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Abstract

We discuss a number of issues in the smoothed nonparametric estimation of
kernel conditional probability density functions for stationary processes. The
kernel conditional density estimate is a ratio of joint and marginal density
estimates. We point out the different implications of leading choices of
bandwidths in numerator and denominator for the ability of the estimate to
integrate to one and to have finite moments. Again bearing in mind different
bandwidth possibilities, we discuss asymptotic theory for the estimate:
asymptotic bias and variance are calculated under various conditions, an
extended discussion of bandwidth choice is included, and a central limit
theorem is given.

Keywords: Conditional density estimation; serial dependence; bandwidth
choice.
JEL No.: C22

© by the authors. All rights reserved. Short sections of text, not to exceed two
paragraphs, may be quoted without explicit permission provided that full
credit, including © notice, is given to the source.

Contact address: Professor Peter M Robinson, Department of Economics,
London School of Economics, Houghton Street, London WC2A 2AE,
e-mail: pm.robinson@Ise.ac.uk|



mailto:pm.robinson@lse.ac.uk

1 Introduction

A distinctive finding in the asymptotic theory of smoothed nonparametric estimation of probabil-
ity densities, conditional densities and regression functions is that the same first-order asymptotic
properties can hold for stationary weakly dependent observations, recorded at fixed, equally-spaced,
times, as for independent ones. In particular, precisely the same multivariate central limit theorem
holds for a vector of estimates of the function at finitely many fixed points. The limiting variance ma-
trix is diagonal, which is unsurprising in case of independent observations (as is seen on considering
the case of kernel estimates with a finite-support kernel) but less so in the dependent case. The fact
that asymptotic variances are unaffected by weak dependence contrasts with the typical experience
in parametric estimation. Intuitively, it is due to the local character of the estimate, which depends
principally on only a vanishing fraction of the observations; these will tend to be widely separated
in time and thus be virtually independent.

The first such central limit results, for kernel estimates computed from Markov sequences, were
obtained by Roussas (1967, 1969), who considered a univariate central limit theorem, and by Rosen-
blatt (1970, 1971), who went on to establish the asymptotic independence property. The same type
of result was then established for a-mixing processes by Robinson (1983), Rosenblatt (1985), then
for a variety of other mixing processes by various authors, and for linear processes by Chanda (1983).
Serial dependence is, however, liable to affect the goodness of the multivariate normal approxima-
tion in finite samples. Analytic results of Robinson (1986) in a simple case suggested that it can
significantly inflate variance in case of negative as well as positive dependence, so that a larger band-
width might be used under dependence in order to achieve comparable precision to that available for
a corresponding independent sequence. Under long range dependence, even first-order asymptotic
properties are considerably affected; estimates may or may not be asymptotically normal, and, if
they are, the limiting variance matrix of estimates at distinct fixed points can have unit rank (see
e.g. Robinson, 1991, Csorgo and Mielniczuk, 1995).

One of the notable features of the early work of Roussas (1967, 1969) was its discussion of
conditional probability density estimation for Markov processes. Indeed, notwithstanding the early
results of Parzen (1962) on univariate density estimates, and Cacoullos (1966) on multivariate ones,
we know of no earlier work which explicitly considered smoothed nonparametric conditional density
estimation even in the case of independent observations, though Rosenblatt (1969) is a roughly
contemporary reference in the latter case. Roussas (1969) considered the use of conditional density
estimates in estimating the transition distribution function of a Markov process and its quantiles (see
also Yakowitz, 1978). There have been a number of subsequent references on conditional density and
distribution function estimation under independence and various forms of dependence, but there are
some issues that seem worth of further discussion, especially in view of the potential value of the
topic in areas of current interest, such as in conditional quantile semiparametric estimation (see e.g.

Lee, 1996) or in studying the dynamics of stochastic volatility, where the ability to avoid moment



conditions on the underlying process is an advantage, in view of the long-tailedness of much financial
data.

In the following section, we introduce the kernel conditional density estimate (and consequent
estimates of conditional distribution function and quantiles) and consider its precise implementation,
with reference to the relative choices of bandwidths in the numerator (a bivariate density estimate)
and denominator (a marginal density estimate); two such choices have been stressed in the literature,
and we point out that one of these ensures that estimate integrates to one and has finite moments,
while the other does not. Section 3 provides asymptotic theory under mixing conditions, stress-
ing again the same two leading bandwidth choices; in particular we discuss asymptototic bias and
variance, optimal (minimum mean squared error and plug-in) bandwidth choice and central limit

theory.

2 Kernel Conditional Density Estimates

Let us consider a bivariate random variable (Y, Z), having absolutely continuous distribution function

with respect to Lebesgue measure. Then the conditional probability density function of Y given Z is

f(y,z)
flylz) = :
where f(.,.) is the joint probability density functions of (Y, Z) and f(.) is the density function of Z,
assumed positive at the point z. Given observations (Y;, Z;), i = 1,...,n, we estimate f(y | z) by
- fan(y, 2
Fosely | ) = Le222) (2.1)
fe(2)

where

fun(y,2) = LiK<y_Yi)I((’Z_bz"), (2.2)

nab ;= a
" 1 o "y
iz = %§1K(Z : ) (2.3)

where K is a bounded kernel function, integrating to one, and a = a,,, b = b, and ¢ = ¢, are positive
bandwidth sequences, which decay to zero as n — oo. For example, we have Y; = X1, Z; = X,
when the univariate sequence Xi,..., X, 11 is observed; then the conditional or predictive density
estimate of Roussas (1967) is a special case of (2.1). For general bivariate, possibly independent,
observations, the estimate of Rosenblatt (1969) is a special case of (2.1). Given (2.1) the conditional

distribution function can be estimated by, for example,

Py 2) = / Tl | 2)da



and, thence, conditional quantiles by Zabc(p, z), satisfying
Fape (Cm(p, z2) | z) =p, O0<p<l

Our unusual stress on the bandwidths a, b, ¢ in the notation fc, ﬁlb and anbc is deliberate, as the
literature employs different relative choices of a, b and ¢, and there are interesting issues pertaining
to their choice. The early estimate of Roussas (1967, 1969) took

o=

a=b=c2. (2.4)

This makes sense in that the numerator and denominator of (2.1) are then estimated with com-
parable precision, a property which we take for granted in another form of ratio kernel estimate,
the Nadaraya-Watson regression estimate. The construction (2.4) has also been used by Robinson
(1983), Rosenblatt (1985).
Another leading choice of a, b, ¢ is
a=b=c (2.5)

Now the denominator fAC is estimated more precisely than the numerator anb. However, (2.5) has two
desirable properties not shared by (2.4).

Property 1: F.(co | z) =1, for all z.
Property 2: If K is nonnegative, ﬁm(y | z) is bounded, and thus has finite moments of all orders.

Under (2.5), Property 1 is established by integrating (2.1) over y, and Property 2 by the inequality

~ 1 Z K (Z_TZZ) 1
faaa(y | Z)‘ < —supK (u) 55— < —supK (u).

a
i=1

(We have adopted the convention 0/0 = 1.) On the other hand, under (2.4)

- fal2)
Fabc X | 2)== 5
(0o | 2) B

which will converge in probability to one under reasonable conditions, but, for a > a2, i.e. a < 1

(as is true for large enough n) is greater than one when K is nonnegative and monotonic, while
Fana2(y | 2) need not be bounded, for example Fz (z) can be zero when faa(y, z) is non-zero, and need
not necessarily have moments. The failure of Property 1 has unpleasant implications for /C\(p, z), and
the failure of Property 2 may be associated with unstable behaviour. The construction (2.5) was
explored by Rosenblatt (1969), Masry (1989), Samanta (1989), Roussas (1991a), with a recursive
version in Roussas (1991b).



Rosenblatt (1985) considered
a:bzo(c%), as n — 0o, (2.6)

which includes (2.5) as a special case, showing that the asymptotic variance in the limiting normal dis-
tribution of nza {ﬁm(y | 2) — f(y | z)} is less under (2.6) than that of nza {]/C:maz (y|z)—fly| z)}
pertaining to (2.4) (because the asymptotic variance of the denominator density estimate only con-
tributes in the second case). On the other hand, these results entail conditions which ensure that
the bias is of sufficiently small order to permit the centring at f(y | z). Calculation of leading terms
of the bias of the conditional density estimates indicates that the contribution of the denominator
will be of smaller order under (2.4) than under (2.6), and thus (2.5).

We shall focus in the sequel on the construction (2.1), (2.3) with Roussas’(1967,1969) transition
function case in which (Y;, Z;) = (X, X;41),though extensions to more general Y;, Z; are readily
deduced. Further, we shall fix a = b throughout, though it is worth mentioning that generalizations
could be of interest. First, while the choice a = b is natural in case Y; = X1, Z; = X;, it need
not be for genuine bivariate observations Y;, Z;, which can have different scales. Notice here that so
long as b = ¢, Properties 1 and 2 will continue to hold. Second, the product kernel in (2.2) could be
replaced by a more general bivariate kernel L. Defining A to be a positive definite 2 x 2 bandwidth

fun =L (4 (070

N 2) — fA<y72)

matrix we have

For one class of L, we can write (2.7) as

y-Yi— 212( z—Z) z— 7
iy (L) (52).
n|A| ain — %2/6122 22
where a;; is the (7, j)th element of A (for example, when L is a bivariate normal density, we have

M = K). Then if M is bounded and as; = a, Properties 1 and 2 hold. Extensions to higher

dimensions, and to alternative forms of nonparametric estimation, such as local polynomials, can

also be considered.

3 Asymptotic Theory of Conditional Density Estimates and
Bandwidth Choice

We first provide a list of assumptions useful in asymptotic theory for the kernel conditional density
estimate given by (2.1)-(2.3) with (Y;, Z;) = (X;, Xi41). We shall only consider short range depen-
dent X;. As the discussion in the Introduction suggests, the literature indicates that a variety of
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assumptions on X;, in particular of Markov, mixing or linear type, will lead to the same type of first-
order asymptotic theory. Moreover various trade-offs are possible, involving these and the other
types of assumption involved, which concern marginal properties and the kernel and bandwidths.
Here we gather assumptions most similar to those imposed by Robinson (1983) and Roussas (1991a).

Assumption P: (i) The sequence of real-valued random variable { X;,7 > 1} is strictly stationary,
and the marginal distribution function of each X; is absolutely continuous (with respect to Lebesgue
measure), with continuous positive density function f(-).

(ii) For each ¢ > 2, the joint probability distribution distribution function of (X3, X;) is absolutely
continuous (with respect to Lebesgue measure), with continuous joint density.

Assumption M,: (i) The sequence {X;,7 > 1} is strong mixing (a-mixing), i.e.,
aj =supsup {|P(ANB) — P(A)P(B)|: Ae M" ,B ¢ M2} —0as j — oo.
t

(ii) The a— mixing coefficients a(j) satisfy > 22 v a; = o(N~') as N — oo.

Assumption Mg: (i) The sequence {X;,7 > 1} is a (Harris) positive recurrent Markov process
with a single ergodic set and no cyclically moving subsets, and is initialized from its invariant distri-
bution.

(ii) The sequence {X;,i > 1}, is absolutely regular (3-mixing), i.e. > 72, B(j) < oo, where

8(7) = [ sup
lg|<1
such that f;(-|x) is the conditional density of X;,; on X; = x;the S-mixing coefficients ((j) satisfy

22521 B() < oo
Assumption K: the kernel K (-) is a probability density function defined on the real-line such
that: (i) K is bounded and symmetric around zero; (ii) |u| K (u) — 0 as |u| — oo; (iii) [u?K (u)du <

/ 9)f5(l2) — F@dy| F(z)dz — 0 as § — oo, (3.1)

00.
Assumption B: max(a,c) — 0, n x max(a?,¢) — 0o as n — oo.
Assumption D: f is positive and has a continuous and bounded second derivative at z; f(-,-)

has continuous second partial derivatives at (y, z).

Remarks: (1) Assumptions P, M and D describe the dependence and marginal properties of X.
P and Mpg(i) are the same as Roussas’s (1991a) A1(i) (ii). We replace Roussas’s assumption A1(iii)
on p — mizing with p(j) = O(57") for v > 1 by 8 — mizing with ) %, §(j) < oo in Mpg(ii). By
Davydov (1973), for a stationary homogeneous Markov process, the definition of 5 — mizing (3.1) is

equivalent to:
B(j) = / |P/(z,-) — v ()|, v(dz) = 0as j — oo

where |-|, .= denotes the total variation norm of a signed measure; v(-) is the stationary invariant

var

measure; and P?(z, A) = Pr(Xy4; € A| X; = z), the j-step transition probability kernel. Under
Assumptions P and Mg(i), this definition is equivalent to that in Assumption Mg(ii). Moreover,

5t



Assumption Mg(i) implies that {X;} is stationary 3 —mixing, and hence a —mizing. In addition to
Mj(i), Roussas (1967, 1969) assumed condition (Dy) which is equivalent to uniform (¢—) mixing with
exponential decay. Roussas (1991a) relaxed the condition (Dy) to p — mixing with decay rate O(j7")
for v > 1. However, by Bradley (1986), for a stationary Markov process, either the ¢ —mizing or p—
mixing coefficient is identically one for all time lags or it decays exponentially. In general a —mizing
allows for more temporal dependence than g — mizing and p — mizing, which is why authors such
as Robinson (1983), Rosenblatt (1985), Masry (1989) and Bosq (1996) have assumed « — mizing.
However under Mg(i), o — mizing has the same decay rate as § — mixing, see e.g. Rosenblatt
(1985), Davydov (1973) and Bradley (1986). Another advantage of the 3 — mizing assumption
is that it automatically implies an assumption often used in asymptotic theory for nonparametric

density estimation based on other types of mixing processes:
iy, 2) = f(y)f(2)| S C < oo, forall j > La,yeR

where f;(-,-) is the joint density of (X7, X1;); see e.g. Roussas(1991a, Assumption A5(iii)), Masry
(1989) and Bosq (1996). For these reasons one might prefer Mg(ii) over other mixing assumptions,
given assumptions P and Mg(i). However, the Markov assumption Mg(i) is not really needed for
the results in this paper, though it does partially motivate interest in f(y|z). We shall only assume
that the stationary sequence {X;} satisfies P and M, or Mg. Notice that even though Mg(i) implies
M, (i), Mg(ii) may not imply M,(ii).

(2) Assumption K is the same as Assumptions A2 (i),(ii),(iii) of Roussas(1991a), and imposes no
serious practical restriction on the kernel.

(3) Assumption B is a minimal restriction on the bandwidth numbers for the central limit theorem
to hold.

(4) Assumption D is the same as Assumption A5 (i)(ii) of Roussas(1991a), and is again standard,
though it would be possible to obtain results under milder smoothness assumptions, or indeed under
stronger ones if Assumption K were relaxed to permit use of higher order kernels; in particular this
would affect the order of magnitude of the asymptotic bias, see Lemma i below.

We first discuss the asymptotic bias AB(y, z), by which we mean the leading terms in the deviation
of the ratio of expectations of numerator and denominator of faac(y |z) from f(y|z);further to our

remarks of the previous section, there is no presumption that the expectation of ﬁmc(y |2) exists.
Define

_ JwEwdu f(y,2)  9f(y,2)

Bl(y7z) - 2f<2) { ayg 022 }7
Baly2) = LUy 1 TLE

Lemma 1 Under Assumptions P, K, D and a,c — 0 as n — oo, we have:
AB(y,z) = a’By(y,2) — *By(y,2) + 0 (max{a2, 02}) )
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Hence for case (2.4) a = b = ¢z, we have:
AB(:L‘, y) = a2Bl(ya Z) + 0(&2), (32)
and for case (2.5) a = b = c, we have:

AB(z,y) = a*{B1(y, 2) — Ba(y, 2)} + o(a?). (3.3)

This is proved by a standard Taylor series argument, as in Rosenblatt (1969, 1985), Robinson
(1983).
We next consider AV (y, z), the asymptotic variance of faac(y |2), where this refers to the variance

in the limit distribution, and makes no presumption that faac(y |2) has finite variance. Define

flyl)?
Vi(y, z :/K w)3du ,
V- , 2 — /KU2dU 2f<y|2)’
au, . f(y|2)*
=2 [ K(uK(— .
Vil za.0) =2 [ KK )alls
Lemma 2 Under Assumptions P, M, or Mg, K, B and D, we have:
_Vily,2) | Valy,2)  Vs(y.z.a,0) 1
AVIy,2) = ne | na? ne o % min{a?, c} )
If, further, either
a=0(c'?), ¢=o(a), (3.4)
or
a = 0(c), (3.5)
then Vi) Valy.) .
A _Vily.2) | Valy,z ‘ .
Viy,2) ne T nar 0\nx min{a?, ¢} (3.6)
Hence for case (2.4), a =b = ¢3, we have
_Vily,2) | Valy, 2) RS
AV(y, Z) - na2 + TLCL2 +o TLCL2 ’ (37)

while for case (2.5), a = b = ¢, we have

AV(y, ) = w2 (i) | (3.9)

na?



This is proved via a standard linearization argument (see Roussas (1967,1969), Rosenblatt (1969),
along with the use of the a-mixing and other assumptions to show that the outcome is identical to
that when the X; are independent observations, as in Robinson (1983). The fact that V3(y, z, a, ¢) is
absent in (3.6) when we impose (3.4) or (3.5) follows from a dominated convergence argument. Note
that (2.4) implies (3.4) and (2.5) implies (3.5).

Comparing with case (2.4), the variance is always smaller larger in case (2.4) because the contri-
bution to variance from the denominator is negligible. AS indicated by Lemma 1, however, the bias
may be more or less. For example, suppose that the X ; are independent standard normal random
variables. Then in case (2.5), the variance is proportional to ¢(y)/¢(z), where ¢ is the standard
normal density function, while the bias is proportional to (y* — 1)¢(y). In case (2.4), the variance is
proportional to [1 + ¢(y)]#(y)/P(z), while the bias is proportional to (y* + 2% — 2)¢(y). Note that
in case (2.4) the bias increases as z increases and at a quadratic rate, while in case (2.5) the bias is
bounded in y and does not depend on z. Therefore, it is easy to find cases where (2.5) is better than
(2.4) and vice-versa. The conclusion is that there is no uniform ranking in terms of asymptotic mean
squared errors.

It is possible to apply Lemmas 1 and 2 in bandwidth selection. Denote by AMSE(y,z) =
AV (y,z) + AB(y, 2)* the asymptotic mean squared error of faac(y |z). Then in case (2.4) a = b =
c'/? we have from (3.2) and (3.7)

Vi(y, z) + Va(y, 2)

AMSE(y,z) = —

+a*By(y, 2)*.

Thus by elementary calculus the a minimizing AMSE(y, z) in this case is

[(Vi(y,2) + Va(y, 2) M
“(y’z)‘{ By, ) } |

On the other hand in case (2.5) a = b = ¢,we have from (3.3) and (3.8)

AMSE(y,z) = M +a'{Bi(y, 2) — Ba(y, 2)}?,

na?

so that the a minimizing AMSE(y, z) is

(. 2) = Va(y, 2) e
:2) {2n[Bl<y,z>—Bz<y,z>P} |

Note that the optimal bandwidth is in both cases of order n~'/, unlike the n~'/° rate familiar
from univariate density estimation. In practice the B;(y, z) and V;(y, z) might be replaced by con-
sistent estimates in order to construct feasible, approximately optimal bandwidths. Our existing
estimates faac(y |z) and fAc might be used for this purpose, along with kernel estimates of d* f(z)/dz?,

f(y,z)/0y* and 9 f(y, z)/9=>.



In practice it may be desired to estimate f(y|z)over a range of y and z values, and to use a
global bandwidth. Considering first a bandwidth that is global with respect to y but pointwise with

respect to z, we might consider the asymptotic integrated mean squared error
AIMSE(z) = /{AV(y, 2) + AB(y, 2)*}dy.

In case (2.4) a = b = c'/? this gives the optimal bandwidth

([ ilys2) + Va(y, )] dy | M
a(z)_{ 2n [ Bi(y, 2)%dy } '

(3.9)

In case (2.5) a = b = c it gives instead

1/6
a(z) = [ Va(y, z)dy
= {Q”I[Bl(y, z) — Bs(y, Z)]2dy} ‘ (3.10)

Notice that these formulae can be slightly simplified due to the identity

[ Vatv vy = ([ KGwpauy s (o)

The remaining integrals might be approximated by summations, possibly over data points.

Deriving optimal bandwidths that are global with respect to both y and z is problematic as
AMSE(y, z) need not be integrable with respect to z. One solution is to use the above formulae
evaluated with, say, z replaced by the sample mean or median of X;. The computations are still
somewhat onerous, however, while if smoothed nonparametric estimates are used the precision of the
approximately optimal bandwidths is in doubt.

A solution is to employ instead a ’pilot’ parametric distribution in (3.9) and (3.10), in the spirit
of Silverman(1986). He considered univariate density estimation from independent observations; our
case of conditional density estimation from observations that are likely dependent is more complex.
Suppose we proceed as if X is a stationary Gaussian process with mean p,variance o2 and lag-one

autocorrelation p (Silverman (1986) took p = 0 in his univariate density cae). Then the density of

_ 1 (z —p)?
f(Z) - (277)1/20' exp {_ 252 ’
while the joint density of (X;, X;;1) would be given by

X; would be given by

fly,2) = 27T0_2(11_ I eXp{—m [(y = 1)* = 2p(y — ) (2 — ) + (2 — w)*] }.




It follows from routine calculation that

- [ 2K (u)du 1+ ")y — p)? (y —p)?
Bi(y,p) = (47)1203(1 — p?)3/2 { (1—p2)o? }exp {_m} )
B J K (u)du (y —p?
By(y,n) = — (477)1/203(1 — p2)1/2 exp {_202<1 — p?) } )
[ K(u)du (y — p)?
Vi(?/aﬂ) - (27‘(’)1/20'<1—,02) eXp{_O_Q(l_p2)}:

Valy,p) = {/K(u)2du}2(27r)1/20

Thence, after lengthy calculation we deduce from (3.9) that under (2.4) a = b = ¢'/?,an optimal
bandwidth (at z = u) based on the Gaussian prescription is
w2 1/6
s = [ B0 P o) Kl + A | -
a(p) = : :
n(3pt — 2% + 11) [ [ w2K (u)du)”
while under (2.5) a = b = ¢ we have from (3.10)
1/6
2 — o [ 167V ([ K] 1 (3.12)
a(p) =0 : :
n(15p* — 50p2 + 39) [ [ UQK(u)du}2

Of course the intention is that these be used without the Gaussianity assumption, in which case they
are not optimal, though they do have the optimal raste of convergence, adapt naturally to scale at
least, and may hopefully be useful when the actual process is not close to being Gaussian. Notice
that both formulae (3.11) and (3.12) are invariant with respect to p, but depend on the unknown o

and p, for which we may insert the sample standard deviation and lag-1 sample autocorrelation

n+1
1

7= Ly (-

n<

1
n—1 4
p = —2 )
g

_ n+1
respectively, where X = (n + 1)7'>. Xj; due to the n'/?2— consistency of & and » (under the
i=1

assumptions listed above along with finite fourth moments of X;) the consequent plug-in bandwidths
should be fairly stable in moderate samples, even though they are not in general approximately
optimal. A simplified version, suitable for independent X;, puts p = 0 in (3.11) and (3.12).

We next consider central limit theory.

Theorem 3 Let Assumptions P, M, or Mg, K, B and D be satisfied, and a,c > 0 be such that:

lim [n x min{a? ¢} x max{a*,¢*}] =0 (3.13)

n—oo
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2

lim min(1, %) + lim min(1, a—) >0 exists.
n—00 a n—00 c

Then we have

v/ x min{a?, c} (faac(y 2) — f(y !Z)) = N (0,V(y,2)),
where

J(gzl;)/K2(u)du[min{1,lim%}/Kz(u)du—i—min{1,1i£11%}f(3/|2) ]

n a

V(y,2) = !

Hence, with B simplified to na?2 — oo, and (3.18) to na® — 0, we have for case (2.4) a =0b = c/?,
Vid? (Fuaey12) = F(y]2)) = N (0, Valy. 2) + Valy. )
and for case (2.5) a =b=c,

Ve (Fuely|2) = £y 1)) = N (0, Valy, ).

The theorem is proved by applying Robinson (1983, lemma 7.1) in the a—mixing case, and in
the S—mixing case by proceeding similarly but employing results like those of Viennet (1996) . As
usual, the asymptotic variances are of the same type as those in case of independent observations
in that there is no contribution from ’covariance’ terms, though of course in the present instance
if we impose the independence by writing f(y|z) = f(y), there is some slight simplification in our
asymptotic variance formulae. As in Robinson (1983) we can consistently estimate the limiting
variances by inserting smoothed nonparametric estimsates of the unknown components, in order
to carry out pointwise inferences. These are useful because, as in that reference and Rosenblatt
(1970,1971), it is possible to extend the result to a multivariate central limit theorem, indicating

asymptotic independence of the v/na? (faac(yk 12) — f(yk |z)> across finitely many distinct fixed
points y1, o, -...
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