The Flexible Coefficient Multinomial Logit (FC-MNL)
Model of Demand for Differentiated Products"

Peter Davis' Pasquale Schiraldi*

17th August, 2013

We show FC-MNL is flexible in the sense of Diewert (1974), thus its
parameters can be chosen to match a well-defined class of possible own-
and cross-price elasticities of demand. In contrast to models such as
Probit and Random Coefficient-MNL models, FC-MNL does not require
estimation via simulation; it is fully analytic. Under well-defined and
testable parameter restrictions, FC-MNL is shown to be an unexplored
member of McFadden’s class of Multivariate Extreme Value discrete-
choice models. Therefore, FC-MNL is fully consistent with an underlying
structural model of heterogeneous, utility-maximizing consumers. We
provide a Monte-Carlo study to establish its properties and we illustrate
the use by estimating the demand for new automobiles in Italy.
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1 Correlation structure in the unobserved product
characteristics

The structure of the matrix V ;=Var[G, (6)] of the moment conditions will depend on our

assumptions about the covariance structure of the unobserved product characteristics. We
may for example assume that they are independent across markets but allow for correlation
across products within a given market, or alternatively we may prefer the BLP style
assumption that they are correlated across time and independent across markets. We
discuss each case separately below.

Case 1. If we wish to allow for arbitrary correlation in the unobserved product characteristics
across products and are prepared to assume independence across time, we can define
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where g;'= (Ei ..... E'.T ) is stacked by time period (and product within time period) and where

we assume that the errors are iid across t but not necessarily across j. We can then form an
1
_z

estimate of \7G =—Z'(l; ®Z)Z by plugging in an estimate of the JxJ matrix T with
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representative element G :—Z§jt;(jt§kt;(kt where T, :let)(kt counts the
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number of observations (periods or markets) where products j and k are both observed.

Case 2: Alternatively we may wish to allow for arbitrary correlation in the unobserved product
characteristics across time. To do so we instead stack the data by product (and time periods
within product, indicating this alternative permutation of the rows of Z and & by Z_and ¢,
respectively so that
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which follows the BLP style assumption that the errors are i.i.d. across j but not necessarily
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across t. We can then form an estimate of V :—ZZ'(IT ®X)Z by plugging in an estimate
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of the TXT matrix 2 with representative element &St=—Z§jt;(jt§j5;(js where
st J=1

J
= ZthZJS counts the number of observations (products) observed in both time periods
j=1
(s and t).

In each case, the resulting estimators can be used with the unbalanced data sets typical in
the demand context.



2 GMM Estimation details

Case 1: (Small J, large T) Define, (ﬂl v By ses By ) and 6, =(vec(B)',o,7)" with
0=1(6,,0,) let fjt(e):éﬁ(@z)—xjtﬂj and let the sample moment condition be
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ZZJ'I and =1 if product j is sold in period t and zero otherwise so that Xit
j=1 t=1

provides a missing value indicator. Following Hansen (1982) we choose € =(6,,6,)" to

minimize G, (€)' AG,(0) where in practise this problem can be solved in two stages

because the moments are linear in 6, = # so that the first order conditions with respect to
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these parameters L'AGn(é?) =0 have an analytic solution. To see that, define
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where
2 In the traditional restricted case where ﬂz = ,83 = 'ﬁJ = IB so that Hl = (1J 1 ® ﬂ ) it is sometimes useful to
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estimate the unrestricted model and put Fln = M =-7'X (1J a ® | K ) which follows since for any A matrices and
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= VeC(A) ® | mn - (See for example Liitkepohl(1996) page 184.)

(mxn) matrix B,
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In which case,
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6, = (X 'ZAZ'XJ X'ZAZ'S . In general it is useful to allow for the estimator to be subject
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R,6, =1, and so we define the restricted estimator
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to linear constraints, 0 = which for a fixed value of 6, collapse to

. ~ . . a = ~ =\1
o =" -C*'R,(RC'R)™*(RO" -1,) where C™ (X ZAZ'X) . (See for

example, Mcfadden, 1999).

The non-linear first order conditions must be solved numerically by maximizing the function
G, (6,(6,).6,) _
06
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subject to the constraints R,6, =T, or we can solve Gn(el(éz),ez)'A

where 6, (92) describes the optimal value of the linear parameters given a value for the non-

linear parameters €,. In order to calculate standard errors, we must also calculate

0G.(0) 1= ~
oy = a”; )=—Z'D925(6’2) which is generally most easily computed numerically but
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may also be computed using analytically using the implicit function theorem.

Case 2: (Large J)

In this case, define, (ﬂz, ,,HJ . ,BJ) and 6, =(vec(e,)',vec(er,)',0,7)" with
0=(6,,0,) where b = 170 (e Xgi )1 J #k with
. exp(x;,'a,) j=k
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d (X X o) = (z ay (X — X,kt)zj as described in the text. In this case, we estimate
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using the BLP style moment conditions, G, (6) ZEZZ@ (9)2'jt 2%2'5(9), which will

t=1 j=1
allow us to have arbitrary correlation in §jt (8) overtime a la BLP. Identification in this case
works from the assumption that the random vectors (fjl(ﬁ),..,fﬂ (0)) are i.i.d. over
products, j. We may use the matrix algebra above wherever the matrix expressions capture
unweighted sums over time and products except for the redefinition: z; = (let,..., qut). In
addition, when calculating the standard errors of parameters we must calculate

Var[Gn (9)] = iz E[Z'f(@)f(@)'Z]. In doing so, it is easiest to use a line of code to re-sort
n

the Z matrix so that the time-periods for a given product are collected together, Z  (with

subscript 7 denoting Z re-ordered; now stacked by T then J). Doing so allows us to exploit
Kronecker product in the expression:
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where the
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elements of the (TxT) matrix 2; can be estimated using G’ = 3251-@]-5 . Standard GMM
j=1
asymptotic theory is then easily applied.

3 Gradients and Efficient Instruments

Following Chamberlin (1986) and most directly the appendix to BLP (1999) the efficient set of
instruments when we only have conditional moment restrictions is:

&
1(2) = E{%| ZJ}T(ZJ.) = D(Zj)T(Zj) where T(Zj) is the matrix which normalizes the
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error matrix, T(2)'T(2) =Q(z) " = E[& & ' 7]™".
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We may write
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where — denotes the Jx1 vector with jth element I’J{l and we have previously established
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Given that H(r;;6,) is homogenous of degree 7 in I, , we can always rescale the (J+1)x1
vector of I ’s to ensure an equivalent solution with the normalization imposed as
H(r;6,) =1 which proves algebraically easier to work with.

In such case the previous expression simplifies to
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® For example, for the MNL model following Berry (1994) we ordinarily normalize Out =0 and then set

51'1 =1In S~ In Sot to ensure that the models utility levels match observed shares exactly. Since re = EXp(én) , this

corresponds to normalizing rOtzl and setting rjt:sjt/sm. Since H(r)—ir' we have
jt
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H(r) =1+Z*“=1+ o __~ . Ifinstead we add |ns,, to every utility level so that we normalize the utility of
>0 2ot Sot Sot

the outside good to be Oy = In Sot then equating observed shares to predicted shares in the MNL model would
. . . . . . . J J

involve simply setting 5“ =1In Sit for all j=0,..,J. Under this normalization therefore, H(r) = Zrﬂ :zsﬁ -1-In
j=0 j=0

this specific case, the normalization required to set H(rt;H*) =1does not depend on the parameters of the

distribution of tastes- since there are none - but in richer models it will.
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for the ‘small J’ model or, if parameters are mapped down to be functions of underlying
characteristics so that we can write:
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The form of this expression suggests that instruments based on the expression
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May be useful and in particular we chose to use an initial set of instruments based on the

2
‘equal weighting’ metric: 7 _ 3 (X — %) using only those product characteristics
J 3

. [Z(let - Xklt)zj

deemed exogenous for the particular application.

Moving to our slightly more complex moment condition involving both time periods and
products, we can simply write @ () = zzgt ©)z, :72 £(0) which implies
n J ]

t=1 j=1

D,G, (6) = ZZ D,,(0)z, where D & )= —X; and p,E (9) follows from the
t=1 j=1
expressions developed above.
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