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Approximation and Idealization: Why
the Difference Matters*

John D. Norton†‡

It is proposed that we use the term “approximation” for inexact description of a target
system and “idealization” for another system whose properties also provide an inexact
description of the target system. Since systems generated by a limiting process can
often have quite unexpected—even inconsistent—properties, familiar limit processes
used in statistical physics can fail to provide idealizations but merely provide approx-
imations.

1. Introduction. The terms “approximation” and “idealization” are used
extensively in the philosophy of science literature for a range of practices,
descriptions, and structures and with more or less care to distinguish them.
My concern here is not to unravel the tangled use of the terms. It is to
note an important difference among the practices and structures to which
the terms are applied. While it is ultimately a matter of indifference to
me how these differences are reflected in our naming, it is a practical
necessity for what follows that we fix terminology. I will propose a use
of the terms that roughly reflects common usage: approximations merely
describe a target system inexactly. They are propositional. Idealizations
refer to new systems, some of whose properties approximate some of those
of the target system. The key difference is referential: “idealizations,” in
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the way I shall henceforth use the term, carry a novel semantic import
not carried by approximations.

Attending to this difference, it will be argued, is essential to under-
standing how approximations and idealizations are used. The extended
example will be the use of large component number limits in statistical
physics. The properties of thermal systems are a function of the number
of components. The limit functions are recovered by the purely mathe-
matical operation of letting this number go to infinity. They provide in-
exact descriptions of some aspects of systems with very large numbers of
components; these “limit properties,” as I shall call them, provide ap-
proximations. We may also posit an infinity of components and examine
the resulting system’s properties. These “limit systems” are idealizations.

There are many traps in these limits—more, I assert here, than the
literature has acknowledged. My concern is not the widely recognized fact
that the limit functions may be singular, a fact that is connected with the
analysis of phase transitions. I am concerned with far more serious odd-
ities. The limiting system may prove to have properties radically different
from the finite systems, violating both determinism and energy conser-
vation. Or the limit may be set up in such a way that there can be no
limiting state, so idealization by taking this limit is impossible. Approx-
imations may also be mistaken for idealizations. Such is the case with
renormalization group methods, whose celebrated results on phase tran-
sition are recovered, I will argue, from approximations and not ideali-
zation. Far from being ineliminable, there are no infinite idealizations
employed.

In what follows, section 2 will provide a more extensive characterization
of the difference proposed between approximation and idealization. Sec-
tion 2.4 will sketch how the difference separates a realist from an antirealist
response to the pessimistic metainduction. Section 3 will illustrate how
infinite limits can be well or badly behaved. Section 4 will show how each
of these behaviors is implemented in analyses in statistical physics that
employ the thermodynamic and related limits. Section 5 will reassess
claims made in the literature concerning the renormalization group anal-
ysis of phase transition. An appendix recounts the emergence of indeter-
minism in simple, infinite systems.

2. Approximation and Idealization Distinguished.

2.1. Characterizations. The terms “approximation” and “idealiza-
tion” are applied to a wide range of activities and structures in science.
Sometimes the two terms are carefully distinguished, as in Frigg and
Hartmann (2009, sec. 1.1). Other accounts dissect one term, typically
“idealization,” into types. McMullin (1985) distinguishes six types of ide-
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alization, and Weisberg (2007) finds three. More commonly, the terms are
used fluidly, without much discipline, and even interchangeably.1

My concern here is not the lexicographic task of discerning precisely
how the terms are currently used. That would lead to an unproductive
profusion of competing meanings. Rather, my concern is to identify an
important division in the range covered by the terms. Do they involve
novel reference? Whether they do will prove important to their roles in
theorizing in the applications below. As a terminological convenience for
the remainder of this article, I will stipulate characterizations of the two
terms that indicate this division and, I hope, reflect more or less common
usages:2

An approximation is an inexact description of a target system. It is
propositional.

An idealization is a real or fictitious system, distinct from the target
system, some of whose properties provide an inexact description of
some aspects of the target system.

These are not definitions; they merely specify important properties. They
neglect pragmatic considerations often deemed essential, such as the sim-
plicity of the description or the intelligibility of the idealizing system.
However, they assert the distinction that will drive the remainder of the
discussion: only idealizations introduce reference to a novel system.

The characterizations do not and need not identify how inexact a
description may become before we cease to admit it as an approximation.
It is unlikely that there is a single standard applicable to all cases. In one
context, a mere 10% error may betoken a good approximation; in another,
it may be an egregious mismatch. It is assumed that there is some standard
of admissible inexactness for each target system, even if vague. All that
matters for the analysis here is that, for some specific target system, the
same standard is used for both approximations and idealization. An elab-
oration of the specific standard is not needed.

The characterization does not specify which properties of the idealizing
system are invoked, for that is decided by the application at hand. In
differing applications, a system may or may not function as an idealization
according to the properties invoked. A clay brick may be an idealizing
system for a wooden block in relation to how it stacks, but it may fail
to be an idealizing system in relation to how it floats in water.

The characterization of idealizations is quite permissive when it comes

1. For another account of the terms in statistical mechanics, see Liu (2004).

2. The referential element of idealization recalls its origins in Plato’s theory of ideal
forms, whose properties inexactly describe the imperfect things of ordinary experience.
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to the nature of the idealizing system. They may be other real systems or
fictitious systems or mathematical objects or even parts of the target
system itself.3 For present purposes, this level of permissiveness is ac-
ceptable. All these types of systems can do what is needed: provide de-
scriptions of properties that are approximations of the target system. What
follows will not depend on the nature of the idealizing systems. It will
depend on whether they can exist at all or, if they do, whether they have
the properties intended.

2.2. Examples. The differences between the two terms can be illus-
trated with the example of a body of unit mass falling in a weakly resisting
medium. Its speed at time t is given byv

dv
p g � kv,

dt

where g is the acceleration due to gravity and k is a friction coefficient.
Its speed when falling from rest at isv p t p 0

2 2 3g gkt gk t
v(t) p (1 � exp (�kt)) p gt � � � . . . .

k 2 6

When the friction coefficient k is small, the speed of fall in the early stages
is described nearly exactly by the first term in the power series:

v(t) p gt.

This inexact description is an approximation of the fall. We can promote
this approximation to an idealization by introducing reference to a fic-
tional system, a mass of the same size falling under the same gravity in
a vacuum. This idealizing system’s fall is described exactly by ,v(t) p gt
and this property provides an inexact description of the target system.

A second example foreshadows the problems to come. A colony of
bacteria numbers at time t. Since the population will keep doublingn(t)
in the same time unit under favorable conditions, its growth is often
described by an exponential law

n(t) p n(0) exp (kt)

for some constant k. The law is an inexact description since mustn(t)
always be a whole number, and will almost never be so.n(0) exp (kt)

3. In the case of other real systems, I would call the idealization a model. More
generally, an idealization is more akin to an analogical model, the more the idealization
has properties disanalogous to those of the target system. This reflects the original use
of the term “model” to label a concrete object to be copied in the construction of
another system, so that, in this use, a model will have many properties not carried by
the target system.
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However, the fractional error becomes smaller as the number of bacteria
increases, and the law becomes a better approximation.

One might imagine in this last example that one can promote the
approximation to an idealization by just “taking the limit to infinity” and
imagining a system of infinitely many bacteria as the idealizing system.
The attempt fails. If is actually infinite, it can no longer enter inton(t)
the exponential law, which would now merely assert “infinity p infinity.”
It is an approximation that can be made more accurate without restriction
by taking larger n, but taking the limit system of an actual infinity of
bacteria does not yield the intended idealization.

2.3. Promotion and Demotion. Approximations and idealizations are
interrelated in a way illustrated by these last two examples:

An idealization can be demoted to an approximation by discarding
the idealizing system and merely extracting the inexact description;
however, the inverse promotion to an idealizing system will not al-
ways succeed.

In the inverse promotion, we consider the target system to be one of a
sequence of systems whose limit system is intended to be the idealizing
system. The promotion fails if the sequence fails to have a limit system
or has a limit system with unsuitable properties.

2.4. Other Applications. The distinction drawn here illuminates other
debates in philosophy of science. Consider realist and antirealist responses
to the pessimistic metainduction. According to it (Laudan 1981), history
of science is replete with theories that are proven to be referential failures
when an antecedent theory is replaced by a contradicting successor. In
spite of its theory’s successes in the late eighteenth and early nineteenth
centuries, there is no caloric. So we should not expect referential success
of our present theories.

Antirealists affirm this conclusion. They regard the antecedent theories
(and probably the successors also) as inexact descriptions without refer-
ential success; they are all mere approximations. Realists, however, regard
the antecedent theory as an idealization of the successor theory. It is
referentially successful in that the idealizing system is a part of the same
system the successor theory describes. The “caloric” of caloric theory
refers to the same thing as the “heat” of thermodynamics but in the
confines of situations in which there is no interchange of heat and work.4

4. What of Feyerabend and others’ claim that the referent of a term is fixed by the
theoretical context, so the terms “caloric” and “heat” in different theories cannot have
the same referent? In Norton (2011), it is argued that the space of meanings in these
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Figure 1. Sphere elongated as capsule.

3. The Problem of Limits. Limits can be badly behaved, and this bad
behavior will create problems when we try to use limit systems as ideal-
izations. This section describes three cases, one of good behavior and two
of bad behavior. Butterfield (2011b, sec. 3) has also noted the importance
of the diverging of limit properties and limit systems.

3.1. Limit Property and Limit System Agree. Consider a sphere of
unit radius. It is elongated into a capsule, a cylinder with spherical end
caps, as shown in figure 1. Its total length grows through the sequence
of cylinder lengths a p 1, 2, 3, 4, . . . .

In the infinite limit, the capsule becomes an infinite cylinder of unit
radius. The surface area of a capsule of cylinder length a is ,2pa � 4p

and its volume is . Hence, the ratio of surface area to volumepa � 4p/3
is , and the ratio approaches a limiting value of 2(2pa � 4p)/(pa � 4p/3)
as a goes to infinity. This limit of the properties of the sequence of capsules
agrees with the corresponding properties of the limiting system, the infinite
cylinder, whose ratio of area to volume is also 2.5

The example implements the general scheme in which we have the
sequences:

System1, System2, System3, . . . , Limit System

agrees with

Property1, Property2, Property3, . . . , Limit Property.

And the two cohere in that the limit property is the corresponding property
of the limit system. Hence, the infinite cylinder is an idealization of the
larger capsules.

cases is sparse, so that there are few candidates to which the terms can attach. The
slight differences in properties ascribed by the two theories is insufficient to disrupt
the successful reference.

5. I take what follows as a definition of the surface area-to-volume ratio of an infinite
cylinder and other infinite shapes with an axis of rotational symmetry: it is the limit
of the corresponding ratio for the finite parts produced by truncating the shape with
planes perpendicular to the axis of symmetry, as the finite parts grow arbitrarily large.
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Figure 2. Sphere expands uniformly.

3.2. There Is No Limit System. Consider a unit sphere whose radius
r grows as r p 1, 2, 3, . . . , as shown in figure 2. The area of the sphere
is 4pr2, and its volume is . The ratio of surface area to volume is34pr /3

, and this ratio goes to zero as the radius r goes to2 3(4pr )/(4pr /3) p 3/r
infinity. Hence, the sequence of properties has a limiting value. The se-
quence of systems, that is, of spheres, however, has no limit system. One
might casually speak of “an infinitely large sphere” as the limit system.
But that talk is literally nonsense. A sphere is the set of points equally
far away from some center. An infinitely large sphere would consist of
points infinitely far away from the center. But there are no such points.
All points in the space are some finite distance from the center.

This example implements the scheme

System1, System2, System3, . . . (No Limit)

Property1, Property2, Property3, . . . Limit Property.

There is a limit property, but it is not a property of a limit system since
there is none. The zero area-to-volume ratio is not a property of an
impossible infinite sphere. It is a property of the set of all finite spheres;
it is the greatest lower bound of the ratios of the set’s members.

In this case, the limit property is an approximation, an inexact de-
scription, of the properties of the later members of the sequence of systems.
However, the limit provides no idealization because there is no limit system
to bear the limit property.

3.3. Limit Property and Limit System Disagree. Consider once again
a sphere of unit radius. Uniformly expand it in one direction only, so it
becomes an ellipsoid with semimajor axis a. Continue the expansion until
a goes to infinity. The limit system is a cylinder of unit radius, as shown
in figure 3.6 The volume of the ellipsoid is . The surface area of the4pa/3

6. In Cartesian coordinates, the ellipsoid is . It becomes an infinite2 2 2 2x /a � y � z p 1
cylinder, , for infinite a.2 2y � z p 1
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Figure 3. Sphere elongated as ellipsoid.

ellipsoid nears a value of , arbitrarily closely for large a. Hence, the2p a
ratio of surface area to volume approaches as a goes2(p a)/(4pa/3) p 3p/4
to infinity. This limit ratio is not the same as the corresponding ratio of
2 for the limit system, an infinite cylinder.

The example implements the general scheme in which we have the
sequences:

System1, System2, System3, . . . Limit System

disagrees with

Property1, Property2, Property3, . . . Limit Property,

where the limit property is not a property of the limit system. This limit
can be used to provide an approximation of the systems leading up to
the limit. The limiting ratio of 3p/4 is a close approximation of the area-
to-volume ratio of the very large ellipsoids. However, the limit does not
provide an idealization. An infinite cylinder has an area-to-volume ratio
of 2, which is a poor approximation of the ratio for large ellipsoids.

4. The Limits of Statistical Mechanics. Thermal systems consist of atoms,
molecules, radiation modes, and more. If there are very many of these
components, the statistical mechanics of these systems returns thermo-
dynamic behavior. Hence, taking a limit to infinitely large numbers of
components is standard.

If the limit is construed literally, we analyze the properties of systems
of infinitely many components. This fictitious limit system is the idealizing
system of an idealization, and its properties provide inexact descriptions
of the real thermal system.

If the limit is conceived merely as a mathematical operation on properties,
we arrive at an approximation. The properties of real thermal systems are
functions of many parameters and, when the number of components n
becomes large, the functions are almost completely independent of nearly
all the parameters. As n grows large, the probability density for a component
having energy E approaches arbitrarily closely to , for Z, theexp (�E/kT )/Z
normalizing partition function. This limit property provides the (very
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slightly) inexact description of an approximation. It is generated from the
functional dependency of the probability density on n by the mathematical
operation of taking a limit, without considering a system that actually
possesses an infinity of components.

When an analysis takes this limit, is it forming an approximation or
an idealization? We can find both cases and more that are less clear.

4.1. Idealizations. The most common limit is the “thermodynamic
limit” in which both the number of components n and the volume theyV
occupy are taken to infinity in such a way that the ratio remainsn/V
constant. At least some texts are clear that the system to be investigated
is the limit system of an actual infinity of components. I will call this the
“strong” form of the thermodynamic limit. Ruelle (2004, 2) writes, “The
physical systems to which the thermodynamic formalism applies are ide-
alized to be actually infinite, i.e. to fill (where in the usual world).nR n p 3
This idealization is necessary because only infinite systems exhibit sharp
phase transitions. Much of the thermodynamic formalism is concerned
with the study of states of infinite systems.” What makes the transition
to an infinity of components admissible is the assumption that the infinite
systems will provide a good description of large but finite systems. Ruelle
(1999/2007, 11) remarks, “if a system exhibits thermodynamic behavior
the states defined by the ensemble averages for large . . . finite systems
approach in some sense states of the corresponding infinite system.”

The hope expressed by Ruelle is that the limit property and limit system
will agree as in the well-behaved case of section 3.1. Then the limit system
provides an idealization in the sense defined here. The long-recognized
difficulty is that the infinite systems often have properties very different
from those of the finite system. That is, they exhibit the discord of the
limit property and limit system of section 3.3, so that the limit does not
provide an idealization.

The difficulty is well known. Lanford (1975, sec. 4) describes an infinite
system of hard spheres all of which are at rest until some moment of
excitation, after which a disturbance propagates in “from infinity,” setting
all but finitely many of the spheres into motion. The system manifests a
violation of determinism and also a violation of the conservation of energy
and momentum. This is an early contribution to the now flourishing
literature on supertask systems. It describes how infinitely many particles
in classical and, sometimes, relativistic physics can interact to produce
analogous violations of determinism and the conservation of energy and
momentum. For recent work, see Atkinson (2007) and Lee (2011), and
for a survey, see Laraudogoitia (2011).

A version of this supertask that is not driven by carefully tuned col-
lisions is a chain of masses connected by Hooke’s law springs as shown
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Figure 4. Masses and springs.

in figure 4. It is a simple model of a one-dimensional crystal. The appendix
shows that an infinite chain of these masses can spontaneously excite,
violating determinism and energy conservation, and sketches how similar
pathologies may arise for other infinite systems governed by a dynamics
that is well behaved when applied to systems of finitely many components.

In these cases, the infinite limit system fails to provide an idealization,
and we have a case of the limit property and limit system disagreeing, as
in section 3.3. All the finite systems have the properties of determinism
and energy conservation; hence, the limit properties are determinism and
conservation. The infinite limit system, however, is indeterministic and
nonconservative.

The remedy is to add further conditions. To exclude the indeterministic
behavior of his system of hard spheres, Lanford (1975, 54) imposes a
boundary condition on solutions that limits the magnitude of changes in
position of the spheres. Lanford and Lebowitz (1975) consider the time
evolution of harmonic systems such as crystals, and one of their examples
is the one-dimensional chain of masses and springs above (148–49). They
do not discuss the indeterministic time evolution of this system and pro-
ceed to theorems that assert the uniqueness of time evolution. This unique-
ness seems to depend on a condition that bounds the maximum magnitude
of displacements and momenta of the masses. This condition is more
readily apparent in simpler versions of the uniqueness theorems, such as
in Lanford (1968, 180, theorem 2.1), where the component positions are
directly required to be bounded functions of time.

Lanford investigated infinite systems as “the only precise way of re-
moving inessential complications due to boundary effects, etc.” (1975,
17). Yet is it the presence of the finite boundary that prevents the unwanted
disturbances propagating in “from infinity”? It would seem that the better
strategy is to analyze finite but very large systems so that this essential
boundary effect is preserved.

In sum, there is a real difficulty facing the use of the strong ther-
modynamic limit as an idealization. One cannot assume that the limit of
well-behaved finite systems will be a well-behaved infinite system. The
remedy involves a kind of reverse engineering. We know the properties
of infinite systems that are pathological, so we seek to restrict the systems
for which the thermodynamic limit is taken in such a way that the path-
ological properties are not manifested. This is a result of some importance,
and we will return to it below in section 5.3. The finite systems control
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the infinite systems in the sense that, if there is a conflict, we modify the
infinite systems to match the finite ones.

4.2. Approximations. Another type of limit used in thermodynamics
cannot be used to create idealizations. Its limiting processes are beset with
pathologies so that it either yields no limit system or yields one with
properties unsuited for an idealization.

4.2.1. The Continuum Limit. In the continuum limit described by Com-
pagner (1989), the number of components n goes to infinity in such a way
that the extensive magnitudes of the system, such as volume and energy,
remain constant. If d is a parameter that measures the size of the individual
components, this condition entails that nd 3 remains a nonzero constant,
for nd 3 is proportional to the volume of the system occupied by matter.
Similarly, Boltzmann’s constant k goes to zero since nk remains a nonzero
constant. For the mean energy of a mole of a monatomic gas, n p N, is
given by , and this remains constant in the limit.7(3/2)NkT

While many properties will approach well-behaved limits, the system
itself has no well-defined limit state. One might imagine that the infinitely
many, infinitely small components spread over a finite volume have be-
come a uniform matter distribution. However, such a uniform distribution
is not approached in the limit. To see why, imagine that the system consists
of massive components that half fill the volume and that the matter density
within the components is uniformly unity.8 The occupied portions of the
volume consist of many islands of matter, where the matter density is
unity, and they float in a sea of emptiness, where the matter density is
zero. As we approach the limit, the matter islands are divided into smaller
islands. However, at no stage does the system consist of anything other
than regions with matter density unity and regions with matter density
zero. Hence, the density of matter at an arbitrary point in space may
oscillate between 0 and 1 and not approach the limiting value 1/2 of the
uniform matter distribution.

We can see the difficulty clearly in a simplified example. Consider a
unit square that is divided into half, quarter, eighth squares, and so on,

7. Since k sets the scale of thermal fluctuations, there are no fluctuations in this con-
tinuum limit. Compagner (1989, 106) suggests that “the continuum limit is to be
preferred above the thermodynamic limit when macroscopic dependencies on space
and time are present” and illustrates the claim with the example of capillary phenomena.

8. Compagner’s (1989) components are interacting points with a length parameter r
in the interaction that goes to zero in the limit. We can conventionally fix the extent
of each component as r or some function of it and set the matter density at a point
of space to unity, just in case the point lies within r of a component’s center.
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Figure 5. Sequences in halftone printing.

in stages 1, 2, 3, and so on, of a process as shown in figure 5. At each
stage, half the squares are occupied—represented by shading—and half
are not. The sequence mimics halftone printing, which simulates gray
scales even though the printer can only assign either black or white to
each point. Some points will approach limiting values. Points on the
diagonal, such as (1/3, 1/3) will have the state “white” at all stages and
thus carry “white” as a limiting value. Others will oscillate indefinitely.
The states at the point (1/3, 2/5) shown in the figure will oscillate indef-
initely as white, white, black, black, white, white, black, black, and so
on, and thus admit no limiting value.9 Hence, the limit will return points
whose limiting color is black, points whose limiting color is white, and
points with no limiting color. It does not yield a unit square uniformly
covered in a 50% gray tone.

It is the same with the continuum limit of a system of extended masses.
There is no limit system in which the matter is somehow uniformly spread
over the volume of space. The limit operation produces points that carry
matter fully or not at all or have no limit state. We come close to the
halftone-printing example if we consider the system of masses to be cooled
to the absolute zero of temperature, so that the masses are at rest in an
equilibrium configuration. If the resulting crystal is a cubic lattice, then
the halftone printing analysis can be applied directly.

4.2.2. The Boltzmann-Grad Limit. A second example in which ideali-
zation fails is the Boltzmann-Grad limit taken in generating the Boltzmann
equation (Lanford 1975, 70–89; 1981). The system consists of n hard
spheres of diameter d. In the limit, n goes to infinity and d to zero in such
a way that nd 2 remains a nonzero constant. Since the volume of space

9. The rule for computing this series requires that the coordinates be expanded as
binary numbers: 1/3 p 0.010101010 . . .2, and 2/5 p 0.011001100 . . .2. The point is
white at the nth stage if the nth digits of the two numbers agree, and black if they
disagree.
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Figure 6. Resolving collisions.

occupied by matter varies with nd 3 p constant # d, the fraction of the
volume of space occupied by matter drops to zero. Hence, the limit state
consists of a countable infinity of extensionless points occupied by matter,
and the rest of the volume of space is empty. Therefore, the limit state is
not beset by a lack of convergence of the halftone printing problem, or
at least the problem arises at worst in a measure zero set.

In the analysis leading up to the Boltzmann equation, the nonzero size
of the bodies and their spherical shape determines whether two nominated
bodies will collide and which will be the resulting motions. This resolution
of collisions leads to the computation of the changes with time of the
distribution of the spheres over the possible positions and velocities.

However, the limit state is too impoverished to support this compu-
tation. It now consists of an infinity of points of zero size in motion. If
two points of the limit state collide (a measure zero event), we can no
longer determine the collision outcome. We need to determine six quan-
tities: three velocity components for each of the two outgoing points. We
have only four equations: three for momentum conservation and one for
energy conservation. Hence, any collision has become indeterministic.
Until we reach this limit state, collision outcomes can be determined
uniquely since we have the added condition that, when spheres collide,
the momentum transfer is perpendicular to the plane of contact of the
two sphere’s surfaces, as shown in figure 6 (Lanford 1975, 8). Two colliding
points no longer have a definite plane of contact.

Hence, neither continuum limit nor Boltzmann-Grad limit supports
idealization. The first has no limit system, and the second has a limit
system too impoverished to supply an inexact description of the finite
systems.

4.3. Renormalization Group Methods Are Approximations Not Idealiza-
tions. The examples of the last two sections are less common. More
commonly, when a limit to infinitely many components is considered, it
is left unclear whether the limit is taken only for properties (approxi-
mation) or whether the limit system of an actual infinity of components
is intended (idealization).

Some authors, such as Lanford and Ruelle, invoke the strong form
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of the thermodynamic limit and investigate the properties of infinite sys-
tems. Others use what I shall call a “weak” form of the thermodynamic
limit that mentions only the existence of limit properties. Le Bellac, Mor-
tessagne, and Batrouni (2004, 112) consider an extensive magnitude A(T,
V, N), where T is the temperature, V the volume, and N the number of
components. They consider the limit

A(T, V, N )
lim p a(n, T ),

VN,Vr�

where n p N/V is kept finite and, presumably, nonzero in the limit. The
thermodynamic limit of A(T, V, N) is said to exist if a(n, T ) is finite.
Conspicuously absent is any condition on an actual infinity of components
and the corresponding behavior of that infinite system.

Accounts of renormalization group methods routinely remark that the
thermodynamic limit is essential for recovery of the discontinuities in
thermodynamic quantities at critical points. Kadanoff (2000, 239) reviews
the governing fact that a partition function of a system of finitely many
components is analytic. It becomes nonanalytic only in the limit of infi-
nitely many components, whereupon the thermodynamic quantities de-
rived from it can harbor discontinuities that characterize critical points.
He continues: “We reach the important conclusion: The existence of a
phase transition requires an infinite system. No phase transitions occur
in systems with a finite number of degrees of freedom.” But which limit
is actually used in the methods? Insofar as they yield results, we shall see
the limit taken by renormalization group methods is of the properties
only, such as in the weak thermodynamic limit of Le Bellac et al.

The methods are applied in a space of reduced Hamiltonians. To
generate transformations between different Hamiltonians, we start with
a thermal system with Hamiltonian H and suppress explicit dependence
on some of the thermodynamic degrees of freedom to arrive at a new
Hamiltonian H′. In “real space” renormalization, the components in space
are collected into clusters, hiding the degrees of freedom in the clusters.
Each is a component for a new Hamiltonian H′ of the same mathematical
form as H but with different parameters. The clustering reduces the num-
ber of components from N to N′. If the dimension of the space is d, the
two are related by

N dp b′N

for some constant b. This transformation is only well defined if both N
and N′ are finite. In momentum space renormalization, we Fourier trans-
form our descriptions, replacing position variables by momentum vari-
ables. We “trace out,” that is, sum over and thus hide, the high-frequency
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(i.e., high-momentum) modes of the Hamiltonian H to arrive at the new
H′.

The transformation of thermodynamic quantities is derived by recal-
ling that the two Hamiltonians H and H′ are just different descriptions
of the same system, so they must have the same total thermodynamic
properties, such an energy, entropy, and free energy. Since total free energy

, where Z(H) is the partition function derived from H,F p �kT ln Z(H)
it follows that equality of total free energy of the two systems, ,′F p F
entails equality of the partition functions

′ ′Z(H) p Z (H ).

Fisher (1982, 68) calls this essential equality “unitarity.”10 The transfor-
mation of all thermodynamic quantities is derived from it. For example,
the free energy f per component is given as , and thef p �(kT/N ) ln Z
energy per component is given as . Hence, they2u u p (kT /N )� ln Z/�T
transform as and as .′ ′ ′ ′f p (N /N )f u p (N /N )u

These derivations, in both real space and momentum space renor-
malization, depend essentially on the finitude of the system. The partition
function of homogeneous systems of components is a product of many
equal terms, one for each component. If the system consists of infinitely
many components, then its partition function is zero or infinity, and uni-
tarity will no longer induce nontrivial transformations.

The finite systems used to generate the transformations may be large
subsystems of still larger finite systems or even subsystems of an infinite
system, if one knows the infinite system’s behavior is not pathological.
But the Hamiltonians related by the transformations must describe finite
systems, so that the Hamiltonians yield the finite, nonzero partition func-
tions for a nondegenerate unitarity condition.

The renormalization group transformations induce a flow over the
space of reduced Hamiltonians, and, for the reasons just given, this por-
tion of the space must correspond to systems of finitely many components.
Systems of infinitely many components at best enter as limit points of the
flows since the transformations cannot map a finite system to an infinite
system. They might correspond, for example, to the limit of the reversed
sequence of transformations that undoes the suppression of component
number degrees of freedom:

(1) d (2) 2d (n) ndN p b N, N p b N, . . . N p b N.

Critical points connected with infinitely many components appear in the
diagrams of the space of reduced Hamiltonians (e.g., Fisher 1982, 85).

10. See also Yeomans (1992/2002, 107).
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Figure 7. Space of sphere curvature.

They are introduced as limit points that topologically close an open region
of space filled with the renormalization group flow.

The methods do not directly compute the properties of systems of
infinitely many components associated with the critical points. Rather,
properties attributed to the critical points are just the limit properties of
finite systems. Thus, we cannot take these critical points to represent an
actually infinite system and their properties, for such systems may have
properties very different from finite systems. They may, as we have seen,
violate determinism and energy conservation, so that the whole framework
of statistical physics would collapse. Without an analysis that precludes
these anomalies, the points are best seen as mathematical artifices com-
pleting a diagram.

As an explanatory analogy, consider the space of all spheres. It is one-
dimensional and coordinatized by the curvature (1/radius2). A map on
the space expands and contracts the spheres; typical transformations
would map spheres to others twice, thrice, and so on, their curvature.
The resulting flow fills the portion of that space where curvature is greater
than zero, as shown in figure 7. We close the space by adding the point
at zero curvature, where a natural extension of the map has a fixed point.
We might imagine that the added point represents a “sphere of zero cur-
vature” and attribute limiting properties of finite spheres to it, such as
the possession of a unique center and an inside and outside. However,
there is no sphere of zero curvature. If the point represents anything at
all, it represents an infinite Euclidean plane, which does not carry the
sphere’s limiting properties.

Critical points enter real space renormalization group methods as
points in a diagram: mathematical pegs on which to hang limit properties.
They do not arise from an investigation of the properties of infinite limit
systems. They are not idealizations.

The acclaimed results of the methods pertain to critical exponents.
For many systems, thermodynamic quantities at temperatures near the
critical temperature turn out to be powers of the reduced temperature

, commonly written as , , , and so on. Re-�a b �gt p (T � T )/T FtF (�t) FtFc c

normalization group methods have enjoyed great success in explaining
universality: that very few numerical values of the critical exponents, a,
b, g, and so on, suffice for very many substances. The results are recovered
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by examining the renormalization group flow in the vicinity of the critical
point. In this vicinity, the systems are finite, so that the results recovered
apply to finite systems, albeit of arbitrarily large size. That is, insofar as
limits enter, the results are recovered for limit properties, not limit systems,
so that the acclaimed results concerning critical exponents are recovered
by approximations.

5. Phase Transitions and Finite Systems. There is a spirited debate in the
current literature over whether phase transitions are emergent phenomena
that cannot be recovered reductively from statistical mechanics.11 The
debate is wide-ranging and subtle. The most perspicacious of many note-
worthy contributions is Butterfield’s (2011b). He argues that emergence,
properly understood as novelty and robustness, is compatible with re-
duction, so that one may have both. My concern here is one argument
used to support the antireduction view. It asserts, contrary to the analysis
of the last section, that renormalization group methods do employ infinite
idealizations, that these infinite idealizations somehow outstrip the re-
ductive powers of statistical mechanics and, moreover, that they are ine-
liminable.12

My purpose in this section is to show that careful attention to the
difference between approximation and idealization leads one to a different
conclusion. In this particular case of phase transitions of section 4.3, if
infinite idealizations are employed, far from being ineliminable, the infinite
idealizations can be and should be eliminated.

5.1. Illustration of Nonanalyticity with Finite Systems. The most com-
mon argument in favor of the necessity of the infinite idealization is that
infinite systems are needed if thermodynamic functions are to be non-
analytic and thus support the discontinuities of phase transition. The
argument overstates what is needed. One does not need the limit system
with an infinity of components. Consider the functional dependence of
some property on the number of components n in a set of systems, all of
which have a finite n. Taking the limit as n goes to infinity in this function,
as a purely mathematical operation, can yield a nonanalytic function,
without ever considering a system with an infinity of components. That
nonanalytic function will be a very good approximation of the analytic
functions of system of large, finite n. Butterfield (2011b) has described
this effect with the slogan of “emergence before the limit.”

11. For an entry into this literature, see Liu (1999), Callender (2001), Batterman (2002,
2005, 2010, 2011), Belot (2005), Jones (2006), Butterfield (2011a, 2011b), Butterfield
and Bouatta (2011), and Menon and Callender (2011).

12. For a survey and defense, see Jones (2006).
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Figure 8. Analytic potential functions approach nonanalytic limit.

The mathematics of the partition functions is complicated even in
simple cases. See Le Bellac et al. (2004, 183) and Jones (2006, sec. 3.1.3)
for the simpler case of an Ising chain. The essential point, however, can
be illustrated in a toy model. Imagine that, in some theory, a particle of
type n generates a potential well of the form

2nx
f (x) p ,( )n L

where n p 1, 2, 3, . . . is always some finite, whole number. For each
n, this potential well is an analytic function of the position coordinate x.
When n grows large, however, will approach the limit of an infinitelyf (x)n

high square well, as shown in figure 8:

f (x) p 0FxF ! Llim

p 1FxF p L

p �FxF 1 L.

This limit function is not analytic (and not even continuous) but has been
recovered from considerations of particles with finite n only. Moreover,
the square well will approximate extremely well, especiallyf (x) f (x)lim n

when n is large, say 1023.



APPROXIMATION AND IDEALIZATION 225

Through an analogous infinite limit, we can recover nonanalytic func-
tions from the functions governing arbitrarily large systems of finitely
many components. These nonanalytic functions and their discontinuities
have a pragmatic value only. If the atomic theory of matter is true, then
ordinary thermal systems of finitely many components cannot display
discontinuous changes in their thermodynamic properties. The changes
they manifest are merely so rapid as to be observationally indistinguish-
able from discontinuous behavior.13 Indeed, if we could establish that the
phase transitions of real substances exhibit these discontinuities, we would
have refuted the atomic theory of matter, which holds that ordinary ther-
mal systems are composed of finitely many atoms, molecules, or com-
ponents. It must be feared that a similar refutation is at hand, if the
positing of infinitely many components is necessary to recover other ob-
served behaviors of phase transitions.

5.2. Dispensable Idealizations. In section 4.3, it was argued that the
renormalization group method analysis of phase transitions uses approx-
imations only. Might we promote them to an idealization whose idealizing
system has infinitely many components? What follows will show that there
is no gain but a potential for harm.

This claims follows from the particular promotion procedure used to
generate the idealization. In it, one takes a system and considers it to be
a member of a set of like systems varying in some parameter. For phase
transitions, the thermal system is taken to be one of many systems with
arbitrarily many components. We consider a limit process governed by
the parameter. For phase transitions, the number of components grows
arbitrarily large. As the limit proceeds, we track the behavior of the sys-
tems’ properties and recover the limiting properties.

At this stage of the process, we already have a serviceable approxi-
mation of the target system in the form of these limit properties. These
limit properties, it was argued in section 4.3, are all that is actually used
in the renormalization group analysis of phase transitions. To complete
the promotions, we now introduce an idealization of the original system
in the form of the limit system. In the case of phase transitions, the limit
system is one of infinitely many components.

Now the essential point: the limit system’s properties must agree with
the limit properties, else the promotion procedure fails. If these limits are
well behaved, as in the case of the indefinitely elongated capsule of section
3.1, then the promotion succeeds. An infinite cylinder is a serviceable
idealization of a very large capsule. The successful idealizations produced

13. This has also been emphasized by Callender (2001) and Butterfield (2011b). For
a survey and response, see Batterman (2005) and Jones (2006, chap. 5).
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by this promotion procedure are dispensable. The resulting idealizations
deliver nothing more than the inexact descriptions of the approximations
provided by the limiting properties already determined in an earlier step
of the procedure.

Mere dispensability is the best case. In many cases, however, this
agreement of the limit system and limit properties fails. This failure would
arise if we tried to use the continuum limit or the Boltzmann-Grad limit
to generate an idealization. For in these cases, either there is no limit
system or its properties differ markedly from the limit properties. We
would have to dispense with the idealization and use the approximation
provided by the limiting properties only.

In the case of phase transitions, at best, we do not know whether the
limit system and limit properties agree. For, in general, we do not know
whether the systems to which the infinite component Hamiltonians are
attached carry the limit properties of those with finite component Ham-
iltonians. Investigating this agreement is not a standard part of a renor-
malization group analysis. We have some reason to expect the agreement
to fail. In a few cases that have been worked out, such as those mentioned
in section 4.1, it does fail. Extra conditions, peculiar to the infinite case,
are needed to enforce specifically identified finite behaviors such as de-
terminism. With this uncertainty, prudence indicates that we should dis-
pense with the idealization, for the approximation already tells us what
we could learn from the idealization about the target system. Persisting
with the idealization merely risks the error of attributing properties to the
limit system that it does not bear.

In short, the renormalization group analysis of phase transitions is a
case in which all benefits are already accrued by the approximation. Pro-
moting it to an idealization merely risks erroneous attributions for no
gain.

5.3. Finite Systems Control Infinite Systems. The underlying moral is
that the properties of finite systems control and that infinite systems cede
to them when there is a conflict. One finds this view expressed in the
physics literature. Lanford (1975, 17) writes: “We emphasize that we are
not considering the theory of infinite systems for its own sake so much
as for the fact that this is the only precise way of removing inessential
complications due to boundary effects, etc., i.e. we regard infinite systems
as approximations to large finite systems rather than the reverse.” Fisher
(1982, 14) portrays phase transitions with true discontinuities as unrealized
in the laboratory and even experimentally refutable:

in the laboratory one would always be dealing with a finite system,
with a finite number of atoms confined in a bounded region of space.
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A perfectly sharp phase transition can take place only in a truly
infinite system, i.e., in the thermodynamic limit where the system is
infinitely large in extent but its density, pressure, and all other in-
tensive quantities are fixed and finite. However large a system is in
practice, it will still be finite and, ultimately then one will reach the
point where the specific heat singularity is seen to be rounded off.
Experiments deliberately done on small samples certainly show these
rounding effects. So in talking about a phase transition one really
should always have in mind the thermodynamic limit.

Le Bellac et al. (2004, 184) are similarly concerned to qualify their state-
ment that the nonanalytic behavior of phase transitions occurs only in
the thermodynamic limit: “The reader, who has undoubtedly observed an
ice cube floating in a glass of water, may find this statement a bit sur-
prising. What is meant by this statement is that the mathematical signature
of a phase transition can only be seen in the infinite volume limit.”

The physics of phase transitions is complicated and difficult, and its
philosophical analysis is rewarding. However, once one sees past the traps
of the infinite limits, it is hard to find philosophical discontinuities.

In the venerable deductive-nomological (DN) or “covering law” ac-
count of explanation of Hempel and Oppenheim (1948), one explains some
phenomenon by deducing it from physical laws with the assistance of
particular conditions. The model has been widely and justly criticized,
and there seems to be every reason to expect that the practice of expla-
nation in science is so irregular as to admit no univocal account. However,
there are a few cases in which the DN model works. The use of limits in
statistical mechanics as approximations provides such a case. The phe-
nomenon to be explained is, for example, universality: that many sub-
stances manifest the same critical exponents. Renormalization group
methods take the theoretical framework of statistical mechanics as the
covering law. They select as the particular conditions a broad class of
Hamiltonians pertinent to the materials. They then derive universality
under conditions close to criticality. The renormalization group analysis
simply is a covering law explanation.

While the ontological reduction of ordinary matter to atoms, mole-
cules, and the like is as secure as any result of science, we cannot have
the same confidence for explanatory reduction. The traffic in Los Angeles
may ontologically be nothing but atoms, molecules, and heat radiation.
Yet we cannot expect their statistical mechanics to provide an explanation
of traffic jams. Nagel’s (1961, chap. 11) is the venerable account of re-
duction in which the less fundamental theory is derived from the more
fundamental. It too has been much criticized and justly so. However, there
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are a few cases in which it still seems to apply.14 In providing a covering
law explanation of critical exponents, renormalization group methods are
also providing a Nagel-style reduction, or at least something like it, such
as the more sophisticated version of Schaffner (1967).

Finally, the idea that discontinuous changes of phase transitions are
emergent phenomena is difficult to penetrate, for the phenomena at issue
are not possible objects of experience. Real phase transitions cannot ex-
hibit the discontinuities on pain of contradicting the atomic theory of
matter, and, were the discontinuities established factually, the atomic the-
ory would fall.

6. Conclusion. This article has sought to distinguish two sorts of analytic
activity. One employs only inexact descriptions of some target system and
is here labeled “approximation.” Another introduces a new system whose
properties provide inexact descriptions; it is here labeled “idealization.”
It is important to attend to the difference between the two. The extended
example was of the use of limits in statistical mechanics. They may merely
provide approximations as the limiting properties of finite systems, as
their number of components grows large. Or they may provide idealiza-
tions if we posit a system of infinitely many components and examine the
new system’s properties. Since an infinite system can carry unexpected
and even contradictory properties, the latter practice carries considerably
more risk. Renormalization group methods are sometimes described as
employing ineliminable, infinite idealizations. I have argued that their
methods only employ approximations in the form of the limiting prop-
erties of large systems that always have finitely many components.

Appendix: Violation of Determinism and Energy Conservation for
Systems of Infinitely Many Components

Consider a system of n components interacting under some dynamics that
is well behaved in the sense that it is deterministic and conserves energy
and momentum. This good behavior can persist when the number of
components, n, grows arbitrarily large but is still finite. However, if we
allow the number of components to become infinite, we can lose both
determinism and conservation.

A General Sketch. The simplest way to see this possibility is to construct
a pathological solution in which the infinite system spontaneously excites
from a quiescent state, even though the dynamics for all finite systems is

14. For a recent defense of this form of reduction with similar applications intended,
see Butterfield (2011a).
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well behaved. To do this, consider a subset of n components of the infinite
system. We could write down a pathological solution for this subsystem
in which the system spontaneously excites from a quiescent state. If the
totality of the system consisted of just these n components, that patho-
logical solution would be inadmissible. By supposition, the dynamics ap-
plied to finite systems is well behaved.

However, these n components are a subsystem of the larger system. If
the pathological solution for the n components is carefully chosen, there
will be some motion for the next m components that will drive the path-
ological solution for the n components. We now have arrived at a path-
ological solution for ( ) components.n � m

The analysis now repeats. This pathological solution for ( ) com-n � m
ponents can be driven if the next p components have suitable behavior.
By repeating the analysis further, the pathological solution is propagated
over all components to produce a pathological solution of the dynamics
of the infinite system.

The infinity of the system plays an essential role. If there were just
finitely many components—N, say—then the analysis would fail, for once
the pathological solution was propagated to all N components, there
would no longer be any further components to drive the pathological
solution.

Masses and Springs. The masses and springs of section 4.1 illustrate this
mechanism.15 Infinitely many unit masses are connected in a chain, infinite
in both directions, with the masses numbered . . . , �2, �1, 0, 1, 2, . . . .
The springs that connect neighboring masses are governed by Hooke’s
law and are assumed to have a unit spring constant. Hence, if the dis-
placement of the nth mass from its equilibrium position is , its equationxn

of motion is
2d xn p (x � x ) � (x � x ). (A1)n�1 n n n�12dt

Equation (A1) holds if we consider the displacements of the masses to be
restricted to the one-dimension of the chain or if they are constrained
only to move orthogonally to the chain. For initial conditions

dx (0)n p x (0) p 0 for all n, (A2)ndt

a future time development is the quiescent

15. The analysis follows Norton (1999). The resulting indeterminism manifests as a
failure of an infinite system of differential equations to admit unique solutions. Most
of the literature on such systems is devoted to determining conditions under which the
system has unique solutions. There is a small literature that investigates when unique-
ness fails (see, e.g., Hille 1961).
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x (t) p 0 for all n, all t. (A3)n

We construct a pathological solution by stipulating motions for the masses
1 and 2 that conform with the initial conditions (A2) but deviate from
the quiescent solution (A3) for some . We will need to stipulate int 1 0
addition that the functions and satisfyx (t) x (t)1 2

m md x (0) d x (0)1 2p p 0 for all m. (A4)m mdt dt

Hence, and cannot be analytic functions of time, except in thex (t) x (t)1 2

uninteresting case of the constant function. A suitable choice is

1 �1
x (t) p x (t) p exp . (A5)( ) ( )1 2 t t

These two functions seed a pathological solution of the infinite chain in
which the chain is quiescent at and then spontaneously excites intot p 0
motion after . The remaining motions are computed iteratively usingt p 0
(A1):

2d x2x p � 2x � x , (A6)3 2 12dt

and, by differentiation,
3dx d x 2dx dx3 2 2 1p � � . (A7)3dt dt dt dt

The resulting function will satisfy the initial condition (A2) sincex (t)3

and are linear functions of and and their deriv-x (t) dx (t)/dt x (t) x (t)3 3 1 2

atives at , all of which vanish at .t p 0 t p 0
The motion x4 is computed as

2d x3x p � 2x � x4 3 22dt
3dx d x 2dx dx4 3 3 2p � � .3dt dt dt dt

so that, by (A6) and (A7), and are also linear functions ofx (t) dx (t)/dt4 4

and , whose derivatives vanish at . Hence, this willx (t) x (t) t p 0 x (t)1 2 4

satisfy the initial condition (A2).
This iterative computation is repeated for all remaining masses. In

general, and are linear functions of and and theirx (t) dx (t)/dt x (t) x (t)n n 1 2

derivatives, all of which vanish at . Hence, they satisfy initial con-t p 0
dition (A2), but they differ from the quiescent (A3) for some .t 1 0
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