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We show FC-MNL is flexible in the sense of Diewert (1974), thus its 
parameters can be chosen to match a well-defined class of possible own- 
and cross-price elasticities of demand. In contrast to models such as 
Probit and Random Coefficient-MNL models, FC-MNL does not require 
estimation via simulation; it is fully analytic. Under well-defined and 
testable parameter restrictions, FC-MNL is shown to be an unexplored 
member of McFadden’s class of Multivariate Extreme Value discrete-
choice models. Therefore, FC-MNL is fully consistent with an underlying 
structural model of heterogeneous, utility-maximizing consumers. We 
provide a Monte-Carlo study to establish its properties and we illustrate 
the use by estimating the demand for new automobiles in Italy. 
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1 Correlation structure in the unobserved product 
characteristics 

 
The structure of the matrix )]([ θnG GVarV = of the moment conditions will depend on our 
assumptions about the covariance structure of the unobserved product characteristics.  We 
may for example assume that they are independent across markets but allow for correlation 
across products within a given market, or alternatively we may prefer the BLP style 
assumption that they are correlated across time and independent across markets.  We 
discuss each case separately below. 
 
Case 1:  If we wish to allow for arbitrary correlation in the unobserved product characteristics 
across products and are prepared to assume independence across time, we can define 
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 with jtz '~  which are respectively of size (TJxJq) 

(JxJq) and (1xq).  Doing so allows us to write, 
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where )'~'.~('~
.,...,1 Tξξξ =  is stacked by time period (and product within time period) and where 

we assume that the errors are iid across t but not necessarily across j.  We can then form an 

estimate of ZIZ
n

V TG
~)ˆ('~1ˆ

2 Σ⊗=  by plugging in an estimate of the JxJ matrix Σ̂  with 

representative element ∑
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t
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number of observations (periods or markets) where products j and k are both observed.    
 
Case 2: Alternatively we may wish to allow for arbitrary correlation in the unobserved product 
characteristics across time.  To do so we instead stack the data by product (and time periods 
within product, indicating this alternative permutation of the rows of Z~  and ξ~  by πZ~  and πξ

~
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which follows the BLP style assumption that the errors are i.i.d. across j but not necessarily 

across t.  We can then form an estimate of ZIZ
n

V TG
~)ˆ('~1ˆ

2 Σ⊗=  by plugging in an estimate 

of the TxT matrix Σ̂  with representative element ∑
=

=
J

j
jsjsjtjt

st
st J 1

ˆˆ1ˆ χξχξσ  where 

∑
=

=
J

j
jsjtstJ

1
χχ counts the number of observations (products) observed in both time periods 

(s and t).   
 
In each case, the resulting estimators can be used with the unbalanced data sets typical in 
the demand context.   



2  GMM Estimation details  
 
Case 1: (Small J, large T) Define,  ( )'11 ',...,',..,' Jj βββθ =  and )',,)'((2 τσθ Bvec=  with 

)',( 21 θθθ =  let jjtjtjt x βθδθξ '
2 )()( −=  and let the sample moment condition be 
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, where ),...,(~
1 jtqjtjtjtjt zzz χχ= , 0~

1 =tz , 
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t
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1 1
χ  and 1=jtχ  if product j is sold in period t and zero otherwise so that jtχ

provides a missing value indicator. Following Hansen (1982) we choose )',( 21 θθθ =  to 

minimize )()'( θθ nn AGG  where in practise this problem can be solved in two stages 

because the moments are linear in βθ =1  so that the first order conditions with respect to 

these parameters 0)(')(
1
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 have an analytic solution. To see that, define  
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, we can write 
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where  

                                                 
2 In the traditional restricted case where ββββ === J32    so that ( )βθ ⊗= −11 1J , it is sometimes useful to 

estimate the unrestricted model and put ( )KJ
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.  (See for example Lütkepohl(1996) page 184.) 
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In which case,  
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= . In general it is useful to allow for the estimator to be subject 

to linear constraints, 
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 which for a fixed value of 2θ  collapse to 

111 rR =θ  and so we define the restricted estimator   
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= XZAZXC . (See for 

example, Mcfadden, 1999).  
 
 
The non-linear first order conditions must be solved numerically by maximizing the function 

subject to the constraints 222 rR =θ  or we can solve 0)ˆ),ˆ(()'ˆ),ˆ((
2

221
221 =
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θθθθθθ n

n
GAG  

where )(ˆ
21 θθ describes the optimal value of the linear parameters given a value for the non-

linear parameters 2̂θ . In order to calculate standard errors, we must also calculate 
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=Γ  which is generally most easily computed numerically but 

may also be computed using analytically using the implicit function theorem.  
 
 

Case 2: (Large J)  

In this case, define, ( )'21 ',...,',..,' Jj βββθ =  and )',,)'(,)'(( 212 τσααθ vecvec=  with 

)',( 21 θθθ =  where 
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using the BLP style moment conditions, )('1)(1)(
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, which will 

allow us to have arbitrary correlation in )(θξ jt  overtime à la BLP. Identification in this case 

works from the assumption that the random vectors ( ))(),..,(1 θξθξ jTj  are i.i.d. over 
products, j. We may use the matrix algebra above wherever the matrix expressions capture 
unweighted sums over time and products except for the redefinition: ),...,( 1 qjtjtjt zzz = . In 
addition, when calculating the standard errors of parameters we must calculate 

[ ] [ ]ZZE
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GVar n )'()('1)( 2 θξθξθ = . In doing so, it is easiest to use a line of code to re-sort 

the Z  matrix so that the time-periods for a given product are collected together, πZ  (with 

subscript  π  denoting Z  re-ordered; now stacked by T then J). Doing so allows us to exploit 
Kronecker product in the expression: 
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elements of the (TxT) matrix TΣ  can be estimated using ∑
=

=
J

j
jsjtJ 1

2 1ˆ ξξσ .  Standard GMM 

asymptotic theory is then easily applied.  
 
 

3 Gradients and Efficient Instruments 
Following Chamberlin (1986) and most directly the appendix to BLP (1999) the efficient set of 
instruments when we only have conditional moment restrictions is:   
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We may write 
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where 
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1
 denotes the Jx1 vector with jth element 1−
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Given that );( 2θtrH  is homogenous of degree τ in tr , we can always rescale the (J+1)x1 

vector of tr ’s to ensure an equivalent solution with the normalization imposed as 

1);( 2
* =θτ trH  which proves algebraically easier to work with.3  

In such case the previous expression simplifies to  

ij

t
tk

ij

tk
kt

ij

tk

b
rHrs

b
rHr

b
rs

∂
ℑ∂

ℑ−
∂

ℑ∂
=

∂
ℑ∂ +

=

+ ),;(),,(),;(),,( *
2*

2

*
2

*

2 θθτθθ

θθ

 . Now since 

∑∑∑
=

ℑ

ℑ∈ ≠

+















+

=ℑ
J

j
jtjj

ktjt

j jk
jkt rb

rr
brH

0

11

2 2
),;( τ

τσ

σσ

θ , then )(1)(1
2

),;(
11

*
2 jirji

rr
b

rH
jt

jtit

ij

t =+≠















+

=
∂

ℑ∂ τ

τσ

σσθ  

for j>0 and )0(1)0(1
2

2),;(
0

1

0

1

0

2 =+≠















+

=
∂

ℑ∂ irirr
b

rH
t

tit

i

t τ

τσ

σσθ  given that kk bb 00 = ,  and since  

111

111

2 2
);( −ℑ−

−

≠

+















+

= ∑ τσ

τσ

σσ

ττθ ktkkkt
ktjt

kj
kjtk rbr

rr
brH , we can write 

                                                 
3 For example, for the MNL model following Berry (1994) we ordinarily normalize 00 =tδ  and then set 

tjtjt ss 0lnln −=δ  to ensure that the models utility levels match observed shares exactly.  Since )exp( jtjtr δ≡ , this 

corresponds to normalizing  10 =tr  and setting tjtjt ssr 0/= . Since ∑
=

=
J

j
jtt rrH

0

)( , we have 

tt

t

j t

jt
t ss

s
s
s

rH
00

0

0 0

1111)( =
−

+=+= ∑
>

 .  If instead we add 
ts0ln  to every utility level so that we normalize the utility of 
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for the ‘small J’ model or, if parameters are mapped down to be functions of underlying 
characteristics so that  we can write:  
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The form of this expression suggests that instruments based on the expression  
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May be useful and in particular we chose to use an initial set of instruments based on the 

‘equal weighting’ metric:  ∑
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deemed exogenous for the particular application.  
 
Moving to our slightly more complex moment condition, involving both time periods and 
products, we can simply write )(~'~1)(~1)(
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expressions developed above. 
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