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PROBABILITY

Maria Carla Galavotti

Historical sketch

The origin of the notion of probability,	taken	in	the	quantitative	sense	that	is	nowadays	
attached	to	it,	is	usually	traced	back	to	the	decade	around	1660	and	associated	with	
the	work	of	Blaise	Pascal	and	Pierre	Fermat,	followed	by	that	of	Christiaan	Huygens	
and many others. 
	 Since	its	beginnings,	the	notion	of	probability	has	been	characterized	by	a	peculiar	
duality of meaning: its statistical meaning concerning the stochastic laws of chance 
processes;	 and	 its	 epistemological meaning relating to the degree of belief that we, 
as	agents,	 entertain	 in	propositions	describing	uncertain	events.	Such	a	duality	 lies	
at the root of the philosophical problem of the interpretation of probability, and 
has nurtured various schools animated by the conviction that a specific sense of 
“probability”	should	be	privileged	and	made	the	essence	of	its	definition.	After	a	long	
period	in	which	the	“doctrine	of	chance”	and	the	“art	of	conjecture”	had	peacefully	
coexisted,	 this	 absolutist	 tendency	 became	 predominant	 around	 the	middle	 of	 the	
nineteenth century and gave rise to the different interpretations of probability that 
will be described in the following sections. 
	 By	the	turn	of	the	eighteenth	century,	probability	had	progressed	enormously,	having	
progressively widened its scope of application. Great impulse to its development came 
from the application of the notion of the arithmetic mean first to demographic data, 
then	to	fields	like	medical	practice	and	legal	decisions,	and	finally	to	the	physical	and	
biological sciences. 
	 A	 pivotal	 role	 in	 the	 history	 of	 probability	 was	 played	 by	 the	 Bernoulli	 family,	
including	Jakob,	who	started	the	analysis	of	direct probability, that is, the probability 
to	be	assigned	to	a	sample	taken	from	a	population	whose	law	is	known,	and	proved	
the	 result	 usually	 called	 the	 “weak	 law	 of	 large	 numbers.”	 The	 theorem	 holds	 for	
binary	processes,	namely	processes	that	admit	of	two	outcomes	–	such	as	“heads”	or	
“tails”	and	the	“presence”	or	“absence”	of	a	certain	property	–	and	says	that	if	p is the 
probability	 of	 obtaining	 a	 certain	 outcome	 in	 a	 repeatable	 experiment,	 and	 m the 
number of successes obtained in n	repetitions	of	the	same	experiment,	the	probability	
that the value of m/n falls within any chosen interval p 6 ε increases for larger and 
larger values of n,	and	tends	to	1	as	n	tends	to	infinity.	Bernoulli’s	result	is	based	on	
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the concept of stochastic independence, which receives an unambiguous definition for 
the	first	time.	Bernoulli’s	work	also	sheds	light	on	the	relationship	between	probability	
and	frequency,	by	keeping	separate	the	probability	and	the	frequency	with	which	the	
events of the considered dichotomy can theoretically occur in any given number n 
of	experiments,	and	 sets	 the	probability	distribution	over	possible	 frequencies:	0,	1,	
2, . . ., n,	usually	called	“binomial	distribution.”	Bernoulli’s	work	on	direct	probability	
was	 gradually	 generalized	 by	 other	 probabilists,	 including	De	Moivre,	 Laplace,	 and	
Poisson,	to	receive	great	impulse	in	the	nineteenth	and	twentieth	centuries,	especially	
by	Borel,	Cantelli,	and	the	Russian	probabilists	Chebyshev,	Markov,	Lyapunov,	and	
kolmogorov.
	 Other	important	members	of	the	Bernoulli	family	were	Nikolaus,	who	formulated	
the	 so-called	 “Saint	 Petersburg	 problem,”	 and	 Daniel,	 who	 did	 seminal	 work	 on	
mathematical	 expectation	 and	 laid	 the	 foundations	 of	 the	 theory	 of	 errors,	 which	
reached	its	peak	with	the	subsequent	work	of	Gauss.	
	 Special	mention	 is	 due	 to	 Thomas	 Bayes,	 who	 proposed	 a	method	 for	 assessing	
inverse probability, that is, the probability to be assigned to an hypothesis on the ground 
of	available	evidence.	Whereas	by	direct	probability	one	goes	from	the	known	proba-
bility of a population to the estimated frequency of its samples, by inverse probability 
one	goes	from	known	frequencies	to	estimated	probabilities.	Inverse	probability	is	also	
called	the	“probability	of	causes,”	because	it	enables	the	estimation	of	the	probabilities	
of the causes underlying an observed event. The method is based on the idea that the 
final or posterior probability P(H|E) of a certain hypothesis (H), given a certain piece 
of evidence (E), is proportional to the product of the initial or prior probability P(H) 
of	the	hypothesis	calculated	on	the	basis	of	background	knowledge,	and	the	so-called	
likelihood P(E|H) of E given the considered hypothesis, namely on the assumption 
that	the	considered	hypothesis	holds.	A	general	formulation	of	Bayes’s	rule,	that	takes	
into account a family of hypotheses H1	. . . Hn, is the following:

P(Hi|E) 5	[P(Hi) 3 P(E|Hi)]	/	Σ
n
i51	[P(Hi) 3 P(E|Hi)].

To	illustrate	this	formula,	let	us	take	a	factory	that	has	3	machines	for	the	production	
of	bolts,	of	which	it	produces	60,000	pieces	daily.	Of	these,	10,000	are	produced	by	
machine A1, 20,000 by machine A2,	and	30,000	by	machine	A3. All three machines 
occasionally produce faulty pieces, F.	 On	 average,	 the	 rejection	 rates	 of	 the	 3	
machines	are	as	 follows:	4	percent	 in	the	case	of	A1, 2 percent in the case of A2,	4	
percent in the case of A3.	Given	a	defective	bolt	taken	from	the	rejects,	we	ask	for	the	
probability	that	it	was	produced	by	each	of	the	three	machines.	In	order	to	calculate	
such	a	probability	by	means	of	Bayes’s	rule,	we	start	from	prior	probabilities,	obtained	
in this case from the information concerning the production of the machines. They 
are as follows:

P(A1) 5	10,000/60,000	5	1/6
P(A2) 5	20,000/60,000	5	1/3
P(A3) 5	30,000/60,000	5	1/2.
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The	likelihoods	are	provided	by	information	on	the	rejection	rates:

P(F|A1) 5	4/100
P(F|A2) 5	2/100
P(F|A3) 5	4/100.

Posterior	probabilities	are	calculated	as	follows:

P(A1|F) 5	(1/6	3	4/100)	/	[(1/6	3	4/100)	1	(1/3	3	2/100)	1	(1/2	3	4/100)]	
5	1/5	5 20%
P(A2|F) 5	(1/3	3	2/100)	/	[(1/6	3	4/100)	1	(1/3	3	2/100)	1	(1/2	3	4/100)]	
5	1/5	5 20%
P(A3|F) 5	(1/2	3	4/100)	/	[(1/6	3	4/100)	1	(1/3	3	2/100)	1	(1/2	3	4/100)]	
5	3/5	5	60%.

We	therefore	have	a	probability	of	20	percent	that	a	defective	bolt	taken	at	random	
was produced by machine A1, a probability of 20 percent that it was produced by 
machine A2	and	a	probability	of	60	percent	that	it	was	produced	by	machine	A3. The 
obtained result shows that, although the machine A2	works	twice	as	well	as	A1, it is 
equally probable that the defective piece originates from A2 as from A1, because the 
second	machine	produces	twice	as	many	pieces.	Machine	A3, which supplies half of 
the	total	production,	is	nevertheless	assigned	probability	3/5	of	having	produced	the	
defective	piece	because	one	of	the	two	other	machines	works	more	reliably.	
	 The	crucial	step	in	the	application	of	Bayes’s	rule	lies	with	fixing	prior	probabilities.	
This	is	a	matter	of	debate.	By	allowing	for	the	evaluation	of	hypotheses	in	a	probabil-
istic	fashion,	Bayes’s	method	spells	out	a	canon	of	inductive	reasoning.	It	was	applied	
in	the	first	place	by	Laplace,	and	later	on	came	to	be	regarded	as	the	cornerstone	of	
statistical	inference	by	the	statisticians	of	the	Bayesian	School.	The	place	of	Bayes’s	
inductive method within the whole of statistics is the subject of a major ongoing 
controversy. 
 The eighteenth century saw a tremendous growth in the application of probability 
to	the	moral	and	political	sciences.	Important	work	in	this	connection	was	done	by	
Condorcet,	 the	 pioneer	 of	 the	 so-called	 “social	mathematics,”	meant	 to	 produce	 a	
statistical description of society instrumental for a new political economy.
	 Between	the	nineteenth	and	twentieth	centuries	 the	 study	of	 statistical	distribu-
tions	 progressed	 enormously	 thanks	 to	 the	work	 of	 a	 number	 of	 authors,	 including	
Quetelet,	Galton,	karl	Pearson,	Weldon,	Gosset,	Edgeworth,	and	others,	who	shaped	
modern statistics, by developing the analysis of correlation and regression, and the 
methodology	 for	 assessing	 statistical	 hypotheses	 against	 experimental	 data	 through	
the	 so-called	 “significance	 tests.”	 Other	 branches	 of	 modern	 statistics	 were	 started	
by Fisher, who prompted the analysis of variance and covariance, and the likelihood 
method for comparing hypotheses on the basis of a given body of data. Also worth 
mentioning	are	Egon	Pearson	and	Jerzy	Neyman,	who	extended	the	methodology	of	
tests to the comparison of two alternative hypotheses. 
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	 In	the	nineteenth	century,	probability	gradually	entered	physical	science,	not	only	
in connection with errors of measurement, but more penetratingly as a component of 
physical	 theory.	Such	developments	 started	with	 the	work	of	Robert	Brown	on	 the	
motion	of	particles	suspended	in	fluid,	which	paved	the	way	to	the	analysis	of	physical	
phenomena	characterized	by	great	complexity,	leading	to	the	kinetic	theory	of	gases	
and	thermodynamics,	developed	by	Maxwell,	Boltzmann,	and	Gibbs.	Around	1905–6	
von	 Smoluchowski	 and	 Einstein	 brought	 to	 completion	 the	 analysis	 of	 Brownian	
motion	in	probabilistic	terms.	More	or	less	in	the	same	years,	the	study	of	radiation	
led	 Einstein	 and	 other	 outstanding	 physicists,	 including	 Planck,	 Schrödinger,	 de	
Broglie,	Dirac,	Heisenberg,	Born,	Bohr,	and	others	to	formulate	quantum	mechanics,	
in which probability became an ingredient of the description of the basic components 
of matter. 
	 In	1933	kolmogorov	spelled	out	his	famous	axiomatization,	meant	to	shed	light	on	
the mathematical properties of probability, and to draw a distinction between probabil-
ity’s	formal	features	and	the	meaning	it	receives	in	practical	situations.	Put	simply,	the	
formal	properties	of	probability	are	the	following:	(1)	for	any	event	A, its probability 
is > 0;	(2)	if	A	is	certain,	its	probability	equals	1;	(3)	probabilities	are	additive,	that	
is, if two events A and B cannot both occur, P(A or B) 5 P(A) 1 P(B).	kolmogorov’s	
axiomatization	 met	 with	 a	 wide	 consensus	 and	 obtained	 a	 twofold	 result:	 for	 one	
thing, it gained an equitable position for probability among other mathematical disci-
plines;	and	by	tracing	a	clear-cut	boundary	between	the	mathematical	properties	of	
probability and its interpretations it made room for the philosophy of probability as an 
autonomous field of enquiry. 

The classical interpretation 

The	“classical”	interpretation	is	usually	construed	as	the	interpretation	of	probability	
developed	 at	 the	 turn	 of	 the	 nineteenth	 century	 by	 the	mathematician–physicist–
astronomer	 Pierre	 Simon	 de	 Laplace.	Called	 “the	Newton	 of	 France”	 for	 his	 work	
on	mechanics,	Laplace	made	a	 substantial	contribution	 to	probability,	both	 techni-
cally	and	philosophically.	His	philosophy	of	probability	 is	 rooted	 in	 the	doctrine	of	
determinism, according to which the universe is ruled by a principle of sufficient reason 
stating	 that	 all	 things	 are	 brought	 into	 existence	 by	 a	 cause.	 The	 human	mind	 is	
incapable	of	grasping	every	detail	of	the	connections	of	the	causal	network	underlying	
phenomena,	but	one	can	conceive	of	a	superior	intelligence	able	to	do	so.	Making	use	
of the methods of mathematical analysis and aided by probability, man can approach 
the	all-comprehensive	view	of	such	a	superior	intelligence.	Being	made	necessary	by	
the	incompleteness	of	human	knowledge,	probability	is	an	epistemic	notion,	having	
to	do	with	our	knowledge,	rather	than	being	inherent	in	phenomena.
	 Laplace	defines	probability	as	“the	ratio	of	 the	number	of	 favorable	cases	 to	that	
of	all	possible	cases,”	according	to	the	statement	known	as	the	“classical”	definition.	
This is grounded on the assumption that all cases in question are equally possible, 
lacking	information	that	would	lead	us	to	believe	otherwise.	The	stress	placed	on	the	
dependence of the judgment of equal possibility on there being no reason to believe 
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otherwise	 inspired	 the	 term	 “principle	 of	 insufficient	 reason”	 –	 also	 known	 in	 the	
literature	as	the	“principle	of	indifference,”	after	a	terminology	coined	by	keynes	–	to	
refer	to	Laplace’s	assumption.	In	other	words,	for	the	sake	of	determining	probability	
values,	equally	possible	cases	are	taken	as	equally	probable.	This	assumption	is	made	
for	ease	of	analysis	and	is	not	endowed	with	metaphysical	meaning.	Laplace	insists	on	
the	need	to	make	sure	that	some	outcomes	are	not	more	likely	to	happen	than	others,	
before	applying	his	method.	Moreover,	Laplace’s	epistemic	interpretation	protects	his	
definition	of	probability	from	the	charge	of	being	circular:	once	probability	is	taken	
as epistemic, it stands on a different ground from the possibility of the occurrence of 
events. 
	 Dealing	with	 inverse	 probability,	 Laplace	 enunciates	 a	 principle	which	 amounts	
to	Bayes’s	rule.	Under	the	assumption	of	equally	likely	causes,	he	derives	from	it	the	
method	of	inference	called	in	the	literature	“Laplace’s	rule.”	In	the	case	of	two	alterna-
tives	–	like	occurrence and non-occurrence –	this	rule	allows	us	to	infer	the	probability	
of an event from the information that it has been observed to happen in a given 
number	of	cases.	If	m is the number of observed positive cases, and n that of negative 
cases,	the	probability	that	the	next	case	to	be	observed	is	positive	equals	(m 1	1)	/	(m 
1 n 1	2).	If	no	negative	cases	have	been	observed,	the	formula	reduces	to	(m 1	1)	/	
(m 1	2).	Laplace’s	method	is	based	on	the	assumptions	of	the	equiprobability	of	priors	
and	the	independence	of	trials,	conditional	on	a	given	parameter	–	like	the	compo-
sition of an urn, or the ratio of the number of favorable cases to that of all possible 
cases.	 The	 authors	 who	 later	 worked	 on	 probabilistic	 inference	 in	 the	 tradition	 of	
Bayes	and	Laplace	–	including	Johnson,	Carnap,	and	de	Finetti	–	eventually	turned	to	
the	weaker	assumption	of	exchangeability.
	 Laplace’s	theory	of	probability	was	very	influential.	However,	while	it	can	handle	
a wide array of important applications, it gives rise to problems, such as the impos-
sibility, in many situations, of determining the set of equally likely cases.	 In	 such	
situations	 –	 think	 for	 instance	 of	 the	 probability	 of	 a	 biased	 coin	 falling	 on	 either	
side	 or	 the	 probability	 that	 a	 given	 individual	 will	 die	 within	 a	 year	 –	 instead	 of	
looking	 for	possible	cases,	we	count	 the	 frequency	with	which	events	 take	place	 in	
order to calculate probability. Furthermore, when applied to problems involving an 
infinite number of possible cases, the classical interpretation generates the so-called 
“Bertrand’s	paradox,”	after	the	French	mathematician	Joseph	Bertrand.

The frequency interpretation

According to the frequency interpretation, probability is defined as the limit of the 
relative frequency of a given attribute, observed in the initial part of an indefinitely 
long	sequence	of	repeatable	events.	In	other	words,	given	that	the	attribute	A has been 
observed with frequency m/n in the initial part of sequence B, its probability equals 
limn→

 Fn (A,B) 5 m/n. The frequency interpretation is empirical and objective: proba-
bility is a characteristic of phenomena that can be empirically analyzed by observing 
frequencies.	Probability	values	are	in	general	unknown,	but	can	be	approached	by	means	
of frequencies. The frequency interpretation is fully compatible with indeterminism.
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	 Started	 by	 Robert	 Leslie	 Ellis	 and	 John	 venn,	 frequentism	 reached	 its	 climax	
with	Richard	von	Mises,	member	of	the	Berlin	Society	for	Empirical	Philosophy	and	
later	professor	at	Istanbul	and	Harvard.	Central	 to	von	Mises’s	 theory	 is	 the	notion	
of a collective, referring to the sequence of observations of a mass phenomenon or a 
repetitive	event.	Collectives	are	indefinitely	long	and	exhibit	frequencies	that	tend	to	
a	limit.	Their	distinctive	feature	is	randomness,	operationally	defined	as	“insensitivity	
to	place	selection.”	It	obtains	when	the	limiting	values	of	the	relative	frequencies	in	
a given collective are not affected by any of all the possible selections that can be 
performed	on	 it.	 In	 addition,	 the	 limiting	values	of	 the	 relative	 frequencies,	 in	 the	
sub-sequences obtained by place selection, equal those of the original sequence. This 
randomness	condition	is	also	called	the	“principle	of	the	impossibility	of	a	gambling	
system”	because	it	reflects	the	impossibility	of	devising	a	system	leading	to	a	certain	
win	 in	 any	 hypothetical	 game.	 The	 theory	 of	 probability	 is	 restated	 by	 von	Mises	
in terms of collectives, by means of the operations of selection, mixing, partition, and 
combination. This conceptual machinery is meant to give probability an empirical and 
objective	foundation.	Because	probability,	according	to	this	perspective,	can	refer	only	
to collectives,	it	makes	no	sense	to	talk	of	the	probability	of	single	occurrences.
	 A	slightly	different	version	of	 frequentism	was	developed	by	Hans	Reichenbach,	
another	 member	 of	 the	 Berlin	 Society	 for	 Empirical	 Philosophy	 and	 co-editor	 of	
Erkenntnis	together	with	Rudolf	Carnap,	later	professor	at	the	University	of	California	
at	 Los	Angeles.	 Reichenbach	made	 an	 attempt	 to	 extend	 the	 frequency	 notion	 of	
probability to the single case. Any probability attribution is a posit by which we infer 
that the relative frequencies detected in the past will persist when sequences of obser-
vations are prolonged. A posit regarding a single occurrence of an event receives a 
weight from the probabilities attached to the reference class to which the event has 
been	assigned.	Such	a	reference	class	must	obey	a	criterion	of	homogeneity	guaran-
teeing	that	all	the	properties	relevant	to	the	event	under	study	have	been	taken	into	
account. This obviously gives rise to a problem of applicability, because one can never 
be absolutely sure that the reference class is homogeneous. Reichenbach distinguishes 
between primitive knowledge,	where	no	previous	knowledge	of	frequencies	is	available	
so that blind posits are made on the basis of the sole observed frequencies, and advanced 
knowledge where appraised	 posits	 are	obtained	by	combining	known	probabilities	by	
means	of	 the	 laws	of	 probability,	 particularly	Bayes’s	 rule.	There	 emerges	 a	 view	of	
knowledge	 as	 a	 self-correcting	 procedure	 grounded	 on	 posits.	Reichenbach’s	 theory	
includes a pragmatic justification of induction, appealing to the success of probability 
evaluations based on frequencies. 

The propensity interpretation 

Anticipated	 by	 Charles	 Sanders	 Peirce,	 the	 propensity theory was proposed in the 
1950s	 by	 karl	 Raimund	 Popper	 to	 solve	 the	 problem	 of	 single-case	 probabilities	
arising	in	quantum	mechanics.	Probability	as	propensity	 is	a	property	of	the	experi-
mental arrangement, apt to be reproduced over and over again to form a sequence. 
This	 is	 the	 kernel	 of	 the	 so-called	 “long-run	 propensity	 interpretation.”	 Popper	
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regards propensities as physically real and metaphysical (they are non-observable 
properties),	and	this	gives	the	propensity	theory	a	strongly	objective	character.	In	the	
1980s	Popper	resumed	the	propensity	theory	to	make	it	the	focus	of	a	wider	program	
meant	to	account	 for	all	 sorts	of	causal	tendencies	operating	 in	the	world.	He	then	
saw propensities as weighted possibilities,	 or	 expressions	 of	 the	 tendency	 of	 a	 given	
experimental	set-up	to	realize	itself	upon	repetition,	emphasizing	single	experimental	
arrangements	 rather	 than	 sequences	 of	 generating	 conditions.	 In	 so	 doing,	 he	 laid	
down	the	so-called	“single-case	propensity	interpretation.”	Of	crucial	importance	in	
this connection is the distinction between probability statements	 expressing	 propen-
sities,	 which	 are	 statements	 about	 frequencies	 in	 virtual	 sequences	 of	 experiments,	
and statistical statements	expressing	relative	frequencies	observed	in	actual	sequences	of	
experiments,	which	are	used	to	test	probability	statements.	Popper’s	propensity	theory	
goes hand in hand with indeterminism. 
	 After	 Popper’s	work	 the	 propensity	 theory	 of	 probability	 enjoyed	 a	 considerable	
popularity	 among	 philosophers	 of	 science.	 Some	 authors,	 such	 as	 Donald	 Gillies,	
embrace	a	long-run	perspective,	while	others,	including	Hugh	Mellor,	Ronald	Giere,	
and	 David	 Miller,	 prefer	 a	 single-case	 propensity	 approach.	 Propensity	 theory	 has	
been accused of giving rise to a variety of problems. For one thing, the propensity 
theory faces a reference-class problem broadly similar to that affecting frequentism. 
Moreover,	Paul	Humphreys	has	claimed	that	it	is	unable	to	interpret	inverse	probabil-
ities,	because	it	would	be	odd	to	talk	of	the	propensity	of	a	defective	bolt	to	have	been	
produced	by	a	certain	machine.	The	notion	of	propensity	exhibits	an	asymmetry	that	
goes in the opposite direction to that characterizing inverse probability. For this reason 
various	 authors,	 including	Wesley	Salmon,	 appealed	 to	 the	notion	of	propensity	 to	
represent (probabilistic) causal tendencies, rather than probabilities. 
	 Other	authors	value	the	notion	of	propensity	as	an	 ingredient	of	 the	description	
of chance phenomena, without committing themselves to a propensity interpretation 
of	probability.	Among	them	is	Patrick	Suppes,	who	holds	the	view	that	propensities	
do	not	express	probabilities,	but	can	play	a	useful	 role	 in	 the	description	of	certain	
phenomena, conferring an objective meaning on the probabilities involved. 

The logical interpretation 

According to the logical interpretation, the theory of probability belongs to logic, and 
probability is a logical relation between propositions, more precisely one proposition 
describing a given body of evidence and another proposition stating a hypothesis. The 
logical interpretation of probability is a natural development of the idea that proba-
bility	is	an	epistemic	notion,	pertaining	to	our	knowledge	of	facts,	rather	than	to	facts	
themselves.	With	respect	 to	Laplace’s	classical	 interpretation,	 this	approach	stresses	
the logical aspect of probability, which is meant to give it an intrinsic objectivity. 
	 Anticipated	 by	 Leibniz,	 the	 logical	 interpretation	 was	 embraced	 by	 the	 Czech	
mathematician	and	logician	Bernard	Bolzano	and	developed	by	a	number	of	British	
authors,	including	Augustus	De	Morgan,	George	Boole,	William	Stanley	Jevons,	and	
John	Maynard	keynes,	the	latter	best-known	for	his	contribution	to	economic	theory.	
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For all of these authors the logical character of probability goes hand in hand with 
its	rational	character.	In	other	words,	they	aimed	to	develop	a	theory	of	the	reasona-
bleness	of	 degrees	of	 belief	 on	 logical	 grounds.	keynes	 adopted	a	moderate	 form	of	
logicism, permeated by a deeply felt need not to lose sight of ordinary speech and 
practice.	 keynes	 assigned	 an	 important	 role	 to	 intuition	 and	 individual	 judgment,	
and was suspicious of a purely formal treatment of probability and the adoption of 
mechanical	rules	for	its	evaluation.	He	also	attributed	an	important	role	to	analogy,	
and held that similarities and dissimilarities among events must be carefully considered 
before quantitative methods can be applied. 
	 Another	supporter	of	logicism	was	the	Cambridge	logician	William	Ernest	Johnson,	
who	is	remembered	for	having	introduced	the	property	of	exchangeability	under	the	
name	of	“permutation	postulate.”	According	to	that	property,	probability	is	invariant	
with	respect	to	permutation	of	individuals,	to	the	effect	that	exchangeable	probability	
functions	assign	probability	in	a	way	that	depends	on	the	number	of	experienced	cases,	
irrespective of the order in which they have been observed. 
	 Logicism	 counts	 also	 among	 its	 followers	 the	 viennese	 philosophers	 Ludwig	
Wittgenstein	and	Friedrich	Waismann.	Wittgenstein	held	that	probability	is	a	logical	
relation between propositions, which can be established pretty much as a deductive 
relation, on the basis of the truth-values of propositions. An active member of the 
vienna	Circle,	Waismann	saw	the	logical	notion	of	probability	as	a	generalization	of	
the concept of deductive entailment to the case in which the scope of one proposition 
(premise) partially overlaps with that of another (conclusion), instead of including it. 
The measure of such a logical relation is defined on the basis of the scope of proposi-
tions.	He	 also	 pointed	out	 that	 in	 addition	 to	 its	 logical	 aspect,	 probability	has	 an	
empirical side, having to do with frequency.
	 Waismann’s	conception	of	probability	directly	influenced	the	work	of	Rudolf	Carnap,	
one of the prominent representatives of philosophy of science in the twentieth century. 
Starting	from	the	admission	that	there	are	two	concepts	of	probability	–	probability1, or 
degree of confirmation, and probability2,	or	probability	as	frequency,	Carnap	set	himself	
the	task	of	developing	the	former	notion	as	the	object	of	inductive logic.	Inductive	logic	is	
developed	as	an	axiomatic	system,	formalized	within	a	first-order	predicate	calculus	with	
identity, which applies to measures of confirmation defined on the semantic content of 
statements.	Since	 it	allows	 for	making	the	best	estimates	based	on	the	given	evidence,	
inductive	 logic	can	be	seen	as	a	 rational	basis	 for	decisions.	Unlike	probability2, which 
has	only	one	value	that	is	usually	unknown,	logical	probability	may	be	unknown	only	in	
the	sense	that	the	logico-mathematical	procedure	leading	to	it	is	not	figured	out.	Logical	
probability is analytic and objective: in the light of the same evidence, there is only one 
rational	(correct)	probability	assignment.	Carnap	devised	a	continuum of inductive methods, 
characterized as a blend of a purely logical component and a purely empirical element, 
among	 which	 the	 so-called	 “symmetric”	 functions,	 having	 the	 property	 of	 exchange-
ability,	occupy	a	privileged	position.	Carnap’s	methods	belong	 to	 the	broader	 family	of	
Bayesian	methods.	When	addressing	the	problem	of	the	justification	of	induction,	Carnap	
appealed to inductive intuition,	 in	an	attempt	to	keep	inductive	logic	totally	within	an a 
prioristic domain, while dispensing with the pragmatic criterion of successfulness. 
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	 A	 further	 version	of	 logicism	was	developed	by	 the	 geophysicist	Harold	 Jeffreys,	
who	built	 on	 it	 a	 probabilistic	 epistemology	having	 a	 strongly	 constructivist	 flavor,	
which shares some features of the subjective approach. 

The subjective interpretation

According to the subjective interpretation probability is the degree of belief entertained 
by a person, in a state of uncertainty regarding the occurrence of an event, on the basis 
of	 the	 information	available.	The	notion	of	degree	of	belief	 is	 taken	as	 a	primitive	
notion, which has to be given an operative definition, specifying a way of measuring 
it. A first option in achieving this goal is the method of bets, endowed with a long-
standing	tradition	dating	back	to	the	seventeenth	century.	Accordingly,	one’s	degree	
of	belief	in	the	occurrence	of	an	event	can	be	expressed	by	means	of	the	odds	at	which	
one	would	be	ready	to	bet.	For	instance,	a	degree	of	belief	of	1/6	in	the	proposition	that	
an	unbiased	die	will	turn	up	3	can	be	expressed	by	the	willingness	to	bet	at	odds	1:5	–	
namely,	pay	1	if	the	die	does	not	turn	up	3,	and	gain	5	if	it	does.	The	general	idea	is	to	
value the probability of an event as equal to the price to be paid by a player to obtain 
a	unitary	gain	in	case	the	event	occurs.	This	method	gives	rise	to	some	problems,	like	
that of the diminishing marginal utility of money, in view of which various alternative 
methods have been devised. 
	 Anticipated	by	the	British	astronomer	William	Donkin	and	the	French	mathema-
tician	Émile	Borel,	the	subjective	approach	was	given	a	sound	basis	by	the	multifarious	
genius	of	Frank	Plumpton	Ramsey.	He	adopted	a	definition	of	degree	of	belief	based	on	
preferences	determined	on	the	basis	of	the	expectation	of	an	individual	of	obtaining	
certain	goods,	not	necessarily	of	a	monetary	kind,	and	specified	a	set	of	axioms	fixing	
a criterion of coherence.	In	the	terminology	of	the	betting	scheme,	coherence	ensures	
that, if used as the basis of betting ratios, degrees of belief should not lead to a sure loss. 
Ramsey stated that coherent degrees of belief satisfy the laws of probability. Thereby 
coherence became the cornerstone of the subjective interpretation of probability, the 
only	condition	of	acceptability	that	needs	to	be	imposed	on	degrees	of	belief.	Once	
degrees of belief are coherent, there is no further demand of rationality to be met. 
 The decisive step towards a fully developed subjective notion of probability was 
made	by	Bruno	de	Finetti	whose	“representation	theorem”	shows	that	the	adoption	
of	Bayes’s	method,	taken	in	conjunction	with	the	property	of	exchangeability,	 leads	
to	 a	 convergence	between	degrees	 of	 belief	 and	 frequencies.	This	makes	 subjective	
probability applicable to statistical inference, which according to de Finetti can be 
entirely	based	on	it	–	a	conviction	shared	by	the	neo-Bayesian	statisticians.	For	the	
subjectivist de Finetti objective probability, namely the idea that probability should be 
uniquely	determined,	is	a	useless	notion.	Instead,	one	should	be	aware	that	probability	
evaluations depend on both subjective and objective elements, and refine probability 
appraisals by means of calibration methods. 
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Concluding remarks

Of	 the	 various	 interpretations	 of	 probability	 outlined	 above,	 the	 classical	 interpre-
tation is by and large outdated, especially in view of its commitment to determinism. 
Though the same cannot be said for the logical interpretation, its formalism, especially 
in	connection	with	Carnap’s	work,	has	made	it	unpalatable	to	scientists.	It	should	be	
added	that	philosophers	of	science	of	Bayesian	orientation	seem	on	the	whole	prone	
to	embrace	the	more	flexible	approach	based	on	subjective	probability.
 The frequency interpretation, due to its empirical and objective character, has 
long been considered the natural candidate for the notion of probability occurring 
within	 the	 natural	 sciences.	 But	 while	 it	 matches	 the	 uses	 of	 probability	 in	 areas	
like	population	genetics	and	statistical	mechanics,	it	faces	insurmountable	problems	
within quantum mechanics, where probability assignments to the single case need 
to be made. The propensity interpretation was put forward precisely to solve that 
difficulty.	 In	 the	 debate	 that	 followed	 Popper’s	 proposal,	 propensity	 theory	 gained	
increasing popularity, but also elicited several objections.
	 Subjective	probability	has	an	undisputable	role	to	play	in	the	realm	of	the	social	
sciences,	 where	 personal	 opinions	 and	 expectations	 enter	 directly	 into	 the	 infor-
mation	used	to	support	forecasts,	forge	hypotheses,	and	build	models.	various	attempts	
are	 being	made	 to	 extend	 the	 use	 of	 subjective	 probability	 to	 the	natural	 sciences,	
including quantum mechanics. 
	 While	the	controversy	on	the	interpretation	of	probability	is	far	from	settled,	the	
pluralistic approach, which avoids the temptation to force all uses of probability into 
a single scheme, is gaining ground.

See also Bayesianism;	Confirmation;	Determinism.
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