphism) with domain of size k. Thus, there is an invertible
mapping that pairs the size-k model of T with the size-k model of T ′.
Hence, the equinumerosity criterion E would entail that T and T ′ are
equivalent theories. What is more, for each cardinal number k, T has a
unique model of cardinality k and T ′ has a unique model of cardinality
k. Therefore, for each model m of T there is a model m′ of T ′ and a
bijection (isomorphism of sets) . Thus, every model of T is iso-′i : m r m
morphic to a model of T ′, and by criterion P they are the same theory—
even though they fail to be definitionally equivalent.7

4.2. The Semantic View Distinguishes Identical Theories. We have just
seen that the semantic view would equate theories that are intuitively
distinct. We will now see that the semantic view also makes the opposite
mistake: it would distinguish theories that are intuitively equivalent.

Begin with the most stringent criterion I, which says that no two
distinct sets of models can represent the same theory. Such a criterion is
prima facie too strict because it would not allow for the same theory to
admit alternative axiomatizations in distinct languages L and L′. Consider
the following example.

Example: Autosets versus Groups. An autoset is a set with a transitive
action on itself. The theory of autosets can be formulated in a language

6. Many such examples can be found, e.g., in the work of Boris Zil’ber on totally
categorical theories (Zil’ber 1993). In fact, Zil’ber has classified these theories in terms
of geometric invariants.

7. One might point out here that the map is a bijection but not necessarily′i : m r m
an isomorphism of models. But there is no definition of isomorphism between models
of different theories. See the next section, especially the final paragraph.
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L(T ) with a single binary function symbol , for which we use infixy
notation. Let T be given by the following three axioms:

j (x y y) y z p x y (y y z),x,y,z

j az(x y z p y),x,y

j az(z y x p y).x,y

A model of T is an autoset.
The theory of groups can be formulated in a language L(T ′) with a

binary function symbol , a unary function symbol i, and a constanty
symbol e. Let T ′ consist of the standard group theory axioms: associativity,
identity, and inverses.

By the lights of criterion I, the theories T and T ′ are distinct. After all,
a model of T is a pair AS, S, and a model of T ′ is a quadruple AG, ,y y
i, eS. Two is not equal to four, so the class of autosets is not identical to
the class of groups.

But a simple exercise in abstract algebra shows that the theory of au-
tosets is definitionally equivalent to the theory of groups. In particular,
T entails that the predicate

Px { ay(y y x p y p x y y)

is uniquely satisfiable; hence, T defines a constant symbol e. Similarly, T
entails that the relation

Rxy { x y y p e

is functional, and hence T defines a function symbol i. In other words,
although an autoset is not a group, each autoset carries definable group-
theoretic structure (an identity element and an inverse function). But the
very notion of definability is not available via a purely semantic approach:
the notion of definability presupposes reference to the language in which
the theories were formulated.

Thus, criterion I fails to allow intuitive cases of theoretical equiva-
lence—cases that are supported by the syntactic notion of definitional
equivalence. Does the liberalized criterion P fare any better? If two the-
ories are equivalent, does it follow that each model of the first is iso-
morphic to a model of the second? The following two examples provide
a negative answer, thereby establishing that even criterion P is too strict.

Example: Boolean Algebras. Let be the class of complete atomicB
Boolean algebras (CABAs); that is, an element B of is a Boolean algebraB
such that each subset has a least upper bound and such thatS P B ∨(S)
each element is a join , where the are atoms in B. Nowb � B b p ∨b bi i

let be the class of sets.S
What does the semantic view say about the relation between the theories
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and ? Obviously , so criterion I entails that these theories areB S B ( S
inequivalent. Furthermore, an arbitrary set S cannot be equipped with
operations that make it a Boolean algebra; for example, there is no Bool-
ean algebra whose underlying set has cardinality 3. Thus, there are struc-
tures in the class that are not isomorphic to any structure in the classS

. Hence, criterion P entails that these two theories are inequivalent.B
I claim, however, that the “theory of sets” is equivalent to the “theory

of complete atomic Boolean algebras.” Indeed, to each set S, we can
associate a CABA, namely, its power set with the operations of union,F(S)
intersection, and complement. Furthermore, the set of atoms ofG(F(S))

is naturally isomorphic (as a set) to S. In the opposite direction, toF(S)
each CABA B we can assign a set, namely, the set of its atoms, andG(B)
it follows that B is isomorphic (as a Boolean algebra) to . ToF(G(B))
summarize, there is a pair of mappings and that areF : S r B G : B r S
inverse to each other, up to isomorphism.

The previous example might not have convinced the semanticist to
change his ways. He might be willing to bite the bullet and say that the
theory of sets is not equivalent to the theory of CABAs. The problem is
that we have not given an independent reason for thinking that these are
equivalent theories. We fix this problem with the next example in which
we again display two theories T and T ′ whose models are not individually
isomorphic but where now T and T ′ can be proved to be definitionally
equivalent.

Any interpretation between theories gives rise naturally to a′F : T r T
map between their models. To see what is going′F* : Mod(T ) r Mod(T )
on here, consider two prominent classes of examples. First, let L(T ′) result
from adding a new relation symbol to L(T ), but let and let′T p T

be the obvious “embedding” of L(T ) into L(T ′). Then F* takes′F : T r T
a model of T ′ and “forgets” what that model assigned to the new relation
symbol. Second, let , but let T ′ result from adding some′L(T ) p L(T )
new axioms to T, and let be the interpretation of T into T ′′F : T r T
that results from the identity map on . Then F* takes a′L(T ) p L(T )
model of T ′ and shows us that it is also a model of T.

Thus, interpretations induce model maps, and, in particular, definitional
equivalences induce model maps.

Proposition. A definitional equivalence of theories does not neces-
sarily entail that these theories have isomorphic models. In particular,
there are first-order theories T and T ′ and a definitional equivalence

. Furthermore, for any definitional equivalence ,′ ′F : T r T F : T r T
there is a model m′ of T ′ such that the cardinality of m′ is not equal
to the cardinality of .′F*(m )

Proof. Let T be the empty theory formulated in a language with a
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single binary predicate R. Let T ′ be the empty theory formulated in
a language with a single ternary predicate S. Myers (1997) proves
that there is a definitional equivalence consisting of maps F : T r

and .′ ′T G : T r T
Now we prove that there is no definitional equivalence F : T r

such that for all models n of T ′. For this,′T Card(n) p Card(F*(n))
we only need the simple fact that definitional equivalences are con-
servative with respect to isomorphisms between models; that is, if

, then .8 Now let A be the set of isomorphism′ ′F*(n) { F*(n ) n { n
classes of models n of T ′ such that . Let B be the set ofCard(n) p 2
isomorphism classes of models m of T such that . ClearlyCard(m) p 2
B is a finite set that is larger than A. By conservativeness, isF*(B)
larger than A; hence, there is an such that . But thenn � B F*(n) � A

and . QEDCard(n) p 2 Card(F*(n)) ( 2

From this proposition, we draw a crucial interpretive corollary:

Theoretical Equivalence Is Global: An equivalence between two classes
of models is not necessarily induced pointwise by isomorphisms of
individual models.

That is, two classes of models and might be equivalent even when′M M
there is no sense in which individual models in are isomorphic toM
individual models in .9′M

Before proceeding, we draw two further philosophical corollaries. First,
the global nature of equivalence shows the incorrectness of the model
isomorphism criterion for theoretical equivalence. Recall that the model
isomorphism criterion would rule two theories inequivalent if the models
of the one theory are not isomorphic to the models of the other theory.
(I claimed that such a criterion is at work in recent arguments for the
inequivalence of Hamiltonian and Lagrangian mechanics.) But we have
seen that definitionally equivalent theories need not have pairwise iso-
morphic models. Therefore, pointing out that two theories have noni-
somorphic models does not settle the question of whether those theories
are equivalent.

Second, the globality of theoretical equivalence spells trouble for struc-
tural realism—at least those versions that cash representation out in terms
of isomorphism or similarity. According to these versions of structural

8. This follows from the fact that F has a pseudoinverse G, and G* preserves iso-
morphisms. That is, if , then .′ ′ ′F*(n) { F*(n ) n { G*F*(n) { G*F*(n ) { n

9. Here, the phrase “no sense” is validated by the fact that the paired models can have
domains of different cardinality. Two models with different cardinalities cannot be
isomorphic in any sense of the word.
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realism, a theory is true just in case it accurately represents the structure
of the world, or more precisely,

A theory is true just in case it has a model m that is isomorphic to
the world w.

But which formulation of the theory should we choose? Suppose that the
theory could be formulated either by the class or by the class of′M M
models but that (as in the case above) the models in are not isomorphicM
to the models in . Then which formulation of the theory should we′M
use to evaluate the isomorphism claim? If the world is isomorphic to a
model in , then it is not isomorphic to a model in .′M M

Of course, a standard realist response to this problem would be to assert
privilege for a certain formulation of the theory. Although there might
be a mathematical equivalence between the classes and , the realist′M M
will take one of the classes as dividing nature at the joints. But such a
response will hardly be attractive to a structural realist, who would not
ascribe ontological import to differences of formulation.10

5. Relations between Theories. We have already shown that the semantic
view fails miserably at individuating theories: it conflates distinct theories,
and it is blind to some equivalences between theories. But one might hope
that these are only failures in theory and that, in practice, the semantic
view gets things right. What I mean here by “in practice” is the use to
which philosophers of science put the semantic view of theories. Philos-
ophers of science have used the semantic view to support their views of
the observable/unobservable distinction and of intertheoretic reduction,
among other things. One might hope that the failures of the semantic
view noted above do not taint these more consequential discussions or
the conclusions drawn therefrom. But I have bad news: the semantic view
also gives wrong answers about when one theory is a subtheory of another
and about when one theory is reducible to another. All in all, conclusions
drawn from the semantic view of theories are completely unreliable.

Let us look closely now at the famous motivating example given by
van Fraassen (1980). Consider the following geometric axioms:

A1. For any two lines, there is at most one point that lies on both.
A2. For any two points, there is exactly one line that lies on both.
A3. On every line, there lie at least two points.
A4. There are only finitely many points.
A5. On any line, there lie infinitely many points.

Van Fraassen then defines three theories: the core theory T0 has axioms

10. Thanks to Kyle Stanford for this point.
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Figure 1. Seven-point geometry.

A1, A2, and A3; theory T1 results from adding A4 to the core theory,
and theory T2 results from adding A5 to the core theory. Figure 1 shows
that both T1 and T2 are consistent: the diagram m1 consisting of just the
seven points A–G is a model of T1, and the entire drawing m2 is a model
of T2.

According to van Fraassen, a semantic approach gives an account of
the relationship between these theories superior to that given by a syntactic
approach. In particular, he claims, first, that a syntactic view can see only
that T1 and T2 are inconsistent: “logic tells us that [T1 and T2] are incon-
sistent with each other, and there is an end to it” (van Fraassen 1980,
43). In contrast, van Fraassen claims that a semantic view sees interesting
relationships between T1 and T2: in particular, each model of T1 is em-
beddable in a model of T2: “that seven-point structure can be embedded
in a Euclidean structure. . . . This points to a much more interesting
relationship between the theories T1 and T2 than inconsistency: every
model of T1 can be embedded in (identified with a substructure of ) a
model of T2. This sort of relationship, which is peculiarly semantic, is
clearly very important for the comparison and evaluation of theories, and
is not accessible to the syntactic approach” (43–44). Thus, a semantic view
is supposed to show its superiority as a means for analyzing relations
between theories.

In the years since van Fraassen first used “embeddability” to formulate
constructive empiricism, several philosophers have been at pains to argue
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that embeddability—and other interesting relations between theories—
can also be explicated via syntactic means (see, e.g., Turney 1990). If that
is so, then the syntactic approach can do just as much as the semantic
approach. But I wish to take a harder line: I claim that the semantic
approach cannot explicate the relation of embedding between theories.

What does it mean to say that the seven-point model m1 is embeddable
in the Euclidean model m2? What is the definition of “embedding” that
is being used? Obviously, an embedding cannot be just any function; for
example, the function that maps everything to a single point is not an
embedding. Similarly, an embedding cannot simply be a one-to-one map
because such maps could also mess up geometrical relations.

The claim that m1 can be embedded into m2 is true in context, namely,
the context of the background theory T0. In particular, if we think of m1

and m2 as being represented by drawings on transparencies, then there is
a rigid motion that carries m1 on top of m2. But “rigid motion” is a theory-
laden concept: it denotes a transformation that preserves the relations
definable in the core theory T0. Generalizing from this example, we derive
the following takeaway point:

Theory dependence of embedding. The notion of a “permissible em-
bedding” of one structure/model into another structure/model de-
pends on some background theory. In particular, “m is embeddable
into m′” is a relation between models m and m′ of a single theory.

An obvious corollary of the theory dependence of embedding is that
“embeddable” is not a relation that holds between models of two different
theories, and so this notion cannot immediately be used to explicate con-
cepts such as “empirical adequacy of a theory” or “reducibility of one
theory to another.”

On a conciliatory note, I do grant that there is an interesting relation
between van Fraassen’s theories T1 and T2, but the relation probably
should not be called “embeddability” since that term already has a tech-
nical use in model theory, as a relation between models of a single theory.
Rather, T1 and T2 are both, by definition, specializations of the theory
T0. That is, they result from T0 by adding some axioms. Whenever a
theory T ′ is a specialization of T, then there is obviously a syntactic
interpretation map , namely, the identity map. In the case at′F : T r T
hand, we thus have two interpretations

P : T r T , P : T r T ,1 0 1 2 0 2

and these yield model maps

P* : Mod(T ) r Mod(T ), P* : Mod(T ) r Mod(T ).1 1 0 2 2 0

Furthermore, since “line” can be defined in terms of pairs of distinct
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Figure 2. Diagram of interpretations.

points, for each model m1 of T1, there is a model m2 of T2 such that
is embeddable (relative to the theory T0) into .P*(m ) P*(m )1 1 2 2

In short, the models of T1 can be compared with the models of T2

because they can both be thought of as models of the common core theory
T0, which comes equipped with a notion of an embedding between its
models. But without the syntactically specified theory T0, we would not
know how to compare models of T1 with models of T2.

To further clarify issues here, it might help to look at a simpler example
that shares the relevant features of van Fraassen’s example. Consider the
following two theories:

E p there are exactly two things.2

E p there are exactly three things.3

Following van Fraassen’s line of reasoning, we might say, on the one
hand, there is no interesting syntactic relation between E2 and E3; they
are simply inconsistent. On the other hand, each model of E2 can be
embedded in a model of E3, an important fact that is visible only from
a semantic perspective. Is this a good analysis of what is going on here?

Let’s unpack the example. For each , define the first-order sen-i � �

tences (there are at most i things), (there are at least i things),E E≤ i ≥ i

and (there are exactly i things). Then for all with ,E i, j � � i ≤ ji

E ⇔ E ∧ E , E ∧ E ⇔ E .i ≤ i ≥ i ≤ i ≤ j ≤ i

Note also that is pure existential, that is, a string of existential quan-E ≥ i

tifiers applied to a quantifier-free sentence. In particular, E3 results from
by adding a single existential axiom. From these facts, we note theE ≤ 3

obvious further fact that both E2 and E3 result from adding axioms to
:E ≤ 3

E ⇔ E ∧ E , E ⇔ E ∧ E ,2 ≤ 3 2 3 ≤ 3 ≥ 3

as depicted in the diagram of interpretations (fig. 2), where I2 and I3 are
the identity interpretations. Thus, we conclude:
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There is an interesting syntactic relation between E2 and E3; namely,
they are specializations of a common theory ; moreover, E3 resultsE ≤ 3

from adding a pure existential axiom to .E ≤ 3

I claim further that any interesting semantic relation between E2 and E3

is nothing but a mirror image of this basic syntactic relation.
Incidentally, the considerations of this section point to yet another fatal

defect in the pointwise isomorphism criterion P for theoretical equiva-
lence. Recall that criterion P says that two classes of models andM

should be deemed equivalent, just in case there is a bijection′M
such that each model is isomorphic to its paired′F : M r M m � M

model . We have just seen, however, that the relation “m′ ′m p F(m) � M
is embeddable in m′” is theory dependent. For the same reasons, the
relation “m is isomorphic to m′” is also theory dependent since what counts
as an “isomorphism” will depend on the theory in question. Thus, criterion
P cannot possibly give an adequate account of the identity of theories.

6. Theories versus Formulations. We turn to a final purported advantage
of the semantic view of theories: the semantic view is supposed to be
language independent. Any nontrivial first-order theory admits alternative
formulations. First, within a single language L, a given theory can be
axiomatized in distinct ways, say, with axiom set T or axiom set T ′. Of
course, such a superficial difference can be remedied by taking a theory
to be a set of sentences that is closed under the consequence relation;
thus, is the same theory. A more serious difficulty is posed′Cn(T ) p Cn(T )
by theories T and T ′ formulated in different languages; that is, L(T ) (

.′L(T )
Frustration with trying to give conditions for equivalence between the-

ories in different languages may be responsible for the semanticists search
for “invariant” formulations of theories. According to Suppe, “theories
are not collections of propositions or statements, but rather are extra-
linguistic entities which may be described or characterized by a number
of different linguistic formulations” (1977, 221). Similarly, van Fraassen
indicates that the class of models is the invariant that lies behind different
formulations: “while a theory may have many different formulations, its
set of models is what is important” (2008, 309). Even more strongly, Muller
and van Fraassen state: “In the semantic approach, we pride ourselves
on not being so languagebound as one was during the hegemony of the
syntactic view. Here a theory is not identified with or through its for-
mulation in a specific language, nor with a class of formulations in specific
languages, but through or by a class of models” (2008, 201). Finally, van
Fraassen attributes the failure of the syntactic view of theories to its
attachment to formulations rather than to the underlying invariant: “In

This content downloaded from 158.143.192.135 on Sun, 19 Oct 2014 12:46:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


202 HANS HALVORSON

Figure 3. Many formulations, one class of models.

any tragedy, we suspect that some crucial mistake was made at the very
beginning. The mistake, I think, was to confuse a theory with the for-
mulation of a theory in a particular language” (1989, 221).

Thus, the picture given by semanticists is of a many-to-one relationship
between formulations of a theory in a particular language (syntax) and
a single class of models (semantics). Figure 3 shows such a picture in
which T1, T2, . . . are theory formulations, and is the ‘invariant’ classM
of models. Thus, the semanticists think of the relation between syntactic
axiomatizations and classes of models as many-to-one and analogous to
the relation between coordinates and underlying geometric objects or to
the relation between sentences and propositions.

The picture of the class of models as an ‘invariant’ carries some initial
plausibility—witness, for example, the case of different axiomatizations
of group theory or different axiomatizations of vector space theory. Why
would we call two different syntactic theories different formulations of
the same theory unless they had the same class of models? But that is
misleading: in interesting cases of alternative formulations, not only are
the formulations different but so are the very classes of models.

But there is a correct picture lurking in the neighborhood: when we
say, correctly but imprecisely, that two theories T and T ′ have the “same”
models, we mean that the models of T are somehow interconvertible with
the models of T ′. For example, every group can be converted into an
autoset by “forgetting” its inverse operation and its identity element;
similarly, every autoset can be converted into a group by defining an
identity element and an inverse function. In fact, model theorists have a
name for this sort of interconvertibility: it is called “mutual definability.”
However, the notion of definability requires reference to language, and
so it is not available on a pure semantic view of theories.

As we have now detailed at great length, there are equivalent theories
(e.g., different axiomatizations of group theory) that have distinct classes
of models. Thus, as opposed to the many-to-one picture, a more accurate
picture of the relation between syntactic structures and semantic structures
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Figure 4. Many formulations, many classes of models.

(for a single theory) is shown in figure 4. Here, the dashed arrows are
supposed to indicate some sort of equivalence, a notion that should be
discussed at greater length. On the bottom (syntactic) row, we already
have many good examples of equivalence, such as different axiomatiza-
tions of group theory. And for the top (semantic) row, we also have some
fairly simple but uncontroversial examples of equivalence, for example,
models of group theory versus models of autoset theory.

7. Esquisse d’un Programme. The semantic view of theories is plagued by
many ills. But can it be cured? Should we try to cure it? Some might say
that the problems here are caused by overtechnicalizing the concept of a
scientific theory, that is, with trying to provide a formal analysis of the
concept. Such seems to be the view of Gabriele Contessa: “Philosophers
of science are increasingly realizing that the differences between the syn-
tactic and the semantic view are less significant than semanticists would
have it and that, ultimately, neither is a suitable framework within which
to think about scientific theories and models. The crucial divide in phi-
losophy of science, I think, is not the one between advocates of the syn-
tactic view and advocates of the semantic view, but the one between those
who think that philosophy of science needs a formal framework or other
and those who think otherwise” (2006, 376). I agree and disagree. I agree
that the debate between syntactic and semantic views is less significant
than was advertised by the semanticists. However, Contessa’s implication
is that we have to make an either-or choice between a “formal framework”
for philosophy of science and some alternative. But what would “informal
philosophy of science” look like? Should the informal philosopher of
science eschew all use of mathematical notation or concepts? But how
then should the informal philosopher of science discuss quantum me-
chanics or general relativity or string theory?

Indeed, there is another crucial divide that lies even deeper than the
one indicated by Contessa: the divide between those who want to give a
unified framework for all the sciences and those who do not aspire for
such a framework. For those who do not aspire for a unified framework,

This content downloaded from 158.143.192.135 on Sun, 19 Oct 2014 12:46:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


204 HANS HALVORSON

it would be legitimate to employ a formal framework for those sciences
that themselves employ a formal framework (e.g., mathematical physics)
and a less formal framework for those sciences that themselves are less
formalized (e.g., evolutionary biology).

Patrick Suppes famously said that “philosophy of science should use
mathematics, and not meta-mathematics” (quoted in van Fraassen 1980,
65). But metamathematics is part of mathematics. And there is no clear
distinction to be drawn between the two approaches. Furthermore, for
some sciences, there is no distinction to be made between discussing a
scientific theory “in its own language,” or we might say “on its own terms,”
and discussing a scientific theory “in formal language.” Philosophers of
science should not be afraid of using all the tools that scientists use,
including mathematical logic.

Indeed, the defects in the semantic view that I have identified are not
due to overmathematization per se; rather, these defects are due to in-
adequate mathematization. More precisely, the semantic view was not
wrong to treat theories as collections of models; rather, it was wrong to
treat theories as nothing more than collections of models. Beginning with
a syntactically formulated theory T, we can construct its class Mod(T )
of models. But we have more information than just the collection of
models: in particular, we have information about relations between these
models. For example, any sentence J induces a relation on Mod(T ),
namely, the relation “m assigns the same truth value as m′ to J.” There
are other such relations, but none of these relations can be seen if we
reduce a theory to a bare set of models.

This point has long been known to mathematicians and logicians; in-
deed, this point is a straightforward corollary of Stone’s duality theorem
for Boolean algebras. Given a propositional theory T, consider its set
Mod(T ) of models. Can we recover T from Mod(T )? Does the set Mod(T)
contain as much information as the syntactic object T ? Obviously not:
as we have seen, there are distinct theories T and T ′ whose sets of models
Mod(T ) and Mod(T ′) are indistinguishable qua bare sets. How then
should Mod(T ) and Mod(T ′) be distinguished from each other? That was
the question that Marshall Stone took up in the 1930s, and Stone’s answer
was that Mod(T ) and Mod(T ′) have natural topological structure in terms
of which they differ. In particular, define a topology on Mod(T ) by saying
that a sequence (mi) of models converges to a model m, just in case for
each sentence p, the truth value converges to the truth value .m ( p) m( p)i

Then the theory T can be recovered (up to definitional equivalence) by
extracting the compact open subsets of the topological space Mod(T ). In
other words, the topological space Mod(T ) does contain all the infor-
mation as the syntactic object T.

Fine, you might say: for the trivial case of propositional theories, we
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could rehabilitate the semantic view of theories by taking a theory to be
a structured set of models, namely, a topological space of models. But
this strategy obviously will not work in the general case because Stone’s
theorem only works for propositional theories.

But here there is good news to report: generalizations of Stone’s duality
theorem have been proved by Michael Makkai (1993) and more recently
by Steve Awodey and Henrik Forssell (Forssell 2008; Awodey and Forssell
2010). The technical details of these results are far too complex to sum-
marize here. Suffice it to say, however, that the question of what structure
is naturally possessed by a class of models is highly nontrivial and calls
for some serious (meta)mathematical research. Furthermore, the outcome
of these investigations holds interest for anyone who wishes to understand
the identity criteria for (formalized) theories and the relations that can
hold between (formalized) theories—in particular, for all philosophers of
the exact sciences. Despite philosophy of science’s recent trend toward
deformalization and imprecision, (meta)mathematicians continue to pro-
vide us with invaluable tools for discussing philosophical issues with clar-
ity and rigor. We have only ourselves to blame if we do not take advantage
of these tools.
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