
Version Control Software for
Knowledge Sharing, Innovation and
Learning in OS
Maha Shaikh and Tony Cornford
London School of Economics and Political Science, UK.
Email: m.i.shaikh@lse.ac.uk; t.cornford@lse.ac.uk

Abstract. This paper seeks to explore the extent to which version control tools, a
common part of the technical infrastructure of much software development and ubiquitous
within the open source movement, both represent and facilitate knowledge creation,
learning and innovation within open source communities. The paper considers these
software actors within open source as both the outcome of innovation and learning, and a
means to such ends. Version tools, along with other key technologies, form the
infrastructure upon which such communities are built and organized. Their role in
knowledge exchange is vital because the ability to produce and observe more than one
version of an application is indispensable to dispersed software development.

Introduction
This paper seeks to explore the extent to which version control software, a
common part of the technical infrastructure of much software development and
ubiquitous within the open source movement, both represent and facilitate
knowledge creation, learning and innovation within open source communities.
The paper considers these software actors within open source as both the outcome
of innovation and learning, and a means to support other such activities within the
software development activity.

mailto:m.i.shaikh@lse.ac.uk
mailto:t.cornford@lse.ac.uk

 Version control software has become an almost indispensable part of open
source activity, though developers like Linus Torvalds avoided their use for many
years (Shaikh and Cornford 2003). Commonly used tools today include
Concurrent Versions System [CVS], Subversion, Arch and BITKEEPER [BK]. In a
straightforward understanding such tools support knowledge creation, learning
and innovation by providing a structured, updateable and interrogateable
repository of code versions and patches, together with metadata offering design
rationale. By shared access to such systems developers and users of open source
software are able, in varying degrees and by varying means, to read, change and
distribute code. Beyond such uses version control allows individuals to review
past work, to identify particular individuals work and to stamp or tag the changes
for easy access. This paper explores such version control software as an actor
within open source networks (using the term actor in an ANT perspective), and
evaluates its contribution to both individual and community learning and the
potential to support innovation as part of the software process and in pursuit of the
software product.

Version Control Software1

From its beginnings the UNIX community needed a tool to ‘manage software
revision and release control in a multi-developer, multi-directory, multi-group
environment’ (Berliner 1990). Distributed development within a diffuse
community setting, as in open source, suggests just how integral coordination
mechanisms are in geographically distributed development, over and above
collocated development (Herbsleb and Grinter 1999). Furthermore, the release
strategy of many open source projects support parallel releases, with even-
numbered releases relatively stable production versions where the focus is on bug
fixing, and odd-numbered releases are experimental and where new features are
added and tried out. Such a strategy makes careful control of code versions even
more important.

UNIX and its derivatives and developments have had a long history of using
version management tools, including the original diff and patch programs, the
precursor to most other version tools, with the most popular being RCS [Revision
Control System] and SCCS [Source Code Control System] (Koike and Chu 1997).
SCCS was one of the first software tools which allowed for a technique of
capturing sequenced changes to a module stored as ‘deltas’2 that could be ‘strung
together in a chain’ to show progress in the version (Rochkind 1975). RCS

1 It is common, in the software engineering context to refer to version control tools. However here we are

careful to refer to version control software, since we see it as an autonomous element within a
heterogeneous network of developers, other technologies, code, networks, markets, artefacts etc. The
tool metaphor (if that is what it is) is inappropriate if we see such software as translating and inscribing
action within the network.

2 A delta is an atomic unit of change, for example to a line of code, a variable name etc.

 2

followed the basic principles of SCCS and was designed for ‘both production and
experimental environments’ with automatic identification3 (Tichy 1985), and
supported both forward and reverse deltas (e.g. ability to roll forward by adding
changes, or roll back by removing them). CVS [Concurrent Version System] is
another such tool, itself an OS product, and one which today, despite being over
20 years old, has wide popularity in OS (Hoek 2000).

BITKEEPER, a more recently developed tool, developed for and used most
recently in the Linux development (Shaikh and Cornford 2003), has a refined
architecture specifically developed for distributed operation within a hierarchical
open source community and originally tailored for the Linux community. To
change files a developer must first make a local clone of the original repository; a
developer is then free to work on this clone or ‘child’ independent of the original
or ‘parent’ repository. Changes made to individual files are grouped together into
changesets, ‘a grouping of one or more deltas to one or more files representing a
single logical change’ (Henson and Garzik 2002). When the changes made in a
child repository are to be merged back to the parent only one merge is needed
because, unlike CVS or other software, BK only needs to backtrack to the last
merge of changesets in the two repositories. BK’s architecture and merging
algorithm is also distinctive in that it allows for important meta-data to be stored
and generated [see Fig 1].

Figure 1. A BK clone, change commit and push, showing metadata increasing
with each version (adapted from Henson and Garzik, 2002)

 Clone - pull

O

0

3 Identification is the ‘stam

markers. These marke
configuration is before
themselves perform th

1.0
BK
push

Cl
ne

riginal

ping’ of source and object c

rs are akin to serial numbers,
 them [Tichy, 1985]. CVS cal
is role.
1.

1.1
 1.1

1.2
one plus
w version
Key

Metadata
increasing with
each version
ode of revisions and configurations with unique
telling software maintainers unambiguously which
ls this function ‘tagging’ and in BK the changesets

3

cornford
What is this???

Perspectives on Knowledge, Learning and Innovation
We take as our basic perspective in this paper two views of version control
software as an actor in the network4: 1) as an expression of the learning or
innovation that the OS community has engaged in over time- for example in
developments such as BITKEEPER, arch or subversion; 2) as serving the
acquisition, storage and distribution of knowledge within an open source
community as it works to develop software. Both aspects might be seen equally
important or significant, but we are concerned here to balance both and to find an
appropriate theoretical position to explore them together.

Lanzara and Morner (Lanzara and Morner 2003) provide an
ecological/evolutionary perspective on knowledge within open source
communities, proposing process that develops by means of ‘variation, selection
and stabilization’, where knowledge is defined as ‘the unplanned, evolutionary
outcome of the complex interplay of a broad variety of heterogeneous elements’
and is classified in three broad types; technical, organizational and institutional.
Our initial emphasis in this paper is on what Lanzara and Morner would call
technical knowledge, where the focus of analysis is on how new versions of the
VC software or application code are generated (variation), accepted (selection)
and become part of a new build or new ways of working (stabilization), all of
which are potentially mediated through version control software. But in open
source such fine distinctions between what technical, organisational (community)
and institutional is hard to uphold (just as ANT challenges what is social and what
is technical) as the debate over code continues, history is revisited, and the impact
of who does what comes into play. In the end the focus of our concern is with a
learning collective or community (more specifically, drawing on ANT, a
heterogeneous network of interests), which shares characteristics of (or even
transcends) being discretely technical, organizational or institutional. Our focus is
here is on how version control, as an actor in this network, embodies knowledge
and serves to support learning (individual and community), and innovation, and is
itself innovated.

Research on innovation in open source has developed strongly over the last few
years, but the question of how, or if, learning takes place in open source has not
received equal attention. Thus Tuomi (2001; 2002) describes open source in terms
of networks of innovation, Franck and Jungwirth (2002) analyse governance
issues in innovation and von Hippel and von Krogh (2003) present an open souce
derived model of innovation in their private-collective model. Other examples of
innovation studies in open source include von Krogh, Spaeth and Lakhani (2003),
Francke and von Hippel (2003), as well as innovation oriented sites such as

4 Of course there is more to the network than just people and version control, and we acknowledge the use of

many other participants in the network, including code itself, other web resources such as SourceForge,
etc.

 4

Bessen’s Technological Innovation and Intellectual Property newsletter5 and
Lakhani’s web site devoted to user innovation6.

The perspective on knowledge, innovation and learning we adopt here is
derived from Hargadon and Fanelli (2002)7, proposing a complementary dualistic
understanding of knowledge as both a potential for innovation “the generation of
new ideas” and a process of learning “converting experience into potential for
new actions”. This duality is explicitly linked to a structurational argument, in
which learning enables and constrains innovation, while innovation provides
empirical opportunities that enable and constrain learning. Knowledge is thus seen
as both latent (learning) and empirical (innovation), but this is not suggested as a
binary categorization, one or the other, but as a duality in which one creates or
shapes the other. Latent knowledge suggests the capacity to generate novel
organizational artefacts, while empirical knowledge resides in an organization’s
actions or behaviours, or more precisely in the artefacts created like technologies,
databases, and operating procedures – or in this case code and software actors.
Hargadon and Fanelli argue that this complementary approach ‘shifts the focus
away from either learning or innovation and towards the interaction between
them’.

Knowledge Sharing in OS through Version Tools
Version tools serve as an actor that filters and structures communication,
information updating, collaboration and knowledge sharing. Knowledge sharing is
key because such an actor provides a mediated organizational memory, containing
metadata (rationales for code changes, identification of changes etc.) and an
ability to generate versions of software at various stages of development and that
can be reviewed and traced through time.

Hargadon and Fanelli’s notion of empirical knowledge stresses learning and
action. Actions here imply physical and social artefacts and include the deltas and
changesets. Version tools and the architecture they rely on form part of the social
and physical infrastructure. Combined with the Internet, chat groups, email and
mailing list archives version tools make open source development a reality. Open
source communities require an open environment and open tools for development
[though BK is not an ‘open’ tool]. Source code is open for all to see, read and
modify thus it allows developers to ‘learn’ from the work of other developers.
This in turn implies that any tool that is used in open source development should

5 http://www.researchoninnovation.org/tiip/index.htm
6 http://userinnovation.mit.edu/
7 Their paper is specifically oriented to knowledge in organisations. In this brief paper we equate organisation

with community, while recognising that the shift between the two concepts requires careful
consideration.

 5

http://www.researchoninnovation.org/tiip/index.htm
http://userinnovation.mit.edu/

facilitate this openness. The very purpose of version tools is to help coordinate
development in such a way so as to allow the developers to view and modify the
work done before.

Organizational Memory

Organizational memory is one way of describing how ‘organizations build stores
of knowledge’ (Hargadon and Fanelli, 2002) and version ‘tools are repositories of
knowledge about a project’ (Cubranic, Holmes et al. 2003). Version software used
by developers, be it CVS, BK or Subversion, is itself constantly undergoing
adaptation and improvement. Such tools have insinuated themselves into
dispersed development and become indispensable [an obligatory passage point] to
open source. This is a way that version software [making itself integral] ensures
that it will attract more developer attention and work. Such a process is quite
reflexive because any ‘learning’ on version software development can also be
steered into other open source software development.

VGER, the centralized repository of CVS holds all the versions and deltas of
the Linux kernel. Scott Hissam8 believes that if you can make a link between tools
and source code then you have a true organizational memory. Larry Augustin of
SourceForge.net [at the same workshop] added that CVS does act as an
organizational memory ‘but it takes more than source code management, you need
archives, repository, IRC chats, which all together become organizational
memory’. He then continued to make a link to his web knowledge portal,
SourceForge and claimed that ‘having an organizational memory is one of the top
three selling points of SourceForge’.

Source Code and Metadata

Source code is the output of past learning but in turn it becomes the inspiration for
further learning and innovation. It is a central actor that has the power to make
[inscribe] developers into adding and improving it. When a patch or bug fix with
its’ source code is released it is scrutinized by a number of co-developers who
either work to improve it or add features to it, thus source code is also a tool for
‘knowing and organizing’ (Lanzara and Morner 2003). Source code in every
version or small patch is reviewed by many eyes (Raymond 1998)9 but this is only
possible because the source is open, and in turn what makes this testing more
efficient [and some would say even possible] is the use of version tools and their
ability to allow simultaneous dispersed software development.

Source code is not always understandable on its own. It requires at least some
form of explanation and this function is performed by the metadata. Metadata is

8 This is a part of the discussion from the Open Source Workshop at Portland, Oregon in May 2003.
9 This is what Raymond (1998) termed Linus’s Law of ‘given enough eye-balls, every bug looks shallow‘.

 6

the notes and comments written by developers which make their patch or bug-fix
understandable. Metadata consists of the name of the author, creation time and
any or all the checkin comments (Cubranic, Holmes et al. 2003). BITKEEPER
supports developers adding metadata, and indeed this metadata is considered to be
vitally important as one can see from the dispute between BITKEEPER creators and
some CVS users (Shaikh and Cornford, 2003) over McVoy not converting all the
metadata of BK into CVS compatible form. And McVoy admits that ‘information
about who did what, and maybe why they did it, is recorded and is useful for
learning the source base, tracking down bugs, etc.’ (McVoy 2003).

Deltas, Changesets and Release Strategy

The most recent version of the trunk [main section of code] is saved in complete
form [rectangle 2.2 in Fig 1] and all past revisions are saved as reverse deltas
[triangles 1.1, 1.2 etc in Fig 1]. The reason why forward deltas are helpful is
because they allow for branches of the version to be made. In order to re-create a
revision on a branch a developer must first extract the latest revision on the trunk,
apply reverse deltas until the fork revision for the branch is obtained and finally to
apply forward deltas until the required branch revision is arrived at (Tichy 1985).
BK’s changesets operate as bunches of deltas so only single pulls or pushes need
to be made (Henson and Garzik 2002). These various deltas allow developers the
ability to read not just the various patches but also the metadata accompanying
each patch. Developers build on the work of others where in certain cases
innovation can be said to occur as something novel is created but in support of
Hargadon and Fanelli’s complementary approach ‘I don't believe in truely new
work. Everything is a new light on a pile of existing technology. Whats BK but a
collision between graph theory, CVS and distributed resolution stuff. BK builds
on that knowledge’ (Cox 2003).

Figure 2. Reverse and Forward Deltas (Tichy, 1985).

 7

Conclusion
Learning and innovation are related concepts, ‘learning fuels innovation’ (Cox
2003). This paper made an effort to delineate some of the features of version
control tools which facilitate knowledge creation and sharing in open source
because,

 “The concept of organizational knowledge can be understood only as the
result of an ongoing, circular interaction between individually held latent
knowledge and the knowledge manifest in the surrounding environments. It is
only through this interaction that knowledge emerges as a social (and thus
organizational) phenomenon.” (Hargadon and Fanelli 2002)

This is true of learning and innovation in open source because as this paper has
attempted to show learning occurs through a combination of human and technical
actors interacting, where version software becomes both a vehicle and a product
of learning. There is however a need to consider how such tools;

• Allow for unlearning (as in the case of the Linux kernel developers moving
from CVS to BK and then partially back again with the BK to CVS
gateway facility,

• Cause loss of learning, especially in the case of the BK to CVS gateway
where some precious metadata is alleged to have been lost in the translation
of software tools and,

• Influence learning in a certain direction so as to translate the tool’s ‘needs‘
and control over the human actors.

References
Berliner, B. (1990). CVS II: Parallelizing software development. 1990 Winter

USENIX Conference, Washington, D.C.
Cox, A. (2003). Re: Why DRM exists [was Re: Flame Linus to a crisp!],

University of Indiana. 2003.
Cox, A. (2003). Re: Why DRM exists [was Re: Flame Linus to a crisp!] - part 2,

University of Indiana. 2003.
Cubranic, D., R. Holmes, et al. (2003). Tools for light-weight knowledge sharing

in open-source software development. 25th International Conference on
Software Engineering - Taking Stock of the Bazaar: The 3rd Workshop on
Open Source Software Engineering, Portland, Oregon.

Franck, E. and C. Jungwirth (2002). Reconciling investors and donators - The
governance structure of open source, Working Paper Series, Chair of
Strategic Management and Business Policy, University of Zurich. 2002.

Franke, N. and E. v. Hippel (2003). "Satisfying heterogeneous user needs via
innovation toolkits: the case of Apache security software." Research Policy
32(7): 1199-1215.

 8

Hargadon, A. and A. Fanelli (2002). "Action and Possibility: Reconciling Dual
Perspectives of Knowledge in Organizations." Organization Science 13(3):
290-302.

Henson, V. and J. Garzik (2002). BitKeeper for Kernel Developers. Ottawa Linux
Symposium, Ottawa, Ontario Canada.

Herbsleb, J. D. and R. E. Grinter (1999). Splitting the organization and integrating
the code: Conway’s law revisited. 21st International Conference on Software
Engineering (ICSE 99), Los Angeles.

Hoek, A. v. d. (2000). Configuration Management and Open Source Projects. 3rd
International Workshop on Software Engineering over the Internet.

Hippel, E. v. and G. v. Krogh (2003). "Open Source Software and the “Private-
Collective” Innovation Model: Issues for Organization Science."
Organization Science 14(2): 209-223.

Koike, H. and H.-Chu Chu (1997). VRCS: Integrating Version Control and
Module Management uisng Interactive Three-Dimensional Graphics. IEEE
Symposium on Visual Languages (VL'97).

Krogh, G. v., S. Spaeth, et al. (2003). "Community, joining, and specialization in
open source software innovation: a case study." Research Policy 32(7): 1217-
1241.

Lanzara, G. F. and M. Morner (2003). The Knowledge Ecology of Open Source
Software Projects. European Group of Organizational Studies (EGOS
Colloquium), Copenhagen.

McVoy, L. (2003). Re: BK->CVS, kernel.bkbits.net, University of Indiana. 2003.
Raymond, E. S. (1998). “The Cathedral and the Bazaar.” FirstMonday: A Peer

Reviewed Journal on the Internet 3(3): 1-24.
Rochkind, M. (1975). “The Source Code Control System.” IEEE Transactions on

Software Engineering 1(4): 364-370.
Shaikh, M. and T. Cornford (2003). Version Management Tools: CVS to BK in

the Linux Kernel. 25th International Conference on Software Engineering -
Taking Stock of the Bazaar: The 3rd Workshop on Open Source Software
Engineering, Portland, Oregon.

Tichy, W. F. (1985). “RCS—A system for version control.” Software - Practice
and Experience 15(7): 637–654.

Tuomi, I. (2001). "Internet, Innovation, and Open Source: Actors in the Network."
First Monday 6(1).

Tuomi, I. (2002). Networks of Innovation: Change and Meaning in the Age of the
Internet. Oxford, Oxford University Press.

 9

	Introduction
	Version Control Software

	Perspectives on Knowledge, Learning and Innovation
	Knowledge Sharing in OS through Version Tools
	Organizational Memory
	Source Code and Metadata
	Deltas, Changesets and Release Strategy

	Conclusion
	References

