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Abstract A decision maker offers a new product to a number of potential adopters.
He does not know the value of the product, but adopters receive some private informa-
tion about it. We study how the decision maker may influence learning among adopters
by manipulating the launch sequence when both the decision maker and adopters can
learn about the value of the product from previous adoption decisions. The conditions
under which the decision maker prefers a sequential launch to a simultaneous launch
depend on adopters’ prior beliefs about the value of the product and adoption costs.
We derive the decision maker’s optimal launch sequence and study how it endogenizes
informational herding.
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1 Introduction

Anecdotal evidence shows that people’s decisions are often influenced by others’
choices. Moviegoers are easily attracted to movies with big opening box offices; a
farmer’s decision to adopt a new technology is affected by the number of early adop-
tions; in presidential elections, a “momentum” effect is well documented. The fact
that later adopters may herd on early adopters’ choices posts a natural question to a
decision maker who wants to maximize the total number of adoptions. Should he ask
adopters to decide simultaneously or sequentially? If a sequential launch is preferred,
what is the optimal launch sequence? The decision maker could be a firm introducing
a new product to many markets, a government promoting a new agriculture technol-
ogy among farmers, or a health care administrator promoting a new procedure among
doctors.

This paper studies how a decision maker should optimally introduce a new product
to potential adopters in the presence of herd behavior, resulting from social learning.
Adopters have a common value but each one receives private information regarding
the unknown common value. Early adopters’ decisions are based on their private infor-
mation. As a result, subsequent adopters may infer early adopters’ private information
from their choices. When public information swamps an adopter’s private information,
all the remaining adopters herd on the same action.

Initiated by Banerjee (1992) and Bikhchandani et al. (1992), most existing social
learning literature studies how a herd naturally arises when adopters make deci-
sions sequentially in an exogenous order. We argue that a decision maker can
influence learning among adopters and hence the formation of a herd by manipu-
lating the launch sequence. For example, when launching a new movie, a movie
studio can choose between a national release or a sequential release; a govern-
ment promoting a new technology among farmers can ask the farmers to make
the adoption decisions at the same time or sequentially. Furthermore, the deci-
sion maker can control the amount of information revealed in a sequential launch.
For instance, very little information about the product will be revealed if only one
adopter is asked to make a decision before all others. By contrast, if the decision
maker asks a hundred adopters to make decisions in the first period, a signifi-
cant amount of information about the product will be revealed to the remaining
adopters.

In our model, the value of the product is unknown to adopters and the deci-
sion maker. This is because the value of the product represents the match between
adopters’ tastes and the underlying characteristics of the product. Each adopter
receives a signal regarding the common value. The signal remains an adopter’s
private information while his adoption decision becomes public information. The
decision maker decides how many offers to make in each period contingent on the
history.

The optimal launch strategy depends on the prior belief that the product is of high
value and the adoption cost faced by potential adopters. We say that the product is
promising when the prior belief exceeds one-half but is not too close to unity; it is
unpromising when the prior belief is smaller than one-half but is not too close to zero.
The decision maker’s optimal strategy is summarized as follows: first, the decision
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maker is indifferent between a sequential launch and a simultaneous launch when the
prior belief is either extremely high or extremely low. Second, the decision maker
prefers a sequential launch to a simultaneous launch when the product is promising or
when it is unpromising but cheap to adopt. Finally, the decision maker prefers a simul-
taneous launch to a sequential launch when the product is unpromising and costly to
adopt.

When the prior belief is extreme, the decision maker cannot increase the number
of adoptions by manipulating the launch sequence. This is because in a sequential
launch, early adopters’ private information is dominated by the extreme prior belief,
and hence, their decisions are always in accordance with the prior belief. Now that
later adopters do not learn any additional information in a sequential launch, their
decisions will be the same as in a simultaneous launch.

By contrast, launch strategies will make a difference when the prior belief is not
extreme. In this case, early adopters’ decisions are based on their private informa-
tion. The additional information conveyed by early adopters’ decisions may change
later adopters’ minds. As a result, later adopters’ decisions in a sequential launch
may differ from those in a simultaneous launch. To convince the remaining adopt-
ers that the product is worth taking, the decision maker needs to ensure that enough
adopters have adopted the product, but this depends on whether the product is prom-
ising, that is, whether the prior belief that the product has a high value is greater than
one-half.

When the product is promising, the decision maker will always launch it sequen-
tially despite a large demand in a simultaneous launch. This is because early launches
are more likely to deliver convincing good news and hence induce later adopters with
bad signals to adopt the product as well. Essentially, when launching a promising
product, the decision maker wants adopters to learn from each other and make more
informed decisions. By the law of large numbers, the more offers the decision maker
makes today in a sequential launch, the higher the chance that an adoption herd will
occur tomorrow. However, since fewer adopters are left, the benefit from an adoption
herd is smaller. The optimal number of offers made in a given period depends on the
trade-off between a larger chance of an adoption herd tomorrow and a smaller benefit
from an adoption herd.

When launching an unpromising product, the decision maker will offer it simulta-
neously to all adopters if the adoption cost is high; he will offer it to one adopter first
and then to all the remaining adopters if the adoption cost is low. In other words, the
decision maker either does not allow adopters to learn from each other’s decisions at
all or allows them to learn the minimum amount of information. This is because early
launches are more likely to deliver bad news and trigger a rejection herd. Therefore,
the decision maker does not want to reveal too much information. It is worth notic-
ing that a rejection herd will never arise when the product is unpromising due to the
decision maker’s cautious launch strategy. This is in stark contrast with the prediction
of the herding literature with an exogenous launch sequence. There, a rejection herd
occurs with a positive probability.

Our model sheds some light on a firm’s new product launch strategy when the
price of the product is fixed. It fits situations where the price is regulated, or it is too
costly to adjust price frequently. Examples include the pharmaceutical industry and
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the motion picture industry.1 In the motion picture industry, blockbusters are often
released nationally while good artistic movies are often released first in a few big cit-
ies and then rolled out to other cities. The movie Borat (2006) was released in a limited
fashion and soon topped the box office. Bruce Snyder, Twentieth Century Fox Presi-
dent of Distribution, commented on the limited release of Borat: “Not only is there an
existing audience that cannot wait to see the film, what we have here is a movie with
an incredible amount of playability. Through a tiered release pattern, we’ll be able to
build a huge amount of momentum.”2 Our prediction is consistent with Bruce Snyder’s
comment and provides one explanation for why many well-anticipated products are
released sequentially even when a sequential launch involves a possible waiting cost
and involves the risk of losing customers to rivals.

One interesting implication of the model is that a promising product may have a
higher failure rate than an unpromising product. When launching a promising product,
the decision maker is confident enough to reveal a lot of information in an attempt to
induce an adoption herd. However, if it turns out that very few people adopt the product
at the early stage, the decision maker will be trapped in a rejection herd. By contrast,
when launching an unpromising product, the decision maker will never reveal much
information for fear of a rejection herd. Hence, remaining adopters will never hear
bad news that is damaging enough to kill the product.

Our model also generates the following implications. First, a promising product has
a longer launch duration than an unpromising product. Second, the decision maker
will reveal more information during the launch of a promising product than during
the launch of an unpromising product. Third, when adopters’ signals are more pre-
cise, the decision maker is more likely to launch the product sequentially to influence
later adopters’ decisions. And finally, if the signals drawn by adopters have different
precision levels, the decision maker will offer the product first to those with more
precise signals.

The paper is organized as follows. Section 2 discusses the related literature. Sec-
tion 3 introduces the model. Section 4 illustrates the basic idea with a simple model.
Section 5 shows the main results and discusses related issues. Section 6 concludes.
All proofs are gathered in the Appendix.

2 Related literature

Bikhchandani et al. (1992), and Banerjee (1992) are the pioneer works in the social
learning literature. They show that herds can be rational but rational herds may con-
tain very little information. In their models, adopters make decisions in an exogenous
sequence. By contrast, we allow the decision maker to determine the launch sequence.

Bose et al. (2008, 2006) extend the literature of social learning by allowing a
monopolist to affect the information aggregation over time by changing the price.
In their model, the monopolist faces the trade-off between current rent extraction and

1 Movie tickets are priced almost the same across all regions within the United States.
2 “Borat Tiered Theatrical Release Maximizes Playability With Core Audience”, Movie City News, Oct.
23, 2006.
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future information screening. We instead endogenize the sequence in which consumers
arrive. The seller’s trade-off in our model is between the public information generated
by earlier adoptors and the profit gain (loss) from those earlier adopters due to their
less-informed decisions.

This paper is related to Sgroi (2002) who studies how a firm can influence the
herd by choosing the number of consumers to serve in the first period. Our paper
differs from his in two ways. Sgroi studies a case where the seller knows the quality
of the product while consumers learn it over time. By contrast, in our model, both
the decision maker and adopters learn the value of the product over time. Second, in
Sgroi’s, the firm can only affect the herd in the first period so that the model constitutes
a static optimization problem. We allow the decision maker to influence the herd in
each period, contingent on early adopters’ decisions. To the best of our knowledge,
this is the first paper to study how a decision maker can influence the herd through the
sequencing decision in a dynamic setting. The dynamic structure allows us to generate
the decision maker’s equilibrium path, thus, providing richer predictions.

In a very recent paper, Bhalla (2008) extends our model and studies how a monopo-
list should introduce a product by choosing both price and sequencing. With a flexible
price, Bhalla reports a launch pattern similar to ours. Nevertheless, there are three
differences between her results and ours. First, we find the decision maker should
launch the product simultaneously when the prior belief is low but not extremely low
while Bhalla shows the firm should release the product sequentially. This is because
with a fixed price, the decision maker bears a high risk of a rejection herd by launching
an unpromising product sequentially. By contrast, in Bhalla, the firm does not bear
the risk because in case of a failed early launch, it can reduce the price to reflect the
updated value and sell the product again. Second, our model predicts that a promising
product’s launch pattern is drastically different from an unpromising product whereas
Bhalla does not differentiate the monopolist’s launch strategy based on whether the
product is promising or not. Third, due to the decision maker’s strategy, in our model,
a rejection herd may occur with a promising product but will never occur with an
unpromising product. So, a promising product may have a higher chance of a com-
plete failure than an unpromising product. In Bhalla, regardless of whether the product
is promising or not, the firm can always prevent a rejection herd by reducing the price.

Bar-Isaac (2003) studies a dynamic learning model where a seller is privately
informed about the quality of the product whereas buyers learn the quality of the
product over time. By contrast, in our paper, buyers are privately informed about the
quality of the product and both the seller and buyers learn the quality of the product
over time. In our model, buyers’ willingness to pay for the low-quality product is zero.
Hence, if the seller is informed about the quality of the product, the low-quality seller
will always mimic the launch strategy of the high-quality seller. So, both types of
sellers will always launch the product sequentially. This is different from Bar-Isaac’s
result that a good seller will always sell the product but a bad seller may choose not to
sell the product when reputation falls below some threshold. The driving force behind
the difference is that we assume zero production cost whereas Bar-Isaac assumes a
positive production cost. Another departure from Bar-Isaac is that the seller in our
model not only decides whether to trade in each period but also decides how many
offers to make in each period.
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Other articles that model how a monopolist maximizes profit by manipulating the
information available to consumers include Ottaviani and Prat (2001), Gill and Sgroi
(2008a,b), Taylor (1999), and Bergemann and Valimaki (1996, 1997, 2000). We extend
this strand of literature by studying how a decision maker influences learning among
adopters by choosing the launch sequence optimally.

Bala and Goyal (2001) and Coopland (2007) study how the survival and adoption
of technologies depend on heterogeneous beliefs and social learning (Coopland 2007)
as well as local interaction between agents (Bala and Goyal 2001). However, they
completely abstract from any strategic decision by the decision maker.

3 The model

A risk-neutral decision maker offers a new product to N potential adopters and
wishes to maximize the total number of adoptions. The adopters are indexed by
i ∈ {1, 2, ..., N }. The decision maker considers offering the product to these adopters
over time, which we take as discrete. The index t ∈ {1, 2, ...} denotes the period in
which the decision maker may offer the product. The decision maker will offer the
product to an adopter at most once. If the product is offered to adopter i , the adopter
then decides whether to take the product.

An adopter’s cost of adoption is fixed at c, which is commonly known. 3 Let nt , with
nt ∈ {0, 1, 2, ..., N }, denote the number of offers the decision maker makes in period t .
The decision maker chooses nt in period t . For example, he may offer the product to
adopters 1 to 3 in period 1 and then to adopters 4 to N in period 2. Alternatively, the
decision maker may offer the product to one adopter in each period.

The value of the product v is either low or high, v ∈ {L , H}. Without loss of gen-
erality, we let L = 0 and H = 1. The value v is unknown to the decision maker and
adopters. The value may represent the match between the underlying characteristics of
the product and adopters’ tastes. The decision maker does not know adopters’ tastes,
and adopters do not know the underlying characteristics of the product. In period t ,
the public belief that the product has a high value is λt , with λt ∈ (0, 1). An adopter
adopts at most one unit of the product. His utility is v − c if he takes the product and 0
otherwise.

When the product is offered to adopter i , a random signal si is generated and
received by this adopter. Signal si remains adopter i’s private information. Condi-
tional on the true value v, signals received by different adopters are independent
and identically distributed. Let si ∈ {L , H} be the possible values of the signal,
where si = L indicates a “bad” signal while si = H indicates a “good” signal,
respectively:

Prob(si = H |v = 1) = Prob(si = L|v = 0) = q,∀i,

3 In the context of new technology adoption, the cost is the value of the existing technology. In the context
of a firm selling a new product, the cost represents the fixed price of the product.
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where q ∈ (0.5, 1). That is, when adopters receive signal H , the value of the product
is more likely to be high than when they receive signal L . The parameter q is com-
mon knowledge and is called the precision of a signal. Note that q does not depend
on adopters’ identities. We will discuss what happens when adopters’ signals vary in
precisions in Sect. 5.

The sequence of events in period t is as follows. First, the decision maker and
the remaining adopters observe the decision maker’s previous decisions including
how many offers are made and the number of adoptions in each previous period.
Second, the decision maker decides nt , the number of offers to make in period t .
Third, if the decision maker offers the product to adopter i , this adopter receives a
private signal, si , about the value of the product and he decides whether to take the
product.

An adopter will make a decision at most once, and therefore, his decision rule is
very simple. When he is offered the opportunity to adopt the product, his decision is
a function of the public belief in that period and his private signal. The adopter will
adopt the product if and only if his posterior belief is greater than or equal to the cost
of adoption.

The decision maker can observe everything that happened in previous periods, but
in equilibrium, his strategy bases only on the public belief and the number of the
remaining adopters in the current period. Let n∗(λt , Nt ) denotes the decision maker’s
equilibrium action in period t , and let V (λt , Nt ) denote the decision maker’s value
function. Given adopters’ strategies, n∗(λt , Nt ) maximizes the expected number of
adoptions.

We make the following tie-breaking rules. First, when the decision maker is indif-
ferent between offering the product to an adopter now or in the future, he offers it now.
Second, the decision maker will not offer the product to an adopter if he will reject
the product. The former assumption can be justified by a small waiting cost for the
decision maker, and the latter assumption can be justified by a small cost of making
the offer.

We define some notation here. Given a prior belief λ, adopter j’s posterior belief
after receiving a bad signal is

λL(λ) ≡ Pr(v = 1|λ, s j = L) = λ(1 − q)

λ(1 − q) + (1 − λ)q
. (1)

Similarly, the adopter’s posterior belief upon receiving a good signal is

λH (λ) ≡ Pr(v = 1|λ, s j = H) = λq

λq + (1 − λ)(1 − q)
. (2)

Figure 1 characterizes an adopter’s posterior beliefs as functions of his prior belief.
The concave curve represents λH (λ), and the convex curve represents λL(λ). Because
the value of the product is v ∈ {0, 1}, the adopter’s expected value of the product after
receiving a good signal is λH (λ) and his expected value of the product after receiving
a bad signal is λL(λ).
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Fig. 1 Posterior beliefs

4 An example with two adopters

In this section, we use a simple example with two adopters to illustrate when the
decision maker prefers a sequential launch to a simultaneous launch, and if so, how
much he gains by a sequential launch. The decision maker’s launch strategy critically
depends on adopters’ prior beliefs and adoption costs.

In the example, we drop the subscript t . Let λ denotes the prior belief. The discus-
sion is divided into four cases according to the level of the prior belief (see Fig. 2).
The cases are ordered by extremely pessimistic adopters (λ < λ), pessimistic adopters
(λ < λ < c), optimistic adopters (c < λ < λ̄), and extremely optimistic adopters
(λ̄ < λ). The decision maker will launch the product sequentially, i.e., encourage
learning among adopters, only when adopters are optimistic about the product.

To begin, we define two threshold beliefs

λ̄ ≡ cq

cq + (1 − c)(1 − q)
, (3)

λ ≡ c(1 − q)

c(1 − q) + (1 − c)q
. (4)

Fig. 2 An example with two adopters
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At belief λ, an adopter is indifferent between taking and rejecting the product upon
receiving a good signal;4 at belief λ̄, an adopter is indifferent between taking and
rejecting the product upon receiving a bad signal.5

No launches (λ < λ): When adopters are extremely pessimistic, the decision maker
will never launch the product. At the prior belief λ, an adopter is indifferent between
taking and rejecting the product upon receiving a good signal, i.e., λH (λ) = c. Since
the posterior belief λH (λ) increases in the prior belief, when an adopter’s prior belief is
below λ, he will not take the product even if he receives a good signal, i.e., λH (λ) < c
(see Fig. 1). Hence, the decision maker’s payoff from a simultaneous launch is zero.

In a sequential launch, the first adopter will always reject the product. The second
adopter therefore cannot infer any information from the first adopter’s decision and
will make the same decision as his predecessor. So, the decision maker’s payoff from
the sequential launch is also zero. Given the tie-breaking rule, the decision maker will
not launch the product.

Preventing a rejection herd (λ < λ < c): Pessimistic adopters think that the product
is not worth adopting before receiving any additional information. When the prod-
uct is offered to an adopter, he will take it if and only if his signal is good, i.e.,
λL(λ) < c < λH (λ) (see Fig. 1). The decision maker prefers to launch the product
simultaneously to prevent a rejection herd. In fact, the information conveyed by the
first adopter in a sequential launch could only hurt the decision maker.

In a sequential launch, at best, the second adopter will observe an adoption by the
first adopter and hence infer that he receives a good signal. A good signal, however,
is not strong enough to convince the second adopter to adopt the product if his own
signal is bad. Because adopters’ signals are equally precise, opposite signals cancel
out each other6, and hence, the posterior belief remains the same as the prior belief.
By contrast, an unsuccessful launch in the first period will trigger a rejection herd. If
the first adopter rejects the product, the second adopter will reject it as well even if his
own signal is good.

In particular, the decision maker loses q(1 − q) from a sequential launch, where
q(1 − q) is the probability that the first adopter receives a bad signal and the second
adopter receives a good signal. Notice, the loss from a sequential launch decreases
in the precision of the signal. As the precision of the signal increases, it is unlikely
for the two adopters to receive conflicting signals; therefore, the chance of a rejection
herd in a sequential launch becomes smaller.

Seeking an adoption herd (c < λ < λ̄): If adopters are optimistic, they think the
product is worth adopting before receiving any additional information. Again, an
adopter will take it if and only if his signal is good (see Fig. 1). In this case, the
decision maker will launch the product sequentially to seek an adoption herd.

4 λ is derived by setting expression (2) to c.
5 λ̄ is derived by setting expression (1) to c.
6 λL (λ) = λ(1−q)

λ(1−q)+(1−λ)q , λH (λL (λ)) = λL (λ)q
λL (λ)q+(1−λL (λ))(1−q)

= λ.
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The analysis is similar to the case of pessimistic adopters. A sequential launch
differs from a simultaneous launch only when the first adopter receives a good signal
while the second adopter receives a bad signal. In this case, the good news conveyed
by the predecessor’s adoption will change the second adopter’s mind and convince
him to adopt the product as well —a little more good information will trigger an adop-
tion herd. By contrast, a rejection by the first adopter is not bad enough to trigger a
rejection herd. If his private information is favorable, the second adopter will still take
the product.

Successfully Capturing All Adopters (λ̄ < λ): When adopters are extremely opti-
mistic, they will take the product regardless of their private signals. The argument is
similar to the case of extremely pessimistic adopters. Given the tie-breaking rule, the
decision maker will launch the product simultaneously.

While the two-adopter example illustrates the trade-off between sequential and
simultaneous launches, new issues arise with more than two adopters. With three or
more adopters, the decision maker’s strategy is richer. He may find it optimal to offer
the product to more than one but fewer than all adopters, choosing an interior solution
to control the information revealed to the remaining adopters.

5 The equilibrium

Now, we analyze the decision maker’s equilibrium strategy in the general case when
there are N adopters, where N > 2. When there are just two adopters, the decision
maker can only decide whether to release information. The general case allows us
to study how much information the decision maker would like to reveal during a
sequential launch.

We call a product unpromising if λ < λt < 1
2 and promising if 1

2 < λt < λ̄.
Hence, the decision marker’s strategy is based on the following intuition: the adopters
being optimistic or pessimistic determines whether one good (bad) signal is sufficient
to trigger an adoption (rejection) herd. Differently, whether a product is promising
determines whether allowing learning, i.e., offering the product to many adopters in
a single period, is more likely to convey good news or bad news about the quality of
the product to future adopters.

The decision maker’s equilibrium action in period t depends on the public belief
λt and the number of remaining adopters Nt . We denote the decision maker’s equi-
librium action in period t by n∗(λt , Nt ). The decision maker’s choice in period t will
determine the number of remaining adopters and the distribution of the public belief
in period t + 1. Hence, we can derive n∗(λt+1, Nt+1) accordingly.

Proposition 1 The equilibrium strategy, as a function of the public belief and the num-
ber of remaining adopters, is given by the following table, where n∗

e and n∗
o denote

even and odd integers (Table 1).

In the model, adopters make decisions at most once. When the product is offered
to an adopter, his decision does not depend on the number of the remaining adopters.
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Table 1 Equilibrium action in period t

Extremely pessimistic Pessimistic Optimistic Extremely optimistic

(λt < λ) (λ < λt < c) (c < λt < λ̄) (λ̄ < λt )

Unpromising 0 Nt 1 Nt

(λ < λt < 1
2 )

Promising 0 n∗
e < Nt n∗

o < Nt Nt

( 1
2 < λt < λ̄)

Hence, in period t , the adopters will always reject or take the product if the public
belief is below the threshold λ defined in expression (4) or above the threshold λ̄

defined in (3), respectively.7

If the product is promising, it is likely that its true quality is high. Hence, the deci-
sion maker believes an adoption herd will occur almost surely if he makes sufficient
many offers in the current period. This also allows the decision maker to minimize
the odds of a rejection herd, i.e., minimize the risk that future beliefs are determined
by few unlucky draws. The increase in the chance of an adoption herd bears a cost.
The more offers the decision maker makes today, the fewer adopters are left. So, the
benefit from an adoption herd is smaller. The actual number n∗(λt , Nt ) depends on
this trade-off. As a consequence of the decision maker’s strategy, the launch duration
of a promising product is at least two periods.

By contrast, if the product is unpromising, allowing adopters to learn from each
other will most likely convey bad news about the quality of the product. Hence the
decision maker prefers to avoid learning. In particular, if the product is unpromising
and adopters are pessimistic, the decision maker’s optimal strategy is to suppress any
information disclosure and launch the product simultaneously to all adopters. This is
because in a sequential launch, only very strong good news from early launches can
trigger an adoption herd but mild bad news is damaging enough to trigger a rejection
herd. Because the product is unpromising, the latter is more likely to happen. The deci-
sion maker therefore will not risk revealing any information, and the product launch
lasts only one period.

However, if adopters are optimistic, the decision maker will find it optimal to launch
the product to one adopter first and to the remaining ones subsequently. The sequential
launch does not aim to favor learning among future adopters (after all it is likely that
adopters will learn bad news about the product). Rather, it aims to trigger an adoption
herd in the lucky event in which the first adopter happens to receive a good signal.8

Given that adopters believe that the product is worth to adopt ex ante, offering the
product to only one adopter in period t is not going to trigger a rejection herd but may

7 The analysis is the same as in the example with two adopters.
8 In this case, the sequential launch is a way used by the decision maker to favorably manipulate adopters’
beliefs.
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trigger an adoption herd with a small chance.9 The launch duration is at most two
periods. Specifically, if the first launch fails, the public belief is updated downward to
the range (λ, c). The decision maker will therefore launch the product simultaneously
to the remaining adopters to prevent them from hearing more bad news. Whereas in
case of a successful first launch, the product will be offered to and purchased by all
remaining adopters.

Corollary 1 When the product is unpromising, an adoption herd may occur during
the launch whereas a rejection herd will never happen. Both an adoption herd and a
rejection herd may happen during the launch of a promising product.

By proposition 1, when an unpromising product is launched to optimistic adopters,
an adoption herd occurs if the first adopter takes the product. The decision maker
will not risk revealing too much information and hence will never be trapped in a
rejection herd. This result is in sharp difference from Bikhchandani et al. (1992). In
Bikhchandani et al. when the sequence is fixed exogenously, either a rejection herd or
an adoption herd may occur with a positive probability. In our model, an unpromis-
ing product will never be trapped in a rejection herd because of the decision maker’s
cautious launch strategy.

Contrary to the launch of an unpromising product, when launching a promising
product, the decision maker is confident to reveal a lot of information to adopters by
making many offers in a single period. Naturally, an adoption herd may happen. But
a rejection herd may also occur if the decision maker is unlucky enough to offer the
product to many adopters who turn out to receive bad signals. Corollary 1 shows that
a promising product may have a higher chance of suffering a complete failure than an
unpromising product because of the decision maker’s risky launch strategy.10

Based on the above description, we can summarize the dynamics. An unpromising
product is launched sequentially only if adopters are optimistic. In this case, a suc-
cessful first launch will trigger an adoption herd. If the first launch fails, the product
remains unpromising but adopters become pessimistic. A promising product is always
launched sequentially. Furthermore, it is offered to an even number of adopters if they
are pessimistic and to an odd number of adopters if they are optimistic. In the former
case, either a herd occurs in the next period or the product remains promising and
adopters remain pessimistic. This happens when half adopters take the product and
half reject it. In the latter case, when failed launches outnumber successful launches

9 Suppose, for example, that λ = 1/4 and q = 2/3. If the decision maker launches the product to one
adopter, the probability of triggering an adoption herd is 5/12; the probability of triggering a rejection herd
is zero. If the decision maker launches the product to two adopters, the probability of triggering an adoption
herd is 7/36; the probability of triggering a rejection herd is 13/36.
10 Suppose there are three adopters in total, q = 0.7 and c = 0.65. Consider a promising product with
λ = 0.6 and an unpromising product with λ = 0.45. The decision maker will offer the unpromising product
simultaneously to all adopters; he will offer the promising product to two adopters in the first period and to
the remaining adopter in the second period if the first two adopters haven’t rejected the product. According
to the launch strategy, the unpromising product will be rejected by all with probability 0.2. This happens
when all three adopters receive bad signals. In contrast, the promising product will be rejected by all the
adopters with probability 0.25. This happens when the first two adopters receive bad signals. Then, after
observing two rejections, the third adopter will also reject the promising product regardless of his own
private signal.
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by one, the promising product may turn into an unpromising one and adopters will
become pessimistic. In summary, if a herd has not occurred in a period, a promising
product may turn into an unpromising one but an unpromising product will never
become a promising one. From a different perspective, if a herd has not occurred,
optimistic adopters may become pessimistic but not vise versa.

5.1 Discussion

The role of the precision of signals In our model, the decision maker’s ability to influ-
ence the learning among adopters is constrained by the precision of signals. Recall
that the decision maker can control the information flow from early adopters to later
adopters only when people’s initial assessment of the product is less extreme, i.e.,
λ ∈ (λ, λ̄). The thresholds for an adoption herd, λ̄, and a rejection herd, λ, however,
are determined by the precision of signals, q. Specifically, when signals are more pre-
cise, the range (λ, λ̄) becomes wider, and hence, the decision maker has more power
to influence the remaining adopters’ decisions. Intuitively, when signals are very pre-
cise, early adopters will put more weight on their private information than on the
initial assessment of the product when they make adoption decisions. As a result, the
remaining adopters are more likely to learn early adopters’ private information from
their choices. This gives the decision maker more freedom to influence the remaining
adopters’ decisions by manipulating the launch sequence.

Heterogenous adopters In the main model, adopters are homogenous ex ante. Hence,
an adopter’s position in a sequential launch is not important. It is natural to ask what
would happen if adopters are heterogenous. In particular, the most interesting exten-
sion is to consider how launch strategies are affected by the presence of adopters with
different levels of sophistication.

We now analyze the decision maker’s launch strategy when some adopters are more
sophisticated than others. We modify the simple example discussed in Sect. 4 in the
minimal way to give the basic intuition. The decision maker considers launching the
product to two potential adopters. Adopter 1 is more sophisticated than adopter 2.
That is, 1/2 < q2 < q1 < 1. We henceforth call adopter 1 the expert and adopter
2 the coarse adopter. To simplify the analysis, we set c = 1/2. Given c = 1/2, an
expert’s adoption decision is in accordance with his signal if the prior belief is in the
range (1 − q1, q1). He will always adopt the product if the prior belief is above q1
and always reject the product if the prior belief is below 1 − q1. Similarly, a coarse
adopter’s adoption decision is in accordance with his signal if the prior belief is in the
range (1 − q2, q2). Because the signal received by the expert is of a higher precision
than that received by the coarse adopter, the expert is less likely to ignore his private
signal and herd on the prior belief. As a consequence, the interval (1 − q2, q2) is
contained in the interval (1 − q1, q1). (See Fig. 3).

Similar to the example discussed in Sect. 4, the decision maker will offer the prod-
uct simultaneously to both adopters if the prior belief is above q1 and both adopters
will always buy. The decision maker will never offer the product to any adopter if the
prior belief is below 1 − q1. The decision maker’s strategy when the prior belief is not
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Fig. 3 Heterogenous adopters

extreme is summarized by Fig. 3. We find that the decision maker prefers a sequential
offer to a simultaneous offer when the prior belief λ ∈ (1 − q1, 1 − q2)

⋃
(c, q2).

Moreover, whenever the decision maker offers the product sequentially, he always
offers it first to the expert and then to the coarse adopter.11

The intuition for the findings is the following: When the prior belief is in the range
of (1 − q1, 1 − q2), the coarse adopter will never adopt the product if it is offered
simultaneously whereas the expert will adopt the product if and only if he receives a
good signal. By contrast, if the decision maker offers the product first to the expert
and he adopts it, the decision maker will gain the coarse adopter. This is because the
quality of the expert’s signal is higher than that of the coarse adopter. Consequently,
after hearing the good news from the expert, the coarse adopter will change his mind
and adopt the product as well. When the prior belief is in the range of (c, q2), the
decision maker will use the same strategy but he does so for a different reason. As in
the main model, when the product is promising, the decision maker will encourage
learning because he is confident that the remaining adopter will hear good news from
the early one. In this case, the decision maker will offer the product first to the expert
because he wants the coarse adopter’s decision to be based on the more reliable source
of information.

The decision maker will offer the product simultaneously when the prior belief is in
the range of either (1 − q2, c) or (q2, q1). The intuition is the opposite to the intuition
for the sequential launch. To see this, consider the case when the prior belief is in
(q2, q1). Given such a prior belief, the coarse adopter will always adopt the product
whereas the expert will adopt it if and only if he receives a good signal. Hence, allow-
ing the coarse adopter to learn from the expert, the decision maker will gain nothing
but may lose the coarse adopter if he hears bad news from the expert. When the prior
belief is in the range of (1 − q2, c), the product is unpromising. Hence, the decision
maker will not risk triggering a rejection herd by offering the product sequentially.

6 Conclusion

We study a decision maker’s product launch strategy when both the decision maker
and adopters learn the value of the product through previous adoption decisions. A
sequential launch becomes relevant whenever the prior belief about the value of the
product is not extreme. In this case, the optimal launch strategy depends on both
the adopters’ prior beliefs and the adoption costs. Specifically, the decision maker

11 The calculation is very similar to that for the simple example and hence is ignored in the text. Detailed
calculation will be provided upon request.
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will always launch the product sequentially if the prior belief is greater than one-
half (promising product). When the prior belief is smaller than one-half (unpromising
product), depending on the adoption cost, the decision maker will either launch the
product simultaneously to all adopters or launch it first to one adopter and then to all
the remaining adopters.

Our model predicts the following: first, a promising product has a higher chance of
suffering a rejection herd than an unpromising product. Second, the launch duration
of a promising product is longer than that of an unpromising product. Third, more
information about the value of the product will be revealed in the launch of a prom-
ising product than that of an unpromising product. Lastly, sequential launch is more
likely to occur when adopters’ signals are more precise.

Our model provides an explanation for why some well-anticipated products are
released in a limited fashion and why sometimes a promising new technology may
fail. Moreover, our model can also shed some light on sequential voting procedures.
It is well documented that in a primary election, whoever wins the first few states
is more likely to generate the momentum to win the nomination. Our model can be
applied to a primary election in which a less well-known politician challenges a sta-
tus quo candidate. Although the sequential order of a primary election is exogenous,
our model sheds light on circumstances under which the less well-known politicians
benefit from sequential voting.

It would be interesting to extend our work and study how the decision maker’s
launch strategy is affected by the effect of imperfect information about other agents’
previous actions (Celen and Kariv 2005) or about their payoffs (Oyarzun and Ruf
2009), or by the effect of uncertainty about the future state of the word (Moscarini
et al. 1998). Another possible extension is to consider the optimal launch strategy
when the acquisition of private information among adopters is costly (Burguet and
Vives 2000).

Appendix

We first define some notation. In the appendix, Gt ≡ λt q + (1−λt )(1−q). Similarly,
G H

t+1 ≡ λH (λt )q+(1−λH (λt ))(1−q) and GL
t+1 ≡ λL(λt )q+(1−λL(λt ))(1−q). The

terms λL(λt ) and λH (λt ) are defined by (1) and (2), respectively. Let Pr(t |M) denotes
the binomial distribution with parameters M , the number of independent experiments,
and q, the probability of success. Let Pr(t ≥ T |M) denote the multinomial distri-
bution. Suppose the decision maker launches the product to nt potential adopters,
nt < Nt . Let �nt denotes the difference between the number of adoptions and the
number of rejections among the nt adopters. Since signals are equally precise, having
observed the adoption decisions made by adopters in period t , the remaining adopters
will update their beliefs according to �nt .

We explain the belief updating rule, which will be used repeatedly in the proofs.
For c < λt < λ̄, the posterior belief is above λ̄ if 1 ≤ �nt ; it remains λt if �nt = 0 ; it
is λL(λt ) if �nt = −1 and it falls below λ if �nt ≤ −2. Similarly, for λ < λt < c, the
posterior belief is above λ̄ if 2 ≤ �nt ; it is λH (λ) if �nt = 1; it remains λt if �nt = 0
and it falls below λ if �nt ≤ −1.
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We next present three lemmas, Lemma 1 to Lemma 3, which are used repeatedly
in the remaining proofs.

Lemma 1 When the public belief is λt , with λt > 1
2 , probability Pr(�2k−1 ≥ 1)

increases in k. When λt < 1
2 , probability Pr(�2k−1 ≥ 1) decreases in k.

Proof of lemma 1

Pr(�2k−1 ≥ 1) =
2k−1∑

i=k

(λt q
i (1 − q)2k−1−i + (1 − λt )q

2k−1−i (1 − q)i )C2k−1
i

= (1 − λt ) + Pr(t ≥ k|2k − 1)(2λt − 1),

Pr(�2k+1 ≥ 1) − Pr(�2k−1 ≥ 1) = (2λt − 1)qk(1 − q)k(2q − 1)C2k−1
k .

Since q ∈ ( 1
2 , 1), the difference Pr(�2k+1 ≥ 1) − Pr(�2k−1 ≥ 1) is positive when

λt > 1
2 and negative when λt < 1

2 . �	
Lemma 2 When the public belief is λt , with λt > 1

2 , probability Pr(�2k ≥ 2)

increases in k.

Proof of Lemma 2 The probability Pr(�2k ≥ 2) can be written as

(1 − λt ) + (2λt − 1)Pr(t ≥ k + 1|2k) − (1 − λt )Pr(t = k|2k).

So, the difference Pr(�2k+2 ≥ 2) − Pr(�2k ≥ 2) is

(2λt − 1)Pr(t = k|2k)q(q − k(1 − q)

k + 1
) + (1 − λt )Pr(t = k|2k)(1 − 2q(1 − q)(2k + 1)

k + 1
).

Since (
2q(1−q)(2k+1)

k+1 ) < 4q(1−q) < 1, (1−λt )Pr(t = k|2k)(1− 2q(1−q)(2k+1)
k+1 ) > 0.

When λt > 1
2 , (2λt − 1)Pr(t = k|2k)q(q − (1−q)k

k+1 ) > 0. Hence Pr(�2k+2 ≥ 2) >

Pr(�2k ≥ 2). �	
Lemma 3 When the public belief is λt , with λt < 1

2 , the term Pr(�2k ≥ 2) +
Pr(�2k = 0)Gt decreases in k.

Proof of Lemma 3 Let J (k) ≡ Pr(�2k ≥ 2) + Pr(�2k = 0)Gt . The difference

J (k + 1) − J (k) = Pr(�2k+2 ≥ 2)

−Pr(�2k ≥ 2) − (Pr(�2k = 0) − Pr(�2k+2 = 0))Gt .

Substitute Pr(�2k+2 ≥ 2) − Pr(�2k ≥ 2)(See Lemma 2) and Pr(�2k = 0) −
Pr(�2k+2 = 0). The difference

J (k + 1) − J (k) = q(1 − q)(2q(2k + 1) − 1)(2λt − 1)Pr(t = k|2k, q)

k + 1
.

Since q(1−q)(2q(2k+1)−1)
k+1 > 0, J (k + 1) − J (k) is negative. �	
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Proof of Proposition 1 The proof is divided into two cases: optimal launch strategy
for an unpromising product and that for a promising product.
Case 1: unpromising product. The proof is divided into two steps. Step 1 shows
n∗(λt , Nt ) = Nt if λt < c. Step 2 shows n∗(λt , Nt ) = 1 if λt > c.

Step 1. We first show it is never optimal to start a sequential launch with an odd
number of adopters. Suppose the decision maker offers the product to 2k + 1 adopt-
ers in period t , where k is a natural number and 2k + 1 < Nt . His expected payoff
π(nt = 2k + 1) is

(2k + 1)Gt + Pr(�2k+1 ≥ 3)(Nt − 2k − 1) + Pr(�2k+1 =1)V (λH
t+1, Nt − 2k−1).

Since V (λH (λt ), Nt − 2k − 1) < (Nt − 2k − 1),

π(nt = 2k + 1) < (2k + 1)Gt + Pr(�2k+1 ≥ 1)(Nt − 2k − 1).

By lemma 1, we know Pr(�2k+1 ≥ 1) decreases in k when λ < 1/2. Hence, π(nt =
2k + 1) < (2k + 1)Gt + Gt (Nt − 2k − 1) = Nt Gt = π(nt = Nt ).

Next, we show it is never optimal to start a sequential launch with an even num-
ber of adopters. We show this by contradiction. Suppose the decision maker starts a
sequential launch with an even number of adopters, and he launches the product to
nT adopters in period T , the last period, with T > 2, and nT −1 in period T − 1. Let
πT −1 denotes the decision maker’s payoff in period T −1 from this strategy. We show
that the decision maker’s payoff from launching the product to nT + nT −1 adopters
in period T − 1 is greater than πT −1, where πT −1 is

nT −1Gt + Pr(�nT −1 ≥ 2)nT + Pr(�nT −1 = 1)nT G H
t+1 + Pr(�nT −1 = 0)nT Gt .

We have shown it is never optimal for the seller to launch the product to an odd number
of adopters. Therefore, the launch can last to period T − 1 only if the seller keeps
launching the product to an even number of adopters and half adopters reject the prod-
uct while the other half accept the product in each previous period. Otherwise, a herd
will occur before period T − 1. By this argument, the prior belief in period T − 1
remains λt . By the argument in the last paragraph, nT −1 must be an even number
and hence, Pr(�nT −1 = 1) = 0. As a consequence, πT −1 = nT −1Gt + (Pr(�nT −1 ≥
2)+Pr(�nT −1 = 0)Gt )nT . By Lemma 3, the term Pr(�nT −1 ≥ 2)+Pr(�nT −1 = 0)Gt

decreases in nT −1. Hence, an upper bound of Pr(�nT −1 ≥ 2) + Pr(�nT −1 = 0)Gt is
Pr(�2 ≥ 2)+ Pr(�2 = 0)Gt = Gt − q(1 − q)(1 − 2Gt ). When λ < 1/2, Gt < 1/2.
Hence, Pr(�2 ≥ 2) + Pr(�2 = 0)Gt < Gt . As a consequence, the payoff πT −1 <

nT −1Gt + nT Gt = (nT + nT −1)Gt .

Step 2. We show this step by induction. We first show if Nt = 2, n∗(λt , 2) = 1. The
payoff from a simultaneous launch is π(nt = 2) = 2Gt . The payoff from a sequential
launch is π(nt = 1) = 2Gt + (1 − Gt )GL

t+1. The difference π(nt = 1)− π(nt =
2) = q(1 − q) > 0.

Next, we show given n∗(λt , Nt − 1) = 1, for Nt − 1 > 2, n∗(λt , Nt ) = 1. We first
argue n(λt , Nt ) = 1 is more profitable than n(λt , Nt ) = 2n + 1 for n = 1, 2, ..nmax,
with 2n+1 ≤ Nt . The payoff π(nt = 1) = Gt Nt +(1−Gt )V (λL(λt ), Nt −1). When
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c < λt < min(λ̄, 1
2 ), the posterior belief after receiving a bad signal is λL(λt ), where

λ < λL(λt ) < min(c, 1
2 ). According to step 1, V (λL(λt ), Nt − 1) = (Nt − 1)GL

t+1.

Consequently, π(nt = 1) is Gt Nt + q(1 − q)(Nt − 1). The payoff π(nt = 2n + 1) is

(2n + 1)Gt + Prob(�2n+1 ≥ 1)(Nt − 2n − 1) + Prob(�2n+1 = −1)(Nt − 2n − 1)GL
t+1.

The difference π(nt = 1) − π(nt = 2n + 1) is

(Nt − 2n − 1)(Gt − Pr(�2n+1 ≥ 1) − Pr(�2n+1 = −1)GL
t+1) + q(1 − q)(Nt − 1).

Substitute Prob(�2n+1 ≥ 1) = (1 − λt ) + Pr(t ≥ n + 1|2n + 1, q)(2λt − 1) and
Pr(�2n+1 = −1) = C2n+1

n qn(1 − q)n(1 − Gt ) into π(nt = 1) − π(nt = 2n + 1).
The difference becomes

π(nt = 1) − π(nt = 2n + 1)

= (Nt − 2n − 1)((1 − 2λt )(Pr(t ≥ n + 1|2n + 1) − q) − C2n+1
n qn+1(1 − q)n+1)

+q(1 − q)(Nt − 1).

Given λt ∈ (0, 1
2 ) and q ∈ (0.5, 1), (1 − 2λt )(Pr(t ≥ n + 1|2n + 1) − q) > 0. Hence

π(nt = 1) − π(nt = 2n + 1)

> q(1 − q)(Nt − 1) − C2n+1
n qn+1(1 − q)n+1(Nt − 2n − 1)

= q(1 − q)(Nt − 2n − 1)(
Nt − 1

Nt − 1 − 2n
− C2n+1

n qn(1 − q)n).

The term C2n+1
n qn(1−q)n is equal to 2n+1

n+1 Pr(t = n|2n, q) which is less than 2Pr(t =
n|2n, q). Since Pr(t = n|2n, q) decreases in n, Pr(t = n|2n, q) ≤ 2q(1−q). Accord-
ingly, C2n+1

n qn(1−q)n < 4q(1−q) < 1. Because Nt −1
Nt −1−2n > 1, π(nt = 1)−π(nt =

2n + 1) > 0.
Now, we show nt = 1 is more profitable than nt = 2n, for n = 1, 2, ..., nmax,

with 2n ≤ Nt . The payoff π(nt = 2n) is

π(nt = 2n) = 2nGt + Prob(�2n ≥ 2)(Nt − 2n) + Prob(�2n = 0)V (λt , Nt − 2n).

The difference π(nt = 1) − π(nt = 2n) is

(Nt − 2n)(Gt − Pr(�2n ≥ 2)) + q(1 − q)(Nt − 1) − Pr(�2n = 0)V (λt , Nt − 2n).

By the hypothesis n∗(λt , Nt − 1) = 1,

V (λt , Nt − 2n)

=Gt (Nt −2n)+(1−Gt )G
L
t+1(Nt − 2n) = Gt (Nt − 2n) + q(1 − q)(Nt − 2n).
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Substitute V (λt , Nt − 2n) into π(nt = 1) − π(nt = 2n), the difference boils down to

π(nt = 1) − π(nt = 2n)

= (Nt − 2n)(Gt (1 − Pr(�2n = 0)) − Pr(�2n ≥ 2))

+q(1 − q)(Nt − 2n)(
Nt − 1

Nt − 2n
− Pr(t = n|2n, q)).

We have shown in step 1 that Gt (1 − Pr(�2n = 0)) − Pr(�2n ≥ 2) > 0. The ratio
Nt −1

Nt −2n > 1 for n = 1, 2, ..., nmax. The probability Pr(t = n|2n, q) decreases in n,

which implies Pr(t = n|2n, q) ≤ 2q(1 − q) < 1. Therefore, Nt −1
Nt −2n − Pr(t =

n|2n, q) > 0. Consequently, π(nt = 1) − π(nt = 2n) > 0.
Case 2: promising product. The proof is divided into two steps. Step 1 shows when
λt < c, the decision maker will start a sequential launch with an even number of
adopters. Step 2 shows when c < λt , the decision maker will start a sequential launch
with an odd number of adopters.

Step 1. We first show launching the product first to an even number of adopters 2k,
where k is a natural number and 2k ≤ Nt , is more profitable than to an odd number
of adopters 2k + 1.The decision maker’s expected payoff from launching the product
to 2k adopters is

π(nt = 2k) = 2kGt + Pr(�2k ≥ 2)(Nt − 2k) + Pr(�2k = 0)V (λt , Nt − 2k).

His payoff from launching the product to 2k + 1, 2k + 1 ≤ Nt , is

π(nt = 2k + 1)

= (2k + 1)Gt + Pr(�2k+1 ≥ 3)(Nt − 2k − 1)

+Pr(�2k+1 = 1)V (λH (λt ), Nt − 2k − 1).

The term π(nt =2k)−π(nt =2k+1)

Pr(�2k=0)
can be written as

π(nt = 2k) − π(nt = 2k + 1)

Pr(�2k = 0)

= Pr(�2k ≥ 2) − Gt

Pr(�2k = 0)
+ Pr(�2k ≥ 2) − Pr(�2k+1 ≥ 3)

Pr(�2k = 0)
(Nt − 2k − 1)

+V (λt , Nt − 2k) − Pr(�2k+1 = 1)

Pr(�2k = 0)
V (λH (λt ), Nt − 2k − 1).

Substitute Pr(�2k ≥ 2), Pr(�2k+1 ≥ 3), Pr(�2k+1 = 1) and Pr(�2k = 0) into
π(nt =2k)−π(nt =2k+1)

Pr(�2k=0)
. It becomes
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π(nt = 2k) − π(nt = 2k + 1)

Pr(�2k = 0)

= Pr(�2k ≥ 2) − Gt

Pr(�2k = 0)
+ kGt

k + 1
(Nt − 2k − 1) + V (λt , Nt − 2k)

− (2k + 1)Gt

k + 1
V (λH (λt ), Nt − 2k − 1).

Given λt and Nt , the decision maker can choose to launch the product to one
adopter in period t and follow the equilibrium launch strategy in period t + 1. Hence,
his continuation payoff V (λt , Nt − 2k) > Gt + Gt V (λH (λt ), Nt − 2k − 1). Because
λt ∈ ( 1

2 , 1) and q ∈ ( 1
2 , 1), when the public belief is λH (λt ) and the number of the

remaining adopters is Nt −2k−1, the decision maker’s continuation payoff V (λH (λt ),

Nt − 2k −1) is smaller than (Nt − 2k − 1). Accordingly, π(nt =2k)−π(nt =2k+1)

Pr(�2k=0)
>

Pr(�2k≥2)−Gt
Pr(�2k=0)

+ Gt . By Lemma 2, when λt > 1
2 , Pr(�2k ≥ 2) increases in k. It is easy

to show Pr(�2k = 0) decreases in k. Hence Pr(�2k≥2)−Gt
Pr(�2k=0)

+ Gt increases in k. When
k = 1,

Pr(�2 ≥ 2) − Gt

Pr(�2 = 0)
+ Gt = 1/2(2q − 1)(2λt − 1) > 0.

Therefore, π(nt = 2k) > π(nt = 2k + 1).
Next, we show it is never optimal to launch the product first to a single adopter.

We prove this by showing π(nt = 1) < π(nt = 2). The payoff π(nt = 1) =
Gt + Gt V (λH (λt ), Nt − 1) and π(nt = 2) = 2Gt + (λt q2 + (1 − λt )(1 − q)2)

(Nt − 2) + 2q(1 − q)V (λt , Nt − 2). The difference

π(nt = 2) − π(nt = 1)

= Gt + (Gt − q(1 − q))(Nt − 2) + 2q(1 − q)V (λt , Nt − 2)

−Gt V (λH (λt ), Nt − 1).

The continuation payoff v(λt , Nt −2) is at least the payoff from a simultaneous launch
to Nt − 2 adopters, which is (Nt − 2)Gt . Hence, π(nt = 2) − π(nt = 1) is at least
(Nt − 2)(2Gt − 1)q(1 − q). Given 1

2 < λt , Gt > 1
2 . Consequently, π(nt = 2) >

π(nt = 1).
Lastly, we show it is never optimal to launch the product simultaneously. The

decision maker’s expected payoff from a simultaneous launch is π(nt = Nt ) =
Gt Nt ; his payoff from a sequential launch started with two adopters π(nt = 2) is
described in the above paragraph. Since v(λt , Nt − 2) is at least Gt (Nt − 2), the
payoff from a simultaneous launch, the difference π(nt = 2) − π(nt = Nt ) is at least
q(1 − q)(2q − 1)(2λt − 1). Because 1

2 < q and 1
2 < λt , π(nt = 2) > π(nt = Nt ).

Step 2. We show it is more profitable to launch the product first to an odd number
of adopters than to an even number of adopters. The decision maker’s expected payoff
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from offering the product to an odd number of adopters 2k − 1, 2k − 1 ≤ Nt , is

π(nt = 2k − 1)

= (2k − 1)Gt + Pr(�2k−1 ≥ 1)(Nt − 2k + 1)

+Pr(�2k−1 = −1)V (λL(λt ), Nt − 2k + 1).

His payoff from launching the product to an even number of adopters 2k, 2k < Nt , is

π(nt = 2k) = 2kGt + Pr(�2k ≥ 2)(Nt − 2k) + Pr(�2k = 0)V (λt , Nt − 2k).

Substitute π(nt = 2k − 1) and π(nt = 2k),

π(nt = 2k − 1) − π(nt = 2k)

Pr(�2k−1 = −1)

= Pr(�2k−1 ≥ 1) − Gt

Pr(�2k−1 = −1)
+ Pr(�2k−1 ≥ 1) − Pr(�2k ≥ 2)

Pr(�2k−1 = −1)
(Nt − 2k)

+V (λL(λt ), Nt − 2k + 1) − Pr(�2k = 0)

Pr(�2k−1 = −1)
V (λt , Nt − 2k).

Substitute Pr(�2k = 0), Pr(�2k−1 = −1), Pr(�2k ≥ 2) and Pr(�2k−1 ≥ 1) into
π(nt =2k−1)−π(nt =2k)

Pr(�2k−1=−1)
. It becomes

π(nt = 2k − 1) − π(nt = 2k)

Pr(�2k−1 = −1)

= Pr(�2k−1 ≥ 1) − Gt

Pr(�2k−1 = −1)
+ q(1 − q)

1 − Gt
(Nt − 2k) + V (λL(λt ), Nt − 2k + 1)

−2q(1 − q)

1 − Gt
V (λt , Nt − 2k).

When the public belief is λL(λt ) and the number of the remaining adopters is Nt −
2k + 1, the decision maker can choose to launch the product to one adopter in the cur-
rent period and follow the optimal strategy in the next period. Hence, V (λL(λt ), Nt −
2k +1) ≥ GL

t+1 +GL
t+1V (λt , Nt −2k). Given λt ∈ (0, 1) and q ∈ ( 1

2 , 1), the decision
maker’s continuation payoff V (λt , Nt − 2k) is less than (Nt − 2k). As a result

π(nt = 2k − 1) − π(nt = 2k)

Pr(�2k−1 = −1)

>
Pr(�2k−1 ≥ 1) − Gt

Pr(�2k−1 = −1)
+ GL

t+1 + (GL
t+1 − q(1 − q)

1 − Gt
)V (λt , Nt − 2k)

= Pr(�2k−1 ≥ 1) − Gt

Pr(�2k−1 = −1)
+ GL

t+1.

By Lemma 1, Pr(�2k−1 ≥ 1) ≥ Pr(�1 ≥ 1). Hence, Pr(�2k−1 ≥ 1) − Gt ≥ 0.
Accordingly π(nt = 2k − 1) > π(nt = 2k).
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Next, we show it is never optimal to launch the product simultaneously. The deci-
sion maker’s payoff from offering the product simultaneously is π(nt = Nt ) = Gt Nt .
His payoff from offering the product first to one adopter is π(nt = 1) = Gt Nt + (1 −
Gt )V (λL(λt ), Nt −1). Clearly, as 0 < V (λL(λt ), Nt −1), π(nt = Nt ) < π(nt = 1).

�	
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