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Abstract

The band method is a flexible method for solving a variety of interpolation and extension problems
which has evolved into increasing levels of sophistication over the past two decades. This article
enhances the Grassmannian version of the band method to handle the Nehari—Takagi problem rather
than merely the Nehari problem.
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1. Introduction

The Grassmannian approach to the Nehari (and Nehari—Takagi) problem goes back to
the paper by Ball and Helton [4], and the first attempt at an axiomatization of the Grass-
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mannian approach (in the Nehari problem case) was made in Ball [1]. The band method,
initiated by Dym and Gohberg [7], provides a unifying framework for solving strictly
contractive extension problems; see [10] for an overview and [13] for one of the latest
variations. A synthesis of the Grassmannian approach and the band method was developed
by Ball, Gohberg and Kaashoek (see [3]), and it is called the Grassmannian approach for
extensions problems. The solution to the so-called strictly contractive extension problem in
this abstract framework, when applied to a certain concrete case, yielded a complete char-
acterization of solutions to the Nehari problem. The Nehari—Takagi problem is a more gen-
eral problem, and the Nehari problem can be considered to be a special case of this problem
(an excellent exposition of this can be found, for instance in Young [15]). However, this
more general Nehari—Takagi problem does not fit a priori in the abstract framework of [3].
The aim of this paper is to suitably enlarge the abstract framework in [3] so as to include
the Nehari—Takagi problem as a special case as well. In the more general setting (as com-
pared to the one in [3]) presented in this paper, one has a family of problems (indexed by
the nonnegative integefsand in the special case whega: 0, one gets the strictly contrac-
tive extension problem of [3]. Thus, our setting can be thought of as a more refined version
of [3]. Our abstract setting applies to transfer functions of multi-input multi-output sys-
tems, possibly of infinite dimensions, as well as to time varying finite-dimensional systems.
A preliminary version of this paper, dealing with the scalar case, has been presented in [11].
In Section 2 we formulate our abstract setting. In Section 3 we give the statement of
the strictly contractive extension problem of Nehari—Takagi type in this abstract setting,
and present our main theorem which provides a characterization of all solutions to this
problem, under certain natural factorization assumptions. The proof of our main theorem,
given in Section 5, is based on some properties of linear fractional maps which we present
in Section 4. The final section has a review character and illustrates our abstract result on
two concrete extension problems, namely

1. The Nehari-Takagi problem for a class of time invariant infinite-dimensional systems.
2. The Nehari—Takagi problem for time varying finite-dimensional linear systems.

The solutions of these problems are known (see, for instance, Sasane [14] and Ball,
Mikkola and Sasane [5] for the first problem, and Kaashoek and Kos [12]). We show how
these two problems fit into our abstract framework and that one can deal with both of
the above problems as special cases of our main result. Thus in some sense our approach
captures the essence of the proofs given in [12,14]. We also mention that our main result
applies equally well to discrete time systems, both in a time invariant and a time vari-
ant setting. A remaining open problem is to use the abstract setting in order to solve the
Nehari—Takagi problem for time varying, infinite-dimensional linear systems, which has
so far not been considered.

2. Basic objectsand their properties

We begin with some preliminaries about matrices over*aalgebra. ThroughouR
will be a unitalC*-algebra with unit. Given p, m € N we letR”*™ denote the space of
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all p x m matrices with entries fror® and with the corresponding norm || z»x» defined
via the Gelfand—Naimark construction, which we recall below (see, for instance, [10]).

Theorem 2.1 (Gelfand—Naimark)Let R be aC*-algebra. Then there is a Hilbert space
‘H and an isometri¢-isomorphism ofR onto a closed-subalgebra ofZ (H).

In light of this theorem, we equif@”*"™ with the following norm. IfK € R”*™ then
IK [l Rpm =sup{lKx|| | x € H™, [lx] < 1}. 1)

If K1 € RP™ andKp € R™*, then || K1K2|lgpxt < [|K1llgoxn | K2llgm«t, Where K1 Ko
is defined by the usual matrix multiplication. K € R”*™, thenK* € R™*? is the ma-
trix with (i, j)th entry K*(i, j) = (K (j,i))*. For K1 € R?>*™ andK» € R™*!, we have
(K1K2)* = K5 K7 . From the Gelfand-Naimark theorem, itis easy to se€|tkidt| g, =
1K [l

The casem = p is of particular interest. Indeed?™*™ equipped with the norm
| - [lgmxm and the involution® is again a unitalC*-algebra with the unitt,, being the
m x m matrix with e on the diagonal and zeros elsewhere. The set of invertible elements
in R™*™ is denoted byGR™*™. An elementK € R™*™ is said to bepositive definite
denoted byK >pmxm O if K = A*A for someA € GR™ ™. An elementK € RP*™
is said to bestrictly contractiveif E,, — K*K >xmxn 0, which is, in turn, equivalent
with || K|l grexm < 1, Or equivalent withE,, — K K* >x»xp 0. Note that ifK € R™*™ and
|K || gmxm < 1, then(E,, — K)~1 e R™*m,

The following items 1-4 describe our basic objects, the general setup and introduce the
necessary definitions.

1. The triple(R, N, N). Just as in Ball, Gohberg and Kaashoek [3], the basic objects
are a unitatC*-algebraR with unite, a subalgebra/ of R, and a subalgebr&’, of /. We

also assume that the uribf R belongs ta\V_.. Given these basic objects we introduce an
additional stratification oW ”>™  the set ofp x m matrices with entries in the algehhé.

2. Stratification functionx. For eachp, m € N, we assume the existence o$tatifica-
tion functionu : N'/P>*™ — N U {0} that satisfies the properties M1-M3 given below.

M1. K € NP*™ s such thaj(K) = 0 if and only if K € N2,
M2. w(K1+ K2) < w(K1) + n(Ko) forall K1, Kp € N'PX™,
M3. w(K1K2) < u(K1) + n(Kp) for all K1 e NP>*" andKp € N,
This produces a stratification gvi”*™ as follows. Define
/\/[7]”” ={K e NP*" | n(K) =1}.

ThenN ™" = N7™", and definingV;”” " = U, , N}/, we get the increasing chain of
subsets

J\/‘fxm — [G]Xm :Nc;?XWl CN{JXWL CNZIJXH‘I C.--

. pXm
of NP> = 5o N)
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3. Index functiorv. In order to make “pole-zero counting arguments” in this abstract set-
ting, it turns out that the above stratification function is not quite enough. So we introduce
an auxiliary index function and demand that it is homotopically invariant (item 4 below).

Let m € N. Recall that\{"*" N GR™*™ consists of all elements iV} that are
invertible inR™*™_ \We assume that

K e NT>™ N GR™™ implies K~1e N™™. 2)
This allows to define an index function N N GR™*™ — (0,1, 2, ...} as follows:
v(K)=pu(K~ Y =inf{1| K=t e N
We also assume that
v(K1K2) =v(K1) +v(K2), K1, K2e NI NGR™ ™. (3)

4. Homotopic invariance of the indexWe assume that the following property is satisfied.
If M, N e N"™, andtN + M € GR™ " for 0<t < 1, thenv(M) = v(N + M).

We conclude this section with the definition of a coprime factorization M.et N/} ™
andN e fom_ The pair(M, N) is said to beight coprime overV., if there exist matrices
X, Y with entries inN,. such that

XM —YN = E,,.
The elementk € R”*™ is said to admit aight coprime factorizatiorover A/ if there

exist M e N, N e N'*™ such thatM € GR™>™, the pair(M, N) is right coprime
overN,, andK = NM~1,

Lemma 2.2. If K € N'P*™ admits a right coprime factorizatiok = NM~1 over A/,
thenv(M) = u(K).

Proof. Since M € GR™ ™ 0 N it follows that M~ € N> and sov(M) =
n(M~1 is defined. Usingk = NM~1, it follows that

W(K) = w(NM7Y) < u(N) + (M) =04 (M) = v(a). (4)
Here we used that(N) = 0 becauseV € V™. Now let X, Y be matrices with entries
in A, suchthat M — YN = E,,. ThenX — YK = M~ and so

V(M) =p(M™) = pn(X = YK) < u(X) + p(YK) =0+ u(¥) + 1u(K)

=0+ n(K) = p(K). (5)
From (4) and (5), it follows that (K) = v(M). O

Remark. The assumption (2) is a limitation on the use of the Grassmannian band method.
Indeed, it rules out an application to the triple. = H* (the Hardy space of bounded and
analytic functions in the open right-half pland),= U1>o Hp® (the space of functions that

can be decomposed into the sum of a functio® Y and a rational function with all poles

in the open right-half plane), arfd = L*>° (over the imaginary line). As a consequence the
abstract scheme in our paper does not cover the classical function theory setting while Ball,
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Mikkola and Sasane [5] handles this case. This limitation is known and already appears in
earlier papers on the band method. For instance, the solution of the abstract contractive
band method extension problems works well in a Wiener algebra setting (see [10, Chapter
XXXV]) but it does not yield the solution of the classical Nehari problem ira-setting.

On the other hand, as is shown in [8], the abstract positive real band method extension
problem applies to théf>°/L°-setting. It is an interesting open problem to extend the
general Grassmannian band method to include the Nehari and the Nehari—Takagi problems
for the classical function theory set up.

3. Problem statement and the main theorem

Fix K € RP*™_ An elementF € RP*™ is said to be atrictly contractive extension of
order! for K if the following hold:

1. F— K e NP*™ and admits a right coprime factorization ov€r , andu(F — K) =1.
2. Em — F*F >Rm><m O

Given K € RP*™, we wish to derive a linear fractional representation of all strictly con-
tractive extensions of ordérfor K.
In order to do this, we will assume that there existga- m) x (p + m) matrix

O11 O12 (p+m) x(p+m)
e = g RipTmxtpTm) ] 6
[@21@22} ©)

with entries inR that satisfies the following additional conditions:

s (152 [5 £][35)
fol 0 En fol
S2: @xpecGR™™ and v(@) =I,

. «[E, 07, [E, O
ss 0[5 2 Jo=[5 0]

We remark that in Lemma 4.3 we prove that S1 implies thai € N7"*™. Thus, by
the first part of S2, we hav@,; € N"*" N GR™*™, and hencen(©2») is well defined.
Property S2 requires(©2;) = w(O5) = 1.

We shall prove the following result, which characterizes all strictly contractive exten-
sions of ordel for a givenkK € RP*™.

Theorem 3.1. Let K € RP*™ and let® satisfies condition§1-S3 Then given any) <
NE*™ such thatQ is strictly contractive F defined by

F=(0110+ 0120210 + 0201 (= Fo(Q))

is a strictly contractive extension of ordefor K .
Conversely, ifF' is a strictly contractive extension of ordéfor K, there exists & €
NP*™ such thatQ is strictly contractive and” = Fg (Q).
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To give some further insight into the conditions S1-S3, let us consider the following
(p +m) x (p + m) matrices with entries ifR:

| Vi Vo | | Ep =K | E, O
V‘[Vzwzz]_[o £, |® 7T 0 -k, | @)
Assume that conditions S1 and S3 are satisfied. As we will see later (Lemma 4.2) this
implies that® is invertible inR(P+™)*(P+m) ThuysV is invertible inR(P+m>x(p+m) "and
we can rewrite S3 as

E K CANK gy,

Next, notice that condition S1 also implies that the entrie¥ aind V1 are in . (see
Corollary 4.5). Hence condition S2 requires the spectral fa€tto be of a special type,
namely the entry>2 (= @22) is invertible, and (©@22) = 1.

Conversely, in order to find a matrig € R(P+mx(r+m) satisfying conditions S1-S3,
one proceeds as follows. First as in (8), one looks fdrspectral factorization relative to
N of the matrix

E, K
K* En—K*K |’

Next, one checks whether the factidrcan be chosen in such a way that it satisfies the
additional property referred to above. If so, then one definesa the first identity in (7).

This matrix® satisfies conditions S1-S3, and one can apply Theorem 3.1 to get all strictly
contractive extensions of ordefor K.

4. Preliminaries about linear fractional maps

In this section we collect together a number of results on linear fractional maps of the
type appearing in Theorem 3.1. First we show that under appropriate assumptions, the
linear fractional mapFy maps the open unit ball in a one-to-one way onto itself.

Proposition 4.1. Let

O11 O12 (p+m) x(p+m)
O = g R\pTmxpTm)
[@21@22}

Assume conditioB3is satisfied, and tha® and ®, are invertible inR (P+mx(p+m) gnd
R™*m respectively. Then the map

Fo(Q) = (0110 + O12) (0210 + O2) 71

is well defined orB = {Q € RP*™ | E,,, — Q*Q >xrmxm 0}, andFg |p is a bijection onB.
Furthermore,

(Folp) 1= Fy-1lp. 9)

Proof. We divide the proof into four steps.
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Step 1. In this step, we show thaky is well defined orB. Let

—[50]
Then assumption S3 gives*J® = J. Consequently,
OJO* =(0©JONJJ)) =(©Je%(J(e0H)=0J*I0)0™1)
=0JIo ti=1.
In particular,@2103, — 02205, = —E,,. Since@»; is invertible, it follows that
@2_21@21951(952)_1 —En = _@2_21(952)_1~
Hence||©3,(03,) s« < 1 and so
|62 021 s = [(©35021) | e = [©51(03) | e < 1.
Using || Q|lrrxm < 1, it follows that
|02 0210 guen < €22 O21] guvny | Qlipen < 1.
Hence®210 + ®2r = @22[@2‘21@21Q + E,] is invertible, andF = Fg(Q) is a well-

defined element ogR?>*™,

Step 2. Next we show that = Fg (Q) is strictly contractive ifQ € B. First of all, note
that

F (0110 + 6010210+ 60207*] [T 07,4
[ En } B [ (0210 + O22) (0210 + @22)—1] =0 |:Em } X (10)

whereX = @210 + O22. Hence, using condition S3, we have that

reerrtr ) 2 2L ]

ot e[ 2Jo[ 2]
—eye e[ ][ 2 ]

= (XN [En - 0*Q]X ™t >Ruxm O.
ThusF € B.

Step 3. In this step we show that S3 holds with! instead of®, and that the submatrix
of ® 1 through rowsp + 1 to p + m, and columng + 1 to p +m (that is, the(2, 2) block
entry of @1 if partitioned in conformity with®) is invertible. To see this, lef denote
the matrix as in the first step. Condition S3 and the invertibilityoiimply that

Q) * _ (X
o t=Jyo* = [ _0@1%2 @(2"21} . (11)
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Hence the(2, 2) block entry of®@ 1 is ©3,, which is invertible, sincey; is invertible.
Furthermore,

(e HY e t=©yHtiyern=.

Hence S3 holds witi® ! instead of®.

From what has been proved in the previous paragraph, we conclude that the results of
the first two steps also hold witR ~! instead of®. ThusF,, 1 is well defined ori, and
mapsB into itself. Therefore, in order to complete the proof, it remains to show that

Fo-1(Fo(Q))=0Q forallQeB, and (12)
Fo(Fo-1(F))=F forall F eB. (13)

Actually, since® 1 has the same properties@s it suffices to prove (12). We will do this
in the next step.

Step 4. Take O € B, and defineF = F (Q), andG = Fy-1(F). By using (10) for® as
well as®~1, we have

[; } —6 [EQ ] (210 +Op) 1,

G -1 F -1
|:Em :| =0 I:Emi| (_@IZF + @;2) .
Now observe that

O5F — O [ F
—@ikzF'F@;z: [Omxp En ] |:_(;'i][<2F+(5%2i| = [Omxp En 10 |:Em:|
=[Oy En1O720 [EQ }(@le 027!
m

=[Onxp Em] [ EQm } (0210 4+ O22) 1 = (0210 4+ O20) L.

In particular,(©210 + G2 (—~O%LF + @4, ' = E,,. But then

G _ F 1
G=1Ep Opxm 1| o | =[Ep Opxm 10 l|:E ] (—OLF + 63))
L =m m
_ -1 0 -1 * % \—1
=[Ep 0pxm 1076 | = | (0210 + 022 (—O1F + O3)
m

=[Ep Op><m] EQm =0.

Thus (12) is proved, and the proof is completes

As consequences of the assumptions S1 and S3 we state some simple lemmas, which
will be used in the next section to prove the main theorem.
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Lemma 4.2. Assume that conditiorf81 and S3are satisfied. Then the matré is invert-
ible in R(P+mx(p+m) and®—1 is given by

ol=yors=| o1 9|
—O1; 63

Proof. From assumption S1, it follows that

pxk pxk
o| Ne =l Er KNS 1o
J\/’”X 0 En || NPX
Sincee belongs ta\,, we haveE,,,, belongs ta\’ ™™ **™ and hence the above

identity (with k = p + m) shows that there exists a mateixe A/ TP sych that
E, K
5 E]

The term in the right-hand side of the previous identity is invertible. Hengg i) x (p+m)
the matrix® has a right inverse?’ say, thatis@®’ = E,,,,,. Next define

o' _[~E» O ge[-E» O_T €11 —057
0 E, 0 En -0, 05,

Then assumption S3 yields that’'® = E 1. Thus
0" =O"Epm=0"(00)=(0"0)0 = Ep1,0 =0
S0 isinvertible inRP+mxp+m) with ©-1=©”. 0

Lemma 4.3. Assume that conditioB1is satisfied. The®z1 € N} ™7 and @2, € N,

Proof. From assumption S1, it follows that

e e prl E K J\/‘I’X]-
[Omxp Enl][@;i @;§i| |:me1] —[Omxp Em]|: OP Em:| [Nj’;‘t)(l}

+
1
:er .
In particular,
1 px1
o pxl o ® Nﬁx O11 O12 N—'r
OuNL " =[6O2 022][ Ot ClOnxp Em] ©21 Oz | | NT*1

_ a/mx1
= AL,

Sincee, 0 € NV, we have tha®,; € V7. Similarly

0 Ou 6127 N!
O2N} "t =021 022][ N’i,fxll]c[ow Em][ Or1 Og][ s =N,

and so@zzj\/jfXl - Nf”. Sincee, 0 € N, we obtain also tha®z, € NI, O
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Lemma4.4. Assume that conditiorland S3are satisfied. The®;; e NV ™" and©},
NP

Proof. Condition S3 may be rewritten as
_@Il @5‘1- ®11 O12 _ -E, O
—@IZ @;2_ ®r1 B2 0 E, |’

and using condition S1 we have that

~E, 0 ][ AP —03 05,1 E, K 1| N
0 En mel =01, 05 [ 0 En || N |

In particular,
_ o 1
px1 E, K NPX px1
—OLNTT =[-6];, 03] 0 E, Orle CNY
and
_ o 11
_ox A/PXL1_ * * E, K fo px1
OLNT™ =[-01, @22]_ 0 Em__0m><1_CN+ :

Sincee, 0 € NV, we obtain®;; e NV and®f, e NP, O
DefineV e RP+mx(p+m) py
:[g %ﬂ - [EOP —EK]O (14)
Corollary 4.5. LetV € R(PTmx(r+m) he defined as ifiL4). If © satisfiesS1andS3 then
V is invertible inR(P+mx(p+m) "and the entries o¥ and vV~ belong ta\V, .
Proof. Since S1 and S3 are satisfied, we know tBais invertible in R(P+m)x(p+m)

(Lemma 4.2), and henc¥ is invertible in R(P+™*(p+m) Byt then S1 can be rewritten
in the following equivalent form:

prl prl
mel mel

which is equivalent to the statement that the entrie€ ahdV —! belong toN,. O

5. Proof of the main theorem

In this section we prove Theorem 3.1. Through&ug R?>*"™, and® is the(p + m) x
(p + m) matrix with entries inR, partitioned as in (6). We assume that conditions S1-S3
are satisfied. Recall th&#t={Q € R?*™ | E,;, — Q*Q >pmxm 0}.
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Proof of Theorem 3.1. From Lemma 4.2, we know tha& is invertible inR (?+m)x(p+m)
Furthermore, according to condition S2, the elen®@gy is invertible inR™>™ . But then
we can apply Proposition 4.1 to show that the nf&p in Theorem 3.1 is well defined
onB, and map® in a one-to-one way onto itself.

Step 1. Let Q € BN NI, We already know thaF = Fg(Q) is strictly contractive.
According to Lemma 4.3, the entries b1 and@», belong ta\... We claim that

V(0210 + O2) =1. (15)

To see this, we apply the assumption of homotopic invariance of the index function (item
4 in Section 2) withN = ®210 and M = ®3». Indeed, fort € [0, 1], we haverQ € B,
and hence we know from Proposition 4.1 th@b1Q + @22 = O21( Q) + O € GR™*™
for ¢ € [0, 1]. According to condition S2 we havwg®25) = [, and thus we obtain (15) by
applying homotopic invariance.

Let V be given by (14). Thus

O11 012 | _| Ep K Vig Viz | _ | Vir+ KVa1 Viz+ KV22
©21 O 0 Ep || Vo1 Va2 Va1 Va2 '

It follows that

F—K=(0110+012(0210 + 022 " — K
= ((Vi1+ KV21) Q + Vi + K V22) (V210 + Vo)t — K
= (V110 + Viz+ K (V210 + V22)) (V210 + Vo) 1 — K
= (V110 + V12) (V210 + Vo) 1.

Now defineN = V110 + V1 and M = V210 + Voo(= @210 + ©27). SinceQ € fom
and the entries o¥ are also inV., both N andM are matrices with entries iv.. Since
M e NI 0 GR™ ™, we haveM ~1 € N> and thus it follows thaF — K € N'P<™.

Next we show that the paitM, N) is coprime overV, . To do this, letA = V1. Then
from Corollary 4.5 the entried (i, j), i, j € {1, ..., p +m} of A are inN,. PartitionA is
in conformity with the partition o:

A11 A1z
A= .
[A21 A22:|

Then we have
A21N + AoppM = A21(V110 + V12) + A22(V210 + V22)
= (A21Vi1+ A22V21) O + (A21Vi2 + A22V0) = Epy.

Hence the pailM, N) is coprime over\,, and thusF — K = NM~1 admits a right
coprime factorization oveN/ ;. So using Lemma 2.24(F — K) = ind(M) = L. This com-
pletes the proof of the first part.

Step 2. We prove the converse in this part. Léftbe strictly contractive extension of order
[ for K. SinceF is strictly contractive, from Proposition 4.1 we know that there exists a
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uniqueQ € RP*™ such thatt,, — Q* Q is positive definite iR™*" andF = Fo (Q). In
fact, using (9) and (11), thi@ is given by

0 =Fg-1(F) = (051 F — 03;) (O, F + @ikz)_1

ThusQ = RS~1, where

"R [ F ]
_S__O £ | (16)
It follows that
(R a[ K] F-K
HECEFAESS [ o }
[E, K
=7 = o1 F—K
5 e o, Joe -
=V1-Opxmi|+|: Oll :|(F K)
_Em

A1z ) }
= F —K).
][ e
Here we used thdl is defined by (14) and that denotes the inverse &f which has been
partitioned in conformity with the partitioning df. From the above, we see that

R=A1+ O (F—K) and S=Axp—O0h(F—K). (17)

Now let F — K admit the right coprime factorizatioR — K = NM~1 over A’.. Then
from Lemma 2.2, we have(M) = 1. Using F — K = NM~ in (17), we getRM =
A1pM + O N and SM = ApM — ©7,N. From Corollary 4.5 we know thati;» and
A2z have entries ioV_.. Furthermore, according to Lemma 4.4, the entrie@pfandor,
belong to\, . Finally, sinceM andN also have entries iV, we conclude thaRM and
SM have entries iV, as well. SinceS andM are invertible iR >™ it follows thatS M
is also invertible inMR™*™. So we know thaSM € N"*™ N GR™*™. Now we show that
V(SM) =
Using (16), we have

_ F F
O21R + 0228 =[ O21 2210 l|:E i|=[0m><p Em]|:E i|=Em~
m m

It follows that M = ®21RM + @22SM. DefineN = —©@,1RM. Then
N+ M= (1—1)O21RM + O225M.

By Lemma 4.3»; has entries ioV., and from the previous paragraph, we know that the
same holds foR M. ThusN has entries inV,.. If 7 € [0, 1], then(1 — 1) Q € B, and thus
O21(1—1) Q0 + O is invertible inR™*™. As we have seen in the previous paragrafi¥,

is also invertible ifR™>*™. Consequently

tN+M=(1-1)O21RM + O2o5SM = (O21(1 — 1) 0 + O2) SM € GR™*™



O. Iftime et al. / J. Math. Anal. Appl. 310 (2005) 97-115 109

where we used the fact th&t = RM(SM)~1. SotN + M € NN GR™ ™ for t €
[0, 1], and applying the assumption of the homotopic invariance of the index (item 4 in
Section 2) withN = N andM = M, we obtain

[ = v(M) = v(@2SM) = v(O2) + v(SM) =1 + v(SM).
Hencev(SM) = 0. In other wordsu ((SM)~1) = 0 which implies thatsM) 1 e N,
and soQ = RM(SM)~1 e NI This completes the proof.O

6. Examples

This section has a review character. We illustrate our main theorem on two con-
crete examples, namely the Nehari—Takagi problem for a class of time invariant infinite-
dimensional systems, and the Nehari—Takagi problem for a class of time varying, finite-
dimensional linear systems. The first example is taken from the paper [14], and the second
from [12].

6.1. Nehari—Takagi problem for time invariant infinite-dimensional linear systems

1. The triple(R, N, N). We takeR to be the (commutative) *-algebra of continuous
functionsk on the imaginary axisR for which the limits lim,_, +o k(iw) exist and are
equal.

N is the subalgebra of functiots C; — C continuous on the closed right-half plane
C, :=C, UiR U {00}, analytic inC., and bounded i©; . (These are exactly the analytic
functionsk(s) obtained via a M6bius transformatian— % on the domain of functions
in the disc algebra.)

N is the subalgebra of functiorts C. — C defined in the closed right-half plari,
such thatk = g + h, whereh € N, andg is a strictly proper rational function with all its
poles contained ift ..

In the Gelfand—Naimark construction one can take be the Hilbert spacg?(iR, C),
and the norm ofR?*™ is then the usual norm

IK Rpxn = SUP|K (i) | £ (com -
weR

2. Stratification functionu. From the proofs of Lemmas 2.5.1, 2.5.3 in [14], it follows
that everyK € N'P*™ admits a coprime factorizatiok = NM ! over ', whereM is
rational, with detM) being a proper rational function with all its zeros containe€in
We defineu (K) to be the number of zeros of déf). Then M1-M3 can be verified easily.

The functionu then produces a stratification dvi?*™: the set/\/é’]x’" consists of all

functionsk :C;. — CP>*™ such thatk = G + H, whereH e N'{"" andG is the rational
transfer function of a finite-dimensional system with MacMillan degread having all
its poles inC... The setV;’*" comprises the set of all functions : C;. — C”>*™ such
that K = G + H, whereH € N*" and G is the rational transfer function of a finite-
dimensional system with MacMillan degre¢ mostequal to/ and having all its poles
inC,.
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3. Index functionv. We first show thatv>™ is inverse closed. Since eveky e N>
admits a coprime factorization ovaf, (see the proof of [14, Lemma 2.5.3]), it suffices to
show that ifk € GR™ ™ NN, thenkK ~1 e N> The latter follows from the proof
of [14, Lemma 2.5.10].

The index ofK = NM~1 (where(N, M) is a coprime ove/,) is then the difference
between the number of zeros #fin C. (the number of zeros & in C,.) and the number
of zeros ofM in C; (the number of poles ok in C,).

In order to show additivity of the index, one can proceed as follows.KgtK, €
N™XM and letK, = NlMl_l, Ko = N2M2_l be coprime factorizations ove¥’, . We note
that

K1K3 = (N1adj(M1) Na adi(M1)) (detMy) dettM) E)
is a right coprime factorization ovey’, for K1 K>, and
K5 'K = (Mpadi(N2) M1 adi(N1) (dei(No) dettNy) Eyy)

is a right coprime factorization ove¥, for K2*1K1*1. Consequently, from the proof of
Lemma 2.2, it follows that

n(K1K2) = u(detM1) detMp)E,)  and  u(Ky *K; ) = pu(detNy) det(N2) Eyy ).
Thus

v(K1K2) = 1(detiND)) — u(dettMy)) + u(deliN2)) — u(detMy))
= V(K1) + v(K2).

4. Homotopic invariance of the indexWe note thab (t N + M) = u(dettN + M)), and

so the homotopic invariance of the index is a consequence of the homotopic invariance of
the Nyquist index (see, for instance, Curtain and Zwart [6, Lemma A.1.18, p. 570]): indeed,
let § > O be such thaC; ; := {s € C | Re(s) > §} contains all the zeros of dé?) and

det(N + M). Lete € (0, §). Applying [6, Lemma A.1.18] withh(s, 1) :=dettN(s +€) +

M (s + €)), it follows that the number of zeros of déf) and detN + M) are the same

in C¢ 4. But the choice of € (0, 8) was arbitrary, and so it follows that déf) and

det(N + M) have the same number of zeros(n . But they do not have any zeros on

the imaginary axis, and so the result follows.

Statement of the problem. Let K be the transfer function of an infinite-dimensional
system with generating operatogd, B, C) such thatA is exponentially stable, infini-
tesimal generator of a strongly continuous semigraip),~o on the Hilbert spacex,

B e L(C™, X), andC € L(X,CP). ThenK € N7™™. Let! be a nonnegative integer, and
suppose that;1(Hg) < 1 < 0;(Hg), Whereo, (-) denotes theth singular value of a
bounded linear operator, arl : L2((0, o0), C") — L2((0, 00), CP) denotes the Hankel
operator corresponding to the impulse respdnsg= Ce'4 B, ¢ > 0, and given by

o
(Hgu) (1) = f Ce"™ABu(r)dr, t>0.
0
Then find astrictly contractive extensioR of order! for K.
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Let

0 I, B*
where L and L¢ denote the controllability and observability Gramians, respectively, of

the infinite-dimensional system given by the tripkg, B, C) (see, for instance, Curtain and
Zwart [6, Theorem 4.1.23, p. 160]). Then, from [14, Chapter 4], it follows éhatefined

by

AGs) = [’P 0 } + [_CLB } (I — LeLp)~Y(sI+ A% C* LB,

[1, K 1
@_[é’lm}A(—-) (18)

satisfies S1-S3. MoreoveR) is invertible. Hence applying Theorem 3.1, we obtain the
following result.

Theorem 6.1. Let A be the exponentially stable, infinitesimal generator of a strongly con-
tinuous semigroumefA)t>o on the Hilbert spaceX, B € L(C™, X), andC € L(X,CP).

Let K(s) = C(sI — A)"1B e NP and suppose that there exists @nsuch that
o1+1(Hg) < 1 < 0;(Hg), whereo,(Hg) denote the Hankel singular values. L@t be
given by(18). ThenF € RP*™ is a strictly contractive extension of ordéffor K if and
only if F = (0110 + ©12) (0210 + O22) 1, for someQ € N7 such that Q|| gpxm < 1.

6.2. Nehari—Takagi problem for time varying, finite-dimensional linear systems

The problem considered in this section deals with integral operators2@R, C™)
which are input—output operators of time varying finite-dimensional systems of the form
5 { (%) = AOx®) + BOu(®),
(1) =C@)x(t) + D(@)u(?),

hereA € L*°(R, C"*"), B € L*[R,C"™), C € L*(R,C"™"), andD € L* (R, C"*™),
The differential equation

teR, (29)

(%x) @) =A@M)x@), teR, (20)

is assumed to have a dichotorRy.. The input—output operatdis, of the systen®, acting
on L(R,C™), is given by

[e¢]

(Tsu)(t) = D(t)p(t) + / C(t)ya(t,s)B(s)u(s)ds, teR, ueL?[R,C"),

—00

whereC(¢)ya(t, s) B(s) is the uniquely defined bounded weighting pattern which is ob-
tained from the evolution matrix and the dichotory, see [12]. In what follows we shall
always assume thdd(¢) = d 1, for eachr € R, whered is a complex number.

If T =Tx,whereX is as in the preceding paragraph wibi¢) = dI,, and with the ho-
mogeneous equation (20) possessing a dichotBgnythen we refer ta~ as anadmissible
realizationof 7', and we calll’ theinput—output operatoof the admissiblesystemX’.
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Statement of the problem. The starting point for the Nehari—Takagi problem treated in
this section is a lower triangular integral operaforon L?(R, C™) which is the input—
output operator of the admissible systénik) given by

(4:x)(t) = Ak ()x(t) + Bg ()u(®),
y(0) = Cg()x(@),
Given such an operatd@ and a nonnegative integgrthe problem is to find all operators

T = Tx with X an admissible system (19) satisfying rahk < / such that|K + T|| < 1.
Here the norn| - | is the L2-induced operator norm (see item 1 below).

> (K): { reR. (21)

Let us now put this problem into the abstract set up of Section 2.

1. Thetriple(R, N+, N). Inthis subsectiofk is theC*-algebra of all bounded operators
on L%(R). ThusR™*™ is the set of all bounded operatdfson L2(R, C™). The norm on
R™*M is the L2-induced norm, that is,

”T”Rmxm = Sud ||Tl/l ”LZ(R,(CP) | uc Lz(R, (Cm), ”M ”LZ(R,(C’”) = 1}

The class of all integral operators with an admissible realization is denotady".
The subsetV}"*" comprises alll' e N> that are upper triangular integral operators.
ThusT € N"™ if and only if T = Tx with dichotomy Ps = 0, that is, the admissible
realization X' is backward-stable. From [12, Sections 1.2 and 1.3] it follows fiiat
N1*1is a subalgebra ok, and V. = N2*! is a subalgebra of/. Furthermore, the unit
of R, which is equal to the identity operator @2 (R), belongs to\/.

2. Stratification functiomu. For K € N™*™ we define
w(T)=min{rankPy | X is an admissible realization df'}.

Thusu(T) <! if and only if T is the input—output operator of an admissible systBm
with the rank of the dichotomys, being less than or equal fo With this definition the
properties M1-M3 follow from [12, formula (1.13)].

The functiony then produces a stratification dvi”*”. Indeed, the set," " com-
prises the set of all input—output operat@rén N> of systemsX with dichotomy Px
with rank(Px) < 1. Furthermorej\/[’l”]xm consists of all operatorg in N> that have an
admissible realizatioX’ with dichotomy Py of rank! and no admissible realization with
a dichotomy of strictly smaller rank.

3. Index functiorv. It can be shown that/™*™ is inverse closed. More precisely, #f
is the input—output operator of an admissible sysg@rfwith dichotomyPs), thenT 1 is
the input—output operator of a some system (denoted byzsay with dichotomy Py 1.
In particular, if 7 € N7 0 GR™ ™, thenT 1 € N> _ This allows us to define the
index functionv:

v(T)=u(T7Y), TeNI™nGR™™,
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One can show that(T) is equal to the Fredholm index of the Fredholm operatarcting
on L2([0, o), C™), which is the compression of the input—output oper4tdo the half-
line, that is,

(Tu)(t) = (Ti)(t), >0, ueL?([0,00),C"),
with

~_ fu@ ift>=0,
“(I)‘{o if  <0.

The additivity of the index then follows from the additivity of the Fredholm index.

4. Homotopic invariance of the indexLet N e N"*", M e N N GR™*", and as-
sume thatN + M € GR™ ™ for 0< r < 1. Fort € (0, 1], we have

V(N +M)= ind(%M(tNM_l~|— Em)> = v(%M) + v(tNM_1+ Em)

=v(M) +v(INM™ + Ep).

But for + small enough, we can ensure that the input—output operator corresponding to
tNM~1 has norm< 1. Hence from the stability of the index of Fredholm operators un-
der perturbations that are small in operator norm (see [9, Section XI.4]), it follows that
v(tNM~1+ E,) = v(E,) =0. From this it can be seen that item 4 of Section 2 holds.

Conclusion.
Now let K = K5, be the lower triangular integral operator. Suppose that

supoy41(Hg (7)) < 1 < inf o;(Hg (7)),
7eR TeR

whereo, () denotes theth singular value of a bounded linear operator, anddfer R,
Hg (7) denotes the generalized Hankel operatoZ3((0, co), C™) corresponding to the
integral operatok , and is given by

[o]

(HK(r)u)(t) = / Ct+t)yatt+rt, 7 —s)B(t —s)u(s)ds, t>=0.
0
Define
Gk(t)= UK(t)_*/UK (5)*Ck (5)*Ck (5)Uk (5)ds U ()™, teR, (22)

t

t
Zg (1) =Gg() ™t = Uk (1) f Uk () 1Bk (s) Bk (5)* Uk (s) *ds Ug 1)*,  (23)

t eR.

Assume thaG g (¢) is uniformly positive definite, and assume that for eaetR the matrix
Z (1) is non-singular, anddetZ (-)~1) # 0. So we may consider
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[ A 0

A@ = IB(I) —AK(I)* i| s (24)

By = [ 1= GO Zk0™ Gk Zk [ -Gk ) *Cx)* 0

°- Zg(®™? ~Zg ()7t 0 Bg(t) |’
(25)

[ C 0

Co = Ko(t) By (t)*:| , (26)
(10

po=|55] @7)

fort € R, and let® be the input—output operator of the systéh®), where
5(6): { (F¥)0 = Ao@x(t) + Bo(u(®). o 28)
y(#) =Co)x(t) + Do ()u(t),

Using [12, Lemmas 5.2 and 5.3], one can prove that S1-S3 hold. We remart that
is also invertible. Indeed, we ha¥*J® = J and®JO* = J (this follows from Ball,
Mikkola and Sasane [2, Theorem 2.1]), so tBalhas both a right inverse and a left inverse,
and so it is invertible. Hence the Theorem 3.1 applies and we have the following.

Theorem 6.2. Let K be the input—output operator of a forward stable admissible system
of the form(21). Suppose that

Supol+1(HK(r)) <1< inf UI(HK (r)),
reR TeR

whereHg (t) denotes the generalized Hankel operator corresponding to the integral oper-
ator K. Let® be the input—output operator of the system give(2i8). ThenF € N <" is

a strictly contractive extension of ordéfor K if and only if F = (0110 + ©12)(@210 +
©22) 71, for someQ € N such that| Q| < 1.
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