Research Article
Noncoherence of a Causal Wiener Algebra Used in Control Theory

Amol Sasane
Mathematics Department, London School of Economics, Houghton Street, London WC2A 2AE, UK

Correspondence should be addressed to Amol Sasane, a.j.sasane@lse.ac.uk

Received 18 March 2008; Accepted 13 June 2008

Recommended by Ülle Kotta

Let $C_{\geq 0} := \{ s \in \mathbb{C} | \text{Re}(s) \geq 0 \}$, and let \mathcal{W} denote the ring of all functions $f : C_{\geq 0} \rightarrow \mathbb{C}$ such that $f(s) = f_\alpha(s) + \sum_{k=0}^\infty f_k e^{-st} (s \in C_{\geq 0})$, where $f_\alpha \in L^1(0, \infty)$, $(f_k)_{k=0}^\infty \in \ell^1$, and $0 = t_0 < t_1 < t_2 < \cdots$ equipped with pointwise operations. (Here $\hat{\cdot}$ denotes the Laplace transform.) It is shown that the ring \mathcal{W} is not coherent, answering a question of Alban Quadrat. In fact, we present two principal ideals in the domain \mathcal{W} whose intersection is not finitely generated.

Copyright © 2008 Amol Sasane. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The aim of this paper is to show that the ring \mathcal{W} (defined below) is not coherent.

We first recall the notion of a coherent ring.

Definition 1.1. Let R be a commutative ring with identity element 1, and let $R^m = R \times \cdots \times R$ (m times). Suppose that $f = (f_1, \ldots, f_m) \in R^m$.

(1) An element $(g_1, \ldots, g_m) \in R^m$ is called a relation on f if

$$g_1 f_1 + \cdots + g_m f_m = 0. \quad (1.1)$$

(2) Let f^\perp denote the set of all relations on $f \in R^m$. (Then f^\perp is an R-submodule of the R-module R^m.)

(3) The ring R is called coherent if for all $m \in \mathbb{N}$ and all $f \in R^m$, f^\perp is finitely generated, that is, there exists a $d \in \mathbb{N}$ and there exist $g_j \in f^\perp$, $j \in \{1, \ldots, d\}$, such that for all $g \in f^\perp$, there exist $r_j \in R$, $j \in \{1, \ldots, d\}$ such that $g = r_1 g_1 + \cdots + r_d g_d$.
An integral domain is coherent if and only if the intersection of any two finitely generated ideals of the ring is again finitely generated; see [1, Theorem 2.3.2, page 45].

The coherence of some rings of analytic functions has been investigated in earlier works. For example, McVoy and Rubel [2] showed that the Hardy algebra $H^\infty(\mathbb{D})$ is coherent, while the disc algebra $A(\mathbb{D})$ is not. Mortini and von Renteln proved that the Wiener algebra $W^*(\mathbb{D})$ (of all absolutely convergent Taylor series in the open unit disc) is not coherent [3]. In this article, we will show that the ring \mathcal{K}^+ (defined below, and which is useful in control theory) is not coherent.

Notation 1. Throughout the article, we will use the following notation:

\[\mathbb{C}_{\geq 0} := \{ s \in \mathbb{C} \mid \text{Re}(s) \geq 0 \}. \]

Definition 1.2. Let \mathcal{K}^+ denote the Banach algebra

\[\mathcal{K}^+ = \left\{ f : \mathbb{C}_{\geq 0} \rightarrow \mathbb{C} \mid \begin{array}{c} f(s) = \tilde{f}_a(s) + \sum_{k=0}^{\infty} f_k e^{-st_k} \ (s \in \mathbb{C}_{\geq 0}), \\ f_a : (0, \infty) \rightarrow \mathbb{C}, \ f_a \in L^1(0, \infty), \\ \forall k \geq 0, \ f_k \in \mathbb{C}, \ (f_k)_{k \geq 0} \in \ell^1, \\ \forall k \geq 0, \ t_k \in \mathbb{R}, \ 0 = t_0 < t_1 < t_2 < \cdots \end{array} \right\} \]

equipped with pointwise operations and the norm

\[\| f \|_{\mathcal{K}^+} := \| f_a \|_{L^1} + \| (f_k)_{k \geq 0} \|_{\ell^1}. \]

Here \tilde{f}_a denotes the Laplace transform of f_a, given by

\[\tilde{f}_a(s) = \int_0^{\infty} e^{-st} f_a(t) dt, \quad s \in \mathbb{C}_{\geq 0}. \]

The above algebra arises as a natural class of transfer functions of stable distributed parameter systems in control theory; see [4, 5].

Our main result is the following.

Theorem 1.3. The ring \mathcal{K}^+ is not coherent.

The relevance of the coherence property in control theory can be found in [6, 7]. We will prove Theorem 1.3 following the same method as in the proof of the noncoherence of $W^*(\mathbb{D})$ given by Mortini and von Renteln in [3].

In Section 3, we will give the proof of Theorem 1.3. But before doing that, in Section 2, we first prove a few technical results needed in the sequel.

2. Preliminaries

We first recall the definition of the Hardy algebra H^∞ of the open right half plane.
Definition 2.1. Let H^∞ denote the Hardy space of all bounded analytic functions in the open right half plane equipped with the norm

$$
\|\varphi\|_\infty := \sup_{\text{Re}(s)>0} |\varphi(s)|, \quad \varphi \in H^\infty.
$$

(2.1)

In order to prove our main result (Theorem 1.3), we will use the relation between the convergence in H^∞ versus that in \mathcal{K}^+.

Lemma 2.2. If $f \in \mathcal{K}^+$, then $f \in H^\infty$ and $\|f\|_\infty \leq \|f\|_{\mathcal{K}^+}$.

Proof. Let

$$
f(s) = \hat{f}_a(s) + \sum_{k=0}^\infty f_k e^{-stk} \quad (s \in \mathbb{C}_{\geq 0}).
$$

(2.2)

For $s \in \mathbb{C}_{\geq 0}$, we have

$$
|\hat{f}_a(s)| = \left| \int_0^\infty e^{-st} f_a(t) dt \right| \leq \int_0^\infty e^{-\text{Re}(s)t} |f_a(t)| dt \leq \int_0^\infty 1 \cdot |f_a(t)| dt = \|f_a\|_{L^1},
$$

(2.3)

and moreover,

$$
\left| \sum_{k=0}^\infty f_k e^{-stk} \right| \leq \sum_{k=0}^\infty |f_k| e^{-\text{Re}(s)tk} \leq \sum_{k=0}^\infty |f_k| \cdot 1 = \|f_k\|_{L^1}.
$$

(2.4)

So the result follows. \qed

The maximal ideal m_0 (defined below) of \mathcal{K}^+ will play an important role in the remainder of this article.

Notation 2. Let m_0 denote the kernel of the complex algebra homomorphism $f \mapsto f(0) : \mathcal{K}^+ \to \mathbb{C}$, that is,

$$
m_0 := \{ f \in \mathcal{K}^+ \mid f(0) = 0 \}.
$$

Then m_0 is a maximal ideal of \mathcal{K}^+, and this maximal ideal plays an important role in the proof of our main result in the next section. We will prove a few technical results about m_0 in this section, which will be used in the sequel. The following result is analogous to [3, Lemma 1].

Lemma 2.3. Let $L \neq (0)$ be an ideal in \mathcal{K}^+ contained in the maximal ideal m_0. If $L = Lm_0$, that is, if every function $f \in L$ can be factorized in a product $f = hg$ of two functions $h \in L$ and $g \in m_0$, then L cannot be finitely generated.

Proof. Suppose that

$$
L = (f_1, \ldots, f_N) \neq (0)
$$

(2.5)
is a finitely generated ideal in \mathcal{I}^+ contained in the maximal ideal m_0. By our assumption, there are functions $h_n \in L$, $g_n \in m_0$ with

$$f_n = h_n g_n \quad (n = 1, \ldots, N). \tag{2.6}$$

Since $h_n \in L$, there exist functions $q_k^{(n)} \in \mathcal{I}^+$ with

$$h_n = \sum_{k=1}^{N} q_k^{(n)} f_k \quad (n = 1, \ldots, N; \ k = 1, \ldots, N). \tag{2.7}$$

From this it follows that

$$\sum_{n=1}^{N} |h_n| \leq NC \sum_{n=1}^{N} |f_n| = NC \sum_{n=1}^{N} |h_n g_n| \quad \text{in } \mathbb{C}_{\geq 0}, \tag{2.8}$$

where C is a constant chosen so that

$$\|q_k^{(n)}\|_{\infty} \leq C, \quad \forall k \text{ and } n. \tag{2.9}$$

(Here $\|\|_{\infty}$ denotes the supnorm over $\mathbb{C}_{\geq 0}$.) This implies together with the Cauchy-Schwarz inequality that

$$\sum_{n=1}^{N} |h_n|^2 \leq \left(\sum_{n=1}^{N} |h_n| \right)^2 \leq N^2 C^2 \left(\sum_{n=1}^{N} |h_n g_n| \right)^2 \leq N^2 C^2 \left(\sum_{n=1}^{N} |h_n|^2 \right) \left(\sum_{n=1}^{N} |g_n|^2 \right). \tag{2.10}$$

This inequality holds for all $s \in \mathbb{C}_{\geq 0}$. With $\delta := 1/(N^2 C^2)$, we obtain the inequality

$$\delta \leq \sum_{n=1}^{N} |g_n(s)|^2 \tag{2.11}$$

for all points $s \in E$, where

$$E := \left\{ s \in \mathbb{C}_{\geq 0} \mid \sum_{n=1}^{N} |h_n(s)|^2 > 0 \right\}. \tag{2.12}$$

Since $L \neq (0)$, E is a dense subset of $\mathbb{C}_{\geq 0}$ (for otherwise, if $s_0 \in \mathbb{C}_{\geq 0}$ is such that it has a neighbourhood V in $\mathbb{C}_{\geq 0}$ where there is no point of E, then each h_n is identically zero in V, and by the identity theorem for holomorphic functions, each h_n is zero; consequently each f_n is zero, and so $L = (0)$, a contradiction). So by continuity, inequality (2.11) holds in $\mathbb{C}_{\geq 0}$. But this contradicts the fact that each g_n vanishes at 0.

Remark 2.4. Lemma 2.3 can be proved purely algebraically using Nakayama’s lemma. Indeed, it holds in the following more general algebraic situation: if I is a nonzero ideal of a commutative domain D contained in a maximal ideal M and $I = IM$, then I cannot be finitely generated. However, we have given an analytic proof in our special case above.
Since every maximal ideal is closed, \(m_0 \) is a commutative Banach subalgebra of \(\mathcal{K}^+ \), but obviously without identity element. But there is a substitute, namely the notion of the approximate identity, which turns out to be useful.

Definition 2.5. Let \(R \) be a commutative Banach algebra (without identity element). One says that \(R \) has an **approximate identity** if there exists a bounded sequence \((e_n) \) of elements \(e_n \) in \(R \) such that for any \(f \in R \),

\[
\lim_{n \to \infty} \|e_n f - f\| = 0.
\]

We will now prove the following result, which shows that the maximal ideal \(m_0 \) in \(\mathcal{K}^+ \) has an approximate identity.

Theorem 2.6. Let

\[
e_n := \frac{s}{s + 1/n}, \quad n \in \mathbb{N}.
\]

Then \((e_n)_{n \in \mathbb{N}} \) is an approximate identity for \(m_0 \).

The existence of an approximate identity for the maximal ideal \(m_0 \) in \(\mathcal{K}^+ \) is not obvious. In order to prove Theorem 2.6, we will need the following lemma.

Lemma 2.7. Suppose \(\tilde{f} \in m_0 \). Then, for all \(\epsilon > 0 \), there exists an \(\tilde{p} \in m_0 \) such that \(\tilde{p} \) has compact support in \([0, \infty) \), and \(\|\tilde{f} - \tilde{p}\|_{\mathcal{K}^+} < \epsilon \).

Proof. Let \(\epsilon > 0 \) be given. Suppose that

\[
f = f_a + \sum_{k=0}^{\infty} f_k \delta(-t_k),
\]

where \(f_a \in L^1[0, \infty) \), \((f_k)_{k \geq 0} \in \ell^1 \), and \(0 = t_0 < t_1 < t_2 < \cdots \). Since \(\int_0^{\infty} |f_a(t)| \, dt < \infty \), we can choose an \(M > 0 \) large enough such that

\[
\int_M^{\infty} |f_a(t)| \, dt < \frac{\epsilon}{4}.
\]

With \(p_a(t) := f_a(t) \) if \(t \in [0, M] \), and 0 otherwise, we have that \(p_a \in L^1[0, \infty) \) is compactly supported and

\[
\|p_a - f_a\|_{L^1} < \frac{\epsilon}{4}.
\]

Furthermore, select \(N \in \mathbb{N} \) such that

\[
\sum_{k > N} |f_k| < \frac{\epsilon}{4}.
\]

Now let \(T \in (0, \infty) \) be any number satisfying \(t_N < T < t_{N+1} \), and define

\[
f_T := -\left(\int_0^{T} p_a(t) \, dt + \sum_{0 \leq k \leq N} f_k \right).
\]
Set
\[p := p_a + \sum_{0 \leq k \leq N} f_k \delta(\cdot - t_k) + f_T \delta(\cdot - T). \]
(2.20)

Then \(\hat{p} \in \mathcal{K}^* \) and
\[
\hat{p}(0) = \int_0^\infty p(t) dt = \int_0^\infty p_a(t) dt + \sum_{0 \leq k \leq N} f_k + f_T = 0.
\]
(2.21)

So \(\hat{p} \in \mathfrak{m}_0 \). Clearly \(p \) has compact support contained in \([0, \infty)\). We have
\[
|f_T| = \left| \int_0^\infty p_a(t) dt + \sum_{0 \leq k \leq N} f_k \right| \\
= \left| \int_0^\infty f_a(t) dt + \sum_{k=0}^\infty f_k + \int_0^\infty (p_a(t) - f_a(t)) dt - \sum_{k>N} f_k \right| \\
\leq \left| \int_0^\infty f_a(t) dt \right| + \|p_a - f_a\|_{L^1} + \sum_{k>N} |f_k| \\
= |\hat{f}(0)| + \|p_a - f_a\|_{L^1} + \sum_{k>N} |f_k| \\
< 0 + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}.
\]
(2.22)

Thus
\[
\|\hat{f} - \hat{p}\|_{\mathcal{K}^*} = \|f_a - p_a\|_{L^1} + \sum_{k>N} |f_k| + |f_T| < \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{2} = \epsilon.
\]
(2.23)

This completes the proof. \(\square \)

We are now ready to prove the existence of an approximate identity for the maximal ideal \(\mathfrak{m}_0 \) in \(\mathcal{K}^* \).

Proof of Theorem 2.6. We have
\[
e_n = \frac{s}{s + 1/n} = \frac{s + 1/n - 1/n}{s + 1/n} = 1 - \frac{1}{n} + \frac{1}{s + 1/n} = 1 + \frac{1}{n} e^{-t/n}.
\]
(2.24)

Thus for an \(n \in \mathbb{N} \),
\[
\|e_n\|_{\mathcal{K}^*} = \left\| \frac{1}{n} e^{-t/n} \right\|_{L^1} + |1| = 1 + 1 = 2.
\]
(2.25)

Given \(\hat{f} \in \mathcal{K}^* \), and \(\epsilon > 0 \) arbitrarily small, in view of Lemma 2.7, we can find a \(\hat{p} \in \mathfrak{m}_0 \) such that \(p \) has compact support and \(\|\hat{f} - \hat{p}\|_{\mathcal{K}^*} < \epsilon \). Then
\[
\|e_n\hat{f} - \hat{p}\|_{\mathcal{K}^*} \leq \|e_n\hat{p} - \hat{p}\|_{\mathcal{K}^*} + \|e_n\|_{\mathcal{K}^*} \|\hat{f} - \hat{p}\|_{\mathcal{K}^*} + \|\hat{f} - \hat{p}\|_{\mathcal{K}^*}.
\]
(2.26)
Amol Sasane

So it is enough to prove that
\[
\lim_{n \to \infty} \|e_n \tilde{p} - \hat{p}\|_{\mathcal{K}_0} = 0
\] \hspace{1cm} (2.27)

for all \(\tilde{p} \in \mathcal{M}_0 \) such that \(p \) has compact support in \([0, \infty)\). We do this below.

We have
\[e_n \tilde{p} - \hat{p} = \frac{s + 1/n - 1/n}{s + 1/n} \tilde{p} - \hat{p} = -\frac{1}{n} \left(\frac{1}{s + 1/n} \tilde{p} - \hat{p} \right) = \frac{1}{n} (e^{-1/n} * p). \] \hspace{1cm} (2.28)

Let \(C \) denote the convolution \(e^{-1/n} * p \):
\[C(t) := \int_0^t e^{-(t-\tau)/n} p(\tau) d\tau. \] \hspace{1cm} (2.29)

We note that \(C \in L^1(0, \infty) \), since \(L^1(0, \infty) \) is an ideal in \(\mathcal{K}_0^\ast \). Let \(T > 0 \) be such that \(\text{supp}(p) \subset [0, T] \).

We have
\[
\|e_n \tilde{p} - \hat{p}\|_{\mathcal{K}_0} = \frac{1}{n} \|C\|_{L^1} = \frac{1}{n} \int_0^\infty |C(t)| dt = \frac{1}{n} \int_0^T |C(t)| dt + \frac{1}{n} \int_T^\infty |C(t)| dt. \] \hspace{1cm} (2.31)

We estimate \((I)\) as follows:
\[
(I) = \frac{1}{n} \int_0^T |C(t)| dt = \frac{1}{n} \int_0^T \left| \int_0^t e^{-(t-\tau)/n} p(\tau) d\tau \right| dt \leq \frac{1}{n} \int_0^T \int_0^t e^{-(t-\tau)/n} |p(\tau)| d\tau dt \leq \frac{1}{n} \left(\int_0^T \int_0^t 1 \cdot |p(\tau)| d\tau dt \right). \] \hspace{1cm} (2.32)

Since the integral \((III)\) does not depend on \(n \), we obtain that
\[\lim_{n \to \infty} \frac{1}{n} \int_0^T |C(t)| dt = 0. \] \hspace{1cm} (2.33)

Furthermore,
\[
(II) = \frac{1}{n} \int_T^\infty |C(t)| dt \]
\[
= \frac{1}{n} \int_T^\infty e^{-t/n} \left| \int_0^t e^{\tau/n} p(\tau) d\tau \right| dt \]
\[
= \frac{1}{n} \int_T^\infty e^{-t/n} \left| \int_0^\infty e^{\tau/n} p(\tau) d\tau \right| dt \quad \text{(since \(\text{supp}(p) \subset [0, T] \))}
\]
\[
= \frac{1}{n} \int_T^\infty e^{-t/n} \left| \hat{p} \left(-\frac{1}{n} \right) \right| dt.
\] \hspace{1cm} (2.34)
Since p has compact support in $[0,T]$, \hat{p} is an entire function by the Payley-Wiener theorem (see, e.g., [8, Theorem 7.2.3, page 122]). Consequently,

$$
(II) = \frac{1}{n} \int_{-\infty}^{\infty} e^{-t/n} \left| \hat{p}\left(-\frac{1}{n} \right) \right| \left| dt = e^{-T/n} \left| \hat{p}\left(-\frac{1}{n} \right) \right| \right| \rightarrow n \rightarrow \infty 1 \cdot |\hat{p}(0)| = 1 \cdot 0 = 0. \quad (2.35)
$$

This completes the proof. \(\square\)

We will also need the following lemma, which is basically a repetition of key steps from Browder’s proof of Cohen’s factorization theorem; see [9, Theorem 1.6.5, page 74]. We will need this version since in our application in the proof of Theorem 1.3, we are not able to use Cohen’s factorization theorem directly.

Lemma 2.8. Let $f_1, f_2 \in m_0$, and $\delta > 0$. Let $U(\mathcal{K}^*)$ denote the set of all invertible elements in \mathcal{K}^*. Then there exists a sequence $(g_n)_{n \in \mathbb{N}}$ in \mathcal{K}^* such that

1. for all $n \in \mathbb{N}$, $g_n \in U(\mathcal{K}^*)$;
2. $(g_n)_{n \in \mathbb{N}}$ is convergent in \mathcal{K}^* to a limit $g \in m_0$;
3. for all $n \in \mathbb{N}$, $\|g_n^{-1} f_i - g_n^{-1} f_j\|_{\mathcal{K}^*} \leq \delta/2^n$, $i = 1, 2$.

Proof. We will first prove two general results in steps (A) and (B), which we will use in the rest of the proof.

(A) Let $e \in m_0$ and $\|e\|_{\mathcal{K}^*} \leq K$, where $K > 1$. Then $1 - c + ce \in U(\mathcal{K}^*)$, where c is a number chosen such that

$$
0 < c < \frac{1}{4K} < \frac{1}{4}. \quad (2.36)
$$

Indeed,

$$
\left\| \frac{c}{c-1} e \right\|_{\mathcal{K}^*} < \frac{1}{3/4 \cdot 3/4} \cdot K = \frac{1}{3} < 1, \quad (2.37)
$$

and so

$$(1 - c + ce)^{-1} = \frac{1}{1 - c} \sum_{k=0}^{\infty} \left(\frac{c}{c-1} \right)^k e^k. \quad (2.38)$$

(B) Furthermore, under the same assumptions and notation as in (A) above, we now show that if $\|eF - F\|_{\mathcal{K}^*}$ is small for some F, then so is $\|EF - F\|_{\mathcal{K}^*}$, where $E := (1 - c + ce)^{-1}$. Since

$$
1 = \frac{1}{1 - c} \sum_{k=0}^{\infty} \left(\frac{c}{c-1} \right)^k, \quad (2.39)
$$

we have

$$
\|EF - F\|_{\mathcal{K}^*} = \left\| \frac{1}{1 - c} \sum_{k=0}^{\infty} \left(\frac{c}{c-1} \right)^k (e^k F - F) \right\|_{\mathcal{K}^*} \leq \frac{1}{1 - c} \sum_{k=0}^{\infty} \left(\frac{c}{1 - c} \right)^k \|e^k F - F\|_{\mathcal{K}^*}. \quad (2.40)
$$

But

$$
\|e^k F - F\|_{\mathcal{K}^*} = \|e^{k+1} F - e^k F\|_{\mathcal{K}^*} \leq \sum_{j=0}^{k-1} \|e^j\|_{\mathcal{K}^*} \|eF - F\|_{\mathcal{K}^*} \leq \|e|F - F\|_{\mathcal{K}^*} \sum_{j=0}^{k-1} \|e^j\|_{\mathcal{K}^*} < \|eF - F\|_{\mathcal{K}^*} \frac{K^k}{K-1}. \quad (2.41)
$$
Amol Sasane

Hence

\[\|EF - F\|_{K^0} < \|eF - F\|_{K^0} \leq \frac{1}{1 - c} \sum_{k=0}^{\infty} \frac{1}{K - 1} \left(\frac{1}{4(1 - c)} \right)^k < \frac{2}{K - 1} \|eF - F\|_{K^0}. \] (2.42)

This estimate will be used in constructing the sequence of \(g_n \)'s.

Let \((e_n)_{n \in \mathbb{N}}\) denote the approximate identity for \(m_0 \) from Theorem 2.6. Let \(K > 1 \) be such that \(\|e_n\|_{K^0} \leq K \) for all \(n \in \mathbb{N} \). Choose \(c \) such that

\[0 < c < \frac{1}{4K} < \frac{1}{4}. \] (2.43)

We will inductively define a sequence \((e_{m_k})_{k \in \mathbb{N}}\) with terms from the approximate identity for \(m_0 \) such that if

\[g_n := c \sum_{k=1}^{n} (1 - c)^{k-1} e_{m_k} + (1 - c)^n, \] (2.44)

then we have \(\|f_i - g_1^{-1} f_i\|_{K^0} < \delta/2, \ i = 1, 2, \) and

(P1) for all \(n \in \mathbb{N}, g_n \in \mathcal{U}(K^0), \)

(P2) for all \(n \in \mathbb{N}, \|g_n^{-1} f_i - g_{n+1}^{-1} f_i\|_{K^0} < \delta/2^n, \ i = 1, 2. \)

Since \((e_n)_{n \in \mathbb{N}}\) is an approximate identity for \(m_0 \), we can choose \(m_1 \) such that

\[\|e_{m_i} f_i - f_i\|_{K^0} \leq \frac{\delta}{4} (K - 1), \ i = 1, 2. \] (2.45)

Define \(g_1 = ce_{m_1} + 1 - c \). So by (A), \(g_1 \in \mathcal{U}(K^0) \) and using the calculation in (B), we see that

\[\|f_i - g_1^{-1} f_i\|_{K^0} < \frac{\delta}{2}, \ i = 1, 2. \] (2.46)

Suppose that \(e_{m_1}, \ldots, e_{m_n} \) have been constructed, so that \(g_n \) defined by (2.44) satisfies (P1) and (P2). We assert that if we choose \(e_{m_{n+1}} \) such that

\[\|e_{m_{n+1}} f_i - f_i\|_{K^0} \quad (i = 1, 2), \quad \|e_{m_{n+1}} e_{m_k} - e_{m_k}\|_{K^0}, \quad (1 \leq k \leq n) \] (2.47)

are sufficiently small, then \(g_{n+1} \) defined by (2.44) satisfies (P1) and (P2), completing the induction step.

Indeed, if \(E := (1 - c + ce_{m_{n+1}})^{-1} \), we have

\[g_n = E^{-1} c \sum_{k=1}^{n} (1 - c)^{k-1} E e_{m_k} + (1 - c)^n, \]

\[g_{n+1} = E^{-1} c \sum_{k=1}^{n} (1 - c)^{k-1} E e_{m_k} + (1 - c)^n. \] (2.48)
Let G_n be defined by

$$G_n = c \sum_{k=1}^{n} (1 - c)^{k-1} E e_{m_k} + (1 - c)^n. \quad (2.49)$$

Then we have

$$\|G_n - g_n\|_{\mathcal{K}} < \epsilon \sum_{k=1}^{n} (1 - c)^{k-1} \|E e_{m_k} - e_{m_k}\|_{\mathcal{K}} < \max_{1 \leq k \leq n} \|E e_{m_k} - e_{m_k}\|_{\mathcal{K}} < \frac{2}{K - 1} \max_{1 \leq k \leq n} \|e_{m_{i_k}} e_{m_k} - e_{m_k}\|_{\mathcal{K}}. \quad (2.50)$$

Hence $G_n \in U(\mathcal{K})$ and moreover $\|G_n^{-1} - g_n^{-1}\|_{\mathcal{K}}$ is small, provided only that $\|e_{m_{i_k}} e_{m_k} - e_{m_k}\|_{\mathcal{K}}$ is small for $k = 1, \ldots, n$. (Indeed, this is because $U(\mathcal{K})$ is an open set in \mathcal{K}.)

Since $g_{n+1} = E^{-1}G_n$, we have then $g_{n+1} \in U(\mathcal{K})$, $g_{n+1}^{-1} G_n = G_n^2 E$, and so for $i = 1, 2$,

$$\|g_{n+1}^{-1} f_i - g_n^{-1} f_i\|_{\mathcal{K}} = \|G_n^{-1} E f_i - g_n^{-1} f_i\|_{\mathcal{K}} \leq \|G_n^{-1} E f_i - g_n^{-1} E f_i\|_{\mathcal{K}} + \|g_n^{-1} E f_i - g_n^{-1} f_i\|_{\mathcal{K}} \leq \|G_n^{-1} - g_n^{-1}\|_{\mathcal{K}} \|E f_i\|_{\mathcal{K}} + \|g_n^{-1}\|_{\mathcal{K}} \|E f_i - f_i\|_{\mathcal{K}}. \quad (2.51)$$

Moreover, recall that by (B), we know that

$$\|E f_i - f_i\|_{\mathcal{K}} \leq \frac{2}{K - 1} \|e_{m_{i_k}} f_i - f_i\|_{\mathcal{K}}, \quad i = 1, 2. \quad (2.52)$$

Thus if $\|e_{m_{i_k}} f_i - f_i\|_{\mathcal{K}}$ (i = 1, 2) and $\|e_{m_{i_k}} e_{m_k} - e_{m_k}\|_{\mathcal{K}}$ (1 \leq k \leq n) are sufficiently small, we will have $\|g_{n+1}^{-1} f_i - g_n^{-1} f_i\|_{\mathcal{K}}$ as small as we please. This completes the induction step.

Since $\|e_{m_k}\|_{\mathcal{K}} \leq K, 0 < 1 - c < 1$, and \mathcal{K} is a Banach algebra, it follows that

$$g_n \rightarrow \epsilon \sum_{k=1}^{\infty} (1 - c)^{k-1} e_{m_k} =: g \in m_0, \quad (2.53)$$

and the proof is completed. \qed

3. Noncoherence of \mathcal{K}

Proof of Theorem 1.3. We will use the characterization that an integral domain is coherent if and only if the intersection of any two finitely generated ideals of the ring is again finitely generated; see [1, Theorem 2.3.2, page 45]. In fact, we present two finitely generated ideals I and J such that $I \cap J$ is not finitely generated.
Let \(p, S \) be given by
\[
p = (1 - e^{-s})^3, \quad S = e^{-((1 + e^{-s})/(1 - e^{-s})).}
\] (3.1)

Clearly we have \(p \in m_0 \).

It is known (see, e.g., [3, Remark after Theorem 1, page 224]) that
\[
(1 - z)^3 e^{-(1+z)/(1-z)} \in W^+(D) := \left\{ f(z) = \sum_{n=0}^{\infty} a_n z^n \mid (z \in D) \mid \sum_{n=0}^{\infty} |a_n| < \infty \right\}. \tag{3.2}
\]

Here \(\overline{D} := \{ z \in \mathbb{C} \mid |z| \leq 1 \} \). So if \(a_n \)'s are defined via
\[
(1 - z)^3 e^{-(1+z)/(1-z)} = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \cdots, \quad z \in D,
\] (3.3)
then we have
\[
\sum_{k=0}^{\infty} |a_k| < \infty. \tag{3.4}
\]

If \(\text{Re}(s) > 0 \), then \(e^{-s} \in D \), and so from (3.3), we have
\[
pS = a_0 + a_1 e^{-s} + a_2 e^{-2s} + a_3 e^{-3s} + \cdots, \quad \text{Re}(s) > 0. \tag{3.5}
\]

Since \(\sum_{k=0}^{\infty} |a_k| < \infty \), the right-hand side in (3.5) belongs to \(\mathcal{K}^+ \). So \(pS \in \mathcal{K}^+ \).

We define the ideals \(I = (p) \) and \(f = (pS) \) of \(\mathcal{K}^+ \).

Let
\[
K := \{ pSf \mid f \in \mathcal{K}^+ \text{ and } Sf \in \mathcal{K}^+ \}. \tag{3.6}
\]

We claim that \(K = I \cap f \). Trivially \(K \subset I \cap f \). To prove the reverse inclusion, let \(g \in I \cap f \). Then there exist two functions \(f \) and \(h \) in \(\mathcal{K}^+ \) such that \(g = ph = pSf \). Since \(p \neq 0 \) and \(\mathcal{K}^+ \) is an integral domain, we obtain that \(Sf = h \in \mathcal{K}^+ \). So \(g \in K \).

Let \(L \) denote the ideal
\[
L := \{ f \in \mathcal{K}^+ \mid Sf \in \mathcal{K}^+ \}. \tag{3.7}
\]

Then \(K := pSL \). Since \(S \) has a singularity at \(s = 0 \), it follows that \(L \subset m_0 \). We will show that \(L = Lm_0 \). Let \(f \in L \). We would like to factor \(f = hg \) with \(h \in L \) and \(g \in m_0 \). Applying Lemma 2.8 with \(f_1 := f \in m_0 \) and \(f_2 := Sf \in m_0 \), for any \(\delta > 0 \), there exists a sequence \((g_n)_{n \in \mathbb{N}} \) in \(\mathcal{K}^+ \) such that

(1) for all \(n \in \mathbb{N} \), \(g_n \in U(\mathcal{K}^+) \);
(2) \((g_n)_{n \in \mathbb{N}} \) is convergent in \(\mathcal{K}^+ \) to a limit \(g \in m_0 \);
(3) for all \(n \in \mathbb{N} \),
\[
\| g_n^{-1} f - g_{n+1}^{-1} f \|_{\mathcal{K}^+} \leq \frac{\delta}{2^n}, \quad \| g_n^{-1} Sf - g_{n+1}^{-1} Sf \|_{\mathcal{K}^+} \leq \frac{\delta}{2^n}. \tag{3.8}
\]

Put
\[
h_n := g_n^{-1} f, \quad H_n := g_n^{-1} Sf. \tag{3.9}
\]
Then \(h_n \in m_0 \). Also \(H_n \in m_0 \), since \(|S| \) is bounded by 1 on \(\text{Re}(s) > 0 \) and \(f(0) = 0 \). The estimates above imply that \((h_n)_{n \in \mathbb{N}}\) and \((H_n)_{n \in \mathbb{N}}\) are Cauchy sequences in \(\mathcal{K}^* \). Since \(m_0 \) is closed, they converge to elements \(h \) and \(H \), respectively, in \(m_0 \), that is, \(h_n = g_n^{-1}f \to h \) and \(H_n = g_n^{-1}Sf = Sh_n \to H \). Since convergence in \(\mathcal{K}^* \) implies convergence in \(H^\infty \) (Lemma 2.2), it follows that

\[
\begin{align*}
 h_n &\to H^\infty h \quad \text{(since } h_n \to \mathcal{K}^* h) , \\
 Sh_n &\to H^\infty Sh \quad \text{(since } h_n \to H^\infty h, S \in H^\infty) , \\
 Sh_n &\to H^\infty H \quad \text{(since } H_n \to \mathcal{K}^* H)
\end{align*}
\]

and so by the uniqueness of the limit of the sequence \((Sh_n)_{n \in \mathbb{N}}\) in \(H^\infty \), we have \(Sh = H \). Also, in \(\mathcal{K}^* \)-norm we have

\[
f = \lim_{n \to \infty} h_n g_n = h g \tag{3.11}
\]

since multiplication is continuous in the Banach algebra \(\mathcal{K}^* \). Since \(h \) and \(Sh = H \) belong to \(m_0 \subset \mathcal{K}^* \), we see that \(h \in L \). Moreover, as \(g \in m_0 \), we have got the desired factorization and \(L = L_{m_0} \).

But \(L \neq (0) \), since \(p \in L \). By Lemma 2.3, it follows that \(L \) cannot be finitely generated. Therefore, \(pSL = I \cap J \) is not finitely generated.

Remark 3.1. The ideal \(L \) in the above proof can be interpreted as an ideal of denominators; see [10, page 396]. Using the fact that \(pS \in \mathcal{K}^* \), we have \(S \in \mathcal{Q}(\mathcal{K}^*) \), where \(\mathcal{Q}(\mathcal{K}^*) \) denotes the field of fractions of \(\mathcal{K}^* \). We can then consider the fractional ideal \(M := \mathcal{K}^* + \mathcal{K}^* S \) of \(\mathcal{K}^* \) (see [11, page 19]) and the ideal of denominators \(L \) of \(S \), namely \(L = \mathcal{K}^* : M = \{ d \in \mathcal{K}^* \mid dS \in \mathcal{K}^* \} \).

Based on the results in [12, Theorem 3, Example 3], it follows that \(S \in \mathcal{Q}(\mathcal{K}^*) \) does not admit a weak coprime factorization, since \(L \) is not a principal ideal of \(\mathcal{K}^* \). In particular, \(S \) does not admit a coprime factorization, that is, there do not exist \(d, x, y, n \in \mathcal{K}^* \) such that \(d \neq 0, S = n/d, \) and \(dx - ny = 1 \). Moreover, \(S \) is not internally stabilizable, since otherwise \(L \) would be generated by two elements. Finally, the fact that \(L \) is not finitely generated implies that \(\mathcal{K}^* \) is not a greatest common divisor domain: indeed, were it the case that \(\mathcal{K}^* \) is a greatest common divisor domain, then by [12, Corollary 3], every element in \(\mathcal{Q}(\mathcal{K}^*) \) would admit a weak coprime factorization.

Acknowledgment

The author thanks all the referees for their careful review, and in particular, two of the referees for the Remarks 2.4 and 3.1.

References

Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk