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Chapter 1

Analysis

Analysis is the theory behind real numbers, sequences, and functions. The word ‘theory’ is im-
portant. You might, for example, have a good idea of what we mean by a ‘limit’ of a convergent
sequence or the notion of a ‘continuous’ function, but in this part of the course we try to formalize
such notions.

1.1 The real numbers

The rational number system is inadequate for many purposes. For instance, there is no rational
number q such that q2 = 2, and the set

S = {q ∈ Q | q2 ≤ 2}
does not have a largest element in Q. So we see that the rational number system has certain holes.
The real number system R fills these gaps. Thus the set

S = {q ∈ R | q2 ≤ 2}
has a largest element. This is a consequence of a very important property of the real numbers,
called the least upper bound property. But before we state this property of R, we need a few
definitions.

Definitions. Let S be a subset of R.

1. An element u ∈ R is said to be an upper bound of S if for all x ∈ S, x ≤ u. If the set of all
upper bounds of S is not empty, then S is said to be bounded above.

2. An element l ∈ R is said to be a lower bound of S if for all x ∈ S, l ≤ x. If the set of all
lower bounds of S is not empty, then S is said to be bounded below.

3. The set S is said to be bounded if it is bounded above and it is bounded below.

Examples.

1. The set S = {x ∈ R | 0 ≤ x < 1} is bounded. Any real number y satisfying 1 ≤ y (for
instance 1, π, 100) is an upper bound of S, and any real number z satisfying z ≤ 0 (for
instance 0, −1) is a lower bound of S.
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2 Chapter 1. Analysis

2. The set S = {n | n ∈ N} is not bounded. Although it is bounded below (any real number
x ≤ 1 serves as a lower bound), it has no upper bound, and so it is not bounded above.

3. The set1 S = {(−1)n | n ∈ N} is bounded. It is bounded above by 1 and bounded below by
−1.

4. The set S =
{

1
n

∣
∣ n ∈ N

}
is bounded. Any real number x satisfying 1 ≤ x is an upper

bound, and 0 is a lower bound.

5. The sets Z and R are neither bounded above nor bounded below. Indeed, this is a conse-
quence of the inequality z < z + 1.

6. The set ∅ is bounded. (Why?) ♦

We now introduce the notions of a least upper bound (also called supremum) and a greatest
lower bound (also called infimum) of a subset S of R.

Definitions. Let S be a subset of R.

1. An element u∗ ∈ R is said to be a least upper bound of S (or a supremum of S) if

(a) u∗ is an upper bound of S, and

(b) if u is an upper bound of S, then u∗ ≤ u.

2. An element l∗ ∈ R is said to be a greatest lower bound of S (or an infimum of S) if

(a) l∗ is a lower bound of S, and

(b) if l is a lower bound of S, then l ≤ l∗.

Example. If S = {x ∈ R | 0 ≤ x < 1}, then the supremum of S is 1 and the infimum of S is 0.

Clearly 1 is an upper bound of S.

Now we show that if u is another upper bound, then 1 ≤ u. Suppose not, that is, u < 1. Then
we have

0 ≤ u <
u+ 1

2
< 1, (1.1)

where the first inequality is a consequence of the facts that u is an upper bound of S and 0 ∈ S,
while the last two inequalities follow using u < 1. From (1.1), it follows that the number u+1

2
satisfies 0 < u+1

2 < 1, and so it belongs to S. The middle inequality in (1.1) above then shows
that u cannot be an upper bound for S, a contradiction. Hence 1 is a supremum.

Next we show that this is the only supremum, since if u∗ is another supremum, then in
particular u∗ is also an upper bound, and the above argument shows that 1 ≤ u∗. But 1 < u∗ is
not possible as 1 is an upper bound, and as u∗ is a supremum, u∗ must be less than or equal to
1. So it follows that u∗ = 1.

Similarly one can show that the infimum of S is 0. ♦

In the above example, there was a unique supremum and infimum of the set S. In fact, this
is always the case and we have the following result.

1Note that this set is simply the finite set (that is, the set has finite cardinality) {−1, 1}. More generally, any
finite set S is bounded.



1.1. The real numbers 3

Theorem 1.1.1 If the least upper bound of a subset S of R exists, then it is unique.

Proof Suppose that u∗ and u′∗ are two least upper bounds of S. Then in particular u∗ and u′∗
are also upper bounds of S. Now since u∗ is a least upper bound of S and u′∗ is an upper bound
of S, it follows that

u∗ ≤ u′∗. (1.2)

Furthermore, since u′∗ is a least upper bound of S and u∗ is an upper bound of S, it follows that

u′∗ ≤ u∗. (1.3)

From (1.2) and (1.3), we obtain u∗ = u′∗.

Thus it makes sense to talk about the least upper bound of a set. The least upper bound of a
set S (if it exists) is denoted by

supS

(the abbreviation of ‘supremum of S’). Similarly, the infimum of a set S (if it exists) is also unique,
and is denoted by

inf S.

When the supremum and the infimum of a set belong to the set, then we give them special names:

Definitions.

1. If supS ∈ S, then supS is called a maximum of S, denoted by maxS.

2. If inf S ∈ S, then inf S is called a minimum of S, denoted by minS.

Examples.

1. If S = {x ∈ R | 0 ≤ x < 1}, then supS = 1 6∈ S and so maxS does not exist. But
inf S = 0 ∈ S, and so minS = 0.

2. If S = {n | n ∈ N}, then supS does not exist, inf S = 1, maxS does not exist, and minS = 1.

3. If S = {(−1)n | n ∈ N}, then supS = 1, inf S = −1, maxS = 1, minS = −1.

4. If S =
{

1
n

∣
∣ n ∈ N

}
, then supS = 1 and maxS = 1. We show below (after Theorem 1.1.2)

that inf S = 0. So minS does not exist.

5. For the sets Z and R, sup, inf, max, min do not exist.

6. For the set ∅, sup, inf, max, min do not exist. ♦

In the above examples, we note that if S is nonempty and bounded above, then its supremum
exists. In fact this is a fundamental property of the real numbers, called the least upper bound
property of the real numbers, which we state below:

If S is a nonempty subset of R having an upper bound, then supS exists.
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Remarks(∗).

1. Note that the set of rational numbers do not possess this property. For instance, the set

S = {q ∈ Q | q2 ≤ 2}

has an upper bound, say 2 (indeed, if q > 2, then q2 > 4 > 2, and so q 6∈ S), but we now
show that it does not have a supremum in Q. Assume on the contrary that u∗ ∈ Q is a
supremum for S. Define

r = u∗ −
u2
∗ − 2

u∗ + 2
. (1.4)

Then we can check that

r2 − 2 =
2(u2

∗ − 2)

(u∗ + 2)2
(1.5)

We have the following cases:

1◦ Suppose that u2
∗ < 2. From (1.5) we obtain r ∈ S, and from (1.4) it follows that r > u∗,

which contradicts the fact that u∗ is an upper bound of S.

2◦ Suppose that u2
∗ = 2. This is impossible, since u∗ is a rational number.

3◦ Suppose that u2
∗ > 2. We see that r is an upper bound of S (indeed, if q > r, then2

q2 > r2 > 2, and so q 6∈ S). But (1.4) implies that r < u∗, contradicting the fact that u∗ is
the supremum.

2. In Exercise 6 on page 7 below, given a nonempty set S of R, we define −S = {−x | x ∈ S}.
One can show that if a nonempty subset S of R is bounded below, then −S is bounded above
and so sup(−S) exists, by the least upper bound property. The negative of this supremum,
namely − sup(−S), can then be shown to serve as the greatest lower bound of S (this is
precisely the content of Exercise 6). Thus the real numbers also have the ‘greatest lower
bound property’: If S is a nonempty subset of R having an lower bound, then inf S exists.

We now prove the following theorem, which is called the Archimedean property of the real
numbers.

Theorem 1.1.2 (Archimedean property.) If x, y ∈ R and x > 0, then there exists an n ∈ N such
that y < nx.

Proof If not, then the nonempty set S = {nx | n ∈ N} has an upper bound y, and so by the least
upper bound property of the reals, it has a least upper bound u∗. But then u∗ − x < u∗ (since
x is positive) and so it follows that u∗ − x cannot be an upper bound of S. Hence there exists a
natural number m such that u∗ − x < mx, that is, u∗ < (m+ 1)x ∈ S. This contradicts the fact
that u∗ is an upper bound of S.

Example. If S =
{

1
n

∣
∣ n ∈ N

}
, then inf S = 0. We know that 0 is a lower bound of S. Suppose

that l is a lower bound of S such that l > 0. By the Archimedean property (with the real numbers

x and y taken as x = 1 (> 0) and y = 1
l
), there exists a n ∈ N such that

1

l
= y < nx = n · 1 = n,

and so
1

n
< l, contradicting the fact that l is a lower bound of S. Thus any lower bound of S

must be less than or equal to 0. Hence 0 is the infimum of S. ♦

2the last inequality follows from (1.5)



1.1. The real numbers 5

Definition. An interval is a set consisting of all the real numbers between two given real numbers,
or of all the real numbers on one side or the other of a given number. So an interval is a set of
any of the following forms, where a, b ∈ R:

PSfrag replacements

a

a

a

a

a

a

b

b

b

b

b

b
(a, b) = {x ∈ R | a < x < b}

[a, b] = {x ∈ R | a ≤ x ≤ b}

(a, b] = {x ∈ R | a < x ≤ b}

[a, b) = {x ∈ R | a ≤ x < b}

(a,∞) = {x ∈ R | a < x}

[a,∞) = {x ∈ R | a ≤ x}

(−∞, b) = {x ∈ R | x < b}

(−∞, b] = {x ∈ R | x ≤ b}

(−∞,∞) = R

In the above notation for intervals, a parenthesis ‘(’ or ‘)’ means that the respective endpoint
is not included, and a square bracket ‘[’ or ‘]’ means that the endpoint is included. Thus [0, 1)
means the set of all real numbers x such that 0 ≤ x < 1. (Note that the use of the symbol ∞ in
the notation for intervals is simply a matter of convenience and is not be taken as suggesting that
there is a number ∞.)

In analysis, in order to talk about notions such as convergence and continuity, we will need a
notion of ‘closeness’ between real numbers. This is provided by the absolute value | · |, and the
distance between real numbers x and y is |x− y|. We give the definitions below.

Definitions.

1. The absolute value of a real number x is denoted by |x|, and it is defined as follows:

|x| =

{
x if x ≥ 0,

−x if x < 0.

2. The distance between two real numbers x and y is the absolute value |x−y| of their difference.

Thus |1| = 1, |0| = 0, | − 1| = 1, and the distance between the real numbers −1 and 1 is equal
to |− 1− 1| = |− 2| = 2. The distance gives a notion of closeness of two points, which is crucial in
the formalization of the notions of analysis. We can now specify regions comprising points close
to a certain point x0 ∈ R in terms of inequalities in absolute values, that is, by demanding that
the distance of the points of the region, to the point x0, is less than a certain positive number δ,
say δ = 0.01 or δ = 0.0000001, and so on. See Exercise 9 on page 8 and Figure 1.1.

PSfrag replacements

x0 − δ x0 + δ

I

x0 x

Figure 1.1: The interval I = (x0 − δ, x0 + δ) = {x ∈ R | |x− x0| < δ} is the set of all points in R

whose distance to the point x0 is strictly less than δ (> 0).
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The following properties of the absolute value will be useful in the sequel.

Theorem 1.1.3 If x, y are real numbers, then

|xy| = |x| |y| and (1.6)

|x+ y| ≤ |x| + |y|. (1.7)

Proof We prove (1.6) by exhausting all possible cases:

1◦ x = 0 or y = 0. Then |x| = 0 or |y| = 0, and so |x| |y| = 0. On the other hand, as x = 0 or
y = 0, it follows that xy = 0 and so |xy| = 0.

2◦ x > 0 and y > 0. Then |x| = x and |y| = y, and so |x| |y| = xy. On the other hand, as x > 0
and y > 0, it follows that xy > 0 and so |xy| = xy.

3◦ x > 0 and y < 0. Then |x| = x and |y| = −y, and so |x| |y| = x(−y) = −xy. On the other
hand, as x > 0 and y < 0, it follows that xy < 0 and so |xy| = −xy.

4◦ x < 0 and y > 0. This follows from 3◦ above by interchanging x and y.

5◦ x < 0 and y < 0. Then |x| = −x and |y| = −y, and so |x| |y| = (−x)(−y) = xy. On the
other hand, as x < 0 and y < 0, it follows that xy > 0 and so |xy| = xy.

This proves (1.6).

Next we prove (1.7). First observe that from the definition of | · |, it follows that for any real
x ∈ R, |x| ≥ x: indeed if x ≥ 0, then |x| = x, while if x < 0, then −x > 0, and so |x| = −x > 0 > x.
From (1.6), we also have | − x| = | − 1 · x| = | − 1||x| = 1|x| = |x|, for all x ∈ R, and so it follows
that |x| = | − x| ≥ −x for all x ∈ R. We have the following cases:

1◦ x+y ≥ 0. Then |x+y| = x+y. As |x| ≥ x and |y| ≥ y, we obtain |x|+ |y| ≥ x+y = |x+y|.
2◦ x + y < 0. Then |x + y| = −(x + y). Since |x| ≥ −x and |y| ≥ −y, it follows that

|x| + |y| ≥ −x+ (−y) = −(x+ y) = |x+ y|.

This proves (1.7).

It is easy to check that the distance satisfies the following properties:

D1. (Positive definiteness.) For all x, y ∈ R, |x− y| ≥ 0. If |x− y| = 0 then x = y.

D2. (Symmetry.) For all x, y ∈ R, |x− y| = |y − x|.
D3. (Triangle inequality.) For all x, y, z ∈ R, |x− z| ≤ |x− y| + |y − z|.

Exercises.

1. Provide the following information about the set S

An
upper
bound

A
lower
bound

Is S

bounded?
sup S inf S

If sup S exists,
then is sup S

in S?

If inf S exists,
then is inf S

in S?
max S min S

where S is given by:
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(a) (0, 1]

(b) [0, 1]

(c) (0, 1)

(d)
{

1
n

∣
∣ n ∈ Z \ {0}

}

(e)
{
− 1

n

∣
∣ n ∈ N

}

(f)
{

n
n+1

∣
∣
∣ n ∈ N

}

(g) {x ∈ R | x2 ≤ 2}
(h) {0, 2, 5, 2005}
(i)

{
(−1)n

(
1 + 1

n

) ∣
∣ n ∈ N

}

(j) {x2 | x ∈ R}
(k) { x2

1+x2 | x ∈ R} .

2. Determine whether the following statements are TRUE or FALSE.

(a) If u is an upper bound of a subset S of R, and u′ < u, then u′ is not an upper bound
for S.

(b) If u∗ is the least upper bound of a subset S of R, and ε is any positive real number,
then u∗ − ε is not an upper bound of S.

(c) Every subset of R has a maximum.

(d) Every subset of R has a supremum.

(e) Every bounded subset of R has a maximum.

(f) Every bounded subset of R has a supremum.

(g) Every bounded nonempty subset of R has a supremum.

(h) Every set that has a supremum is bounded above.

(i) For every set that has a maximum, the maximum belongs to the set.

(j) For every set that has a supremum, the supremum belongs to the set.

(k) For every set S that is bounded above, |S| defined by {|x| | x ∈ S} is bounded.

(l) For every set S that is bounded, |S| defined by {|x| | x ∈ S} is bounded.

(m) For every bounded set S, if inf S < x < supS, then x ∈ S.

3. For any nonempty bounded set S, prove that inf S ≤ supS, and that the equality holds iff3

S is a singleton set (that is a set with cardinality 1).

4. Let A and B be nonempty subsets of R that are bounded above and such that A ⊂ B. Prove
that supA ≤ supB.

5. Let A and B be nonempty subsets of R that are bounded above and define

A+B = {x+ y | x ∈ A and y ∈ B}.

Prove that sup(A+B) exists and that sup(A+B) ≤ supA+ supB.

6. Let S be a nonempty subset of real numbers which is bounded below. Let −S denote the set
of all real numbers −x, where x belongs to S. Prove that inf S exists and inf S = − sup(−S).

7. Let S be a nonempty set of positive real numbers, and define S−1 =
{

1
x

∣
∣ x ∈ S

}
. Show that

S−1 is bounded above iff inf S > 0. Furthermore, in case inf S > 0, show that supS−1 =
1

inf S
.

3The abbreviation ‘iff’ is standard in Mathematics, and it stands for ‘if and only if’.
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8. Let An, n ∈ N, be a collection of sets.

The notation
⋂

n∈N

An denotes the intersection of the sets An, n ∈ N, that is,

⋂

n∈N

An = {x | ∀n ∈ N, x ∈ An},

and we use
⋃

n∈N

An to denote the union of the sets An, n ∈ N, that is,

⋃

n∈N

An = {x | ∃n ∈ N such that x ∈ An}.

Prove that

(a) ∅ =
⋂

n∈N

(

0,
1

n

)

.

(b) {0} =
⋂

n∈N

[

0,
1

n

]

.

(c) (0, 1) =
⋃

n∈N

[
1

n+ 2
, 1− 1

n+ 2

]

.

(d) [0, 1] =
⋂

n∈N

(

− 1

n
, 1 +

1

n

)

.

9. Let x0 ∈ R and δ > 0. Prove that (x0 − δ, x0 + δ) = {x ∈ R | |x− x0| < δ}.

10. Prove that if x, y are real numbers, then ||x| − |y|| ≤ |x− y|.

11. Show that a subset S of R is bounded iff there exists a M ∈ R such that for all x ∈ S,
|x| ≤M .

1.2 Sequences and limits

1.2.1 Sequences

The notion of a sequence occurs in ordinary conversation. An example is the phrase “an unfor-
tunate sequence of events”. In this case, we envision one event causing another, which in turn
causes another event and so on. We can identify a first event, a second event, etcetera.

A sequence of real numbers is a list

a1, a2, a3, . . .

of real numbers, where there is the first number (namely a1), the second number (namely a2), and
so on. For example,

1,
1

2
,
1

3
, . . .

is a sequence. The first number is 1, the second number is 1
2 and so on. (There may not be a

connection between the numbers appearing in a sequence.) If we think of a1 as f(1), a2 as f(2),
and so on, then it becomes clear that a sequence is a special type of function, namely one with
domain N and co-domain R.
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Definition. A sequence is a function f : N → R.

Only the notation is somewhat unusual. Instead of writing f(n) for the value of f at a natural
number n, we write an. The entire sequence is then written in any one of the following ways:

(an)n∈N, (an)∞n=1, (an)n≥1, (an).

In (an)∞n=1, the ∞ symbol indicates that the assignment process 1 7→ a1, 2 7→ a2, . . . continues
indefinitely. The nth term an of a sequence may be defined explicitly by a formula involving n, as
in the example given above:

an =
1

n
, n ∈ N.

It might also sometimes be defined recursively. For example,

a1 = 1, an+1 =
n

n+ 1
an for n ∈ N.

(Write down the first few terms of this sequence.)

Examples.

1.
(

1
n

)

n∈N
is a sequence with the nth term given by 1

n
, for n ∈ N. This is the sequence

1,
1

2
,
1

3
, . . . .

2.
(
1 + 1

n

)

n∈N
is a sequence with the nth term given by 1 + 1

n
, for n ∈ N. This is the sequence

2,
3

2
,
4

3
,
5

4
,
6

5
,
7

6
, . . . .

3.
(
(−1)n

(
1 + 1

n

))

n∈N
is a sequence with the nth term given by (−1)n

(
1 + 1

n

)
, for n ∈ N. This

is the sequence

−2,
3

2
,−4

3
,
5

4
,−6

5
,
7

6
, . . . .

4. ((−1)n)n∈N
is a sequence with the nth term given by (−1)n, for n ∈ N. This sequence is

simply
−1, 1,−1, 1,−1, 1, . . .

with the nth term equal to −1 if n is odd, and 1 if n is even.

5. (1)n∈N is a sequence with the nth term given by 1, for n ∈ N. This is the constant sequence

1, 1, 1, . . . .

6. (n)n∈N is a sequence with the nth term given by n, for n ∈ N. This is the increasing sequence

1, 2, 3, . . . .

7.
(

1
11 + 1

22 + 1
33 + · · · + 1

nn

)

n∈N
is a sequence with the nth term given by 1

11 + 1
22 + 1

33 +· · ·+ 1
nn ,

for n ∈ N. This is the sequence of ‘partial sums’

1

11
,

1

11
+

1

22
,

1

11
+

1

22
+

1

33
, . . . .

♦
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1.2.2 Limit of a convergent sequence

A sequence can be graphed. For instance, the first 4 points of the graph of the sequence
(

1
n

)

n∈N

are displayed in Figure 1.2. This portion of the graph suggests that the terms of the sequence

PSfrag replacements

1 2 3 4

1

Figure 1.2: First four points of the graph of the sequence
(

1
n

)

n∈N
.

(
1
n

)

n∈N
tend toward 0 as n increases. This is consistent with the idea of convergence that you

might have encountered before: a sequence (an)n∈N converges to some real number L, if the terms
an get “closer and closer” to L as n “increases without bound”. Symbolically, this is represented
using the notation

lim
n→∞

an = L,

where L denotes the limit of the sequence. If there is no such finite number L to which the terms
of the sequence get arbitrarily close, then the sequence is said to diverge.

Th problem with this characterization is its imprecision. Exactly what does it mean for the
terms of a sequence to get “closer and closer”, or “as close as we like”, or “arbitrarily close” to some
number L? Even if we accept this apparent ambiguity, how would one use the definition given
in the preceding paragraph to prove theorems that involve sequences? Since sequences are used
throughout analysis, the concepts of their convergence and divergence must be carefully defined.

PSfrag replacements

1

2

2 3 4

1

Figure 1.3: First four points of the graph of the sequence
(
1 + 1

n

)

n∈N
.

For example, the terms of
(
1 + 1

n

)

n∈N
get “closer and closer” to 0 (indeed the distance to 0

keeps decreasing), but its limit is 1. See Figure 1.3.

The terms of
(
(−1)n

(
1 + 1

n

))

n∈N
get “as close as we like” or “arbitrarily close” to 1, but the

sequence has no limit. See Figure 1.4.

Definition. The sequence (an)n∈N is said to converge to L if for every ε > 0, there exists4 an
N ∈ N such that for all n > N ,

|an − L| < ε.

4depending on ε
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Figure 1.4: First eight points of the graph of the sequence
(
(−1)n

(
1 + 1

n

))

n∈N
.

Then we say that (an)n∈N is convergent (with limit L) and write

lim
n→∞

an = L.

If there does not exist a number L such that lim
n→∞

an = L, then the sequence (an)n∈N is said to

be divergent.

Note that |an − L| < ε iff an ∈ (L − ε, L + ε). Hence pictorially, for a convergent sequence
with limit L, this definition means the following, as illustrated in Figure 1.5: Pick any ε > 0, and
consider the shaded strip of width ε around the horizontal line passing through L. Then one can
find a N ∈ N, large enough, such that all the terms an of the sequence, for n > N lie in the shaded
strip.

PSfrag replacements

L+ ε

L+ ε

L

L

L

L− ε

L− ε

N N + 1 N + 2 N + 3

Figure 1.5: Convergence of a sequence with limit L.

Examples.

1.
(

1
n

)

n∈N
is a convergent sequence with limit 0.
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Given ε > 0, we need to find a N such that for all n > N ,

|an − L| =

∣
∣
∣
∣

1

n
− 0

∣
∣
∣
∣
=

1

n
< ε.

If we choose N ∈ N such that N > 1
ε

(such a N exists by the Archimedean property!), then
for n > N (⇔ 1

n
< 1

N
), we have

|an − L| =

∣
∣
∣
∣

1

n
− 0

∣
∣
∣
∣
=

1

n
<

1

N
< ε.

Hence lim
n→∞

1

n
= 0.

2.
(
1 + 1

n

)

n∈N
is a convergent sequence with limit 1.

Given ε > 0, we need to find a N such that for all n > N ,

|an − L| =

∣
∣
∣
∣
1 +

1

n
− 1

∣
∣
∣
∣
=

1

n
< ε.

Again we choose a N ∈ N such that N > 1
ε

and so for n > N we have

|an − L| =
1

n
<

1

N
< ε.

Hence lim
n→∞

(

1 +
1

n

)

= 1.

3.
(
(−1)n

(
1 + 1

n

))

n∈N
is a divergent sequence.

Let an = (−1)n
(
1 + 1

n

)
for n ∈ N. In order to prove that

(an)n∈N is divergent,

we have to show that
¬ [(an)n∈N is convergent] ,

that is,

¬ [∃L ∈ R such that ∀ε > 0 ∃N ∈ N such that ∀n > N, |an − L| < ε] ,

that is,
∀L ∈ R ∃ε > 0 such that ∀N ∈ N ∃n > N such that |an − L| ≥ ε.

Let L ∈ R. Now we need to prove

∃ε > 0 such that ∀N ∈ N ∃n > N such that |an − L| ≥ ε.

Let ε = 1. (It is not obvious that ε = 1 would work, but it has been found by trial and
error.) Now we will show that

∀N ∈ N ∃n > N such that |an − L| ≥ ε.

So let N ∈ N. If L ≥ 0, then choose n to be any odd number > N . Then we have

|an − L| =

∣
∣
∣
∣
(−1)n

(

1 +
1

n

)

− L

∣
∣
∣
∣
=

∣
∣
∣
∣
−1 − 1

n
− L

∣
∣
∣
∣
= 1 +

1

n
+ L > 1 = ε.

If L < 0, then choose n to be any even number > N . Then we have

|an − L| =

∣
∣
∣
∣
(−1)n

(

1 +
1

n

)

− L

∣
∣
∣
∣
=

∣
∣
∣
∣
1 +

1

n
− L

∣
∣
∣
∣
= 1 +

1

n
− L > 1 = ε.

Thus we have shown that for all L ∈ R, there exists a ε > 0 (namely ε = 1) such that for all
N ∈ N, there exists a n > N (namely any odd number > N if L ≥ 0, and any even number
> N if L < 0) such that |an − L| ≥ ε. Thus the sequence is divergent. ♦
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The notation lim
n→∞

an suggests that the limit of a convergent sequence is unique. Indeed this

is the case, and we prove this below.

Theorem 1.2.1 A convergent sequence has a unique limit.

Proof Consider a convergent sequence (an)n∈N and suppose that it has distinct limits L1 and
L2. Let

ε =
|L1 − L2|

2
> 0,

where the positivity of the ε defined above follows from the fact that L1 6= L2. Since L1 is a limit,
∃N1 ∈ N such that for all n > N1,

|an − L1| < ε.

Since L2 is a limit, ∃N2 ∈ N such that for all n > N2,

|an − L2| < ε.

Consequently for n > max{N1, N2},

2ε = |L1 −L2| = |L1 − an + an −L2| ≤ |L1 − an|+ |an −L2| = |an −L1|+ |an −L2| < ε+ ε = 2ε,

a contradiction.

Exercises.

1. (a) Prove that the constant sequence (1)n∈N is convergent.

(b) Can the limit of a convergent sequence be one of the terms of the sequence?

(c) If none of the terms of a convergent sequence equal its limit, then prove that the terms
of the sequence cannot consist of a finite number of distinct values.

(d) Prove that the sequence ((−1)n)n∈N is divergent.

2. Prove that lim
n→∞

1

n
6= 1.

3. In each of the cases listed below, give an example of a divergent sequence (an)n∈N that
satisfies the given conditions. Suppose that L = 1.

(a) For every ε > 0, there exists an N such that for infinitely many n > N , |an − L| < ε.

(b) There exists an ε > 0 and a N ∈ N such that for all n > N , |an − L| < ε.

4. Let S be a nonempty subset of R that is bounded above. Show that there exists a sequence
(an)n∈N contained in S (that is, an ∈ S for all n ∈ N) and which is convergent with limit
equal to supS.

5. Let (an)n∈N be a sequence such that for all n ∈ N, an ≥ 0. Prove that if (an)n∈N is convergent
with limit L, then L ≥ 0.

6. A sequence (an)n∈N is said to be Cauchy if for every ε > 0, there exists a N ∈ N such that
for all n,m > N , |an − am| < ε.

Show that every convergent sequence is Cauchy.

Hint: |an − am| = |an − L+ L− am| ≤ |an − L| + |am − L|.
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1.2.3 Bounded and monotone sequences

It is cumbersome to check from the definition if a sequence is convergent or not. In this section,
we will study a condition under which we can conclude that a sequence is convergent even without
knowing its limit! We will prove that if a sequence is both ‘bounded’ as well as ‘monotone’, then
it is always convergent.

Definition. A sequence (an)n∈N is said to be bounded if there exists a M > 0 such that

for all n ∈ N, |an| ≤M. (1.8)

Note that a sequence is bounded iff the set S = {an | n ∈ N} is bounded. (See Exercise 11 on
page 8).

Examples.

1. (1)n∈N
is bounded, since |1| = 1 ≤ 1 for all n ∈ N.

2.
(

1
n

)

n∈N
is bounded, since

∣
∣ 1
n

∣
∣ = 1

n
≤ 1 for all n ∈ N.

3.
(
1 + 1

n

)

n∈N
is bounded, since

∣
∣1 + 1

n

∣
∣ = 1 + 1

n
≤ 2 for all n ∈ N.

4.
(
(−1)n

(
1 + 1

n

))

n∈N
is bounded, since

∣
∣(−1)n

(
1 + 1

n

)∣
∣ = 1 + 1

n
≤ 2 for all n ∈ N.

5. The sequence (an)n∈N defined by

an =
1

11
+

1

22
+

1

33
+ · · · + 1

nn
, n ∈ N

is bounded. Indeed this can be seen as follows:

|an| = an

=
1

11
+

1

22
+

1

33
+ · · · + 1

nn

<
1

11
+

1

22
+

1

23
+ · · · + 1

2n

=
1

11
+

1

2

(

1− 1

2

)

+
1

22

(

1 − 1

2

)

+ · · · + 1

2n−1

(

1 − 1

2

)

= 1 +
1

2
− 1

22
+

1

22
− 1

23
+ − · · · + 1

2n−1
− 1

2n

= 1 +
1

2
− 1

2n

<
3

2
.

(Write down a detailed proof using induction on n.) So all the terms are bounded by 3
2 , and

so the sequence is bounded.

6. The sequence (an)n∈N given by an = n for n ∈ N, is not bounded. Indeed, given any M > 0,
there exists an N ∈ N such that M < N (Archimedean property with y = M and x = 1).
Thus

¬[∃M > 0 such that for all n ∈ N, |an| = |n| = n ≤M ],

and so (n)n∈N is not bounded. ♦
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The sequences (1)n∈N,
(

1
n

)

n∈N
,
(
1 + 1

n

)

n∈N
are all convergent, and we have shown above that

these are also bounded. This is not a coincidence, and in the next theorem we show that the set
of all convergent sequences is contained in the set of all bounded sequences. See Figure 1.6.

convergent bounded
sequences sequences

PSfrag replacements

L+ ε

Figure 1.6: All convergent sequences are bounded.

Theorem 1.2.2 If a sequence is convergent, then it is bounded.

Proof Let (an)n∈N be a convergent sequence with limit L. Let ε := 1 > 0. Then ∃N ∈ N such
that for all n > N

|an − L| < ε = 1.

Hence for all n > N ,
|an| = |an − L+ L| ≤ |an − L| + |L| < 1 + |L|.

Let M = max{|a1|, . . . , |aN |, 1 + |L|}. Then for all n ∈ N

|an| ≤M

and so (an)n∈N is bounded.

Definitions. A sequence (an)n∈N is said to be increasing if for all n ∈ N, an ≤ an+1. Thus
(an)n∈N is increasing if

a1 ≤ a2 ≤ a3 ≤ . . . .

A sequence (an)n∈N is said to be decreasing if for all n ∈ N, an ≥ an+1. Thus (an)n∈N is decreasing
if

a1 ≥ a2 ≥ a3 ≥ . . . .

A sequence is said to be monotone if it is increasing or decreasing.

Examples.

Sequence Is it Is it Is it
increasing? decreasing? monotone?

(
1
n

)

n∈N
No Yes Yes

(
1 + 1

n

)

n∈N
No Yes Yes

(
(−1)n

(
1 + 1

n

))

n∈N
No No No

(1)n∈N Yes Yes Yes
(n)n∈N Yes No Yes

(
1
11 + 1

22 + 1
33 + · · · + 1

nn

)

n∈N
Yes No Yes

♦

The following theorem can be useful in showing that sequences converge when one does not
know the limit beforehand.
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Theorem 1.2.3 If a sequence is monotone and bounded, then it is convergent.

Proof

1◦ Let (an)n∈N be an increasing sequence. Since (an)n∈N is bounded, it follows that the set

S = {an | n ∈ N}
has an upper bound and so supS exists. We show that in fact (an)n∈N converges to supS. Indeed
given ε > 0, then since supS − ε < supS, it follows that supS − ε is not an upper bound for S
and so ∃aN ∈ S such that supS − ε < aN , that is

supS − aN < ε.

Since (an)n∈N is an increasing sequence, for n > N , we have aN ≤ an. Since supS is an upper
bound for S, an ≤ supS and so |an − supS| = supS − an, Thus for n > N we obtain

|an − supS| = supS − an ≤ supS − aN < ε.

2◦ If (an)n∈N is a decreasing sequence, then clearly (−an)n∈N is an increasing sequence. Further-
more if (an)n∈N is bounded, then (−an)n∈N is bounded as well (| − an| = |an| ≤ M). Hence by
the case considered above, it follows that (−an)n∈N is a convergent sequence with limit

sup{−an | n ∈ N} = − inf{an | n ∈ N} = − inf S,

where S = {an | n ∈ N} (see Exercise 6 on page 7). So given ε > 0, ∃N ∈ N such that for all
n > N , | − an − (− inf S)| < ε, that is, |an − inf S| < ε. Thus (an)n∈N is convergent with limit
inf S.

Examples.

1. We have shown that the sequence (an)n∈N defined by

an =
1

11
+

1

22
+

1

33
+ · · · + 1

nn
, n ∈ N

is monotone (indeed, it is increasing since an+1 − an = 1
(n+1)(n+1) > 0 for all n ∈ N) and

bounded (see item 5 on page 14). Thus it follows from Theorem 1.2.3 that this sequence5 is
convergent.

2. The following table gives a summary of the valid implications, and gives counterexamples to
implications which are not true.

Question Answer Reason/Counterexample

Is every convergent sequence bounded? Yes Theorem 1.2.2
Is every bounded sequence convergent? No ((−1)n)n∈N is bounded,

but not convergent.

Is every convergent sequence monotone? No
(

(−1)n

n

)

n∈N

is convergent,

but not monotone: −1 < 1
2 > − 1

3 .
Is every monotone sequence convergent? No (n)n∈N is not convergent.

Is every bounded AND monotone Yes Theorem 1.2.3
sequence convergent?

♦

5Although it is known that this sequence is convergent to some limit L ∈ R, it is so far not even known if the
limit L is rational or irrational, and this is still an open problem in mathematics! Also associated with this sequence

is the interesting identity
∞

X

n=1

1

nn
=

Z 1

0

1

xx
dx, the proof of which is beyond the scope of this course.
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Exercises.

1. Let (an)n∈N be a sequence defined by

a1 = 1 and an =
2n+ 1

3n
an−1 for n ≥ 2.

Prove that (an)n∈N is convergent.

2. If (bn)n∈N is a bounded sequence, then prove that
(

bn

n

)

n∈N
is a convergent sequence with

limit 0.

3. (a) (∗) If (an)n∈N is a convergent sequence with limit L, then prove that the sequence
(sn)n∈N, where

sn =
a1 + · · · + an

n
, n ∈ N,

is also convergent with limit L.

(b) Give an example of a sequence (an)n∈N such that (sn)n∈N is convergent but (an)n∈N is
divergent.

4. (∗) Given a bounded sequence (an)n∈N, define

lk = inf{an | n ≥ k} and uk = sup{an | n ≥ k}, k ∈ N.

Show that the sequences (ln)n∈N, (un)n∈N are bounded and monotone, and conclude that
they are convergent. (Their respective limits are denoted by lim inf

n→∞
an and lim sup

n→∞
an.)

5. (∗) Recall the definition of a Cauchy sequence from Exercise 6 on page 13. Prove that every
Cauchy sequence is bounded.

1.2.4 Algebra of limits

In this section we will learn that if we ‘algebraically’ combine the terms of convergent sequences,
then the new sequence which is obtained, is again convergent, and moreover the limit of this
sequence is the same algebraic combination of the limits. In this manner we can sometimes prove
the convergence of complicated sequences by breaking them down and writing them as an algebraic
combination of simple sequences. Thus, we conveniently apply arithmetic rules to compute the
limits of sequences if the terms are the sum, product, quotient of terms of simpler sequences with
a known limit. For instance, using the formal definition of a limit, one can show that the sequence
(an)n∈N defined by

an =
4n2 + 9

3n2 + 7n+ 11

converges to 4
3 . However, it is simpler to observe that

an =
n2
(
4 + 9

n2

)

n2
(
3 + 7

n
+ 11

n2

) =
4 + 9

n2

3 + 7
n

+ 11
n2

,

where the terms 9
n2 , 7

n
, 11

n2 all have limit 0, and by a repeated application of Theorem 1.2.4 given
below, we obtain

lim
n→∞

an =

lim
n→∞

(

4 +
9

n2

)

lim
n→∞

(

3 +
7

n
+

11

n2

) =
lim

n→∞
4 + lim

n→∞
9

n2

lim
n→∞

3 + lim
n→∞

7

n
+ lim

n→∞
11

n2

=
4 + 0

3 + 0 + 0
=

4

3
.
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Theorem 1.2.4 If (an)n∈N and (bn)n∈N are convergent sequences, then the following hold:

1. For all α ∈ R, (αan)n∈N is a convergent sequence and lim
n→∞

αan = α lim
n→∞

an.

2. (|an|)n∈N is a convergent sequence and lim
n→∞

|an| =
∣
∣
∣ lim
n→∞

an

∣
∣
∣.

3. (an + bn)n∈N is a convergent sequence and lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

4. (anbn)n∈N is a convergent sequence and lim
n→∞

anbn =
(

lim
n→∞

an

)(

lim
n→∞

bn

)

.

5. For all k ∈ N, (ak
n)n∈N is a convergent sequence and lim

n→∞
ak

n =
(

lim
n→∞

an

)k

.

6. If for all n ∈ N, bn 6= 0 and lim
n→∞

bn 6= 0, then

(
1

bn

)

n∈N

is convergent and moreover,

lim
n→∞

1

bn
=

1

lim
n→∞

bn
.

Proof Let (an)n∈N and (bn)n∈N converge to La and Lb, respectively.

1. If α = 0, then αan = 0 for all n ∈ N and clearly (0)n∈N is a convergent sequence with limit
0. Thus

lim
n→∞

αan = 0 = 0La = α lim
n→∞

an.

If α 6= 0, then given ε > 0, let N ∈ N be such that for all n > N ,

|an − La| <
ε

|α| ,

that is

|αan − αLa| = |α| |an − La| < |α| ε|α| = ε.

Hence (αan)n∈N is convergent with limit αLa, that is,

lim
n→∞

αan = αLa = α lim
n→∞

an.

2. Given ε > 0, let N ∈ N be such that for all n > N ,

|an − La| < ε.

Then we have for all n > N :

||an| − |La|| ≤ |an − La| < ε.

Hence (|an|)n∈N is convergent with limit |La|, that is,

lim
n→∞

|an| = |La| =
∣
∣
∣ lim
n→∞

an

∣
∣
∣ .

3. Given ε > 0, let N1 ∈ N be such that for all n > N1,

|an − La| <
ε

2
.
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Let N2 ∈ N be such that for all n > N2,

|bn − Lb| <
ε

2
.

Then for all n > N := max{N1, N2}, we have

|an + bn − (La + Lb)| = |an − La + bn − Lb| ≤ |an − La| + |bn − Lb| <
ε

2
+
ε

2
= ε.

Hence (an + bn)n∈N is convergent with limit La + Lb, that is,

lim
n→∞

(an + bn) = La + Lb = lim
n→∞

an + lim
n→∞

bn.

4. Note that

|anbn − LaLb| = |anbn − Labn + Labn − LaLb|
≤ |anbn − Labn| + |Labn − LaLb|
= |an − La| |bn| + |La| |bn − Lb|. (1.9)

Given ε > 0, we need to find a N such that for all n > N ,

|anbn − LaLb| < ε.

This can be achieved by finding a N such that each of the summands in (1.9) is less than ε
2

for n > N . This can be done as follows.

Step 1. Since (bn)n∈N is convergent, by Theorem 1.2.2 it follows that it is bounded: ∃M > 0
such that for all n ∈ N, |bn| ≤M . Let N1 ∈ N be such that for all n > N1,

|an − La| <
ε

2M
.

Step 2. Let N2 ∈ N be such that for all n > N2,

|bn − Lb| <
ε

2(|La| + 1)
.

Thus for n > N := max{N1, N2}, we have

|anbn − LaLb| ≤ |an − La| |bn| + |La| |bn − Lb|
<

ε

2M
M + |La|

ε

2(|La| + 1)

=
ε

2
+
ε

2
= ε.

So (anbn)n∈N is a convergent sequence with limit LaLb, that is,

lim
n→∞

anbn = LaLb =
(

lim
n→∞

an

)(

lim
n→∞

bn

)

.

5. This can be shown by using induction on k and from part 4 above. It is trivially true with
k = 1. Suppose that it holds for some k, then (ak

n)n∈N is convergent and

lim
n→∞

ak
n =

(

lim
n→∞

an

)k

.

Hence by part 4 above applied to the sequences (an)n∈N and (ak
n)n∈N, we obtain that the

sequence (an · ak
n)n∈N is convergent and

lim
n→∞

ana
k
n =

(

lim
n→∞

an

)(

lim
n→∞

ak
n

)

=
(

lim
n→∞

an

)(

lim
n→∞

an

)k

=
(

lim
n→∞

an

)k+1

.
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Thus (ak+1
n )n∈N is convergent and

lim
n→∞

ak+1
n =

(

lim
n→∞

an

)k+1

.

6. Let N1 ∈ N be such that for all n > N1,

|bn − Lb| <
|Lb|
2
.

Thus for all n > N1,

|Lb| − |bn| ≤ ||Lb| − |bn|| ≤ |bn − Lb| <
|Lb|
2
,

and so |bn| ≥ |Lb|
2 . Let ε > 0, and let N2 ∈ N be such that for all n > N2,

|bn − Lb| <
ε|Lb|2

2
.

Hence for n > N := max{N1, N2}, we have
∣
∣
∣
∣

1

bn
− 1

Lb

∣
∣
∣
∣
=

|bn − Lb|
|bn| |Lb|

<
ε|Lb|2

2

2

|Lb|
1

|Lb|
= ε.

So

(
1

bn

)

n∈N

is convergent and lim
n→∞

1

bn
=

1

Lb

=
1

lim
n→∞

bn
.

Exercises.

1. Recall the convergent sequence (an)n∈N from Exercise 1 on page 17 defined by

a1 = 1 and an =
2n+ 1

3n
an−1 for n ≥ 2.

What is its limit?

Hint: If (an)n∈N is a convergent sequence with limit L, then (an+1)n∈N is also a convergent
sequence with limit L.

2. Suppose that the sequence (an)n∈N is convergent, and assume that the sequence (bn)n∈N is
bounded. Prove that the sequence (cn)n∈N defined by

cn =
anbn + 5n

a2
n + n

is convergent, and find its limit.

3. (a) Let (an)n∈N be a convergent sequence with limit L and suppose that an ≥ 0 for all
n ∈ N. Prove that the sequence (

√
an)n∈N is also convergent, with limit

√
L.

Hint: First show that L ≥ 0. Let ε > 0. If L = 0, then choose N ∈ N large enough so
that for n > N , |an − L| = an < ε2. If L > 0, then choose N ∈ N large enough so that
for n > N , |√an −

√
L||√an +

√
L| = |an − L| < ε

√
L.

(b) Show that (
√

n2 + n− n)n∈N is a convergent sequence and find its limit.

Hint: ‘Rationalize the numerator’ by using
√
n2 + n+ n.

4. Prove that if (an)n∈N and (bn)n∈N are convergent sequences such that for all n ∈ N, an ≤ bn,
then

lim
n→∞

an ≤ lim
n→∞

bn.

Hint: Use Exercise 5 on page 13.
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1.2.5 Sandwich theorem

Another useful theorem that is useful in proving that sequences are convergent and in determining
their limits is the so-called sandwich theorem. Roughly speaking, it says that if a sequence is
sandwiched between two convergent limits with the same limit, then the sandwiched sequence is
also convergent with the same limit.

Theorem 1.2.5 (Sandwich theorem.) Let (an)n∈N, (bn)n∈N be convergent sequences with the
same limit, that is,

lim
n→∞

an = lim
n→∞

bn.

If (cn)n∈N is a third sequence such that

for all n ∈ N, an ≤ cn ≤ bn,

then (cn)n∈N is also convergent with the same limit, that is,

lim
n→∞

an = lim
n→∞

cn = lim
n→∞

bn.

Proof Let L denote the common limit of (an)n∈N and (bn)n∈N:

lim
n→∞

an = L = lim
n→∞

bn.

Given ε > 0, let N1 ∈ N be such that for all n > N1, |an − L| < ε. Hence for n > N1,

L− an ≤ |L− an| = |an − L| < ε,

and so L− an < ε, that is,
L− ε < an.

Let N2 ∈ N be such that for all n > N2, |bn − L| < ε. So for n > N2, bn − L < ε, that is,

bn < L+ ε.

Thus for n > N := max{N1, N2}, we have

L− ε < an ≤ cn ≤ bn < L+ ε,

and so L− ε < cn < L+ ε. Consequently, cn − L < ε and −(cn − L) < ε, and so

|cn − L| < ε.

This proves that (cn)n∈N is convergent with limit L.

Examples.

1. lim
n→∞

n

10n
= 0.

It can be shown by induction that for all n ∈ N, n2 < 10n.

Consequently, we have

0 ≤ n

10n
≤ n

n2
=

1

n
.

Since lim
n→∞

0 = 0 = lim
n→∞

1

n
, from the Sandwich theorem it follows that the sequence

(
n

10n

)

n∈N

is convergent and

lim
n→∞

n

10n
= 0.

Thus the sequence 1
10 ,

2
100 ,

3
1000 ,

4
10000 , . . . is convergent with limit 0.
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2. lim
n→∞

2
1
n = 1.

2 > 1 and so 2
1
n > 1 (for otherwise 2 = (2

1
n )n ≤ 1, a contradiction). Let an := 2

1
n − 1 ≥ 0.

Then 2 = (1 + an)n ≥ 1 +nan (It can be shown using induction that for all real x ≥ −1 and
for all n ∈ N, (1 + x)n ≥ 1 + nx.) Hence

0 ≤ an ≤ 1

n

and so using the Sandwich theorem it follows that lim
n→∞

an = 0. Consequently, lim
n→∞

2
1
n = 1,

that is, the sequence 2,
√

2, 3
√

2, 4
√

2, 5
√

2, . . . is convergent with limit 1.

3. For any a, b ∈ R, lim
n→∞

(|a|n + |b|n)
1
n = max{|a|, |b|}.

Clearly,
(max{|a|, |b|})n ≤ |a|n + |b|n ≤ (max{|a|, |b|})n

+ (max{|a|, |b|})n

and so
max{|a|, |b|} ≤ (|a|n + |b|n)

1
n ≤ 2

1
n max{|a|, |b|}.

So using the Sandwich theorem, it follows that lim
n→∞

(|a|n + |b|n)
1
n = max{|a|, |b|}.

In particular, with a = 24 and b = 2005, we have that lim
n→∞

(24n + 2005n)
1
n = 2005, that is,

the sequence 2028, 2005.1436, 2005.001146260873, ... is convergent with limit 2005.

4. If a ∈ (0, 1), then lim
n→∞

an = 0.

Since 0 < a < 1, it follows that 1 < 1
a

and so h := 1
a
− 1 > 0. Then we have

1

an
= (1 + h)n ≥ 1 + nh ≥ nh

and so

0 ≤ an ≤ 1

nh
.

Hence from the Sandwich theorem, it follows that lim
n→∞

an = 0.

5. lim
n→∞

(
1

n2 + 1
+

1

n2 + 2
+ · · · + 1

n2 + n

)

= 0.

For all n ∈ N, we have

n

n2 + n
≤ 1

n2 + 1
+

1

n2 + 2
+ · · · + 1

n2 + n
≤ n

n2 + 1
,

and since
lim

n→∞
n

n2 + n
= 0 = lim

n→∞
n

n2 + 1
.

it follows from the Sandwich theorem that lim
n→∞

(
1

n2 + 1
+

1

n2 + 2
+ · · · + 1

n2 + n

)

= 0. ♦

Exercises.

1. Prove that the sequence

(
n!

nn

)

n∈N

is convergent and lim
n→∞

n!

nn
= 0.

Hint: Observe that 0 ≤ n!

nn
=

1

n
· 2

n
· · · · · n

n
≤ 1

n
· 1 · · · · · 1 ≤ 1

n
.



1.2. Sequences and limits 23

2. Prove that for all k ∈ N, the sequence

(
1k + 2k + 3k + · · · + nk

nk+2

)

n∈N

is convergent and

lim
n→∞

1k + 2k + 3k + · · · + nk

nk+2
= 0.

3. (a) Using induction, prove that if x ≥ −1 and n ∈ N, then

(1 + x)n ≥ 1 + nx. (1.10)

(b) Show that for all n ∈ N,

1 ≤ n
1
n < (1 +

√
n)

2
n ≤

(

1 +
1√
n

)2

.

Hint: Take x = 1√
n

in the inequality (1.10).

(c) Prove that (n
1
n )n∈N is convergent and find its limit.

4. Let (an)n∈N be a sequence contained in the interval (a, b) (that is, for all n ∈ N, a < an < b).
If (an)n∈N is convergent with limit L, then prove that L ∈ [a, b].

Hint: Use Exercise 5 on page 13.

Give an example to show that L needn’t belong to (a, b).

5. Let (an)n∈N be a convergent sequence, and let (bn)n∈N satisfy |bn − an| < 1
n

for all n ∈ N.
Show that (bn)n∈N is also convergent. What is its limit?

Hint: Observe that − 1
n

+ an < bn < an + 1
n

for all n ∈ N.

1.2.6 Subsequences

In this section we prove an important result in analysis, known as the Bolzano-Weierstrass theorem,
which says that every bounded sequence has a convergent ‘subsequence’. We begin this section
by defining what we mean by a subsequence of a sequence.

Definition. Let (an)n∈N be a sequence and let (nk)k∈N be a sequence of natural numbers such
that n1 < n2 < n3 < . . . . Then (ank

)k∈N is called a subsequence of (an)n∈N.

Examples.

1.
(

1
2n

)

n∈N
,
(

1
n2

)

n∈N
,
(

1
n!

)

n∈N
and

(
1

nn

)

n∈N
are all subsequences of

(
1
n

)

n∈N
. Also the sequence

(an)n∈N defined by

an =
1

p
, where p is the nth prime in the infinite sequence of increasing primes 2, 3, 5, 7, 11, . . .

is a subsequence of
(

1
n

)

n∈N
. The sequence

1

2
, 1,

1

3
,
1

4
, . . .

is not a subsequence of
(

1
n

)

n∈N
.
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2. The sequences ((−1)2n)n∈N (that is, the constant sequence 1, 1, 1, . . . ) and ((−1)2n−1)n∈N

(that is the constant sequence −1,−1,−1, . . . ) are subsequences of ((−1)n)n∈N. ♦

Exercise(∗). Beginning with 2 and 7, the sequence 2, 7, 1, 4, 7, 4, 2, 8, 2, 8, . . . is constructed by
multiplying successive pairs of its terms and adjoining the result as the next one or two members
of the sequence depending on whether the product is a one- or two-digit number. Thus we start
with 2 and 7, giving the product 14, and so the next two terms are 1, 4. Proceeding in this manner,
we get subsequent terms as follows:

2, 7

2, 7, 1, 4

2, 7, 1, 4

2, 7, 1, 4, 7

2, 7, 1, 4, 7

2, 7, 1, 4, 7, 4

2, 7, 1, 4, 7, 4

2, 7, 1, 4, 7, 4, 2, 8

2, 7, 1, 4, 7, 4, 2, 8

2, 7, 1, 4, 7, 4, 2, 8, 2, 8

...

Prove that this sequence has the constant subsequence 6, 6, 6, . . . .

Hint: Show that 6 appears an infinite number of times as follows. Since the terms 2, 8, 2, 8 are
adjacent, they give rise to the adjacent terms 1, 6, 1, 6 at some point, which in turn give rise to
the adjacent terms 6, 6, 6 eventually, and so on. Proceeding in this way, find out if you get a loop
containing the term 6.

Theorem 1.2.6 If (an)n∈N is a convergent sequence with limit L, then any subsequence of (an)n∈N

is also convergent with the limit L.

Proof Let (ank
)k∈N be a subsequence of (an)n∈N. Given ε > 0, let N ∈ N be such that for all

n > N , |an − L| < ε. Since the sequence n1 < n2 < n3 < . . . , it follows that there exists a K ∈ N

such that nK > N . Then for all k > K, nk > nK > N . Hence for k > K, |ank
− L| < ε, and so

(ank
)k∈N is convergent with limit L.

Examples.

1.
(

1
2n

)

n∈N
,
(

1
n2

)

n∈N
,
(

1
n!

)

n∈N
and

(
1

nn

)

n∈N
are convergent sequences with limit 0.

2. The sequence ((−1)n)n∈N is divergent since the subsequence 1, 1, 1, . . . has limit 1, while the
subsequence −1,−1,−1, . . . has limit −1. ♦

Theorem 1.2.7 Every sequence has a monotone subsequence.
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We first give an illustration of the idea behind this proof. Assume that (an)n∈N is the given
sequence. Imagine that an is the height of the hotel with number n, which is followed by hotel
n+ 1, and so on, along an infinite line, where at infinity there is the sea. A hotel is said to have
the seaview property if it is higher than all hotels following it. See Figure 1.7. Now there are onlyPSfrag replacements

1 2 3 4 5 6

. . .

. . .

Figure 1.7: The seaview property.

two possibilities:

1◦ There are infinitely many hotels with the seaview property. Then their heights form a decreasing
subsequence.

2◦ There is only a finite number of hotels with the seaview property. Then after the last hotel
with the seaview property, one can start with any hotel and then always find one that is at least
as high, which is taken as the next hotel, and then finding yet another that is at least as high as
that one, and so on. The heights of these hotels form an increasing subsequence.

Proof Let

S = {m ∈ N | for all n > m, an < am}.

Then we have the following two cases.

1◦ S is infinite. Arrange the elements of S in increasing order: n1 < n2 < n3 < . . . . Then (ank
)k∈N

is a decreasing subsequence of (an)n∈N.

2◦ S is finite. If S empty, then define n1 = 1, and otherwise let n1 = maxS+1. Define inductively

nk+1 = min{m ∈ N | m > nk and am ≥ ank
}.

(The minimum exists since the set {m ∈ N | m > nk and am ≥ ank
} is a nonempty subset of N:

indeed otherwise if it were empty, then nk ∈ S, and this is not possible if S was empty, and also
impossible if S was not empty, since nk > maxS.) Then (ank

)k∈N is an increasing subsequence of
(an)n∈N.

An important consequence of the above theorem is the following result.

Theorem 1.2.8 (Bolzano-Weierstrass theorem.) Every bounded sequence has a convergent sub-
sequence.

Proof Let (an)n∈N be a bounded sequence. Then there exists a M > 0 such that for all n ∈ N,
|an| ≤ M . From Theorem 1.2.7 above, it follows that the sequence (an)n∈N has a monotone
subsequence (ank

)k∈N. Then clearly for all k ∈ N, |ank
| ≤ M and so the sequence (ank

)k∈N is
also bounded. Since (ank

)k∈N is monotone and bounded, it follows from Theorem 1.2.3 that it is
convergent.



26 Chapter 1. Analysis

Example. Consider the sequence (an)n∈N of fractional parts of integral multiples of
√

2, defined
by

an = n
√

2 − bn
√

2c, for n ∈ N,

where for x ∈ R, bxc denotes the greatest integer part of x, which is defined as the largest integer
less than or equal to x:

bxc = min{z ∈ Z | x < z} − 1.

(By the Archimedean property, there exist natural numbers n1 and n2 such that x < n1 and
−x < n2, that is, −n2 < x < n1. Hence the set {z ∈ Z | x < z} is a nonempty subset of Z

(indeed, n1 belongs to it!), and it is bounded below (by −n2 ∈ Z), and so the minimum of the set
{z ∈ Z | x < z} exists in Z. Consequently b·c is a well-defined function.)

The terms of the sequence (an)n∈N are as follows:

√
2 = 1.414213 . . . a1 = 0.414213 . . .

2
√

2 = 2.828427 . . . a2 = 0.828427 . . .

3
√

2 = 4.242640 . . . a3 = 0.242640 . . .

4
√

2 = 5.656854 . . . a4 = 0.656854 . . .

5
√

2 = 7.071067 . . . a5 = 0.071067 . . .

6
√

2 = 8.485281 . . . a6 = 0.485281 . . .

...

The sequence (an)n∈N is bounded: indeed, 0 ≤ an < 1. So by the Bolzano-Weierstrass theorem it
has a convergent subsequence6. ♦

Exercise. (∗) Recall the definition of a Cauchy sequence from Exercise 6 on page 13, where we
had already seen that every convergent sequence is Cauchy. Using Bolzano-Weierstrass theorem,
we can prove the converse. Show that if a sequence is Cauchy, then it is convergent.

Hint: Proceed as follows. Let (an)n∈N be a Cauchy sequence. From Exercise 5 on page 17, it
follows that (an)n∈N is bounded. By the Bolzano Weierstrass theorem, it follows that (an)n∈N

has a convergent subsequence, say (ank
)k∈N with limit L. Prove (using the fact that (an)n∈N is

Cauchy), that then (an)n∈N is itself convergent with limit L.

1.3 Continuity

A function f : R → R is a rule of correspondence that assigns to each real number a unique
real number. Many bizarre functions make appearances in analysis, and in order to avoid falling
into pitfalls with simplistic thinking, we need definitions and hypothesis of theorems to be stated
carefully and clearly.

Within the huge collection of functions, there is an important subset: the continuous functions.
Continuous functions play a prominent role in analysis since they possess some useful properties.

In this section we give the formal definition of continuous functions and prove two of the most
important properties: the extreme value theorem and the intermediate value theorem.

6In fact, it can be shown that these fractional parts an are “dense” in (0, 1). Thus given any number L ∈ (0, 1),
there exists a subsequence of the sequence (an)n∈N above that converges to L.
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1.3.1 Definition of continuity

In everyday speech, a ‘continuous’ process is one that proceeds without gaps of interruptions or
sudden changes. What does it mean for a function f : R → R to be continuous? The common
informal definition of this concept states that a function f is continuous if one can sketch its graph
without lifting the pencil. In other words, the graph of f has no breaks in it. If a break does
occur in the graph, then this break will occur at some point. Thus (based on this visual view of
continuity), we first give the formal definition of the continuity of a function at a point below.
Next, if a function is continuous at each point, then it will be called continuous.

If a function has a break at a point, say c, then even if points x are close to c, the points f(x)
do not get close to f(c). See Figure 1.8.

PSfrag replacements

c

f(c)

Figure 1.8: A function with a break at c. If x lies to the left of c, then f(x) is not close to f(c),
no matter how close x comes to c.

This motivates the following definition of continuity, which guarantees that if a function is
continuous at a point c, then we can make f(x) as close as we like to f(c), by choosing x sufficiently
close to c. See Figure 1.9.

PSfrag replacements

f(c) + ε

f(c)

f(c) + ε

f(x)

c− δ c c+ δx

Figure 1.9: The definition of the continuity of a function at point c. If the function is continuous
at c, then given any ε > 0 (which determines a strip around the line y = f(c) of width 2ε), there
exists a δ > 0 (which determines an interval of width 2δ around the point c) such that whenever
x lies in this width (so that x satisfies c− δ < x < c+ δ, that is, |x − c| < δ), then f(x) satisfies
f(c) − ε < f(x) < f(c) + ε, that is, |f(x) − f(c)| < ε.

Definitions. Let I be an interval in R and let c ∈ I . A function f : I → R is continuous at c if
for every ε > 0, there exists a δ > 0 such that for all x ∈ I satisfying |x− c| < δ, |f(x)− f(c)| < ε.

A function f : I → R is continuous (on I) if for every c ∈ I , f is continuous at c.

Examples.

1. f : R → R given by f(x) = 1 for all x ∈ R is continuous.
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Let c ∈ R = (−∞,∞). Given ε > 0, let δ be an arbitrary positive real number; for instance,
let δ = 1. Then if x ∈ R and |x− c| < δ = 1, we have:

|f(x) − f(c)| = |1 − 1| = |0| = 0 < ε.

So f is continuous at c. Since the choice of c ∈ R was arbitrary, it follows that f is continuous
on R. See Figure 1.10.

PSfrag replacements
1

0 x

Figure 1.10: The continuous constant function 1.

2. f : R → R given by

f(x) =

{
0 if x = 0,
1 if x ∈ R \ {0}.

is not continuous at 0.

Suppose that it is continuous at 0. Then given ε = 1
2 > 0, let δ > 0 be such that if x ∈ R and

|x| = |x− 0| < δ, then |f(x)− f(0)| = |f(x)− 0| = |f(x)| < ε = 1
2 . But now take x = δ

2 ∈ R,

and so |x| =
∣
∣ δ
2

∣
∣ = δ

2 < δ. Thus |f(x)| =
∣
∣f
(

δ
2

)∣
∣ = |1| = 1 > 1

2 = ε, a contradiction. So f
cannot be continuous at 0.

However, for all c ∈ R \ {0}, f is continuous at c. This can be seen as follows. Given ε > 0,

let δ = |c|
2 > 0. Then if x ∈ R and |x− c| < δ, we have

|c| − |x| ≤ ||c| − |x|| ≤ |c− x| = |x− c| < δ =
|c|
2

and so

|x| > |c|
2
> 0.

Thus x 6= 0 and so f(x) = 1. Hence if x ∈ R and |x− c| < δ, we obtain

|f(x) − f(c)| = |1 − 1| = |0| = 0 < ε.

Consequently f is continuous at c. See Figure 1.11.

PSfrag replacements
1

0 x

Figure 1.11: A function continuous everywhere except at 0.

3. f : R → R given by f(x) = x for all x ∈ R is continuous.

Let c ∈ R. Given ε > 0, let δ = ε. Then if x ∈ R and |x− c| < δ, we have:

|f(x) − f(c)| = |x− c| < δ = ε.

So f is continuous at c. Since the choice of c ∈ R was arbitrary, it follows that f is continuous
on R.
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4. f : (0, 1) → R given by f(x) = 1
x

for all x ∈ R is continuous (on (0, 1)).

Let c ∈ (0, 1). Given ε > 0, let δ = min
{

c
2 ,

εc2

2

}

(> 0). Then if x ∈ (0, 1) and |x − c| < δ,

we have

|c| − |x| ≤ ||c| − |x|| ≤ |c− x| = |x− c| < δ ≤ |c|
2

and so
|c|
2
< |x|, that is,

1

|x| <
2

|c| .

Consequently, if x ∈ (0, 1) and |x− c| < δ,
∣
∣
∣
∣

1

x
− 1

c

∣
∣
∣
∣
=

|c− x|
|x| |c| =

|x− c|
|x| |c| < δ · 2

|c| ·
1

|c| =
2δ

c2
≤ ε.

So f is continuous at c. Since the choice of c ∈ (0, 1) was arbitrary, it follows that f is
continuous (on (0, 1)). ♦

Exercises.

1. Let the function f : R → R be given by f(x) = x2.

(a) Prove that f is continuous at 0.

(b) (∗) Suppose that c is a nonzero real number. Prove that f is continuous at c.

In Exercise 1 on page 31, we will give a slick proof of the fact that f is continuous on R.

2. Let f : R → R be a function that satisfies f(x+ y) = f(x) + f(y) for all x, y ∈ R.

(a) Suppose that f is continuous at some real number c. Prove that f is continuous on R.

Hint: Since f is continuous at c, given ε > 0, ∃δ > 0 such that for all x ∈ R satisfying
|x − c| < δ, |f(x) − f(c)| < ε. Show that given any other point c′ ∈ R, the function f

is continuous at c′ by showing that the same δ works (for this ε).

(b) Give an example of such a function.

3. Suppose that f : R → R and there exists a M > 0 such that for all x ∈ R, |f(x)| ≤ M |x|.
Prove that f is continuous at 0.

Hint: Find f(0).

4. Let f : R → R be defined by

f(x) =

{
0 if x is rational,
1 if x is irrational.

Prove that for every c ∈ R, f is not continuous at c.

Hint: Use the fact that there are irrational numbers arbitrarily close to any rational number
and rational numbers arbitrarily close to any irrational number.

5. Let f : R → R be a continuous function. Prove that if for some c ∈ R, f(c) > 0, then there
exists a δ > 0 such that for all x ∈ (c− δ, c+ δ), f(x) > 0.

If f and g are functions on R, then the composition of g with f , denoted by g ◦ f , is defined
by

(g ◦ f)(x) = g(f(x)), x ∈ R.

The following theorem implies that the composition of continuous functions is continuous.
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Theorem 1.3.1 Let c ∈ R. If f : R → R is continuous at c and g : R → R is continuous at f(c),
then g ◦ f is continuous at c.

Proof Since g is continuous at f(c), it follows that given ε > 0, ∃δ > 0 such that for all y ∈ R

satisfying |y − f(c)| < δ,
|g(y) − g(f(c))| < ε.

Since f is continuous at c, ∃δ1 > 0 such that for all x ∈ R satisfying |x− c| < δ1,

|f(x) − f(c)| < δ.

Consequently, for all x ∈ R satisfying |x− c| < δ1, we have |f(x) − f(c)| < δ, and so

|g(f(x)) − g(f(c))| < ε,

that is,
|(g ◦ f)(x) − (g ◦ f)(c)| < ε.

Hence g ◦ f is continuous at c.

1.3.2 Continuous functions preserve convergent sequences

We now give an alternative characterization of continuity.

Theorem 1.3.2 Let I be an interval in R and let c ∈ I. Suppose that f : I → R is a function.
Then f is continuous at c iff

for every convergent sequence (xn)n∈N contained in I with limit c,
(f(xn))n∈N is convergent and lim

n→∞
f(xn) = f(c). (1.11)

Proof

Only if: Suppose that f is continuous at c ∈ I and let (xn)n∈N be a convergent sequence contained
in I with limit c.

Since f is continuous at c ∈ I , given ε > 0, ∃δ > 0 such that for all x ∈ I satisfying |x− c| < δ,
|f(x) − f(c)| < ε.

Since (xn)n∈N is convergent with limit c, ∃N ∈ N such that for all n > N , |xn − c| < δ.

Consequently for n > N , |f(xn) − f(c)| < ε. So (f(xn))n∈N is convergent with limit f(c).

If: Suppose that (1.11) holds. Then we need to show that f is continuous at c and we prove this
by contradiction. Assume that f is not continuous at c, that is,

¬ [∀ε > 0 ∃δ > 0 such that ∀x ∈ I such that |x− c| < δ, |f(x) − f(c)| < ε]

that is,

∃ε > 0 such that ∀δ > 0 ∃x ∈ I such that |x− c| < δ but |f(x) − f(c)| ≥ ε.

Hence if δ = 1
n
, then we can find xn ∈ I such that |xn − c| < δ = 1

n
, but |f(xn) − f(c)| ≥ ε.

Claim 1: The sequence (xn)n∈N is contained in I and is convergent with limit c.
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Indeed, we have for all n ∈ N, xn ∈ I . Furthermore, given any ζ > 0, we can find N ∈ N such
that 1

ζ
< N (Archimedean property), that is, 1

N
< ζ. Hence for n > N , |xn − c| < 1

N
< ζ. So

(xn)n∈N is convergent with limit c.

Claim 2: The sequence (f(xn))n∈N does not converge to f(c).

Indeed for all n ∈ N, we have |f(xn)−f(c)| ≥ ε. Thus for instance ε
2 > 0, but it is not possible

to find a large enough N ∈ N such that for all n > N , |f(xn)− f(c)| < ε
2 (for if this were possible,

then we would arrive at the contradiction ε ≤ |f(xn) − f(c)| < ε
2 ).

The Claims 1 and 2 show that (1.11) does not hold, a contradiction. Hence f is continuous
at c.

Exercises.

1. Recall Exercise 1 on page 29: The function f(x) : R → R is given by f(x) = x2. Using the
characterization of continuity provided in Theorem 1.3.2, prove that f is continuous on R.

2. Prove that7 if f : R → R is continuous and f(x) = 0 if x is rational, then f(x) = 0 for all
x ∈ R.

Hint: Given any real number c, there exists a sequence of rational numbers (qn)n∈N that
converges to c.

3. Let f : R → R be a function that preserves divergent sequences, that is, for every divergent
sequence (xn)n∈N, (f(xn))n∈N is divergent as well. Prove that f is one-to-one.

Hint: Let x1, x2 be distinct real numbers, and consider the sequence x1, x2, x1, x2, . . . .

Using the above theorem, we obtain the following useful Theorem 1.3.3. But before we state
this result, we introduce some convenient notation.

Let I be an interval in R. Given functions f : I → R and g : I → R, we define the following:

1. If α ∈ R, then we define the function αf : I → R by (αf)(x) = α · f(x), x ∈ I .

2. We define the absolute value of f , |f | : I → R by |f |(x) = |f(x)|, x ∈ I .

3. The sum of f and g, f + g : I → R is defined by (f + g)(x) = f(x) + g(x), x ∈ I .

4. The product of f and g, fg : I → R is defined by (fg)(x) = f(x)g(x), x ∈ I .

5. If k ∈ N, then we define the kth power of f , fk : I → R by fk(x) = (f(x))k , x ∈ I .

6. If for all x ∈ I , g(x) 6= 0, then we define 1
g

: I → R by
(

1
g

)

(x) = 1
g(x) , x ∈ I .

Theorem 1.3.3 Let I be an interval in R and let c ∈ I. Suppose that f : I → R and g : I → R

are continuous at c. Then:

1. For all α ∈ R, αf is continuous at c.

2. |f | is continuous at c.

3. f + g is continuous at c.

7See Exercise 4 on page 29.
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4. fg is continuous at c.

5. For all k ∈ N, fk is continuous at c.

6. If for all x ∈ I, g(x) 6= 0, then 1
g

is continuous at c.

Proof Suppose that (xn)n∈N is a convergent sequence contained in I , with limit c. Since f and g
are continuous at c, from Theorem 1.3.2 , it follows that (f(xn))n∈N and (g(xn))n∈N are convergent
with limits f(c) and g(c), respectively. Hence from Theorem 1.2.4, it follows that:

1. (α · f(xn))n∈N is convergent with limit α · f(c), that is, ((αf)(xn))n∈N is convergent with
limit (αf)(c). So from Theorem 1.3.2 , it follows that αf is continuous at c.

2. (|f(xn)|)n∈N is convergent with limit |f(c)|, that is, (|f |(xn))n∈N is convergent with limit
|f |(c). So from Theorem 1.3.2 , it follows that |f | is continuous at c.

3. (f(xn)+g(xn))n∈N is convergent with limit f(c)+g(c), that is, ((f+g)(xn))n∈N is convergent
with limit (f + g)(c). So from Theorem 1.3.2 , it follows that f + g is continuous at c.

4. (f(xn)g(xn))n∈N is convergent with limit f(c)g(c), that is, ((fg)(xn))n∈N is convergent with
limit (fg)(c). So from Theorem 1.3.2 , it follows that fg is continuous at c.

5. ((f(xn))k)n∈N is convergent with limit (f(c))k , that is, (fk(xn))n∈N is convergent with limit
fk(c). So from Theorem 1.3.2 , it follows that fk is continuous at c.

6.
(

1
g(xn)

)

n∈N

is convergent with limit 1
g(c) (since for all x ∈ I , g(x) 6= 0, in particular g(xn) 6= 0

and g(c) 6= 0), that is,
((

1
g

)

(xn)
)

n∈N

is convergent with limit
(

1
g

)

(c). So from Theorem

1.3.2 , it follows that 1
g

is continuous at c.

Example. Since f : R → R given by f(x) = x for x ∈ R is continuous (see Example 3 on page
28), it follows that for all k ∈ N, xk is continuous. Thus given arbitrary scalars a0, a1, . . . , aN in R,
it follows that the functions a0 · 1, a1 · x, . . . , aN · xN are continuous. Consequently the polynomial
function p : R → R defined by

p(x) = a0 + a1x+ · · · + aNx
N , x ∈ R

is continuous. ♦

Exercise. Show that the rational function f : R → R defined by

f(x) =
x2

1 + x2
, x ∈ R,

is continuous on R.

1.3.3 Extreme value theorem

Below we show that a continuous function on an interval [a, b] attains its maximum and minimum
values. See Figure 1.12.
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Figure 1.12: Extreme value theorem.

Theorem 1.3.4 (Extreme value theorem). If f : [a, b] → R is continuous, then there exist
c, d ∈ [a, b] such that

f(c) = sup{f(x) | x ∈ [a, b]}, and (1.12)

f(d) = inf{f(x) | x ∈ [a, b]}. (1.13)

Note that since c, d ∈ [a, b], the supremum and infimum in (1.12) and (1.13) are in fact the
maximum and minimum, respectively.

Proof

Step 1. We first show that f is bounded, that is, the set

S = {f(x) | x ∈ [a, b]}

is bounded. Suppose that S is not bounded. Then given n ∈ N, ∃xn ∈ [a, b] such that |f(xn)| > n

(for if this fails for some N ∈ N, then |f(x)| ≤ N for all x ∈ [a, b], and so S would be bounded, a
contradiction). In this way, we get a sequence (xn)n∈N. Since

a ≤ xn ≤ b for all n ∈ N, (1.14)

(xn)n∈N is bounded, and so by the Bolzano-Weierstrass theorem (Theorem 1.2.8), it follows that
it has a convergent subsequence (xnk

)k∈N that converges to some limit L. Now we show that
L ∈ [a, b]. If not, then either L > b or L < a. If L > b, then L− b > 0, and so ∃K ∈ N such that
for all k > K, |xnk

− L| < L− b. But then for all k > K, we obtain

L− xnk
≤ |L− xnk

| = |xnk
− L| < L− b,

that is, xnk
> b, which contradicts (1.14). Similarly, if L < a, then a − L > 0, and so ∃K ∈ N

such that for all k > K, |xnk
− L| < a− L. But then for all k > K, we obtain

xnk
− L ≤ |xnk

− L| < a− L,

that is, xnk
< a, which contradicts (1.14). Thus L ∈ [a, b]. But by Theorem 1.2.2 it follows

that (f(xnk
))k∈N cannot be convergent, since it is not bounded (indeed, |f(xnk

)| > nk!). From
Theorem 1.3.2, we see that this contradicts the continuity of f . So S must be bounded.

Step 2. Let M := sup{f(x) | x ∈ [a, b]}. We prove that there exists a c ∈ [a, b] such that
f(c) = M . For each n ∈ N, M − 1

n
< M , and so M − 1

n
cannot be an upper bound for

{f(x) | x ∈ [a, b]}. So ∃xn ∈ [a, b] such that

M − 1

n
< f(xn) ≤M. (1.15)

By the Bolzano-Weierstrass theorem, (xn)n∈N has a convergent subsequence (xnk
)k∈N with limit

c ∈ [a, b]. Since f is continuous (f(xnk
))k∈N is convergent with limit f(c). From (1.15), it follows
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from the Sandwich theorem that f(c) = M . This proves the existence of c ∈ [a, b] such that (1.12)
holds.

Step 3. Let m := inf{f(x) | x ∈ [a, b]}. The proof that there exists a d ∈ [a, b] such that f(d) = m

is similar to Step 2 above, and is left as an exercise to the reader.

Examples.

1. The function f : [0, 1] → R given by f(x) = 1 for all x ∈ [0, 1] is continuous and for any
c, d ∈ [0, 1] we have

f(c) = 1 = sup{f(x) | x ∈ [0, 1]} = inf{f(x) | x ∈ [0, 1]} = 1 = f(d).

2. The function f : (0, 1) → R given by f(x) = x is continuous on (0, 1). If

S = {x | x ∈ (0, 1)},

then supS = 1 and inf S = 0, but these values are not attained. Thus the statement of
Theorem 1.3.4 does not hold if [a, b] is replaced by (a, b). ♦

Exercises.

1. Complete the details in Step 3 of the proof of Theorem 1.3.4.

2. Give an example of a function f : [0, 1] → R that is not continuous on [0, 1], but f satisfies
the conclusion of Theorem 1.3.4.

3. A function f : R → R is periodic if there exists a T > 0 such that for all x ∈ R, f(x+ T ) =
f(x). If f : R → R is continuous and periodic, then prove that f is bounded, that is, the set
S = {f(x) | x ∈ R} is bounded.

4. Let f : [a, b] → R be continuous on [a, b], and define f∗ as follows:

f∗(x) =

{
f(a) if x = a,

max{f(y) | y ∈ [a, x]} if x ∈ (a, b].

(a) Show that f∗ is a well-defined function.

(b) (∗) Prove that f∗ is continuous on [a, b].

(c) If f : [−1, 1] → R is given by f(x) = x− x2, then find f∗.

1.3.4 Intermediate value theorem

We now prove one of the most fundamental (and obvious!) theorems on continuous functions:
a continuous function cannot “hop over” intermediate values. For instance, if the height of a
mountain is 1976 meters above sea level, then given any number between 0 and 1976, say 399,
there must exist a point on the mountain that is exactly 399 meters above sea level. See Figure
1.13.

Theorem 1.3.5 (Intermediate value theorem). If f : [a, b] → R is continuous and y is such that
f(a) ≤ y ≤ f(b), then there exists a c ∈ [a, b] such that f(c) = y.
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Figure 1.13: Intermediate value theorem.

Note that in the above statement of the theorem, the order f(a) ≤ y ≤ f(b) can be reversed
without changing the conclusion. Indeed, if y ∈ R is such that f(b) ≤ y ≤ f(a), then we have

(−f)(a) ≤ −y ≤ (−f)(b),

and applying the above Theorem 1.3.5 to the continuous function −f (Theorem 1.3.3.1 with
α = −1!), we get the existence of c ∈ [a, b] such that (−f)(c) = −y, that is, f(c) = y.

Proof Suppose that f(a) ≤ y ≤ f(b), and define

S = {x ∈ [a, b] | y ≤ f(x)}.

S is not empty (since b ∈ S) and S is bounded below by a (since S ⊂ [a, b]). Thus S has an
infimum, say c.

We claim that f(c) = y. Suppose that our claim is false. Then either f(c) < y or f(c) > y.

1◦ Suppose that f(c) < y. Thus ε := y − f(c) > 0, and since f is continuous at c, ∃δ > 0 such
that for all x ∈ [a, b] such that |x − c| < δ, |f(x) − f(c)| < y − f(c). Since c is the infimum of S,
∃x ∈ S such that c ≤ x < c+ δ, that is, x ∈ [a, b], 0 ≤ x− c = |x− c| < δ and y ≤ f(x). Thus we
have

y − f(c) ≤ f(x) − f(c) ≤ |f(x) − f(c)| < y − f(c),

a contradiction.

2◦ Suppose that f(c) > y. Thus ε := f(c) − y > 0, and since f is continuous at c, ∃δ > 0 and
moreover satisfying8 δ ≤ c − a , such that for all x ∈ [a, b] such that |x − c| < δ, |f(x) − f(c)| <
y − f(c). Let x := c− δ

2 . Then x ∈ [a, c] ⊂ [a, b]: indeed,

a ≤ c+ a

2
≤ c− δ

2
≤ c ≤ b.

Furthermore,
|x− c| = c− x = c−

(

c− δ

2

)

=
δ

2
< δ.

Hence f(c) − f(x) ≤ |f(c) − f(x)| = |f(x) − f(c)| < f(c) − y, and so f(x) ≥ y. Consequently,
x ∈ S and since c = inf S, we have c ≤ x. Thus we obtain

c ≤ x = c− δ

2
< c,

a contradiction.

8If not, then replace δ by δ

N
with N ∈ N large enough to guarantee δ

c−a
< N .
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So f(c) = y, and this completes the proof.

Examples.

1. Every odd polynomial with real coefficients has at least one real root.

Suppose that p is a polynomial with degree 2m+ 1, m ∈ N ∪ {0}. Let

p(x) = a0 + a1x+ · · · + a2mx
2m + a2m+1x

2m+1,

where a2m+1 6= 0.

In order to show that p has a real root, we will choose a large enough N ∈ N such that
p(N) and p(−N) have opposite signs, and then restrict our attention to an interval [−N,N ].
Then appealing to the intermediate value theorem, we can conclude that p must vanish at
some point in this interval, that is, for some real c ∈ [−N,N ], p(c) = 0. The proof is long,
and so we have divided it into a sequence of steps.

Step 1. For large positive n, p(n) has the same sign as a2m+1.

Since
lim

n→∞

( a0

n2m+1
+

a1

n2m
+ · · · + a2m

n

)

= 0,

it follows that there exists N1 ∈ N such that for all n > N1,
∣
∣
∣
∣

p(n)

n2m+1
− a2m+1

∣
∣
∣
∣
<

|a2m+1|
2

.

Now we show that for n > N1, p(n) has the same sign as a2m+1. Since a2m+1 6= 0, either
a2m+1 > 0 or a2m+1 < 0. If a2m+1 > 0, then for all n > N1

a2m+1 −
p(n)

n2m+1
≤
∣
∣
∣
∣
a2m+1 −

p(n)

n2m+1

∣
∣
∣
∣
=

∣
∣
∣
∣

p(n)

n2m+1
− a2m+1

∣
∣
∣
∣
<

|a2m+1|
2

=
a2m+1

2
,

and so

0 <
a2m+1

2
<

p(n)

n2m+1
.

Thus p(n) is also positive for all n > N1. Similarly, if a2m+1 < 0, then for all n > N1

p(n)

n2m+1
− a2m+1 ≤

∣
∣
∣
∣

p(n)

n2m+1
− a2m+1

∣
∣
∣
∣
<

|a2m+1|
2

= −a2m+1

2
,

and so
p(n)

n2m+1
<
a2m+1

2
< 0.

Thus p(n) is also negative for all n > N1.

So it follows that for n > N1, p(n) has the same sign as a2m+1.

Step 2. For large positive n, p(−n) has the same sign as −a2m+1.

Similarly, using the fact that

lim
n→∞

(
a0

(−n)2m+1
+

a1

(−n)2m
+ · · · + a2m

(−n)

)

= 0,

we now show that there exists N2 ∈ N such that for all n > N2, p(−n) has the same sign as
−a2m+1. Let N2 ∈ N be such that for all n > N2,

∣
∣
∣
∣

p(−n)

n2m+1
+ a2m+1

∣
∣
∣
∣
=

∣
∣
∣
∣
− p(−n)

n2m+1
− a2m+1

∣
∣
∣
∣
<

|a2m+1|
2

.
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If a2m+1 > 0, then for all n > N2

p(−n)

n2m+1
+ a2m+1 ≤

∣
∣
∣
∣

p(−n)

n2m+1
+ a2m+1

∣
∣
∣
∣
<

|a2m+1|
2

=
a2m+1

2
,

and so
p(−n)

n2m+1
< −a2m+1

2
< 0.

Thus p(−n) is negative for all n > N2. Similarly, if a2m+1 < 0, then for all n > N2

− p(−n)

n2m+1
− a2m+1 ≤

∣
∣
∣
∣

p(−n)

n2m+1
+ a2m+1

∣
∣
∣
∣
<

|a2m+1|
2

= −a2m+1

2
,

and so
p(−n)

n2m+1
> −a2m+1

2
> 0.

Thus p(−n) is positive for all n > N2.

So it follows that for n > N2, p(−n) has the same sign as −a2m+1.

Step 3. Application of the intermediate value theorem and the conclusion.

Hence if N := max{N1, N2} + 1, then p(N) has the same sign as a2m+1, while p(−N) has
the same sign as −a2m+1. Thus the continuous function p must vanish a some point in the
interval [−N,N ].

The polynomial p(x) = x2005 − x1976 + 1
399 has a real root in [−1, 1]: indeed p(1) = 1

399 > 0
and p(−1) = −2 + 1

399 < 0 and so ∃c ∈ [−1, 1] such that p(c) = 0.

2. At any given time, there exists a pair of diametrically opposite points on the equator which
have the same temperature.

Let T (Θ) denote the surface temperature at the point at longitude Θ. See Figure 1.14.
(Note that Θ(0) = Θ(2π).) Assuming that Θ is a continuous function of Θ, it follows that

PSfrag replacements
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Figure 1.14: The point on the equator with longitude Θ.

the function f : [0, π] → R defined by f(Θ) = T (Θ) − T (Θ + π) is continuous as well. If
f(0) = 0, then it follows that the temperatures at 0 and 180◦ longitude are the same. If
f(0) 6= 0, then since f(0) and f(π) = −f(0) have opposite signs, by the intermediate value
theorem, it follows that f must vanish at some point, and so the claim follows. ♦

Exercises.

1. Suppose that f : [0, 1] → R is a continuous function such that for all x ∈ [0, 1], 0 ≤ f(x) ≤ 1.
Prove that there exists at least one c ∈ [0, 1] such that f(c) = c.

Hint: Consider the continuous function g(x) = f(x) − x, and use the intermediate value
theorem.
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2. At 8:00 a.m. on Saturday, a hiker begins walking up the side of a mountain to his weekend
campsite. On Sunday morning at 8:00 a.m., he walks back down the mountain along the
same trail. It takes him one hour to walk up, but only half an hour to walk down. At some
point on his way down, he realizes that he was at the same spot at exactly the same time
on Saturday. Prove that he is right.

Hint: Let u(t) and d(t) be the position functions for the walks up and down, and apply the
intermediate value theorem to f(t) = u(t) − d(t).

3. Show that the polynomial function p(x) = 2x3 − 5x2 − 10x+5 has a real root in the interval
[−1, 2].

4. Let f : R → R be continuous. If S := {f(x) | x ∈ R} is neither bounded above nor bounded
below, prove that S = R.

Hint: If y ∈ R, then since S is neither bounded above nor bounded below, there exist
x0, x1 ∈ R such that f(x0) < y < f(x1).

5. (a) (∗) Show that given any continuous function f : R → R, there exists a x0 ∈ [0, 1] and
a m ∈ Z such that f(x0) = mx0. In other words, the graph of f intersects some line
y = mx at some point x0 in [0, 1].

Hint: If f(0) = 0, take x0 = 0 and any m ∈ Z. If f(0) > 0, then choose N ∈ N

satisfying N > f(1), and apply the intermediate value theorem to the continuous
function g(x) = f(x)−Nx on the interval [0, 1]. If f(0) < 0, then first choose a N ∈ N

such that N > −f(1), and consider the function g(x) = f(x) +Nx, and proceed in a
similar manner.

(b) (∗) Prove that there does not exist a continuous function f : R → R such that assumes
rational values at irrational numbers, and irrational values at rational numbers, that
is,

f(Q) ⊂ R \ Q and f(R \ Q) ⊂ Q.

Hint: Note that for every m ∈ Z, there does not exist a x0 ∈ R such that f(x0) = mx0.



Chapter 2

Algebra

In this part of the course, we study two important algebraic objects: groups and vector spaces.
We begin with a discussion about groups.

2.1 Groups

In this section, we study one of the most basic algebraic objects, namely a group. A group is a set
on which a law of composition is defined, such that certain properties hold. The precise definition
is given in the next subsection.

2.1.1 Definition of a Group

By a law of composition on a set S, we mean a rule for combining pairs a, b of S to get another
element, say c, of S. We denote the set of all ordered pairs of elements from a set S by S × S,
that is, S × S = {(a, b) | a, b ∈ S}.

Definition. A law of composition on a set S is a function f : S × S → S.

The functional notation c = f(a, b) is not very convenient for what is going to follow, and so
instead, the element obtained by applying the law of composition to a pair (a, b) is usually denoted
using a notation resembling that used for addition or multiplication:

c = a ∗ b, or ab, or a ◦ b, or a+ b and so on,

with a fixed choice being made for the particular law in question.

Examples.

1. The addition of integers is a law of composition on Z. Indeed, the sum of two integers is yet
another integer, and addition is the function from the set Z × Z to the set Z that assigns
a+ b to the pair (a, b), denoted by (a, b) 7→ a+ b.

2. The multiplication of real numbers is a law of composition on R.

39
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3. If a, b are rational numbers, then let a ∗ b = a+ b− ab. The function from Q×Q to Q given
by (a, b) 7→ a ∗ b is a law of composition on Q.

4. If a, b are real numbers, then define a ∗ b =
√
a2 + b2. Then (a, b) 7→ a ∗ b is not a law of

composition on Q, since 1 ∈ Q, but 1 ∗ 1 =
√

2 6∈ Q. However, (a, b) 7→ a ∗ b is a law of
composition on R.

5. Let n ∈ N, and let S denote the set of all matrices of size n × n with real entries. Then
matrix multiplication is a law of composition on S.

6. Let n ∈ N, and let GL(n,R) denote the set of all invertible matrices of size n × n with
real entries. Then matrix multiplication is a law of composition on GL(n,R). Indeed, if
A,B ∈ GL(n,R), then the matrix AB is again a matrix of size n× n with real entries, and
moreover, since A and B are invertible, it follows that AB is also invertible.

7. Let a, b be real numbers such that a < b. Let C[a, b] denote the set of all continuous functions
on the interval [a, b]. Let addition of functions be defined as follows: if f, g belong to C[a, b],
then

(f + g)(x) = f(x) + g(x), x ∈ [a, b].

Then addition of functions is a law of composition on C[a, b], since the sum of continuous
functions is again continuous; see Theorem 1.3.3.

8. If a, b ∈ N, then let

a ∗ b =
a

b
.

∗ is not a law of composition on N, since 1 ∗ 2 = 1
2 6∈ N. ♦

On a set there may be several different laws of compositions that can be defined. Some laws
of compositions are nicer than others, that is, they possess some desirable properties. A group is
a set G together with a law of composition on G that has three such desirable properties, and we
give the definition below.

Definition. A group is a set G together with a law of composition (a, b) 7→ a ∗ b : G × G → G,
which has the following properties:

G1. (Associativity.) For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

G2. (Identity.) There exists an element1 e ∈ G such that for all a ∈ G, a ∗ e = a = e ∗ a.

G3. (Inverses.) For every a ∈ G, there exists an element2 a−1 ∈ G such that a∗a−1 = e = a−1∗a.

G1, G2, G3 are called group axioms. Sometimes we use the notation (G, ∗) for the group.

Remarks. Note that hidden in the definition of a group, is the following axiom G0:

G0. For all a, b ∈ G, a ∗ b ∈ G. (That is, ∗ is actually a law of composition on G.)

Hence when checking that a certain set G is a group with respect to a certain operation ∗ that
combines pairs of elements from G, we have to check, first of all, that for every a, b ∈ G, a ∗ b
belongs to G.

1Such an element e is called an identity element of the group G.
2depending on a, and such an element a−1 is called an inverse of the element a in the group G.
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Examples.

1. Z with addition is a group. Indeed, the addition of integers is a law of composition on Z

that satisfies the group axioms:

G1. For all a, b, c ∈ Z, (a+ b) + c = a+ (b+ c).

G2. 0 serves as an identity element: for all a ∈ Z, a+ 0 = a = 0 + a.

G3. If a ∈ Z, then −a ∈ Z and a+ (−a) = 0 = −a+ a.

2. R with multiplication is a not a group. Indeed, although the multiplication of real numbers
is a law of composition on R that satisfies G1 and G2, but the group axiom G3 does not
hold:

G1. For all a, b, c ∈ R, (ab)c = a(bc).

G2. (If e is an identity element, then we must have ae = a = ea for all a ∈ R, and in
particular, with a = 1, we should have 1e = 1, and so, e = 1. And so if e is an identity
element, then it must be equal to 1!) 1 serves as an identity element: for all a ∈ R,
a1 = a = 1a.

G3. Does not hold, since 0 ∈ R, but for all a−1 ∈ R, 0a−1 = a−10 = 0 6= 1 = e. So there is
no inverse of the element 0 ∈ R.

However, the set of nonzero real numbers, or the set of positive real numbers are both groups
with multiplication, since in addition to G1 and G2, now in each case G3 also holds.

3. Let n ∈ N, and let GL(n,R) denote the set of all invertible matrices of size n× n with real
entries. Then GL(n,R) is group with matrix multiplication. Indeed, matrix multiplication
is a law of composition on GL(n,R) that satisfies the group axioms:

G1. For all A,B,C ∈ GL(n,R), (AB)C = A(BC), since matrix multiplication is associative.

G2. The identity matrix

In =








1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1








serves as an identity element. In is an invertible matrix of size n× n with real entries,
and so it belongs to GL(n,R), and moreover, for all A ∈ GL(n,R), AIn = A = InA.

G3. If A ∈ GL(n,R), then A is an invertible matrix, and so there exists a matrix A−1 such
that AA−1 = In = A−1A. The matrix A−1 ∈ GL(n,R) and serves as an inverse of A.

This group is called the general linear group.

4. Let a, b be real numbers such that a < b. Then C[a, b] is a group with addition of functions.
Indeed, the addition of functions is a law of composition on C[a, b] that satisfies the group
axioms:

G1. For all f, g, h ∈ C[a, b], and any x ∈ [a, b] we have

(f + (g + h))(x) = f(x) + (g + h)(x)

= f(x) + (g(x) + h(x))

= (f(x) + g(x)) + h(x) (since addition is associative in R!)

= (f + g)(x) + h(x)

= ((f + g) + h)(x).

Hence f + (g + h) = (f + g) + h.
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G2. The constant function 0 defined by 0(x) = 0 for all x ∈ [a, b], serves as an identity
element. 0 is a continuous function on [a, b] and so 0 ∈ C[a, b]. Moreover, for all
f ∈ C[a, b], we have for all x ∈ [a, b]:

(f + 0)(x) = f(x) + 0(x)

= f(x) + 0

= f(x) (since 0 is an identity element for addition in R!)

= 0 + f(x)

= 0(x) + f(x)

= (0 + f)(x).

Hence f + 0 = f = 0 + f .

G3. If f ∈ C[a, b], then define −f by (−f)(x) = −f(x), for x ∈ [a, b]. Given f ∈ C[a, b], we
have for all x ∈ [a, b]:

(f + (−f))(x) = f(x) + (−f)(x)

= f(x) + (−f(x))

= 0 = 0(x) = 0

= −f(x) + f(x)

= (−f)(x) + f(x)

= (−f + f)(x).

Hence f + (−f) = 0 = −f + f . ♦

We note that the groups in the above Examples 1 and 4, also satisfy

G4. (Commutativity.) For all a, b ∈ G, a ∗ b = b ∗ a ,

while the group in Example 3 (with n = 2) does not satisfy G4:

[
1 1
0 1

] [
1 0
1 1

]

=

[
2 1
1 1

]

6=
[

1 1
1 2

]

=

[
1 0
1 1

][
1 1
0 1

]

.

This gives rise to the following natural definition.

Definition. A group (G, ∗) is said to be abelian3 if for all a, b ∈ G, a ∗ b = b ∗ a.

Examples.

1. The set of integers Z with addition is an abelian group.

2. The set of positive real numbers with multiplication is an abelian group.

3. Let n,m ∈ N. The set matrices Rn×m of size n×m with entries in R with matrix addition
is an abelian group.

4. Let n ∈ N. The set GL(n,R) with matrix multiplication is a group, but it is not an abelian
group if n > 1. ♦

3after the Norwegian mathematician Abel
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We now prove a few elementary theorems concerning groups.

Theorem 2.1.1 There is a unique identity element in a group.

Proof Let e and e′ be identity elements in (G, ∗). Since e ∈ G and e′ is an identity, we obtain

e = e ∗ e′.

Moreover, since e′ ∈ G and e is an identity, we also have

e ∗ e′ = e′.

Consequently, e = e′.

Theorem 2.1.2 Let (G, ∗) be a group and let a ∈ G. Then a has a unique inverse.

Proof Let the group have the identity e. If a1 and a2 are inverses of a, then we have

a1 = a1 ∗ e (since a1 ∈ G and e is the identity)

= a1 ∗ (a ∗ a2) (since a2 is an inverse of a)

= (a1 ∗ a) ∗ a2 (associativity)

= e ∗ a2 (since a1 is an inverse of a)

= a2 (since a2 ∈ G and e is the identity).

Example. If A,B are matrices of size n × n with real entries and In − AB is invertible, then
In − BA is also invertible, and (In − BA)−1 = In + B(In − AB)−1A. Indeed, it is easy to check
that

(In −BA)(In +B(In −AB)−1A) = In = (In +B(In −AB)−1A)(In −BA),

and so it follows that In − BA is invertible. By the uniqueness of the inverse of the element
In −BA in the group GL(n,R), it follows that (In −BA)−1 = In +B(In − AB)−1A. ♦

Definitions. A group (G, ∗) is said to be finite, if the set G has finite cardinality. The order of
a finite group (G, ∗) is the cardinality of G. A group is said to be infinite if it is not finite.

Examples.

1. The set {−1, 1} with multiplication is a finite group of order 2.

2. The set Z with addition is an infinite group. ♦

A finite group can be completely described by writing its group table. This is a table that
displays the law of composition as follows: the elements of the group are listed in the first row and
the first column, and then given a, b ∈ G, the element a ∗ b is entered in the row corresponding to
a and the column corresponding to b, as shown below.
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∗ . . . b . . .

...
a a ∗ b
...

We clarify this further by considering a simple example.

Example. The finite group {−1, 1} with multiplication can be described by the group table given
below.

· 1 −1

1 1 −1
−1 −1 1

The table completely describes the law of composition: 1 · 1 = 1, 1 · (−1) = −1, −1 · 1 = −1
and −1 · (−1) = 1. ♦

Exercises.

1. (a) Show that the set Z6 of integers modulo 6, with addition modulo 6 is a group. Write
down its group table.

(b) Is Z6 with multiplication modulo 6 also a group? If, instead, we consider the set Z∗
6 of

nonzero integers modulo 6, then is Z∗
6 a group with multiplication modulo 6?

(c) (∗) Let m be an integer such that m ≥ 2, and let Z∗
m denote the set of nonzero integers

modulo m. Prove that Z∗
m is a group with multiplication modulo m iff m is a prime

number.

Hint: If m is a prime number, then any r ∈ {1, . . . ,m − 1} is coprime to m, and so
there exist integers s and t such that sm+ tr = 1.

2. (a) Given n ∈ N, let Sn be the set of all bijections from the set {1, 2, 3, . . . , n} onto itself.
Prove that the set Sn with the composition of functions is a group. This is called the
symmetric group Sn.

Hint: Composition of bijections is again a bijection, and composition of functions
on a set is also associative. The identity element is simply the identity map ι :
{1, 2, 3, . . . , n} → {1, 2, 3, . . . , n} given by ι(m) = m for all m ∈ {1, 2, 3, . . . , n}, while
the inverse of an element f ∈ Sn is simply the inverse of that bijection.

(b) What is the order of Sn?

(c) If n = 3, give examples of bijections f and g on {1, 2, 3} such that f ◦ g 6= g ◦ f .

(d) (∗) Show that Sn is abelian iff n ≤ 2.

3. Consider the set

S =

{[
a b

−b a

] ∣
∣
∣
∣
a, b ∈ R and a2 + b2 6= 0

}

.

Show that S with the operation of matrix multiplication forms a group.

4. Let (G, ∗) be a group.

(a) Show that if a, b, c ∈ G are such that a ∗ b = a ∗ c, then b = c.

(b) Show that if a, b ∈ G, then the equation a ∗ x = b has a unique solution.

(c) Show that if a, b ∈ G, then (a ∗ b)−1 = b−1 ∗ a−1.
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2.1.2 Subgroups

Definition. A subset H of a group G is called a subgroup of G, if it has the following properties:

H1. (Closure) If a, b ∈ H , then a ∗ b ∈ H .

H2. (Identity) e ∈ H .

H3. (Inverses) If a ∈ H , then a−1 ∈ H .

These conditions ensure that H is itself a group which is contained in the group G, and this
is explained as follows:

H1. This condition tells us that the law of composition ∗ on the group G can be used to define
a law of composition on H , namely, the function from H ×H to H given by (a, b) 7→ a ∗ b,
which is called the induced law of composition. Since ∗ is associative, it follows that the
induced law of composition is associative as well: for all a, b, c ∈ H , a ∗ (b ∗ c) = (a ∗ b) ∗ c.

H2. This shows that H , with the induced law of composition, has an identity element. Indeed
the identity element from G (which also belongs to H) serves as the identity element also in
H : for every a ∈ H , a ∗ e = a = e ∗ a.

H3. Finally this shows that every element in H possesses an inverse element in H . Of course,
since G is a group, we already knew that a possesses an inverse element a−1 ∈ G. But
now H3 says that this inverse element is in H . Thus for all a ∈ H , ∃a−1 ∈ H such that
a ∗ a−1 = e = a−1 ∗ a.

Thus the conditions H1, H2, H3 imply that the subset H , with the induced law of composition, is
a group. Thus, a subgroup is itself a group which sits in a larger group.

Examples.

1. The subset of even integers {2m | m ∈ Z} is a subgroup of the group of integers Z with
addition. Indeed, the sum of even numbers is even (and so H1 holds), 0 is even (and so H2
holds), and finally, given the even number 2m, −2m = 2(−m) is even as well (and so H3
holds).

2. The group of integers with addition (Z,+) is a subgroup of the group of rational numbers
with addition (Q,+), which in turn is a subgroup of the group of real numbers with addition
(R,+).

3. If G is a group with identity e, then {e} and G are both subgroups of G.

4. The subset of symmetric matrices of size 2× 2, namely

{[
a b

b d

] ∣
∣
∣
∣
a, b, d ∈ R

}

with real entries is a subgroup of the set of all 2× 2 matrices having real entries with matrix
addition. Indeed, given any two symmetric matrices

[
a b

b d

]

and

[
a′ b′

b′ d′

]

,
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their sum [
a b

b d

]

+

[
a′ b′

b′ d′

]

=

[
a+ a′ b+ b′

b+ b′ d+ d′

]

is also symmetric, and so H1 holds. Clearly the identity element

[
0 0
0 0

]

is symmetric, and so H2 also holds. Finally, the inverse (with respect to matrix addition) of
any symmetric matrix

[
a b

b d

]

,

is the element [
−a −b
−b −d

]

which is also symmetric, and so H3 holds.

5. The subset of upper triangular invertible matrices,

UT (2,R) =

{[
a b

0 d

] ∣
∣
∣
∣
a, b, d ∈ R and ad 6= 0

}

is a subgroup of the group GL(2,R) with matrix multiplication. Indeed, if

[
a b

0 d

]

,

[
a′ b′

0 d′

]

∈ UT (2,R),

then [
a b

0 d

][
a′ b′

0 d′

]

=

[
aa′ ab′ + bd′

0 dd′

]

∈ UT (2,R),

and so H1 holds. Clearly
[

1 0
0 1

]

∈ UT (2,R),

and so H2 also holds. Finally,

if

[
a b

0 d

]

∈ UT (2,R), then

[
a b

0 d

]−1

=

[
1
a

− b
ad

0 1
d

]

∈ UT (2,R).

♦

Exercises.

1. Determine if the following statements are TRUE or FALSE.

(a) The nonnegative integers form a subgroup of Z with addition.

(b) The odd integers form a subgroup of Z with addition.

(c) If G is abelian and H is a subgroup of G, then H is abelian.

2. Is there an infinite group with a finite subgroup?

3. (a) Consider the group of integers Z with addition. Suppose that H is the subgroup of Z

comprising multiples of 4, and let K be the subgroup of Z comprising multiples of 6.
What is H ∩K?
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(b) If H and K are subgroups of a group G, then show that H ∩K is also a subgroup of G.

4. Let C[0, 1] denote the group comprising the set of continuous functions on the interval [0, 1]
with addition of functions defined in the usual way: if f, g belong to C[0, 1], then for all
x ∈ [0, 1], (f + g)(x) = f(x) + g(x).

(a) Let H1 = {f ∈ C[0, 1] | f
(

1
2

)
= 0}. Prove that H1 is a subgroup of C[0, 1].

(b) Let H2 denote the set of all polynomial functions, that is, the set of all functions
p : [0, 1] → R such that there exists an n ∈ N ∪ {0} and real numbers a0, a1, a2, . . . , an

such that p(x) = a0 + a1x + a2x
2 + · · · + anx

n, for all x ∈ [0, 1]. Show that H2 is a
subgroup of C[0, 1].

5. Let G be a group. The center of G is the set Z(G) = {z ∈ G | ∀a ∈ G, z ∗ a = a ∗ z}.

(a) Show that Z(G) is not empty.

(b) If G is abelian, then determine Z(G).

(c) Show that Z(G) is a subgroup of G.

(d) (∗) If G is the group GL(2,R) with matrix multiplication, then determine Z(G).

Hint: Take a =

[
1 1
0 1

]

,

[
1 0
1 1

]

.

Let G be a group and let a ∈ G. We define

a0 = e and an = an−1 ∗ a for n ∈ N.

Moreover, if n ∈ N, then we define
a−n = (an)−1.

It can be shown that the usual laws of exponents hold: for all m,n ∈ Z,

am ∗ an = am+n and amn = (am)n.

(Exercise!)

Definitions. Let G be a group and suppose that a ∈ G.

1. If there exists an m ∈ N such that am = e, then a is said to have finite order.

2. If a has finite order, then the order of a, denoted by ord(a), is

ord(a) = min{m ∈ N | am = e}.

3. If a does not have finite order, then a is said to have infinite order.

Examples.

1. The element −1 has order 2 in the group of nonzero real numbers with multiplication.

2. The element 2 has infinite order in the group of integers with addition.

3. The element





0 0 1
1 0 0
0 1 0



 is an element of order 3 in the group GL(3,R). ♦
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We now prove that given any element from a group, the set of its powers form a subgroup of
the group.

Theorem 2.1.3 Suppose that G is a group and a ∈ G. Let 〈a〉 = {an | n ∈ Z}. Then:

1. 〈a〉 is a subgroup of G.

2. If a is an element with finite order m, then 〈a〉 = {e, a, a2, a3, . . . , am−1}.

Proof

1. We prove that H1, H2, H3 hold.

H1. Given m,n ∈ Z, clearly m+ n ∈ Z and so am ∗ an = am+n ∈ 〈a〉.

H2. e = a0 ∈ 〈a〉.

H3. For any m ∈ Z, −m ∈ Z and so (am)−1 = a−1·m = a−m ∈ 〈a〉.

So 〈a〉 is a subgroup of G.

2. Clearly {e, a, a2, a3, . . . , am−1} ⊂ 〈a〉. Conversely, if n ∈ Z, then there exist integers q and r,
such that 0 ≤ r ≤ m− 1, and n = q ·m+ r. So

an = aq·m+r = aq·m ∗ ar = (am)q ∗ ar = (e)q ∗ ar = e ∗ ar = ar ∈ {e, a, a2, a3, . . . , am−1}.

The element [1] in the group Z5 with addition modulo 5 has finite order, since

[1] ⊕ [1] ⊕ [1] ⊕ [1] ⊕ [1] = [0],

and the subgroup 〈[1]〉 = {[0], [1], [2], [3], [4]} is in fact the whole group. This example motivates
the following definition.

Definition. A group G is said to be cyclic if there exists an element a ∈ G such that G = 〈a〉.
Such an element a is then called a generator of the group G.

Exercises.

1. If G is a finite group, then show that every element in the group has a finite order, which is
at most equal to |G|.
Hint: If a ∈ G, then consider the set S = {e, a, a2, a3, . . . , a|G|}, and use the pigeonhole
principle.

2. If G is a group and a ∈ G, then show that for all m,n ∈ Z, am∗an = am+n and (am)n = amn.

3. Determine the order of

[
1 1
−1 0

]

in the group GL(2,R).

4. Prove that in any group (G, ∗), and for any a, b in G, the orders of a ∗ b and b ∗ a are the
same.

5. Is the group of integers with addition cyclic? What is a generator of this group? Is it unique?
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2.1.3 Homomorphisms and isomorphisms

Definition. Let (G, ∗) and (G′, ∗′) be groups. A homomorphism ϕ : G → G′ is a function such
that

for all a, b ∈ G, ϕ(a ∗ b) = ϕ(a) ∗′ ϕ(b).

Examples.

1. Let G be R with addition, and G′ be the set of positive reals with multiplication. The
exponential function from G to G′, given by x 7→ 2x, is a homomorphism. Indeed, we have
2x+y = 2x2y for all real x, y.

2. Let G be the group GL(2,R) with matrix multiplication, and G′ be the group of nonzero
real numbers with multiplication. Then the determinant function det : G → G′ is a homo-
morphism, since for all 2× 2 real matrices A,B we have det(AB) = det(A) det(B).

3. Let G be the group C[0, 1] of continuous functions on the interval [0, 1] with addition, and
G′ be the group R with addition. Then the function f 7→ f

(
1
2

)
is a homomorphism. Indeed,

if f, g are continuous functions on the interval [0, 1], then (f + g)
(

1
2

)
= f

(
1
2

)
+ g

(
1
2

)
, by the

definition of f + g.

4. If G is a group, then the identity map ι : G → G defined by ι(a) = a for all a ∈ G, and the
trivial map ζ : G→ G defined by ζ(a) = e for all a ∈ G are homomorphisms. ♦

Thus a homomorphism is a function between two groups that respects the law of composition.
In the next theorem we show that it preserves the identity element and the inverses of elements
as well.

Theorem 2.1.4 Let G be a group with identity e and G′ be a group with identity e′. If ϕ : G→ G′

is a homomorphism, then:

1. ϕ(e) = e′.

2. If a ∈ G, then (ϕ(a))−1 = ϕ(a−1).

Proof We have

e′ ∗′ ϕ(e) = ϕ(e) = ϕ(e ∗ e) = ϕ(e) ∗′ ϕ(e),

and so canceling ϕ(e) on both sides, we obtain e′ = ϕ(e). Next,

ϕ(a−1) ∗′ ϕ(a) = ϕ(a−1 ∗ a) = ϕ(e) = e′

and similarly,

e′ = ϕ(e) = ϕ(a ∗ a−1) = ϕ(a) ∗′ ϕ(a−1).

Thus ϕ(a−1) ∗′ ϕ(a) = e′ = ϕ(a) ∗′ ϕ(a−1), and by the uniqueness of the inverse of ϕ(a) in G′, we
obtain (ϕ(a))−1 = ϕ(a−1).

Every group homomorphism ϕ determines two important subgroups: its image and its kernel.

Definitions. Let G,G′ be groups and let ϕ : G → G′ be a group homomorphism.
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1. The kernel of ϕ is the set ker(ϕ) = {a ∈ G | ϕ(a) = e′}.

2. The image of ϕ is the set im(ϕ) = {a′ ∈ G′ | ∃a ∈ G such that ϕ(a) = a′}.

Using Theorem 2.1.4, we now prove the following result.

Theorem 2.1.5 Let G,G′ be groups and let ϕ : G → G′ be a group homomorphism. Then:

1. ker(ϕ) is a subgroup of G.

2. im(ϕ) is a subgroup of G′.

Proof It is easy to check that ker(ϕ) is a subgroup of G. Indeed if a, b belong to ker(ϕ), then
ϕ(a ∗ b) = ϕ(a) ∗′ ϕ(b) = e′ ∗′ e′ = e′, and so H1 holds. Moreover, as ϕ(e) = e′, e ∈ ker(ϕ) and so
H2 holds too. Finally, H3 holds, since if a ∈ ker(ϕ), then ϕ(a−1) = (ϕ(a))−1 = (e′)−1 = e′, and
so a−1 ∈ ker(ϕ). Hence ker(ϕ) is a subgroup of G.

We now also check that im(ϕ) is a subgroup of G′. If a′, b′ belong to im(ϕ), then there exist
elements a, b in G such that ϕ(a) = a′ and ϕ(b) = b′. Consequently, ϕ(a∗b) = ϕ(a)∗′ϕ(b) = a′∗′b′,
and so there exists an element in G, namely a∗b, such that ϕ(a∗b) = a′∗′b′, that is, a′∗′b′ ∈ im(ϕ).
Thus H1 holds. Since ϕ(e) = e′, it follows that e′ ∈ im(ϕ). Finally, if a′ ∈ im(ϕ), then there exists
an a ∈ G such that ϕ(a) = a′, and so a′−1 = (ϕ(a))−1 = ϕ(a−1). Hence a′−1 ∈ im(ϕ), and H3
holds. So im(ϕ) is a subgroup of G′.

Examples.

1. Let G be R with addition, and G′ be the set of positive reals with multiplication. The
exponential function from G to G′, given by x 7→ 2x, is a homomorphism with kernel the
trivial subgroup comprising the element 0, and the image is the whole group of positive reals
with multiplication, since it can be shown that given any y > 0, there exists a unique real
number (called the logarithm of y to the base 2, denoted by log2 y) such that y = 2log2 y.

2. Let G be the group GL(2,R) with matrix multiplication, and G′ be the group of nonzero
real numbers with multiplication. Then the determinant function det : G → G′ is a homo-
morphism. Its kernel is the set of all invertible matrices with determinant equal to 1, and
we denote this subgroup by SL(2,R), and it is called the special linear group:

SL(2,R) = {A ∈ GL(2,R) | det(A) = 1}.

The image of this homomorphism is the whole group of nonzero reals: indeed, given any real
number a not equal to zero, we have that

A :=

[
1 0
0 a

]

∈ GL(2,R),

and det(A) = 1 · a− 0 · 0 = a.

3. Let G be the group C[0, 1] of continuous functions on the interval [0, 1] with addition, and
G′ be the group R with addition. Then the function f 7→ f

(
1
2

)
is a homomorphism, and

its kernel is the set of all continuous functions on the interval [0, 1] that have a root at 1
2

(for instance the straight line f(x) = x − 1
2 belongs to the kernel). The image is the set of

all real numbers, since given any a ∈ R, the constant function f(x) = a for all x ∈ [0, 1] is
continuous, and f

(
1
2

)
= a. ♦
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In Example 1 above, the homomorphism between the two groups was also bijective. We give
a special name to such homomorphisms.

Definition. Let G,G′ be groups. A homomorphism ϕ : G → G′ is said to be an isomorphism if
it is bijective.

Examples.

1. Let G be R with addition, and G′ be the set of positive reals with multiplication. The
exponential function from G to G′, given by x 7→ 2x, is an isomorphism.

2. If G is a group, then the identity function ι : G → G defined by ι(a) = a for all a ∈ G is an
isomorphism.

3. Let G be the subgroup of GL(2,R) comprising all matrices of the form

[
1 x

0 1

]

, where

x ∈ R. Let G′ be the group R with addition. Then the function from G to G′, given by

[
1 x

0 1

]

7→ x,

is an isomorphism. ♦

Isomorphisms are important because their existence between two groups means that the two
groups are essentially the “same”, in the sense that as far as algebraic properties go, there is no
real difference between them.

Exercises.

1. (a) Let G,G′, G′′ be groups and let ϕ : G→ G′ and ψ : G′ → G′′ be group homomorphisms.
Prove that the composition ψ ◦ ϕ : G → G′′ defined by (ψ ◦ ϕ)(a) = ψ(ϕ(a)), a ∈ G is
a group homomorphism.

(b) Describe the kernel of ψ ◦ ϕ.

2. A subgroup N of a group G is called a normal subgroup if for every a ∈ N and every b ∈ G,
then b ∗ a ∗ b−1 ∈ N . Prove that if G,G′ are groups and ϕ : G → G′ is a homomorphism,
then ker(ϕ) is a normal subgroup of G.

3. If G is an abelian group, then show that the function from G to G, given by a 7→ a−1 is an
isomorphism.

4. Let G,G′ be groups and let ϕ : G→ G′ be an isomorphism. Prove that the inverse function
ϕ−1 : G′ → G is also an isomorphism.

5. Let G be a group and let a be an element of G.

(a) Prove that the function from Z to 〈a〉, given by m 7→ am, is a homomorphism from the
group of integers Z with addition to the subgroup 〈a〉.

(b) If a has infinite order, then prove that it is an isomorphism.
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2.1.4 Cosets and Lagrange’s theorem

Given a subgroup H of a group G, define the relation R on G by

aRb if b = a ∗ h for some h ∈ H. (2.1)

Then R is an equivalence relation:

E1. (Reflexivity) For all a ∈ G, aRa since e ∈ H and a = a ∗ e.
E2. (Symmetry) For all a, b in G, if aRb, then there exists a h ∈ H such that b = a ∗ h and so

b ∗ h−1 = a. Since H is a subgroup, and h ∈ H , it follows that h−1 ∈ H . Thus bRa.

E3. (Transitivity) For all a, b, c in G, if aRb and bRc, then there exist elements h1, h2 in H such
that b = a ∗ h1 and c = b ∗ h2. Hence we obtain c = b ∗ h2 = (a ∗ h1) ∗ h2 = a ∗ (h1 ∗ h2).
Since h1, h2 ∈ H and H is a subgroup, it follows that h1 ∗ h2 ∈ H , and so aRc.

Definition. Let H be a subgroup of a group G, and let R be the equivalence relation given by
(2.1). If a ∈ G, then the equivalence class of a, namely the set

{b ∈ G | aRb} = {b ∈ G | ∃h ∈ H such that b = a ∗ h} = {a ∗ h | h ∈ H},

is called a left coset of H , and is denoted by a ∗H .

We know that the equivalence classes of an equivalence relation partition the set. (Recall that
a by partition of a set S, we mean a subdivision of the set S into nonoverlapping subsets:

S = union of disjoint, nonempty subsets of S.

For example, the sets {1, 3}, {2, 5}, {4} form a partition of the {1, 2, 3, 4, 5}. The two sets, of even
integers, and of odd integers, form a partition of the set Z of all integers.)

Hence we obtain the following result:

PSfrag replacements

G

a ∗H = a′ ∗H
(aRa′)

b ∗H
c ∗H

Figure 2.1: Distinct cosets partition the group.

Corollary 2.1.6 Let H be a subgroup of a group G. Then the left cosets of H partition the group
G.
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Remarks.

1. The notation a∗H denotes a certain subset of G. As with any equivalence relation, different
notations may represent the same subset. In fact, we know that a ∗H is the unique coset
containing a, and so

a ∗H = b ∗H iff aRb.

Corollary 2.1.6 says that if a ∗H and b ∗H have an element in common then they are equal.

2. One can also define the relation R′ on G by aR′b if b = h∗a for some h ∈ H . The associated
equivalence classes are called right cosets.

Examples.

1. Consider the group G of the integers modulo 6, Z6, with addition modulo 6, and let H be
the subgroup 〈[2]〉 = {[0], [2], [4]}. The left cosets, which we now denote by a⊕H are

[0] ⊕H = [2] ⊕H = [4] ⊕H = {[0], [2], [4]}, and

[1] ⊕H = [3] ⊕H = 5 ⊕H = {[1], [3], [5]}.

Note that the cosets {[0], [2], [4]} and {[1], [3], [5]} do form a partition of G:

G = {[0], [1], [2], [3], [4], [5]} = {[0], [2], [4]}∪{[1], [3], [5]}, and {[0], [2], [4]}∩{[1], [3], [5]} = ∅.

2. Consider the group G of the integers Z, with addition, and let H be the subgroup of even
numbers {2m | m ∈ Z}. The left cosets, which we now denote by a+H are

· · · = −2 +H = 0 +H = {2m | m ∈ Z} = {. . . ,−4,−2, 0, 2, 4, . . .} = 2 +H = . . . ,

· · · = −1 +H = 1 +H = {2m+ 1 | m ∈ Z} = {. . . ,−3,−1, 1, 3, . . .} = 3 +H = . . . .

Note that the cosets {. . . ,−4,−2, 0, 2, 4, . . .} and {. . . ,−3,−1, 1, 3, . . .} do indeed partition
the set of all integers. ♦

Note that in Example 1 above, there are only two distinct cosets, and

|G| = 6 = 3 · 2 = |H | · (number of cosets of H).

In particular the order ofH (namely 3) divides the order ofG (namely 6). This is not a coincidence.
We now prove an important result concerning the order of a group G and the number of cosets of
a subgroup H , due to Lagrange.

Theorem 2.1.7 (Lagrange’s theorem) Let H be a subgroup of a finite group G. Then the order
of H divides the order of G.

Proof Note that there is a bijective function from the subgroup H to the coset a ∗H , given by
h 7→ a ∗h, for h ∈ H . Consequently, each coset a ∗H has the same number of elements as H does.

Since G is the union of the cosets of H , and since these cosets do not overlap, we obtain the
counting formula

|G| = |H | · (number of cosets of H).

In particular, |H | divides |G|.
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Corollary 2.1.8 Let G be a finite group and let a ∈ G. Then the order4 of a divides the order of
G. In particular a|G| = e.

Proof Let a have order m. 〈a〉 is a subgroup of G, and from Theorem 2.1.3, it follows that
|〈a〉| = m divides |G|, and so |G| = m · k for some k ∈ N. Thus a|G| = am·k = (am)k = ek = e.

The following theorem characterizes all groups whose order is a prime number.

Corollary 2.1.9 If G is a group with prime order p, then G is cyclic, and G = 〈a〉 for every
a ∈ G \ {e}.

Proof If a 6= e, then a has order > 1, say m. Since m divides p, and p is prime, it follows that
m = p. As G itself has order p, it now follows that G = 〈a〉, and so G is cyclic.

Exercises.

1. Determine if the following statements are TRUE or FALSE.

(a) If H is a subgroup of G and a, b ∈ G are such that a 6= b, then (a ∗H) ∩ (b ∗H) = ∅.
(b) If H is a subgroup of G and a ∈ G is such that a ∗ H has 4 elements, then H has 4

elements.

(c) If H is a subgroup of a finite group G, then for any a ∈ G, the left coset a ∗H has the
same number of elements as the right coset H ∗ a.

2. (a) Verify that

G =

{[
x y

0 1

] ∣
∣
∣
∣
x, y ∈ R and x > 0

}

is a group with matrix multiplication.

(b) Show that

H =

{[
x 0
0 1

] ∣
∣
∣
∣
x ∈ R and x > 0

}

is a subgroup of G.

(c) Any element of G can be represented by a point in the (x, y)-plane. Draw the partitions
of the plane into left and into right cosets of H .

3. Let H and K be subgroups of a group G of orders 3 and 5 respectively. Prove that H ∩K =
{e}.
Hint: H ∩K is a subgroup of H as well as K.

4. Prove or disprove that the group S4 has an element of order 16.

5. (a) Let p be a prime, and let Z∗
p denote the group of nonzero integers modulo p with

multiplication modulo p. Show that if a is an integer such that a is not divisible by p,
then [a]p−1 = [1].

(b) (∗) Prove Fermat’s little theorem: for any integer a, ap ≡ a(mod p).

Hint: If a ∈ Z is not divisible by p, then [a] 6= [0], and so by part (5a) above,
[a]p−1 = [1]. Hence p|(ap−1 − 1), and so p|(ap − a).

(c) (∗) Show that 7 divides 22225555 + 55552222.

Hint: Note that 2222 = 7 ·317+3, so that in Z7, [22225555] = [3]5555. Now use the fact
that [3]6 = [1] to conclude that [22225555] = [35]. Proceeding in a similar manner, show
that [55552222] = [32]. Hence we obtain [22225555+55552222] = [35+32] = [32 ·28] = [0].

4By Exercise 1 on page 48, it follows that every element in a finite group has a finite order.
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2.2 Vector spaces

In this section we introduce a very important algebraic object, called a vector space. Roughly
speaking it is a set of elements, called “vectors”. Any two vectors can be “added”, resulting in a
new vector, and any vector can be multiplied by an element from R so as to give a new vector.
The precise definition is given in the next subsection.

2.2.1 Definition of a vector space

Definition. A vector space V is a set together with two functions, + : V × V → V , called vector
addition, and · : R × V → V , called scalar multiplication, such that (V,+) is an abelian group,
and the following hold:

V1. For all v ∈ V , 1 · v = v.

V2. For all α, β ∈ R and all v ∈ V , α · (β · v) = (αβ) · v.

V3. For all α, β ∈ R and all v ∈ V , (α+ β) · v = α · v + β · v.

V4. For all α ∈ R and all v1, v2 ∈ V , α · (v1 + v2) = α · v1 + α · v2.

V3 and V4 are called the distributive laws. The elements of a vector space are called vectors.

We observe that since (V,+) is an abelian group, a vector space also has the following prop-
erties:

1. For all v1, v2, v3 ∈ V , v1 + (v2 + v3) = (v1 + v2) + v3.

2. There exists an element 0 ∈ V (called the5 zero vector) such that for all v ∈ V , v+ 0 = v =
0 + v.

3. For every v ∈ V , there exists a unique6 element in V , denoted by −v, such that v + (−v) =
0 = −v + v.

4. For all v1, v2 ∈ V , v1 + v2 = v2 + v1.

Examples.

1. Let n,m ∈ N. The set Rn×m of n×m matrices having real entries with matrix addition is
an abelian group. Define scalar multiplication as follows: if α ∈ R and

if α ∈ R and A=






a11 . . . a1n

...
...

am1 . . . amn




 ∈ Rn×m, then α ·A=






αa11 . . . αa1n

...
...

αam1 . . . αamn




 . (2.2)

Then α · A ∈ Rn×m, and moreover V1, V2, V3, V4 are satisfied:

5Since there is a unique identity element in a group, the zero vector is unique!
6In a group, every element has a unique inverse!
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V1. If A ∈ Rn×m, then clearly

1 ·A = 1 ·






a11 . . . a1n

...
...

am1 . . . amn




 =






1a11 . . . 1a1n

...
...

1am1 . . . 1amn




 =






a11 . . . a1n

...
...

am1 . . . amn




 = A.

V2. For all α, β ∈ R and all A ∈ Rn×m,

α · (β ·A) = α ·




β ·






a11 . . . a1n

...
...

am1 . . . amn











= α ·






βa11 . . . βa1n

...
...

βam1 . . . βamn






=






α(βa11) . . . α(βa1n)
...

...
α(βam1) . . . α(βamn)






=






(αβ)a11 . . . (αβ)a1n

...
...

(αβ)am1 . . . (αβ)amn






= (αβ) ·






a11 . . . a1n

...
...

am1 . . . amn






= (αβ) · A.

V3. For all α, β ∈ R and all A ∈ Rn×m,

(α+ β) ·A = (α+ β) ·






a11 . . . a1n

...
...

am1 . . . amn






=






(α+ β)a11 . . . (α+ β)a1n

...
...

(α+ β)am1 . . . (α + β)amn






=






αa11 + βa11 . . . αa1n + βa1n

...
...

αam1 + βam1 . . . αamn + βamn






=






αa11 . . . αa1n

...
...

αam1 . . . αamn




+






βa11 . . . βa1n

...
...

βam1 . . . βamn






= α ·






a11 . . . a1n

...
...

am1 . . . amn




+ β ·






a11 . . . a1n

...
...

am1 . . . amn






= α ·A+ β ·A.



2.2. Vector spaces 57

V4. For all α ∈ R and all A,B ∈ Rn×m,

α · (A+B) = α ·











a11 . . . a1n

...
...

am1 . . . amn




+






b11 . . . b1n

...
...

bm1 . . . bmn











= α ·






a11 + b11 . . . a1n + b1n

...
...

am1 + bm1 . . . amn + bmn






=






α(a11 + b11) . . . α(a1n + b1n)
...

...
α(am1 + bm1) . . . α(amn + bmn)






=






αa11 + αb11 . . . αa1n + αb1n

...
...

αam1 + αbm1 . . . αamn + αbmn






=






αa11 . . . αa1n

...
...

αam1 . . . αamn




+






αb11 . . . αb1n

...
...

αbm1 . . . αbmn






= α ·






a11 . . . a1n

...
...

am1 . . . amn




+ β ·






b11 . . . b1n

...
...

bm1 . . . bmn






= α ·A+ β · B.

Hence Rm×n is a vector space with matrix addition and with scalar multiplication defined
by (2.2). If n = 1, then we denote the vector space of column vectors Rm×1 by Rm.

2. Let a, b be real numbers with a < b. The set C[a, b] of continuous functions on the interval
[a, b] with addition of functions is an abelian group. Let scalar multiplication be defined as
follows:

if α ∈ R and f ∈ C[a, b], then (α · f)(x) = αf(x), x ∈ [a, b]. (2.3)

Then α · f ∈ C[a, b], and moreover V1, V2, V3, V4 are satisfied:

V1. Let f ∈ C[a, b]. For all x ∈ [a, b], we have

(1 · f)(x) = 1f(x) = f(x),

and so 1 · f = f .

V2. Let α, β ∈ R and f ∈ C[a, b]. For all x ∈ [a, b], we have

(α · (β · f))(x) = α(β · f)(x)

= α(βf(x))

= (αβ)f(x)

= ((αβ) · f)(x),

and so (α · (β · f) = (αβ) · f .

V3. Let α, β ∈ R and f ∈ C[a, b]. For all x ∈ [a, b], we have

((α+ β) · f)(x) = (α+ β)f(x)

= αf(x) + βf(x)

= (α · f)(x) + (β · f)(x)

= (α · f + β · f)(x),
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and so (α+ β) · f = α · f + β · f .

V4. Let α ∈ R and f, g ∈ C[a, b]. For all x ∈ [a, b], we have

(α · (f + g))(x) = α(f + g)(x)

= α(f(x) + g(x))

= αf(x) + αg(x)

= (α · f)(x) + (α · g)(x)
= (α · f + α · g)(x),

and so α · (f + g) = α · f + α · g.

Hence C[a, b] with addition and scalar multiplication is a vector space. ♦

We now prove a few elementary properties of vector spaces.

Theorem 2.2.1 Let V be a vector space. Then the following hold:

1. For all v ∈ V , 0 · v = 0.

2. For all α ∈ R, α · 0 = 0.

3. If v ∈ V , then (−1) · v = −v.

Proof Please go through the entire proof carefully, noting which symbols refer to the number
0 ∈ R, and which refer to the zero vector 0 ∈ V .

1. To see this, we use the distributive law to write

0 · v + 0 · v = (0 + 0) · v = 0 · v.

Now add −(0 · v) on both sides, to obtain 0 · v = 0.

2. Similarly, α · 0 + α · 0 = α · (0 + 0) = α · 0, and hence α · 0 = 0.

3. Finally, we have

v + (−1) · v = 1 · v + (−1) · v (since 1 · v = v)

= (1 + (−1)) · v (distributive law)

= 0 · v (since 1 + (−1) = 0)

= 0 (since 0 · v = 0),

and so v + (−1) · v = 0 = (−1) · v + v. Hence (−1) · v is an inverse of v. But the inverse of an
element from a group is unique, and so (−1) · v = −v.

Exercises.

1. Let n ∈ N.

(a) Is the set of invertible n×n matrices having real entries with matrix addition and with
scalar multiplication defined by (2.2) a vector space?
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(b) Is the set of invertible n×n matrices having real entries with matrix multiplication and
with scalar multiplication defined by (2.2) a vector space?

2. Let V be a vector space. Prove that if α ∈ R and v ∈ V are such that α · v = 0, then either
α = 0 or v = 0.

Hint: If α 6= 0, then α−1 ∈ R. Premultiply both sides of α · v = 0 by α−1.

3. (∗) Consider the set R∞ of all sequences with addition defined as follows:

if (an)n∈N, (bn)n∈N ∈ R∞, then (an)n∈N + (bn)n∈N = (an + bn)n∈N, (2.4)

and scalar multiplication defined as follows:

if α ∈ R and (an)n∈N ∈ R∞, then α · (an)n∈N = (αan)n∈N. (2.5)

Prove that R∞ is a vector space with the above addition and scalar multiplication.

2.2.2 Subspaces and linear combinations

Definition. Let V be a vector space. A subset U is called a subspace of V if

S1. 0 ∈ U .

S2. If v1, v2 ∈ U , then v1 + v2 ∈ U .

S3. If v ∈ U and α ∈ R, then α · v ∈ U .

Subspaces of a vector space are just like subgroups of a group, that is, a subspace of a vector
space is itself a vector space with the same addition and scalar multiplication as with V (this is
easy to check). So a subspace is really a smaller vector space sitting inside a larger vector space.

Examples.

1. If V is a vector space, then the subset U comprising only the zero vector, namely U = {0},
is a subspace of V .

Also, the entire vector space, that is U = V , is a subspace of V .

If a subspace U of V is neither {0} nor V , then it is called a proper subspace of V .

2. Consider the vector space R2×2 with matrix addition and scalar multiplication defined by
(2.2). Then the set of upper triangular matrices

U1 =

{[
a b

0 d

] ∣
∣
∣
∣
a, b, d ∈ R

}

is a subspace of R2×2.

Also, the set of symmetric matrices

U2 =

{[
a b

b d

] ∣
∣
∣
∣
a, b, d ∈ R

}

is a subspace of R2×2.
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3. Let a, b ∈ R and a < b. Consider the set of all polynomial functions

P [a, b] =

{

p : [a, b] → R

∣
∣
∣
∣

∃n ∈ N ∪ {0} and a0, a1, a2, . . . , an ∈ R such that
p(x) = a0 + a1x+ a2x

2 + · · · + anx
n for all x ∈ [a, b]

}

Then U = P [a, b] is a subspace of the vector space C[0, 1] with addition of functions and
scalar multiplication defined by (2.3). ♦

Definitions. Let V be a vector space.

1. If v1, . . . , vn are vectors in V and α1, . . . , αn belong to R, then the vector α1 ·v1 + · · ·+αn ·vn

is called a linear combination of the vectors v1, . . . , vn.

2. Let S be a nonempty subset of a vector space V . The span of S, denoted by span(S), is
defined as the set of all possible linear combinations7 of vectors from S:

span(S) = {α1 · v1 + · · · + αn · vn | n ∈ N, v1, . . . , vn ∈ S, α1, . . . , αn ∈ R}.

Examples.

1. Let m ∈ N. Any vector in the vector space Rm is a linear combination of the vectors

v1 =








1
0
...
0







, . . . , vm =








0
0
...
1







.

Hence span({v1, . . . , vm}) = Rm.

2. Let a, b ∈ R with a < b. Any polynomial p on the interval [a, b] is a linear combination of
the functions from the set S = {1, x, x2, . . . }. Hence span(S) = P [a, b] in the vector space
C[a, b]. ♦

The span of a set of vectors turns out to be a special subspace of the vector space.

Theorem 2.2.2 Let V be a vector space and S be a nonempty subset of V . Then span(S) is the
smallest subspace of V that contains S.

Proof We first show that span(S) is a subspace of V .

Let v ∈ S. Then 0 = 0 · v ∈ span(S). If u, v ∈ span(S), then we know that

u = α1 · u1 + · · · + αn · un and v = β1 · v1 + · · · + βm · vm

for some vectors u1, . . . , un, v1, . . . , vm ∈ S and scalars α1, . . . , αn, β1, . . . , βm ∈ R. Consequently,

u+ v = α1 · u1 + · · · + αn · un + β1 · v1 + · · · + βm · vm ∈ span(S).

7Note that although S might be infinite, a linear combination, by definition, is always a linear combination of a
finite set of vectors from S.
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Finally, if v ∈ span(S), then we know that v = α1 · v1 + · · · + αn · vn for some v1, . . . , vn ∈ S and
scalars α1, . . . , αn ∈ R, and so for any β ∈ R, we have

β ·v = β ·(α1 ·v1+· · ·+αn ·vn) = β ·(α1 ·v1)+· · ·+β ·(αn ·vn) = (βα1)·v1+· · ·+(βαn)·vn ∈ span(S).

So span(S) satisfies S1,S2,S3, and so it is a subspace of V . Moreover, if v ∈ S, then v = 1 · v ∈
span(S), and so S ⊂ span(S). Thus span(S) contains S.

If U is another subspace that contains the vectors from S, then from S2 and S3 it follows that
it certainly contains all linear combinations of vectors from S belong to U , and so span(S) ⊂ U .

Hence span(S) is the smallest subspace of V containing S.

Definitions. Let V be a vector space, and suppose that v1, . . . , vn are vectors that belong to V .

1. The vectors v1, . . . , vn are called linearly independent if the following condition holds:

if ∃α1, . . . , αn ∈ R such that α1 · v1 + · · · + αn · vn = 0, then α1 = · · · = αn = 0.

An arbitrary subset S of vectors from V is said to be linearly independent if every nonempty
finite set of vectors from S is an independent set of vectors.

2. The vectors v1, . . . , vn are called linearly dependent if they are not linearly independent, that
is,

∃α1, . . . , αn ∈ R, not all zeros, such that α1 · v1 + · · · + αn · vn = 0.

An arbitrary subset S of vectors from V is said to be a linearly dependent if there exists a
nonempty finite set of dependent vectors from S.

Examples.

1. Let V be a vector space. Then any finite set of vectors from V containing the zero vector is
linearly dependent. Indeed if v1, . . . , vn ∈ V and vk = 0, then

0 · v1 + · · · + 0 · vk−1 + 1 · vk + 0 · vk+1 + · · · + 0 · vn = 0.

2. The vectors

v1 =








1
0
...
0







, . . . , vm =








0
...
0
1








are linearly independent in Rm. Indeed if α1 · v1 + · · · + αm · vm = 0, then






α1

...
αm




 = α1 ·








1
0
...
0








+ · · · + αm ·








0
...
0
1








=






0
...
0




 ,

and so α1 = · · · = αm = 0.

3. Let a, b ∈ R with a < b. The functions 1, x on the interval [a, b] are linearly independent.
Indeed, if for all x ∈ [a, b], α · 1 + β · x = 0(x), then in particular, we have

α+ βa = 0 and α+ βb = 0,

and since a 6= b, it follows that α = β = 0. ♦
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Exercises.

1. Determine if the following statements are TRUE or FALSE:

(a) The union of two subspaces of a vector space V is a subspace of V .

(b) The intersection of two subspaces of a vector space V is a subspace of V .

(c)





1
2
3



 ∈ span















1
3
4



 ,





0
1
1













 in the vector space R3.

(d) The vectors





1
0
1



 ,





1
2
1



 ,





0
3
0



 are linearly independent in the vector space R3.

(e) If v1, v2, v3, v4 are linearly independent, then v1, v2, v3 are linearly independent.

(f) If v1, v2, v3, v4 are linearly dependent, then v1, v2, v3 are linearly dependent.

2. (a) Prove that if t1 and t2 are distinct real numbers in R, then

span

({[
1
t1

]

,

[
1
t2

]})

= R2

in the vector space R2.

(b) (∗) Prove that R2 is not the union of a finite number of proper subspaces.

Hint: Consider the infinite subset S =

{[
1
t

] ∣
∣
∣
∣
t ∈ R

}

.

3. (∗) Let R∞ be the vector space of all sequences, with addition and scalar multiplication
defined by (2.4) and (2.5), respectively. We define the following subsets of R∞:

(a) `∞ is the set of all bounded sequences.

(b) c is the set of all convergent sequences.

(c) c0 is the set of all convergent sequences with limit 0.

(d) c00 = {(an)n∈N ∈ R∞ | ∃N ∈ N such that ∀n > N, an = 0}, is the set of all sequences
that are eventually zero.

Prove that c00 ⊂ c0 ⊂ c ⊂ `∞ ⊂ R∞, and that each is a subspace of the next one.

4. Consider the vector space C[0, 1] with addition of functions and scalar multiplication defined
by (2.3). Let S(y1, y2) = {f ∈ C[0, 1] | f(0) = y1 and f(1) = y2}. Show that S(y1, y2) is a
subspace of C[0, 1] iff y1 = 0 = y2.

2.2.3 Basis of a vector space

Definition. Let V be a vector space. Then a set of vectors B is said to be a basis of V if

B1. span(B) = V , and

B2. B is linearly independent.
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Example. The vectors

v1 =








1
0
...
0







, . . . , vm =








0
0
...
1








form a basis of Rm. ♦

Theorem 2.2.3 Let V be a vector space and B be a basis of V such that B has n elements. Then
any linearly independent set S of n vectors is also a basis of V .

Proof We simply prove that span(S) = V . This is proved as follows: we claim that for each
k ∈ {0, 1, . . . , n}, there is a set Sk with n elements such that it has n − k elements from B and
the other k elements belong to S, and such that span(Sk) = V . We prove this claim by induction
on k.

For k = 0, we simply define S0 = B. Then S0 is a set with n elements such that it has
n − 0 = n elements from B and the other 0 elements belong to S, and since B is a basis,
V = span(B) = span(S0).

Suppose that the claim is true for some k. Thus Sk is a set with n elements such that it has
n − k elements v1, . . . , vn−k from B and the other k elements, say u1, . . . , uk, belong to S, and
such that span(Sk) = V . Now suppose that ur is an element from S such that it does not belong
to {u1, . . . , uk}. Since span(Sk) = V , there exist numbers α1, . . . , αn−k, β1, . . . , βk ∈ R such that

ur = α1 · v1 + · · · + αn−k · vn−k + β1 · u1 + · · · + βk · uk.

Then we have the following two cases:

1◦ If α1 = · · · = αn−k = 0, then we get that 1 · ur − β1 · u1 − · · · − βk · uk = 0, which contradicts
the linear independence of S. So this case is not possible.

2◦ Hence there must exist an αj 6= 0. So the spans of the sets

Sk = {v1, . . . , vj−1, vj , vj+1, . . . , vn−k, u1, . . . , uk}, and

Sk+1 := {v1, . . . , vj−1, ur, vj+1, . . . , vn−k, u1, . . . , uk}

are the same. (Why?) Moreover, Sk+1 has n elements, n − k − 1 of these belong to B, and the
other elements (namely, ur, u1, . . . , uk) belong to S.

Hence by induction, for k = n, we obtain that Sn has n elements, such that 0 of these are in
B, and the other n − 0 elements are in S, and such that span(Sn) = V . But S has n elements,
and so Sn = S. Thus span(S) = V .

Given a vector space, there are of course many bases. However, the next result says that the
cardinality of the basis is unique for any given vector space.

Corollary 2.2.4 If a vector space V has a basis with n elements, then every basis of V has the
same number of elements.

Proof Suppose that B is a basis of V with n elements and suppose that B ′ is another basis of V .
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Let B′ have > n elements. Then take any n distinct elements v1, . . . , vn from B′. From the
previous theorem, it follows that these span V , and so if v ∈ B ′ \ {v1, . . . , vn}, it can be written
as a linear combination of {v1, . . . , vn}, which contradicts the independence of B′.

If B′ has < n elements, then by interchanging the roles of B and B ′ and proceeding as above,
we once again arrive at a contradiction.

The above result motivates the following natural definitions.

Definition. Let V be a vector space.

1. If there exists a basis B of V such that B has n elements, then n is called the dimension of
V , and it is denoted by dim(V ).

2. If a vector space has a basis with a finite number of elements, then it is called a finite
dimensional vector space. .

3. If a vector space is not finite dimensional, then it is called an infinite dimensional vector
space.

Exercises.

1. Prove or disprove that

B =











1
0
0



 ,





1
1
0



 ,





1
1
1











is a basis for R3.

2. Prove that if B is a basis of a finite dimensional vector space V , then every element v ∈ V

can be written as a unique linear combination of the vectors from B.

3. (∗) Show that C[0, 1] is infinite dimensional.

Hint: One can prove this by contradiction. Let C[0, 1] be a finite dimensional vector space
with dimension d, say. First show that the set B = {x, x2, . . . , xd} is linearly independent.
Then by Theorem 2.2.3, B is a basis for C[0, 1], and so the constant function 1 should be a
linear combination of the functions from B. Derive a contradiction.

4. (a) (∗) For k ∈ N, let ek denote the sequence with the kth term equal to 1, and all other
terms equal to zero:

ek = (an)n∈N, where an =

{
1 if n = k,

0 if n 6= k,

and let B = {ek | k ∈ N}. Prove that B is a basis for the vector space c00, comprising
all sequences that are eventually zero.

(b) (∗) Is B = {ek | k ∈ N} also a basis for the vector space R∞?

Hint: Consider the constant sequence (1)n∈N.



2.2. Vector spaces 65

2.2.4 Linear transformations

Definition. Let U, V be two vector spaces. A function T : U → V is called a linear transformation
if it satisfies the following two properties:

L1. For all u1, u2 ∈ U , T (u1 + u2) = T (u1) + T (u2).

L2. For all u ∈ U , and all α ∈ R, T (α · u) = α · T (u).

Thus just like group homomorphisms that are functions that respect group operations, linear
transformations are functions that respect vector space operations.

Examples.

1. Let m,n ∈ N. Let

A =






a11 . . . a1n

...
...

am1 . . . amn




 ∈ Rm×n.

Then the function TA : Rn → Rm defined by

TA






x1

...
xn




 =






a11x1 + · · · + a1nxn

...
am1x1 + · · · + amnxn




 =












n∑

k=1

a1kxk

...
n∑

k=1

amkxk












for all






x1

...
xn




 ∈ Rn, (2.6)

is a linear transformation from the vector space Rn to the vector space Rm. Indeed, we have

TA











x1

...
xn




+






y1
...
yn









 = TA






x1 + y1
...

xn + yn




 =












n∑

k=1

a1k(xk + yk)

...
n∑

k=1

amk(xk + yk)












=












n∑

k=1

(a1kxk + a1kyk)

...
n∑

k=1

(amkxk + amkyk)












=












n∑

k=1

a1kxk +

n∑

k=1

a1kyk

...
n∑

k=1

amkxk +

n∑

k=1

amkyk












=












n∑

k=1

a1kxk

...
n∑

k=1

amkxk












+












n∑

k=1

a1kyk

...
n∑

k=1

amkyk












= TA






x1

...
xn




+ TA






y1
...
yn




 ,



66 Chapter 2. Algebra

for all 




x1

...
xn




 ,






y1
...
yn




 ∈ Rn,

and so L1 holds. Moreover,

TA




α ·






x1

...
xn









 = TA






αx1

...
αxn




 =












n∑

k=1

a1kαxk

...
n∑

k=1

amkαxk












=












α

n∑

k=1

a1kxk

...

α

n∑

k=1

amkxk












= α ·












n∑

k=1

a1kxk

...
n∑

k=1

amkxk












= α · TA






x1

...
xn




 ,

for all α ∈ R and all vectors 




x1

...
xn




 ∈ Rn,

and so L2 holds as well. Hence TA is a linear transformation.

2. The function T : C[0, 1] → R given by

Tf = f

(
1

2

)

for all f ∈ C[0, 1],

is a linear transformation from the vector space C[0, 1] to the vector space R. Indeed, we
have

T (f + g) = (f + g)

(
1

2

)

= f

(
1

2

)

+ g

(
1

2

)

= T (f) + T (g), for all f, g ∈ C[0, 1],

and so L1 holds. Furthermore

T (α · f) = (α · f)

(
1

2

)

= αf

(
1

2

)

= αT (f), for all α ∈ R and all f ∈ C[0, 1],

and so L2 holds too. Thus T is a linear transformation. ♦

Just as in the case of homomorphisms between groups, there are two important subsets asso-
ciated with a linear transformation between vector spaces, whose definitions are given below.

Definitions. Let U, V be vector spaces and T : U → V a linear transformation.

1. The kernel of T is defined to be the set ker(T ) = {u ∈ U | T (u) = 0V }, where 0V denotes
the zero vector in V .

2. The image of T is defined to be the set im(T ) = {v ∈ V | ∃u ∈ U such that T (u) = v}.
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Examples.

1. Let A ∈ Rm×n, and let TA : Rn → Rm be the linear transformation defined by (2.6). The
kernel of the linear transformation is the set of all vectors

x =






x1

...
xn




 ∈ Rn

such that the system of linear equations

a11x1 + · · · + a1nxn = 0

...

am1x1 + · · · + amnxn = 0

is simultaneously satisfied.

The range of TA is the set of all vectors

y =






y1
...
ym




 ∈ Rm

such that there exists a vector

x =






x1

...
xn




 ∈ Rn

such that

a11x1 + · · · + a1nxn = y1
...

am1x1 + · · · + amnxn = ym.

2. The function T : C[0, 1] → R given by Tf = f
(

1
2

)
for all f ∈ C[0, 1], is a linear transfor-

mation from the vector space C[0, 1] to the vector space R, with kernel equal to the set of
continuous functions on the interval [0, 1] that vanish at the point 1

2 . The range of T is the
whole vector space R. ♦

Analogous to Theorem 2.1.5 for homomorphisms between groups, we now prove the following
result.

Theorem 2.2.5 Let U, V be vector spaces and T : U → V a linear transformation. Then:

1. ker(T ) is a subspace of U .

2. im(T ) is a subspace of V .

Proof In each of the cases, we check that S1, S2, S3 hold.
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Let 0U ,0V denote the zero vectors in the vector spaces U, V , respectively. It is easy to
check that ker(T ) is a subspace of U . Indeed, as T (0U) = T (0U + 0U ) = T (0U ) + T (0U ), it
follows that T (0U ) = 0V , and so 0U ∈ ker(T ). Thus S1 holds. If u1, u2 belong to ker(T ), then
T (u1 + u2) = T (u1) + T (u2) = 0V + 0V = 0V , and so S2 holds as well. Finally, S3 holds, since if
α ∈ R and u ∈ ker(T ), then T (α · u) = α · T (u) = α · 0V = 0V . Hence ker(T ) is a subspace of U .

We now also check that im(T ) is a subspace of V . Since T (0U) = 0V , it follows that 0V ∈
im(T ), and so S1 holds. If v1, v2 belong to im(T ), then there exist elements u1, u2 in U such that
T (u1) = v1 and T (u2) = v2. Consequently, T (u1 + u2) = T (u1) + T (u2) = v1 + v2, and so there
exists an element in U , namely u1 + u2, such that T (u1 + u2) = v1 + v2, that is, v1 + v2 ∈ im(T ).
Thus S2 holds. Finally, if α ∈ R and v ∈ im(T ), then there exists a u ∈ U such that T (u) = v,
and so α · v = α · T (u) = T (α · u). Hence α · v ∈ im(T ), and S3 holds. So im(T ) is a subspace of
V .

Exercises.

1. Find the kernel and image of the linear transformations TA : R2 → R2, where A ∈ R2×2 is
given by:

(a) A =

[
1 1
0 1

]

.

(b) A =

[
1 1
0 0

]

.

(c) A =

[
0 0
0 0

]

.

Each vector

[
x

y

]

in R2 can be represented by a point in the (x, y)-plane. In each of the

cases, draw a picture of the subspaces ker(TA) and im(TA) in the plane.

2. Consider the vector space R2 with matrix addition and the usual scalar multiplication defined
by (2.2). Define the function T : R2 → R2 as follows:

if

[
x1

x2

]

∈ R2, then T

[
x1

x2

]

=







[
x2
1

x2

x2

]

if x1x2 6= 0,

[
x1

x2

]

if x1x2 = 0.

Show that T satisfies L2, but not L1, and hence it is not a linear transformation.

3. (∗) Let c denote the vector space of all convergent sequences. Consider the function T : c→ R

given by
T ((an)n∈N) = lim

n→∞
an, for all sequences (an)n∈N ∈ c.

(a) Prove that T is a linear transformation from the vector space c to the vector space R.

(b) What is the kernel of T ?

(c) Show that im(T ) = R.



Solutions

Analysis

Solutions to the exercises on page 6

1. (a) S = (0, 1].

——————————————————————————————————————
An upper bound of S. 1 is an upper bound, since for all x ∈ S = (0, 1], we have x ≤ 1.
In fact any real number u ≥ 1 is an upper bound.

——————————————————————————————————————
A lower bound of S. 0 is a lower bound, since for all x ∈ S = (0, 1], we have 0 < x. In
fact any real number l ≤ 0 is a lower bound.

——————————————————————————————————————
Is S bounded? Yes. S is bounded above, since 1 is an upper bound of S. S is also
bounded below, since 0 is a lower bound. Since S is bounded above as well as bounded
below, it is bounded.

——————————————————————————————————————
Supremum of S. supS = 1. Indeed, 1 is an upper bound, and moreover, if u is also an
upper bound, then 1 ≤ u (since 1 ∈ S).

——————————————————————————————————————
Infimum of S. inf S = 0. First of all, 0 is a lower bound. Let l be a lower bound of
S. We prove that l ≤ 0. (We do this by supposing that l > 0, and arriving at a
contradiction. The contradiction is obtained as follows: if l > 0, then we will see that
the average of 0 and l, namely l

2 , is an element in S that is less than the lower bound

l, which is a contradiction to the definition of a lower bound!) If l > 0, then 0 < l
2 .

Moreover, since l ≤ 1 (l is a lower bound of S and 1 ∈ S) it follows that l
2 ≤ 1

2 ≤ 1.

Thus l
2 ∈ S. But since l > 0, it follows that l

2 < l, a contradiction. Hence l ≤ 0.

——————————————————————————————————————
If supS exists, then is supS ∈ S? Yes, supS = 1 ∈ (0, 1] = S.

——————————————————————————————————————
If inf S exists, then is inf S ∈ S? No, inf S = 0 6∈ (0, 1] = S.

——————————————————————————————————————
Maximum of S. maxS = 1, since supS = 1 ∈ S.

——————————————————————————————————————
Minimum of S. minS does not exist since inf S = 0 6∈ S.

——————————————————————————————————————
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(b) S = [0, 1].

——————————————————————————————————————
An upper bound of S. 1 is an upper bound, since for all x ∈ S = [0, 1], we have x ≤ 1.

——————————————————————————————————————
A lower bound of S. 0 is a lower bound, since for all x ∈ S = (0, 1], we have 0 ≤ x.

——————————————————————————————————————
Is S bounded? Yes, since S is bounded above (1 is an upper bound) and it is bounded
below (0 is a lower bound).

——————————————————————————————————————
Supremum of S. supS = 1. Indeed, 1 is an upper bound, and moreover, if u is also an
upper bound, then 1 ≤ u (since 1 ∈ S).

——————————————————————————————————————
Infimum of S. inf S = 0. Indeed, 0 is an lower bound, and moreover, if l is also an
lower bound, then l ≤ 0 (since 0 ∈ S).

——————————————————————————————————————
If supS exists, then is supS ∈ S? Yes, supS = 1 ∈ [0, 1] = S.

——————————————————————————————————————
If inf S exists, then is inf S ∈ S? Yes, inf S = 0 ∈ [0, 1] = S.

——————————————————————————————————————
Maximum of S. maxS = 1, since supS = 1 ∈ S.

——————————————————————————————————————
Minimum of S. minS = 0, since inf S = 0 ∈ S.

——————————————————————————————————————

(c) S = (0, 1).

——————————————————————————————————————
An upper bound of S. 1 is an upper bound, since for all x ∈ S = (0, 1), x < 1.

——————————————————————————————————————
A lower bound of S. 0 is a lower bound, since for all x ∈ S = (0, 1), 0 < x.

——————————————————————————————————————
Is S bounded? Yes, since S is bounded above (1 is an upper bound) and it is bounded
below (0 is a lower bound).

——————————————————————————————————————
Supremum of S. supS = 1.

First of all, 1 is a upper bound. Let u be an upper bound of S. We prove that 1 ≤ u.
(We do this by supposing that u < 1 and arriving at a contradiction. The contradiction
is obtained as follows: if u < 1, then we will see that the average of u and 1, namely
u+1

2 , is an element in S that is larger than the upper bound u, which is a contradiction
to the definition of an upper bound!) Since u is an upper bound and since 1

2 ∈ S, it
follows that 0 < u (since 0 < 1

2 ≤ u). So if u < 1, then 0 < u = u+u
2 < u+1

2 < 1+1
2 = 1.

Hence u+1
2 ∈ S. But u < u+1

2 contradicts the fact that u is an upper bound of S.

——————————————————————————————————————
Infimum of S. inf S = 0.

First of all, 0 is a lower bound. Let l be a lower bound of S. We prove that l ≤ 0. If
l > 0, then 0 < l

2 . Moreover, since 1
2 ∈ S and l is a lower bound of S, it follows that

l ≤ 1
2 . Thus we have 0 < l

2 < l ≤ 1
2 < 1, and so l

2 ∈ S. But l
2 < l contradicts the fact

that l is a lower bound of S.

——————————————————————————————————————
If supS exists, then is supS ∈ S? No, supS = 1 6∈ (0, 1) = S.

——————————————————————————————————————
If inf S exists, then is inf S ∈ S? No, inf S = 0 6∈ (0, 1) = S.
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——————————————————————————————————————
Maximum of S. maxS does not exist, since supS = 1 6∈ S.

——————————————————————————————————————
Minimum of S. minS does not exist, since inf S = 0 6∈ S.

——————————————————————————————————————

(d) S =
{

1
n
| n ∈ Z \ {0}

}
=
{

1
n
| n ∈ N

}
∪
{
− 1

n
| n ∈ N

}
.

——————————————————————————————————————
An upper bound of S. 1 is an upper bound, since for all n ∈ N, 1

n
≤ 1 and − 1

n
≤ 0 ≤ 1.

——————————————————————————————————————
A lower bound of S. −1 is a lower bound, since for all n ∈ N, −1 ≤ 0 ≤ 1

n
and −1 ≤ − 1

n
.

——————————————————————————————————————
Is S bounded? Yes, since S is bounded above (1 is an upper bound) and it is bounded
below (−1 is a lower bound).

——————————————————————————————————————
Supremum of S. supS = 1. 1 is an upper bound. Moreover, if u is also an upper bound,
then since 1 = 1

1 ∈ S, 1 ≤ u.

——————————————————————————————————————
Infimum of S. inf S = −1. −1 is a lower bound. Moreover, if l is also a lower bound,
then since −1 = 1

−1 ∈ S, it follows that l ≤ −1.

——————————————————————————————————————
If supS exists, then is supS ∈ S? Yes, supS = 1 ∈ S.

——————————————————————————————————————
If inf S exists, then is inf S ∈ S? Yes, inf S = −1 ∈ S.

——————————————————————————————————————
Maximum of S. maxS = 1, since supS = 1 ∈ S.

——————————————————————————————————————
Minimum of S. minS = −1, since inf S = −1 ∈ S.

——————————————————————————————————————

(e) S =
{
− 1

n
| n ∈ N

}
.

——————————————————————————————————————
An upper bound of S. 0 is an upper bound, since for all n ∈ N, − 1

n
< 0.

——————————————————————————————————————
A lower bound of S. −1 is a lower bound, since for all n ∈ N, −1 ≤ − 1

n
.

——————————————————————————————————————
Is S bounded? Yes, since S is bounded above (0 is an upper bound) and it is bounded
below (−1 is a lower bound).

——————————————————————————————————————
Supremum of S. supS = 0. 0 is an upper bound. Moreover, if u is an upper bound and
if u < 0, then let N ∈ N be such that 1

−u
< N (Archimedean principle with y = 1

−u

and x = 1!), and so we obtain u < − 1
N

∈ S, a contradiction to the fact that u is an
upper bound of S. Thus if u is an upper bound, then 0 ≤ u.

——————————————————————————————————————
Infimum of S. inf S = −1. −1 is a lower bound, and if l is another lower bound, then
since −1 = − 1

1 ∈ S, it follows that l ≤ −1.

——————————————————————————————————————
If supS exists, then is supS ∈ S? No, since supS = 0 6∈ S.

——————————————————————————————————————
If inf S exists, then is inf S ∈ S? Yes, inf S = −1 ∈ S.
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——————————————————————————————————————
Maximum of S. maxS does not exist since supS = 0 6∈ S.

——————————————————————————————————————
Minimum of S. minS = −1 since inf S = −1 ∈ S.

——————————————————————————————————————

(f) S =
{

n
n+1 | n ∈ N

}

.

——————————————————————————————————————
An upper bound of S. 1 is an upper bound, since for all n ∈ N, n

n+1 < 1.

——————————————————————————————————————
A lower bound of S. 1

2 is a lower bound because for all n ∈ N, 1
2 ≤ n

n+1 (since n+1 ≤ 2n,
that is, 1 ≤ n).

——————————————————————————————————————
Is S bounded? Yes, since S is bounded above (1 is an upper bound) and it is bounded
below ( 1

2 is a lower bound).

——————————————————————————————————————
Supremum of S. supS = 1. 1 is an upper bound of S. If u < 1 is an upper bound,
then let N ∈ N be such that u

u−1 < N (Archimedean property). Then u < N
N+1 ,

contradicting the fact that u is an upper bound.

——————————————————————————————————————
Infimum of S. inf S = 1

2 . 1
2 is a lower bound, and if l is a lower bound, then since

1
2 = 1

1+1 ∈ S, it follows that l ≤ 1
2 .

——————————————————————————————————————
If supS exists, then is supS ∈ S? No, since supS = 1 6∈ S.

——————————————————————————————————————
If inf S exists, then is inf S ∈ S? Yes, since inf S = 1

2 ∈ S.

——————————————————————————————————————
Maximum of S. maxS does not exist since supS = 1 6∈ S.

——————————————————————————————————————
Minimum of S. minS exists since inf S = 1

2 ∈ S.

——————————————————————————————————————

(g) S = {x ∈ R | x2 ≤ 2}.
——————————————————————————————————————
An upper bound of S.

√
2 is an upper bound. (x >

√
2 implies x2 > 2, and so x 6∈ S.

In other words, if x ∈ S, then x ≤
√

2, that is,
√

2 is an upper bound of S.)

——————————————————————————————————————
A lower bound of S. −

√
2 is a lower bound. (x < −

√
2 implies that −x >

√
2 > 1 > 0.

So using the fact that if a > b and c > 0, then ac > bc, we get x2 = (−x)(−x) >
(−x)

√
2 >

√
2
√

2 = 2, and so, x 6∈ S. In other words, if x ∈ S, then x ≥ −
√

2, and so
−
√

2 is a lower bound.)

——————————————————————————————————————
Is S bounded? Yes, since S is bounded above (

√
2 is an upper bound) and it is bounded

below (−
√

2 is a lower bound).

——————————————————————————————————————
Supremum of S. supS =

√
2. First of all,

√
2 is an upper bound of S. Let u be an

upper bound such that u <
√

2. Then u+
√

2
2 ∈ S. (As 0 ∈ S and u is an upper bound

of S, 0 ≤ u. As u <
√

2, u < u+
√

2
2 <

√
2. Hence we have 0 < u+

√
2

2 <
√

2, and

so
(

u+
√

2
2

)2

=
(

u+
√

2
2

)(
u+

√
2

2

)

<
(

u+
√

2
2

)√
2 <

√
2
√

2 = 2. Thus u+
√

2
2 ∈ S.) But
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u < u+
√

2
2 contradicts the fact that u is an upper bound. So if u is an upper bound of

S, then
√

2 ≤ u.

——————————————————————————————————————
Infimum of S. inf S = −

√
2. −

√
2 is a lower bound. Let l be a lower bound such that

−
√

2 < l. Then we have −l <
√

2, and since supS =
√

2, it follows that −l cannot be
an upper bound of S. So there exists an x ∈ S such that −l < x. But since x ∈ S,
we have (−x)2 = x2 ≤ 2. So it follows that −x ∈ S. As l is a lower bound, l ≤ −x,
that is, x ≤ −l. From −l < x and x ≤ −l, we arrive at the contradiction that −l < −l.
Consequently, if l is a lower bound, then l ≤ −

√
2.

——————————————————————————————————————
If supS exists, then is supS ∈ S? Yes, supS =

√
2 ∈ S.

——————————————————————————————————————
If inf S exists, then is inf S ∈ S? Yes, inf S = −

√
2 ∈ S.

——————————————————————————————————————
Maximum of S. maxS =

√
2.

——————————————————————————————————————
Minimum of S. minS = −

√
2.

——————————————————————————————————————

(h) S = {0, 2, 5, 2005}.
——————————————————————————————————————
An upper bound of S. 2005 is an upper bound, since 0 ≤ 2005, 2 ≤ 2005, 5 ≤ 2005 and
2005 ≤ 2005.

——————————————————————————————————————
A lower bound of S. 0 is a lower bound, since 0 ≤ 0, 0 ≤ 2, 0 ≤ 5 and 0 ≤ 2005.

——————————————————————————————————————
Is S bounded? Yes, since S is bounded above (2005 is an upper bound) and it is bounded
below (0 is a lower bound).

——————————————————————————————————————
Supremum of S. supS = 2005. 2005 is an upper bound, and if u is also an upper bound,
then since 2005 ∈ S, it follows that 2005 ≤ u.

——————————————————————————————————————
Infimum of S. inf S = 0. 0 is an lower bound, and if l is also an lower bound, then
since 0 ∈ S, it follows that l ≤ 0.

——————————————————————————————————————
If supS exists, then is supS ∈ S? Yes, supS = 2005 ∈ {0, 2, 5, 2005} = S.

——————————————————————————————————————
If inf S exists, then is inf S ∈ S? Yes, inf S = 0 ∈ {0, 2, 5, 2005} = S.

——————————————————————————————————————
Maximum of S. maxS = 2005 since supS = 2005 ∈ S.

——————————————————————————————————————
Minimum of S. minS = 0 since inf S = 0 ∈ S.

——————————————————————————————————————

(i) S =
{
(−1)n

(
1 + 1

n

)
| n ∈ N

}
.

(This set has the elements − 2
1 ,

3
2 ,− 4

3 ,
5
4 , . . . .)

——————————————————————————————————————
An upper bound of S. 3

2 is an upper bound.

If n ∈ N and n is even, then (−1)n
(
1 + 1

n

)
= 1 + 1

n
≤ 1 + 1

2 = 3
2 .
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If n ∈ N and n is odd, then (−1)n
(
1 + 1

n

)
= −1− 1

n
< 0 < 3

2 .

——————————————————————————————————————
A lower bound of S. −2 is a lower bound.

If n ∈ N and n is even, then (−1)n
(
1 + 1

n

)
= 1 + 1

n
> 0 > −2.

If n ∈ N and n is odd, then (−1)n
(
1 + 1

n

)
= −1− 1

n
≥ −1 − 1 = −2.

——————————————————————————————————————
Is S bounded? Yes, since S is bounded above ( 3

2 is an upper bound) and it is bounded
below (−2 is a lower bound).

——————————————————————————————————————
Supremum of S. supS = 3

2 . 3
2 is an upper bound, and if u is also an upper bound,

then since 3
2 = (−1)2

(
1 + 1

2

)
∈ S, it follows that 3

2 ≤ u.

——————————————————————————————————————
Infimum of S. inf S = −2. −2 is a lower bound, and if l is also a lower bound, then
since −2 = (−1)1

(
1 + 1

1

)
∈ S, it follows that l ≤ −2.

——————————————————————————————————————
If supS exists, then is supS ∈ S? Yes, supS = 3

2 ∈ S.

——————————————————————————————————————
Maximum of S. maxS = 3

2 .

——————————————————————————————————————
Minimum of S. minS = −2.

——————————————————————————————————————

(j) S = {x2 | x ∈ R}.
——————————————————————————————————————
An upper bound of S. There does not exist an upper bound of S. Let u ∈ R be an

upper bound of S, then u + 1
2 ∈ R, and so u2 + u + 1

4 =
(
u+ 1

2

)2 ∈ S. But since

u2 + 1
4 > 0, it follows that u < u2 + u+ 1

4 =
(
u+ 1

2

)2 ∈ S, contradicting the fact that
u is an upper bound of S. Thus S does not have an upper bound.

——————————————————————————————————————
A lower bound of S. 0 is a lower bound of S, since for all x ∈ R, 0 ≤ x2.

——————————————————————————————————————
Is S bounded? No, since the set is not bounded above.

——————————————————————————————————————
Supremum of S. supS does not exist, since the set does not have an upper bound, and
so it cannot have a least upper bound. (Recall that every least upper bound is an upper
bound).

——————————————————————————————————————
Infimum of S. inf S = 0. 0 is a lower bound, and if l is also a lower bound, then since
0 = 02 ∈ S, it follows that l ≤ 0.

——————————————————————————————————————
If supS exists, then is supS ∈ S? supS does not exist.

——————————————————————————————————————
If inf S exists, then is inf S ∈ S? Yes, inf S = 0 ∈ S.

——————————————————————————————————————
Maximum of S. maxS does not exist, since supS does not exist.

——————————————————————————————————————
Minimum of S. minS = 0, since inf S = 0 ∈ S.

——————————————————————————————————————
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(k) S =
{

x2

1+x2 | x ∈ R

}

.

——————————————————————————————————————
An upper bound of S. 1 is an upper bound of S, since for all x ∈ R, x2

1+x2 < 1.

——————————————————————————————————————
A lower bound of S. 0 is a lower bound of S, since for all x ∈ R, 0 ≤ x2

1+x2 .

——————————————————————————————————————
Is S bounded? Yes, since S is bounded above (1 is an upper bound) and it is bounded
below (0 is a lower bound).

——————————————————————————————————————
Supremum of S. supS = 1. 1 is an upper bound. Let u be an upper bound and let

u < 1. Since 0 = 02

1+02 ∈ S, 0 ≤ u. Let N ∈ N be such that
√

u
1−u

< N . Then we have

u < N2

1+N2 ∈ S, a contradiction to the fact that u is an upper bound of S. Hence if u is
an upper bound of S, then 1 ≤ u.

——————————————————————————————————————
Infimum of S. inf S = 0. 0 is a lower bound, and if l is also a lower bound, then since

0 = 02

1+02 ∈ S, it follows that l ≤ 0.

——————————————————————————————————————
If supS exists, then is supS ∈ S? No, supS = 1 6∈ S.

——————————————————————————————————————
If inf S exists, then is inf S ∈ S? Yes, inf S = 0 ∈ S.

——————————————————————————————————————
Maximum of S. maxS does not exist, since supS 6∈ S.

——————————————————————————————————————
Minimum of S. minS = 0, since inf S = 0 ∈ S.

——————————————————————————————————————

2. (a) FALSE (if S = {1}, then u = 3 is an upper bound of S, and although u′ = 2 < 3 = u,
u′(= 2) is an upper bound of {1} = S).

(b) TRUE (if ε > 0, then u∗ − ε < u∗, and so u∗ − ε cannot be an upper bound of S).

(c) FALSE (N has no maximum).

(d) FALSE (N has no supremum).

(e) FALSE ([0, 1) is bounded, but it does not have a maximum).

(f) FALSE (∅ is bounded, but it does not have a supremum).

(g) TRUE (least upper bound property of R).

(h) TRUE (the supremum itself is an upper bound).

(i) TRUE (definition of maximum).

(j) FALSE (the set [0, 1) has supremum 1, but 1 6∈ [0, 1)).

(k) FALSE (−N is bounded above since 0 is an upper bound, but |−N| = N is not bounded).

(l) TRUE (l ≤ x ≤ u implies x ≤ u and −x ≤ −l, and so we have

x ≤ u ≤ max{−l, u} and − x ≤ −l ≤ max{−l, u}.

Thus |x| ≤ max{−l, u} and so max{−l, u} is an upper bound of |S|. Moreover, for
every y ∈ |S|, we have y = |x| for some x ∈ S, and so y = |x| ≥ 0. Thus 0 is a lower
bound of |S|.)

(m) FALSE (if S = {0, 1}, then inf S = 0 < 1
2 < 1 = supS, but 1

2 6∈ S).
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3. Since S is bounded, in particular, it is bounded above, and furthermore, since it is nonempty,
supS exists, by the least upper bound property of R.

Since S is bounded, in particular it is bounded below, and furthermore, since it is nonempty,
inf S exists, by the greatest lower bound property of R.

Let x ∈ S. Since inf S is a lower bound of S,

inf S ≤ x. (2.7)

Moreover, since supS is an upper bound of S,

x ≤ supS. (2.8)

From (2.7) and (2.8), we obtain inf S ≤ supS.

Let inf S = supS. If x ∈ S, then we have

inf S ≤ x ≤ supS, (2.9)

and so inf S = x(= supS) (for if inf S < x, then from (2.9), inf S < supS, a contradiction).
Thus S is a singleton set. Conversely, if S = {x}, then clearly x is an upper bound. If u < x

is an upper bound, then x ≤ u < x gives x < x, a contradiction. So supS = x. Clearly
x is also a lower bound. If l > x is also a lower bound, then x > l ≥ x gives x > x, a
contradiction. So inf S = x = supS.

4. Since supB is an upper bound of B, we have x ≤ supB for all x ∈ B. Since A ⊂ B, in
particular we obtain x ≤ supB for all x ∈ A. So supB is an upper bound of A, and so by
the definition of the least upper bound of A, we obtain supA ≤ supB.

5. Since A is bounded above, ∃MA ∈ R such that ∀x ∈ A, x ≤MA.

Since B is bounded above, ∃MB ∈ R such that ∀y ∈ B, y ≤MB.

Consequently if x ∈ A and y ∈ B, x+ y ≤MA +MB .

So ∀z ∈ A+B, z ≤MA +MB , and so MA +MB is an upper bound for A+B. So A+B is
bounded above.

Clearly A + B is nonempty. Indeed, A is nonempty implies that ∃x ∈ A; B is nonempty
implies that ∃y ∈ B; thus x+ y ∈ A+B, and so A+B is not empty.

Since A+B is bounded above and it is not empty, by the least upper bound property of R,
it follows that sup(A+B) exists.

Since supA is an upper bound of A, ∀x ∈ A, x ≤ supA.

Since supB is an upper bound of B, ∀y ∈ B, y ≤ supB.

So for all x ∈ A and y ∈ B, x+ y ≤ supA+ supB.

Since every z ∈ A + B is such that z = x + y with x ∈ A and y ∈ B, it follows that for
all z ∈ A + B, z ≤ supA + supB. So supA + supB is an upper bound of A + B, and
consequently, by the definition of the least upper bound of A+B,

sup(A+B) ≤ supA+ supB.

6. Let l be a lower bound of S: ∀x ∈ S, l ≤ x. So ∀x ∈ S, −x ≤ −l, in other words,

∀y ∈ −S, y ≤ −l.

Thus −S is bounded above because −l is an upper bound of −S.

Since S is nonempty, it follows that ∃x ∈ S, and so we obtain that −x ∈ −S. Hence −S is
nonempty.
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As −S is nonempty and bounded above, it follows that sup(−S) exists, by the least upper
bound property of R.

Since sup(−S) is an upper bound of −S, we have:

∀y ∈ −S, y ≤ sup(−S),

that is,
∀x ∈ S, −x ≤ sup(−S),

that is,
∀x ∈ S, − sup(−S) ≤ x.

So − sup(−S) is a lower bound of S.

Next we prove that − sup(−S) is the greatest lower bound of S. Suppose that l′ is a lower
bound of S such that − sup(−S) < l′. Then we have

∀x ∈ S, − sup(−S) < l′ ≤ x,

that is,
∀x ∈ S, −x ≤ −l′ < sup(−S),

that is,
∀y ∈ −S, y ≤ −l′ < sup(−S).

So −l′ is an upper bound of −S, and −l′ < sup(−S), which contradicts the fact that sup(−S)
is the least upper bound of −S. Hence l′ ≤ − sup(−S).

Consequently, inf S exists and inf S = − sup(−S).

7. (S is nonempty and bounded below (0 is a lower bound), and so by the greatest lower bound
property of R, inf S exists.)

If: Let inf S > 0. Since inf S is a lower bound, it follows that

∀x ∈ S, inf S ≤ x,

that is,

∀x ∈ S,
1

x
≤ 1

inf S
,

that is,

∀y ∈ S−1, y ≤ 1

inf S
.

So 1
inf S

is an upper bound of S−1. Thus S−1 is bounded above.

Only if: Suppose S−1 is bounded above (with an upper bound u, say). Then

∀y ∈ S−1 y ≤ u,

that is,

∀x ∈ S,
1

x
≤ u. (2.10)

Since S is not empty, ∃x∗ ∈ S and so 1
x∗

≤ u. But x∗ ∈ S implies that x∗ > 0, and so
1
x∗

> 0. Consequently u > 0. Hence from (2.10), we have

∀x ∈ S,
1

u
≤ x.

Thus 1
u

is a lower bound of S, and so

1

u
≤ inf S.
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But u > 0 implies 1
u
> 0, and consequently inf S

(
≥ 1

u

)
> 0.

If inf S > 0, then as in the If part, we see that 1
inf S

is an upper bound of S−1 and so we
obtain

supS−1 ≤ 1

inf S
. (2.11)

Furthermore, since u := supS−1 is an upper bound of S−1, as in the Only if part, we see
that 1

u
= 1

sup S−1 is a lower bound of S, and so

1

supS−1
≤ inf S,

that is,
1

inf S
≤ supS−1. (2.12)

From (2.11) and (2.12), it follows that

supS−1 =
1

inf S
.

8. (a) If x ∈
⋂

n∈N

(

0,
1

n

)

, then

for all n ∈ N, 0 < x <
1

n
. (2.13)

Let N ∈ N be such that 1
x
< N (Archimedean property). Thus 1

N
< x, which contra-

dicts (2.13). So

¬
[

∃x ∈
⋂

n∈N

(

0,
1

n

)]

, that is,
⋂

n∈N

(

0,
1

n

)

= ∅.

(b) Clearly {0} ⊂
[
0, 1

n

]
for all n ∈ N and so

{0} ⊂
⋂

n∈N

[

0,
1

n

]

. (2.14)

Let x ∈
⋂

n∈N

[

0,
1

n

]

. Then x ∈ [0, 1] and so x ≥ 0. If x > 0, then let N ∈ N be

such that 1
x
< N (Archimedean property), that is, 1

N
< x. So x 6∈

[
0, 1

N

]
, and hence

x 6∈
⋂

n∈N

[

0,
1

n

]

. Consequently, if x ∈
⋂

n∈N

[

0,
1

n

]

, then x = 0, that is,

⋂

n∈N

[

0,
1

n

]

⊂ {0}. (2.15)

From (2.14) and (2.15),
⋂

n∈N

[

0,
1

n

]

= {0}.

(c) Let n ∈ N. If x ∈
[

1
n
, 1 − 1

n

]
, then 0 < 1

n
≤ x ≤ 1 − 1

n
< 1, and so x ∈ (0, 1). Hence

⋃

n∈N

[
1

n
, 1 − 1

n

]

⊂ (0, 1). (2.16)
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If x ∈ (0, 1), then 0 < x < 1. Let N1 ∈ N be such that 1
x
< N1 (Archimedean property),

that is, 1
N1

< x. Let N2 ∈ N be such that 1
1−x

< N2 (Archimedean property), that is,

x < 1 − 1
N2

. Thus with N := max{N1, N2}, we have

1

N
≤ 1

N1
< x < 1− 1

N2
≤ 1 − 1

N
,

that is, x ∈
[

1

N
, 1 − 1

N

]

⊂
⋃

n∈N

[
1

n
, 1 − 1

n

]

. So we have

(0, 1) ⊂
⋃

n∈N

[
1

n
, 1− 1

n

]

. (2.17)

From (2.16) and (2.17), we obtain (0, 1) =
⋃

n∈N

[
1

n
, 1 − 1

n

]

.

(d) If x ∈ [0, 1], then for any n ∈ N,

− 1

n
< 0 ≤ x ≤ 1 < 1 +

1

n
,

and so x ∈
(
− 1

n
, 1 + 1

n

)
. Hence

[0, 1] ⊂
⋂

n∈N

(

− 1

n
, 1 +

1

n

)

. (2.18)

Let x ∈
⋂

n∈N

(

− 1

n
, 1 +

1

n

)

. Then

− 1

n
≤ x ≤ 1 +

1

n
for all n ∈ N. (2.19)

We prove that this implies that 0 ≤ x ≤ 1. For if x < 0, then let N1 ∈ N be such that
− 1

x
< N1, that is, x < − 1

N1
, a contradiction to (2.19). Similarly, if x > 1, then let

N2 ∈ N be such that 1
x−1 < N2, that is, x > 1 + 1

N2
, a contradiction to (2.18). Hence

we see that neither x < 0 nor x > 1 are possible, and hence x ∈ [0, 1]. Thus

⋂

n∈N

(

− 1

n
, 1 +

1

n

)

⊂ [0, 1]. (2.20)

(2.18) and (2.20) imply
⋂

n∈N

(

− 1

n
, 1 +

1

n

)

= [0, 1].

9. If x ∈ (x0 − δ, x0 + δ), then x0 − δ < x < x0 + δ. Adding −x0, we obtain −δ < x− x0 < δ.
So x − x0 < δ, and −(x − x0) < δ. Thus |x − x0| < δ, and x ∈ {x ∈ R | |x − x0| < δ}.
Consequently (x0 − δ, x0 + δ) ⊂ {x ∈ R | |x− x0| < δ}.
If x ∈ {x ∈ R | |x − x0| < δ}, then |x − x0| < δ. Since for any real number r, |r| ≥ r

and |r| ≥ −r, we obtain that x − x0 ≤ |x − x0| < δ and −(x − x0) ≤ |x − x0| < δ. Hence
−δ < x − x0 < δ. Adding x0, this yields x0 − δ < x < x0 + δ, that is, x ∈ (x0 − δ, x0 + δ).
So {x ∈ R | |x− x0| < δ} ⊂ (x0 − δ, x0 + δ).

Thus (x0 − δ, x0 + δ) = {x ∈ R | |x− x0| < δ}.
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10. From the inequality (1.7) on page 6, we have that |x| = |x− y + y| ≤ |x− y| + |y|, that is,

|x| − |y| ≤ |x− y| (2.21)

for all x, y ∈ R. Interchanging x and y in (2.21), we obtain

|y| − |x| ≤ |y − x| = | − (x− y)| = | − 1||x− y| = 1 · |x− y| = |x− y|,

and so,
−(|x| − |y|) ≤ |x− y| (2.22)

for all x, y ∈ R. From (2.21) and (2.22), we obtain ||x| − |y|| ≤ |x− y| for all x, y ∈ R.

11. If S is bounded, then it is bounded above and it is bounded below. Thus S has an upper
bound, say u, and a lower bound, say l. So for all x ∈ S, l ≤ x ≤ u, that is, x ≤ u and
−x ≤ −l, and so we have

x ≤ u ≤ max{−l, u} and − x ≤ −l ≤ max{−l, u}.

Thus |x| ≤ max{−l, u} =: M .

Conversely, if there exists a M such that for all x ∈ S, |x| ≤M , we have −M ≤ x ≤M . So
−M is a lower bound of S and M is an upper bound of S. Thus S is bounded.
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Solutions to the exercises on page 13

1. (a) We prove that (1)n∈N is convergent sequence with limit 1. Given ε > 0, let N ∈ N, say
N = 1. Then for all n > N = 1, we have

|an − L| = |1 − 1| = |0| < ε.

(b) Yes. For instance, the constant sequence (1)n∈N converges to 1.

(c) Suppose that the terms of the convergent sequence (an)n∈N (with limit, say, L) lie in
the finite set {v1, . . . , vm}. If L 6∈ {v1, . . . , vm}, then with

ε := min{|v1 − L|, . . . , |vm − L|} > 0,

letN ∈ N be such that for all n > N , |an−L| < ε. In particular, with n = N+1 > N , we
have |aN+1−L| < ε. But aN+1 ∈ {v1, . . . , vm}. Let aN+1 = vk for some k ∈ {1, . . . ,m}.
Then we have

|vk − L| = |aN+1 − L| < ε = min{|v1 − L|, . . . , |vm − L|} ≤ |vk − L|,

a contradiction. So L ∈ {v1, . . . , vm}, that is, L must be one of the terms. Thus we
have shown that

terms of the sequence
take finitely many values

=⇒ L must be one
of the terms

,

that is,

L is not equal to
any of the terms

=⇒ terms of the sequence cannot
consist of finitely many values

.

(d) Suppose that ((−1)n)n∈N is a convergent sequence with limit L. Then from part 1c
above, it follows that L = 1 or L = −1: indeed the terms of the sequence take finitely
many values, namely 1 and −1, and so L must be one of these terms. So we have the
following two cases:

1◦ If the limit is 1, then given ε = 1 > 0, let N ∈ N be such that for all n > N ,
|(−1)n − 1| < ε = 1. Let n be any odd number > N . Then we have 2 = | − 2| =
| − 1 − 1| = |(−1)n − 1| < ε = 1, a contradiction.

2◦ If the limit is −1, then given ε = 1 > 0, let N ∈ N be such that for all n > N ,
|(−1)n − (−1)| < ε = 1. Let n be any even number > N . Then we have 2 = |2| =
|1 + 1| = |(−1)n − (−1)| < ε = 1, a contradiction.

So ((−1)n)n∈N is divergent.

2. If lim
n→∞

1

n
= 1, then given any ε > 0, there exists an N ∈ N such that for all n ∈ N such that

n > N , ∣
∣
∣
∣

1

n
− 1

∣
∣
∣
∣
< ε.

Let ε = 1
2 . (This choice is motivated by Figure 2.2, from which we see that, for instance

ε = 1 won’t give us a contradiction, but ε = 1
2 would.) Then there exists a N∗ ∈ N such that

for all n > N∗, ∣
∣
∣
∣

1

n
− 1

∣
∣
∣
∣
< ε =

1

2
,

that is,

1 − 1

n
=

∣
∣
∣
∣

1

n
− 1

∣
∣
∣
∣
<

1

2
.
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PSfrag replacements
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Figure 2.2:
(

1
n

)

n∈N
.

Consequently, for all n > N∗,

1 − 1

n
<

1

2
,

that is, n < 2. In particular, since n = N∗ + 1 > N∗, we obtain N∗ + 1 < 2, that is, N∗ < 1.
But there does not exist any natural number N∗ that is less than 1. Hence we arrive at a

contradiction, and so lim
n→∞

1

n
6= 1.

3. (a) We have seen that the sequence
(
(−1)n

(
1 + 1

n

))

n∈N
is divergent. Given any ε > 0, let

N ∈ N be such that 1
ε
< N . Then for all even n > N (there are obviously infinitely

many such n), we have

|an − L| =

∣
∣
∣
∣
(−1)n

(

1 +
1

n

)

− 1

∣
∣
∣
∣
=

∣
∣
∣
∣
1 +

1

n
− 1

∣
∣
∣
∣
=

1

n
<

1

N
< ε.

(b) Again, for the divergent sequence
(
(−1)n

(
1 + 1

n

))

n∈N
, with ε = 4 > 0, for all N ∈ N

and all n > N , we have

|an − L| ≤ |an| + |L| ≤ 2 + 1 = 3 < 4 = ε.

4. S is nonempty and bounded above, and so by the least upper bound property of R, it follows
that supS exists.

Given n ∈ N, we have 1
n
> 0, and so supS − 1

n
< supS. Thus S − 1

n
is not an upper

bound of S. Hence there must exist an element in S, which we denote by an, such that
¬[an ≤ supS − 1

n
], that is, an > supS − 1

n
. In this way we construct the sequence (an)n∈N.

As supS is an upper bound of S and so we also have an ≤ supS for all n ∈ N. Consequently,

∀n ∈ N, supS − 1

n
< an ≤ supS < supS +

1

n
,

that is,

∀n ∈ N, − 1

n
< an − supS <

1

n
, that is, |an − supS| < 1

n
.

Given ε > 0, let N ∈ N be such that N > 1
ε
. Then for all n > N , we have

|an − supS| < 1

n
<

1

N
< ε.

Hence (an)n∈N is convergent with limit equal to supS.

5. Suppose L < 0. Then ε := −L
2 > 0, and so there exists a N ∈ N such that for all n > N ,

|an − L| < ε = −L
2 . Hence with n = N + 1 (> N), we obtain

aN+1 − L ≤ |aN+1 − L| < −L
2
,

that is, aN+1 <
L
2 < 0, a contradiction.
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6. Let (an)n∈N be a convergent sequence with limit L¿ Given ε > 0, there exists a N ∈ N such
that

for all n > N, |an − L| < ε

2
. (2.23)

Hence if n,m > N , then

|an − am| = |an − L+ L− am|
≤ |an − L| + |L− am| (triangle inequality)

= |an − L| + |am − L| (using |r| = | − r| for all real r)

<
ε

2
+
ε

2
(using (2.23)).

Consequently (an)n∈N is a Cauchy sequence.

Solutions to the exercises on page 17

1. We prove that the sequence is monotone and bounded, and hence it must be convergent.

We prove that |an| ≤ 1 for all n ∈ N. We prove this using induction. We have |a1| = |1| = 1.
If k ∈ N is such that |ak| ≤ 1, then

|ak+1| =

∣
∣
∣
∣

2k + 3

3k + 3
ak

∣
∣
∣
∣
=

∣
∣
∣
∣

2k + 3

3k + 3

∣
∣
∣
∣
|ak| =

(
2k + 3

3k + 3

)

|ak| ≤ 1 · 1 = 1,

and so the claim follows from induction. So the sequence is bounded.

Since n ≥ 1, it follows that 2n+ 1 ≤ 3n, and so 2n+1
3n

≤ 1 for all n ∈ N. Furthermore, note
that for all n ∈ N, an ≥ 0 (induction!). Hence for all n ≥ 2, an = 2n+1

3n
an−1 ≤ 1·an−1 = an−1.

So (an)n∈N is decreasing.

As the sequence is bounded and monotone, it is convergent.

2. Let M > 0 be such that for all n ∈ N, |bn| ≤ M . Given ε > 0, let N ∈ N be such that
M
ε
< N , that is, 1

N
< ε

M
. Then for all n > N ,

∣
∣
∣
∣

bn

n
− 0

∣
∣
∣
∣
=

|bn|
n

≤ M

n
<
M

N
< M · ε

M
= ε.

Hence
(

bn

n

)

n∈N
is convergent with limit 0.

3. (a) Given ε > 0, ∃N1 ∈ N such that ∀n > N1, |an − L| < ε
2 . Since (an)n∈N is convergent,

it is bounded: ∃M > 0 such that ∀n ∈ N, |an| ≤M . Choose8 N ∈ N such that

max

{

N1,
N1(M + |L|)

ε
2

}

< N,

and so,

N > N1 and
N1(M + |L|)

N
<
ε

2
.

8This is arrived at by working backwards; we wish to make
˛

˛

˛

a1+···+an

n
− L

˛

˛

˛
less than ε for all n > N , so we

manipulate this (as shown in the chain of inequalities that follow) to see if can indeed achieve this by choosing the
N large enough.
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Then for n > N , we have:
∣
∣
∣
∣

a1 + · · · + aN1 + aN1+1 + · · · + an

n
− L

∣
∣
∣
∣

=

∣
∣
∣
∣

a1 + · · · + aN1 + aN1+1 + · · · + an − nL

n

∣
∣
∣
∣

=
|a1 + · · · + aN1 + aN1+1 + · · · + an − nL|

n

≤ |a1 − L| + · · · + |aN1 − L| + |aN1+1 − L| + · · · + |an − L|
n

≤ (|a1| + |L| + · · · + |aN1 | + |L|) + ε
2 + · · · + ε

2

n

≤ N1(M + |L|) + (n−N1)
ε
2

n

≤ N1(M + |L|)
n

+

(

1 − N1

n

)

· ε
2

<
N1(M + |L|)

N
+ 1 · ε

2

<
ε

2
+
ε

2
= ε.

So
(

a1+···+an

n

)

n∈N
is a convergent sequence with limit L.

(b) If an = (−1)n, n ∈ N, then (an)n∈N is divergent, but the sequence with nth term

a1 + · · · + an

n
=

(−1)1 + (−1)2 + · · · + (−1)n

n
=

{
0 if n is even

− 1
n

if n is odd
,

is convergent with limit equal to 0. Indeed, given ε > 0, let N ∈ N be such that 1
ε
< N .

Then for n > N , we have

|an − 0| = |an| =

{
0 if n is even
1
n

if n is odd

}

≤ 1

n
<

1

N
< ε.

So
(

a1+···+an

n

)

n∈N
is convergent with limit 0.

4. Since (an)n∈N is bounded, it follows that there exists a M such that for all n ∈ N, |an| ≤M ,
that is, −M ≤ an ≤ M . If k ∈ N, then in particular, for all n ≥ k, −M ≤ an ≤ M , and so
the set {an | n ≥ k} is bounded. By the least upper bound property of R, it then follows that
inf{an | n ≥ k} and sup{an | n ≥ k} exist, that is, lk and uk are well-defined. Furthermore,
for each k,

−M ≤ inf{an | n ≥ k} ≤ sup{an | n ≥ k} ≤M,

and so we see that the sequences (lk)k∈N and (uk)k∈N are bounded.

Clearly {an | n ≥ k + 1} ⊂ {an | n ≥ k}, and by Exercise 4 on page 7, we then obtain that

uk+1 = sup{an | n ≥ k + 1} ≤ sup{an | n ≥ k} = uk,

and so (uk)k∈N is a decreasing sequence.

Similarly, {−an | n ≥ k + 1} ⊂ {−an | n ≥ k}, and so we have

sup{−an | n ≥ k + 1} ≤ sup{−an | n ≥ k}.

Using Exercise 6 on page 7, we obtain

inf{an | n ≥ k + 1} = − sup{−an | n ≥ k + 1} ≥ − sup{−an | n ≥ k} = inf{an | n ≥ k},
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that is, lk+1 ≥ lk. Consequently, (lk)k∈N is a increasing sequence.

As the sequences (uk)k∈N, (lk)k∈N are both bounded and monotone, by Theorem 1.2.3, it
follows that they are convergent.

5. Let (an)n∈N be a Cauchy sequence. Then given ε := 1 > 0, there exists a N ∈ N such that
for all n,m > N , |an − am| < ε = 1. In particular, with m := N + 1 (> N), |an − aN+1| < 1
for all n > N , that is,

|an| = |aN+1 + an − aN+1| ≤ |aN+1| + |an − aN+1| < |aN+1| + 1 for all n > N.

Defining M = max{|a1|, . . . , |aN |, |aN+1| + 1}, we see that |an| ≤ M for all n ∈ N, and so
(an)n∈N is bounded.
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Solutions to the exercises on page 20

1. First we prove the

Claim: (an)n∈N is convergent with limit L, then (an+1)n∈N is also convergent with limit L.

Proof Let ε > 0. Then ∃N ∈ N such that for all n > N , |an −L| < ε. Thus for all n > N ,
we have n + 1 > N + 1 > N , and so |an+1 − L| < ε. Hence (an+1)n∈N is convergent with
limit L.

Alternately, observe that (an+1)n∈N is a subsequence of (an)n∈N, and use Theorem 1.2.6.

We now apply this result to our sequence (an)n∈N, which satisfies:

an+1 =
2(n+ 1) + 1

3(n+ 1)
an

=
2 + 3

n

3 + 3
n

an,

for all n ∈ N. Since the sequence
(

1
n

)

n∈N
is convergent with limit 0, by the theorem on

algebra of limits, it follows that the sequence
(

2+ 3
n

3+ 3
n

)

n∈N

is convergent with limit 2+3·0
3+3·0 = 2

3 .

Again applying the theorem on algebra of limits, we obtain

L = lim
n→∞

an+1

= lim
n→∞

(
2 + 3

n

3 + 3
n

an

)

= lim
n→∞

(
2 + 3

n

3 + 3
n

)

lim
n→∞

an

=
2

3
L.

Hence 1
3L = 0, that is, L = 0. So lim

n→∞
an = 0.

2. We have

cn =
anbn + 5n

a2
n + n

=
an · bn

n
+ 5

an · an · 1
n

+ 1
for all n ∈ N.

N. The sequence
(
an · bn

n
+ 5
)

n∈N
is convergent.

The sequence (an)n∈N is convergent with limit, say L. Since (bn)n∈N is bounded,
the sequence

(
bn

n

)

n∈N
is convergent with limit 0 (see Exercise 2 on page 17). Hence

(
an · bn

n

)

n∈N
is convergent with limit L · 0 = 0. The sequence (5)n∈N is convergent with

limit 5. So the sequence
(
an · bn

n
+ 5
)

n∈N
is convergent with limit 0 + 5 = 5.

D. The sequence
(

a2
n

n
+ 1
)

n∈N

has nonzero terms for all n ∈ N and it is convergent with

the nonzero limit 1.

We have
a2

n

n
+ 1 ≥ 1 for all n ∈ N, and so

a2
n

n
+ 1 6= 0 for all n ∈ N.

Since the sequence (an)n∈N is convergent with limit L, it follows that the sequence
(a2

n)n∈N is convergent with limit L2. Since
(

1
n

)

n∈N
is convergent with limit 0, it follows

that
(
a2

n · 1
n

)

n∈N
is convergent with limit L2 ·0 = 0. Finally, as (1)n∈N is convergent with

limit 1, it follows that the sequence
(

a2
n

n
+ 1
)

n∈N

is convergent with limit 0+1 = 1( 6= 0).
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From the parts N and D above and the theorem on the algebra of limits, it follows that
(cn)n∈N is convergent with limit 5

1 = 5.

3. (a) We begin by showing that L ≥ 0. If L < 0, then ε := −L
2 > 0. Let N ∈ N be such that

for all n > N , |an − L| < ε = −L
2 . Then we have

an − L ≤ |an − L| < −L
2
,

and so an <
L
2 < 0 for all n > N , a contradiction to the fact that

an ≥ 0 for all n ∈ N.

So L ≥ 0.

Now we show that (
√
an)n∈N is convergent with limit

√
L. Let ε >). We consider the

only two possible cases, namely L = 0 and L > 0:

1◦ If L = 0, then let N ∈ N be such that for all n > N ,

|an − L| = |an − 0| = |an| = an < ε2.

Then for n > N , we have
√
an < ε, that is,

|√an −
√
L| = |√an −

√
0| = |√an| =

√
an < ε.

So (
√
an)n∈N is convergent with limit

√
L.

2◦ If L > 0, then let N ∈ N be such that for n > N , |an − L| < ε
√
L. Then for all

n > N , we obtain

ε > |an − L|
= |(√an −

√
L)(

√
an +

√
L)|

= |√an −
√
L||√an +

√
L)|

= |√an −
√
L|(√an +

√
L)

and so

|√an −
√
L| < ε

√
L

√
an +

√
L

≤ ε
√
L√
L

= ε.

Hence (
√
an)n∈N is convergent with limit

√
L.

(b) For all n ∈ N, we have

√

n2 + n− n = (
√

n2 + n− n) ·
√
n2 + n+ n√
n2 + n+ n

=
n2 + n− n2

√
n2 + n+ n

=
n√

n2 + n+ n

=
n(1)

n
(

1
n

√
n2 + n+ 1

)

=
1

√
n2+n

n2 + 1

=
1

√

1 + 1
n

+ 1
.
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As (1)n∈N is convergent with limit 1 and
(

1
n

)

n∈N
is convergent with limit 0, it follows

that
(
1 + 1

n

)

n∈N
is convergent with limit 1. Furthermore 1 + 1

n
≥ 0 for all n ∈ N,

and so by the previous part, it follows that
(√

1 + 1
n

)

n∈N

is convergent with limit

√
1 = 1. Hence

(√

1 + 1
n

+ 1
)

n∈N

is convergent with limit 1 + 1 = 2( 6= 0). Also
√

1 + 1
n

+ 1 > 1 > 0. Thus by the theorem on algebra of limits, we conclude that

the sequence

(

1√
1+ 1

n
+1

)

n∈N

is convergent with limit 1
2 , that is, (

√
n2 + n − n)n∈N is

convergent with limit 1
2 .

4. Consider the sequence (bn − an)n∈N. As an ≤ bn, it follows that bn − an ≥ 0 for all
n ∈ N. From the theorem on algebra of limits, it follows that the sequence (bn − an)n∈N is
convergent (being the sum of the convergent sequence (bn)n∈N and the convergent sequence
(−an)n∈N). Moreover, its limit is lim

n→∞
bn − lim

n→∞
an. From Exercise 5 on page 13, we obtain

lim
n→∞

bn − lim
n→∞

an ≥ 0, that is lim
n→∞

bn ≥ lim
n→∞

an.

Solutions to the exercises on page 22

1. For all n ∈ N, we have

0 ≤ n!

nn
=

1

n
· 2

n
· · · · · n− 1

n
· n
n
≤ 1

n
· 1 · · · · · 1 · 1 =

1

n
.

Since (0)n∈N and
(

1
n

)

n∈N
are both convergent with the same limit 0, from the Sandwich

theorem, it follows that
(

n!
nn

)

n∈N
is convergent with the limit 0.

2. Let k ∈ N. For all n ∈ N, we have

0 ≤ 1k + 2k + 3k + · · · + nk

nk+2
≤ nk + nk + nk + · · · + nk

nk+2
≤ n · nk

nk+2
=

1

n
.

Thus

0 ≤ 1k + 2k + 3k + · · · + nk

nk+2
≤ 1

n

for all n ∈ N. Since the sequences (0)n∈N and
(

1
n

)

n∈N
are both convergent with limit 0, from

the Sandwich theorem, we obtain that

lim
n→∞

1k + 2k + 3k + · · · + nk

nk+2
= 0.

3. (a) We prove the claim using induction. Let x ≥ −1. Clearly (1 + x)1 = 1 + x = 1 + 1 · x.
If for some k ∈ N, (1 + x)k ≥ 1 + kx, then we have

(1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x) (by the induction hypothesis and since 1 + x ≥ 0)

= 1 + kx+ x+ x2

= 1 + (k + 1)x+ x2

≥ 1 + (k + 1)x.

Hence by induction, the result follows.
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(b) For all n ∈ N,

n
1
n ≥ 1 (2.24)

(for if n
1
n < 1, then n = (n

1
n )n < 1n = 1, a contradiction!). Clearly for all n ∈ N,

n
1
n = (

√
n

2
)

1
n =

√
n

2
n < (1 +

√
n)

2
n . (2.25)

Finally,
(

1 +
1√
n

)n

≥ 1 + n · 1√
n

= 1 +
√
n,

and so
(

1 +
1√
n

)2

=

((

1 +
1√
n

)n) 2
n

≥ (1 +
√
n)

2
n . (2.26)

Combining (2.24), (2.25), and (2.26), we obtain

1 ≤ n
1
n < (1 +

√
n)

2
n ≤

(

1 +
1√
n

)2

(2.27)

for all n ∈ N.

(c) Since lim
n→∞

1

n
= 0, using Exercise 3a on page 20, it follows that lim

n→∞
1√
n

= 0. Hence

lim
n→∞

(

1 +
1√
n

)2

= (1 + 0)2 = 1 = lim
n→∞

1.

Using (2.27), it follows from the Sandwich theorem that (n
1
n )n∈N is convergent and

lim
n→∞

n
1
n = 1.

4. Consider the sequence (an − a)n∈N. As an ∈ (a, b) for all n ∈ N, we have an − a ≥ 0.
From the theorem on algebra of limits, it follows that the sequence (an−a)n∈N is convergent
(being the sum of the convergent sequence (an)n∈N and the convergent sequence (−a)n∈N).
Moreover, its limit is L−a. From Exercise 5 on page 13, we obtain L−a ≥ 0, that is a ≤ L.

Next consider the sequence (b − an)n∈N. As an ∈ (a, b) for all n ∈ N, we have b − an ≥ 0.
From the theorem on algebra of limits, it follows that the sequence (b−an)n∈N is convergent
(being the sum of the convergent sequence (−an)n∈N and the convergent sequence (b)n∈N).
Moreover, its limit is −L + b. From Exercise 5 on page 13, we obtain −L + b ≥ 0, that is
L ≤ b.

Consequently a ≤ L ≤ b, that is, L ∈ [a, b].

Consider the sequence ( 1
n
)n∈N contained in (0, 1). It is convergent with limit 0 6∈ (0, 1).

5. For all n ∈ N, we have − 1
n
< bn − an <

1
n
, and so by adding an, we have − 1

n
+ an < bn <

1
n

+ an. By the theorem on algebra of limits, we know that

lim
n→∞

(

− 1

n
+ an

)

= lim
n→∞

− 1

n
+ lim

n→∞
an = 0 + lim

n→∞
an

= lim
n→∞

an

lim
n→∞

(
1

n
+ an

)

= lim
n→∞

1

n
+ lim

n→∞
an = 0 + lim

n→∞
an.

So by the sandwich theorem, it follows that (bn)n∈N is convergent with the limit lim
n→∞

an.
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Solution to the exercise on page 24

Observe that
the terms 2, 8, 2, 8 appear adjacently
and so the terms 1, 6, 1, 6 appear adjacently
and so the terms 6, 6, 6 appear adjacently
and so the terms 3, 6, 3, 6 appear adjacently
and so the terms 1, 8, 1, 8 appear adjacently

and so the terms 8, 8, 8 appear adjacently
and so the terms 6, 4, 6, 4 appear adjacently
and so the terms 2, 4, 2, 4 appear adjacently
and so the terms 8, 8, 8 appear adjacently

...

Hence we get the loop

. . . , 8, 8, 8, · · · → . . . , 6, 4, 6, 4, · · · → . . . , 2, 4, 2, 4, · · · → . . . , 8, 8, 8, · · · →,

which contains 6, and so 6 appears infinite number of times. Thus we can choose indices

n1 < n2 < n3 < . . .

such that for all k ∈ N, ank
= 6. So (6)k∈N is a subsequence of the given sequence.

Solution to the exercise on page 26

Let (an)n∈N be a Cauchy sequence. From Exercise 5 on page 17, it follows that (an)n∈N is bounded.
By the Bolzano-Weierstrass theorem, it follows that (an)n∈N has a convergent subsequence, say
(ank

))k∈N with limit L. Using the fact that (an)n∈N is Cauchy, we now prove that (an)n∈N is itself
convergent with limit L.

Let ε > 0. Since (an)n∈N is Cauchy, there exists a N ∈ N such that for all n,m > N ,
|an − am| < ε

2 .

As (ank
)k∈N is convergent with limit L, there exists a K ∈ N such that for all nK > N and

|anK
− L| < ε

2 . Then for all n > N , we have

|an − L| = |an − anK
+ anK

− L|
≤ |an − anK

| + |anK
− L| (triangle inequality)

<
ε

2
+
ε

2
= ε.

Consequently, (an)n∈N is convergent with limit L.
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Solutions to the exercises on page 29

1. (a) Let ε > 0. If δ :=
√
ε, then we note that δ > 0. Moreover, if x ∈ R and |x− 0| = |x| <

δ =
√
ε, then we obtain

|x2 − 02| = |x2| = |x| · |x| < δ · δ =
√
ε · √ε = ε.

So f is continuous at 0.

(b) Let c ∈ R and suppose that c 6= 0. Let ε > 0. If x ∈ R, then

|x2 − c2| = |(x − c)(x+ c)| = |x− c| · |x+ c|.

If x ∈ R is such that |x− c| < δ, then

x < c+ δ ≤ |c+ δ| ≤ |c| + |δ| = |c| + δ, and

−x < δ − c ≤ |δ − c| ≤ |δ| + | − c| = δ + |c|.

Thus if x ∈ R satisfies |x− c| < δ, then |x| < δ + |c|, and so

|x+ c| ≤ |x| + |c| < δ + |c| + |c| = δ + 2|c|.

So if |x − c| < δ, we have |x2 − c2| = |x − c| · |x + c| < δ · (δ + 2|c|). Thus in order to
make |x2 − c2| less than ε, we choose δ such that δ(δ + 2|c|) < ε: indeed, let

δ := min

{
ε

2|c| + 1
, 1

}

.

Since ε > 0, it follows that δ is positive. Furthermore, if x ∈ R satisfies |x − c| < δ,
then we obtain

|x2 − c2| < δ(δ + 2|c|) ≤ ε

2|c| + 1
(1 + 2|c|) = ε.

2. (a) Let c′ ∈ R and ε > 0. Since f is continuous at c, there exists a δ > 0 such that for all
x ∈ R satisfying |x− c| < δ, |f(x)−f(c)| < ε. Then for all x ∈ R satisfying |x− c′| < δ,
we have9

|f(x) − f(c′)| = |f(x) − f(c′) + f(c) − f(c)| = |f(x− c′ + c) − f(c)| < ε,

since |(x− c′ + c)− c| = |x− c′| < δ. So f is continuous at c′. Since the choice of c′ ∈ R

was arbitrary, it follows that f is continuous on R.

(b) Let α ∈ R, and let f : R → R be given by f(x) = αx, for all x ∈ R. Then

f(x+ y) = α(x+ y) = αx+ αy = f(x) + f(y).

3. We observe that as |f(0)| ≤ M |0| = M · 0 = 0, it follows that |f(0)| = 0, that is, f(0) = 0.
Given ε > 0, we define δ = ε

M
. Then for all x ∈ R satisfying |x| = |x− 0| < δ, we have

|f(x) − f(0)| = |f(x) − 0| = |f(x)| ≤M |x| = M |x− 0| < Mδ = M
ε

M
= ε.

Hence f is continuous at 0.

4. Let c ∈ R. Suppose that f is continuous at c. Consider ε = 1
2 > 0. Then ∃δ > 0 such that

for all x ∈ R satisfying |x− c| < δ, |f(x) − f(c)| < ε = 1
2 . We have the following two cases:

9Here we use the fact that f is ‘additive’. First of all, f(0) = f(0 + 0) = f(0) + f(0), and so f(0) = 0. Hence it
follows that −f(c′) = f(−c′), since 0 = f(0) = f(c′ − c′) = f(c′) + f(−c′). Finally we have f(x) − f(c′) + f(c) =
f(x) + f(−c′) + f(c) = f(x − c′) + f(c) = f(x − c′ + c).
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1◦ c ∈ Q. Then there exists x ∈ R \ Q such that |x− c| < δ.

But |f(x) − f(c)| = |1 − 0| = |1| = 1 > 1
2 , a contradiction.

2◦ c ∈ R \ Q. Then there exists x ∈ Q such that |x− c| < δ.

But |f(x) − f(c)| = |0 − 1| = | − 1| = 1 > 1
2 , a contradiction.

Hence f is not continuous at c.

5. Since f(c)
2 > 0, there exists a δ > 0 such that for all x ∈ R satisfying |x− c| < δ,

|f(x) − f(c)| < f(c)

2
.

Thus for all x ∈ R satisfying |x− c| < δ (that is, c− δ < x < c+ δ), we have

f(c) − f(x) ≤ |f(c) − f(x)| = |f(x) − f(c)| < f(c)

2
,

and so f(x) > f(c)
2 > 0.

Solutions to the exercises on page 31

1. Let (xn)n∈N be a convergent sequence with limit c. Then (x2
n)n∈N is also convergent with limit

c2. Thus (f(xn))n∈N is convergent with limit f(c). So by Theorem 1.3.2, f is continuous.

2. If n ∈ N, then there exists qn ∈ Q such that |qn − c| < 1
n
.

Claim: (qn)n∈N is convergent with limit c.

Proof Let ε > 0. By the Archimedean principle, there exists an N ∈ N such that 1
ε
< N .

Thus for n > N ,

|qn − c| < 1

n
<

1

N
< ε.

This proves the claim.

Since f is continuous at c, by Theorem 1.3.2, we have f(c) = lim
n→∞

f(qn) = lim
n→∞

0 = 0.

3. If x1 6= x2, then the sequence x1, x2, x1, x2, . . . is divergent. (Indeed, the subsequence
x1, x1, x1, . . . converges to x1, while the subsequence x2, x2, x2, . . . converges to x2, and so
by Theorem 1.2.6, it follows that the sequence x1, x2, x1, x2, . . . is divergent.)

Thus the sequence f(x1), f(x2), f(x1), f(x2), . . . is divergent. Consequently f(x1) 6= f(x2):
for otherwise if f(x1) = f(x2), then the sequence

f(x1), f(x2), f(x1), f(x2) . . .

q q q q

f(x1), f(x1), f(x1), f(x1) . . .

is a constant sequence, and so it is convergent with limit f(x1) (= f(x2)).

So we have shown that if x1 6= x2, then f(x1) 6= f(x2), that is, the function f is one-to-one.
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Solution to the exercise on page 32

We apply Theorem 1.3.3 several times in order to prove this.

Since the function x 7→ x is continuous on R, it follows that the function x 7→ x2 is continuous
on R as well. Moreover the function x 7→ 1 is continuous on R, and so we obtain that the function
x 7→ 1 + x2 is continuous on R. As 1 + x2 ≥ 1 > 0 for all real x, we conclude that the function

x 7→ 1
1+x2 is continuous on R. Hence the function x 7→ x2 · 1

1+x2 = x2

1+x2 is continuous on R, that
is, f is continuous on R.



94

Solutions to the exercises on page 34

1. Let m := inf{f(x) | x ∈ [a, b]}. We prove that there exists a d ∈ [a, b] such that f(d) = m.
For each n ∈ N, m < m+ 1

n
, and so m+ 1

n
cannot be a lower bound for {f(x) | x ∈ [a, b]}.

So there exists an xn ∈ [a, b] such that

m ≤ f(xn) < m+
1

n
. (2.28)

By the Bolzano-Weierstrass theorem, (xn)n∈N has a convergent subsequence (xnk
)k∈N with

limit d ∈ [a, b]. Since f is continuous at d, it follows that (f(xnk
))k∈N is convergent with

limit f(d). From (2.28), using the Sandwich theorem, we conclude that f(d) = m.

2. Let f : [0, 1] → R be defined by

f(x) =

{
0 for all 0 ≤ x < 1

2 ,

1 for all 1
2 ≤ x ≤ 1.

Then f is not continuous at 1
2 : indeed the sequence

(
1
2 − 1

n+1

)

n∈N

is contained in [0, 1],
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Figure 2.3: A discontinuous function on [0, 1] that attains its extreme values.

and it is convergent with limit 1
2 − 0 = 1

2 . However,

lim
n→∞

f

(
1

2
− 1

n+ 1

)

= lim
n→∞

0 = 0 6= 1 = f

(
1

2

)

.

But {f(x) | x ∈ [0, 1]} = {0, 1}, and so

sup{f(x) | x ∈ [0, 1]} = sup{0, 1} = 1 = f(1), and

inf{f(x) | x ∈ [0, 1]} = inf{0, 1} = 0 = f(0).

3. Consider the function g : [0, T ] → R, given by

g(x) = f(x) for all x ∈ [0, T ].

Then g is continuous on [0, T ].

(Indeed, the continuity of g on [0, T ] is a trivial consequence of the continuity of f on R: If
c ∈ [0, T ], and ε > 0, then there exists a positive δ such that for all x ∈ R satisfying |x−c| < δ,
|f(x)−f(c)| < ε. Hence for all x ∈ [0, T ] satisfying |x−c| < δ, |g(x)−g(c)| = |f(x)−f(c)| < ε.
So g is continuous at c. But the choice of c was arbitrary, and so g is continuous on [0, T ].)

Applying the extreme value theorem to g, we conclude that there exist c, d ∈ [0, T ] such that

g(c) = max{g(x) | x ∈ [0, T ]} and

g(d) = min{g(x) | x ∈ [0, T ]}.

So for all x ∈ [0, T ], g(d) ≤ g(x) ≤ g(c), that is, f(d) ≤ f(x) ≤ f(c). So far we have proved
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the fact that f is bounded on [0, T ]. We now prove that f is bounded on R by using the
periodicity of f . See Figure 2.4.

Now if x is any real number, there exists a n ∈ Z such that x = nT + r, where r ∈ R is such
that r ∈ [0, T ). (Indeed, we have

x

T
=
⌊ x

T

⌋

+ Θ

where Θ ∈ [0, 1). Consequently, we obtain x = nT + r, where n :=
⌊

x
T

⌋
∈ Z and r := T ·Θ ∈

[0, T ).) Thus f(x) = f(nT+r) = f(r). As f(d) ≤ f(r) ≤ f(c), it follows that f(d) ≤ f(x) ≤
f(c). Since the choice of x ∈ R was arbitrary, it follows that f(d) ≤ f(x) ≤ f(c) for all
x ∈ R. So f(c) and f(d) are upper and lower bounds, respectively, of the set {f(x) | x ∈ R},
and so it is bounded.

4. (a) If x ∈ (a, b], then let f |[x,b] denote the restriction of f to [x, b], defined by f |[x,b](y) =
f(y) for all y ∈ [x, b]. We note that f |[x,b] is a continuous function. Applying the
intermediate value theorem to f |[x,b], we see that

max{f |[x,b](y) | y ∈ [a, x]} = max{f(y) | y ∈ [a, x]}
exists, and so f∗ is well-defined.

(b) First we observe that f∗ is an increasing function, that is, if x < y then, f∗(x) ≤ f∗(y).
Furthermore, since sup(A ∪ B) = max{supA, supB} (why?), it follows that if x < y,
then

f∗(y) ≤ max{f∗(x),max{f(z) | z ∈ [x, y]}.
Let c ∈ [a, b], and let ε > 0. Choose δ > 0 such that for all x ∈ [a, b] such that |x−c| < δ,
|f(x) − f(c)| < ε. Let x ∈ [a, b] be such that |x − c| < δ. Then we have the following
two cases:

1◦ Let c < x < c+ δ. Then we have

f∗(x) = max{f∗(c),max{f(z) | z ∈ [c, x]}}
≤ max{f∗(c), f(c) + ε}
≤ max{f∗(c), f∗(c) + ε}
= f∗(c) + ε,

and so |f∗(x) − f∗(c)| = f∗(x) − f∗(c) ≤ ε.

2◦ Let c− δ < x ≤ c. If x = c, then |f∗(x) − f∗(c)| = 0 < ε trivially. If c− δ < x < c,
then for any z ∈ (c− δ, c), we have

|f(z) − f(x)| = |f(z) − f(c) + f(c) − f(x)| ≤ |f(z) − f(c)| + |f(c) − f(x)| = 2ε,

and so f(z) ≤ f(x) + 2ε. Thus

f∗(c) = max{f∗(x),max{f(z) | z ∈ [x, c]}}
≤ max{f∗(x), f(x) + 2ε}
≤ max{f∗(x), f∗(x) + 2ε}
= f∗(x) + 2ε,

and so |f∗(x) − f∗(c)| = f∗(c) − f∗(x) ≤ 2ε.
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Hence for all x ∈ [a, b] satisfying |x− c| < δ, we have |f∗(x)−f∗(c)| < 2ε. Consequently
f∗ is continuous at c. Since the choice of c was arbitrary, it follows that f∗ is continuous
on [a, b].

(c) f∗ is given by

f∗(x) =

{
x− x2 if 0 ≤ x ≤ 1

2 ,
1
4 if 1

2 < x ≤ 1.

See Figure 2.5.
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Solutions to the exercises on page 37

1. Since the function f : [0, 1] → R and the function x 7→ x from [0, 1] to R are both continuous
on the interval [0, 1], it follows that also the function g : [0, 1] → R defined by

g(x) = f(x) − x, for all x ∈ [0, 1]

is continuous on [0, 1]. Since 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1], we have

g(0) = f(0) − 0 = f(0) ≥ 0, and

g(1) = f(1) − 1 ≤ 0.

So by the intermediate value theorem, there exists a c ∈ [0, 1] such that g(c) = 0, that is,
f(c) = c.

2. Let the weekend campsite be at altitude H . Let u : [0, 1] → R be the position function for
the walk up, and d :

[
0, 1

2

]
→ R be the position function for the walk down. (We assume

that these are continuous functions.) Consider the function f :
[
0, 1

2

]
→ R given by

f(t) = u(t) − d(t), t ∈
[

0,
1

2

]

.

Then f is also continuous, and moreover

f(0) = u(0) − d(0) = 0 −H = −H < 0, while

f

(
1

2

)

= u

(
1

2

)

− d

(
1

2

)

= u

(
1

2

)

− 0 = u

(
1

2

)

> 0.

See Figure 2.6. Hence by the intermediate value theorem, it follows that there exists a
c ∈

[
0, 1

2

]
such that f(c) = 0, that is, u(c) = d(c). So at time c past 8:00, the hiker was

exactly at the same spot on Saturday and Sunday.
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3. The polynomial function p : [−1, 2] → R is continuous on the interval [−1, 2]. Moreover,

p(−1) = 2 · (−1)3 − 5 · (−1)2 − 10 · (−1) + 5 = −2− 5 + 10 + 5 = 8 > 0, and

p(2) = 2 · (2)3 − 5 · (2)2 − 10 · (2) + 5 = 16 − 20− 20 + 5 = −19 < 0.

Since p(−1) > 0 > p(2), from the intermediate value theorem applied to the continuous
function p on the interval [−1, 2], we conclude that there must exist a c ∈ [−1, 2] such that
p(c) = 0. So p has a real root in the interval [−1, 2].

4. Obviously S ⊂ R. We now show the reverse inclusion. Let y ∈ R.

As S is not bounded above, y is not an upper bound of S, that is, there exists a x0 ∈ R such
that f(x0) < y.

Similarly, since S is not bounded below, y is not a lower bound of S, and so there exists a
x1 ∈ R such that f(x1) > y.

Now consider the restriction of f to the interval with endpoints x0 and x1 with the end-
points included in the interval. Applying the intermediate value theorem to this continuous
function, it follows that there exists a real number c such that f(c) = y.

This shows that S = R.

5. (a) The following three cases are possible:

1◦ f(0) = 0. Then let x0 = 0 and let m ∈ Z. Clearly f(x0) = f(0) = 0 = m0 = mx0.

2◦ f(0) > 0. Choose N ∈ N satisfying N > f(1) (that such a N exists follows
from the Archimedean property). Consider the function g : [0, 1] → R defined by
g(x) = f(x)−Nx, x ∈ [0, 1]. As the functions f and x 7→ Nx are continuous, so is
g. Note that g(0) = f(0) −N0 = f(0) > 0, while g(1) = f(1) −N < 0. Applying
the intermediate value theorem to g (with y = 0), it follows that there exists a
x0 ∈ [0, 1] such that g(x0) = 0, that is, f(x0) = Nx0.

3◦ f(0) < 0. Choose a N ∈ N such that N > −f(1) (again the Archimedean property
guarantees the existence of such a N), and consider the continuous function g :
[0, 1] → R defined by g(x) = f(x) + Nx. We observe that g(0) = f(0) < 0, and
g(1) = f(1) + N > 0, and so by the intermediate value theorem, it follows that
there exists a x0 ∈ [0, 1] such that g(x0) = 0, that is, f(x0) = −Nx0.

This completes the proof.

(b) Suppose that such a continuous function exists. From the part above, it follows that
there exists a x0 ∈ R and a m ∈ Z such that f(x0) = mx0. We have the following two
possible cases:

1◦ x0 ∈ Q. But then f(x0) is irrational, while mx0 is rational, a contradiction.

2◦ x0 6∈ Q. But then f(x0) is rational, whereas mx0 is irrational, a contradiction.

So f cannot be continuous.
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Algebra

Solutions to the exercises on page 44

1. (a) Addition modulo 6 is a law of composition on Z6, since if [a], [b] ∈ Z6, then [a] ⊕ [b] =
[a+ b] ∈ Z6. Moreover, we verify below that the group axioms are satisfied.

G1. Addition modulo 6 is associative: if [a], [b], [c] ∈ Z6, then

([a] ⊕ [b]) ⊕ [c] = [a+ b] ⊕ [c]

= [(a+ b) + c]

= [a+ (b+ c)]

= [a] ⊕ [b+ c]

= [a] ⊕ ([b] ⊕ [c]).

G2. [0] is the identity element: for all [a] ∈ Z6, we have

[0] ⊕ [a] = [0 + a] = [a] = [a+ 0] = [a] ⊕ [0].

G3. If [a] ∈ Z6, then [−a] ∈ Z6, and

[a] ⊕ [−a] = [a+ (−a)] = [0] = [−a+ a] = [−a] ⊕ [a].

So Z6 with addition modulo 6 forms a group.

We give its group table below:

⊕ [0] [1] [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

(b) No; multiplication modulo 6 is a law of composition on Z6 that satisfies G1 and G2,
but G3 is not true:

G1. Multiplication modulo 6 is associative: if [a], [b], [c] ∈ Z6, then

([a] ⊗ [b]) ⊗ [c] = [ab] ⊗ [c]

= [(ab)c]

= [a(bc)]

= [a] ⊗ [bc]

= [a] ⊗ ([b] ⊗ [c]).

G2. (If e = [k] is the identity element for some integer k, then for all [a] ∈ Z6, [a]⊗ e =
[a] = e⊗[a]. In particular, with [a] = [1] ∈ Z6, we obtain e = [k] = [1k] = [1]⊗[k] =
[1] ⊗ e = [1]. So if there is an identity element e, then it must be [1].) Indeed [1]
serves as an identity element, since for all [a] ∈ Z6,

[a] ⊗ [1] = [a · 1] = [a] = [1 · a] = [a] ⊗ [a].

G3 is not satisfied. For instance, [0] ∈ Z6, but for all [a] ∈ Z6, [0] ⊗ [a] = [a] ⊗ [0] =
[0] 6= [1]. So there does not exist an inverse of the element [0] in Z6.
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Hence Z6 with multiplication modulo 6 is not a group.

Z∗
6 with multiplication modulo 6 is also not a group, since multiplication modulo 6 is

not a law of composition on the set Z∗
6: indeed, [2], [3] ∈ Z∗

6, but [2] ⊗ [3] = [2 · 3] =
[6] = [0] 6∈ Z∗

6.

(c) If: Let m be a prime number.

First we show that multiplication modulo m is a law of composition on Z∗
m. Let

[a], [b] ∈ Z∗
m. Then a and b are not divisible by m, and since m is prime, it follows that

ab is also not divisible by m. Thus [a] ⊗ [b] = [ab] 6= [0], and so [a] ⊗ [b] ∈ Z∗
m.

Next we show that the group axioms are satisfied:

G1. If [a], [b], [c] ∈ Z∗
m, then

([a] ⊗ [b]) ⊗ [c] = [ab] ⊗ [c]

= [(ab)c]

= [a(bc)]

= [a] ⊗ [bc]

= [a] ⊗ ([b] ⊗ [c]).

G2. [1] 6= [0] and so [1] ∈ Z∗
m. Furthermore, For all [a] ∈ Z∗

m, we have

[a] ⊗ [1] = [a · 1] = [a] = [1 · a] = [1] ⊗ [a].

G3. If [a] ∈ Z∗
m, then m does not divide a (for otherwise [a] = [0]). As m is prime, it

follows that gcd(a,m) = 1. (Indeed, gcd(a,m) divides m, and since m is prime,
the only factors of m are 1,m,−1,−m. As gcd(a,m) ≥ 0, the only possible values
are m and 1. Also, gcd(a,m) divides a, and since a is not divisible by m, it follows
that gcd(a,m) 6= m. So the only possible value of gcd(a,m) is 1.) So there exist
s, t ∈ Z such that

as+mt = 1.

Consequently

[s] ⊗ [a] = [sa] = [as] = [a] ⊗ [s]

= [as]

= [1 −mt]

= [1] ⊕ [m(−t)]
= [1] ⊕ [0]

= [1].

Furthermore [s] 6= [0], since otherwise m|s, and so m|as + mt, that is m|1, a
contradiction. Hence [s] ∈ Z∗

m, and so [s] is the inverse of [a].

Hence Z∗
m with multiplication modulo m is a group.

Only if: Suppose that m = p · q, where p, q ∈ {2, 3, . . . ,m − 1}. Clearly, as m does
not divide p or q, it follows that [p] 6= [0] and [q] 6= [0]. So [p], [q] ∈ Z∗

m. However,

[p] ⊗ [q] = [p · q] = [m] = [0] 6∈ Z∗
m,

and so multiplication modulo m is not a law of composition on Z∗
m. Consequently, Z∗

m

with multiplication modulo m is not a group.

2. (a) Composition of functions gives a law of composition on the set Sn of all bijections from
{1, 2, 3, . . . , n} onto itself. Indeed if f, g are bijections from {1, 2, 3, . . . , n} onto itself,
then f ◦ g is again a bijection from {1, 2, 3, . . . , n} onto itself:
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i. f ◦ g is one-to-one. Let k1, k2 ∈ {1, 2, 3, . . . , n}. If (f ◦ g)(k1) = (f ◦ g)(k2), then
f(g(k1)) = f(g(k2)), and since f is one-to-one, we get g(k1) = g(k2). Furthermore,
since g is one-to-one, k1 = k2.

ii. f ◦ g is onto. If k ∈ {1, 2, 3, . . . , n}, then since f is onto, there exists a k′ ∈
{1, 2, 3, . . . , n} such that f(k′) = k. Moreover, since g is onto, there exists a
k′′ ∈ {1, 2, 3, . . . , n} such that g(k′′) = k′. Thus (f ◦g)(k′′) = f(g(k′′)) = f(k′) = k.
So f ◦ g is onto.

Next we show that the group axioms are satisfied:

G1. If f, g, h ∈ Sn, then for all k ∈ {1, 2, 3, . . . , n},

((f ◦ g) ◦ h)(k) = (f ◦ g)(h(k)) = f(g(h(k))) = f((g ◦ h)(k)) = (f ◦ (g ◦ h))(k).

So (f ◦ g) ◦ h = f ◦ (g ◦ h).
G2. The identity function ι : {1, 2, 3, . . . , n} → {1, 2, 3, . . . , n} defined by ι(k) = k for

all k ∈ {1, 2, 3, . . . , n}, serves as the identity element in Sn. Indeed, for all f ∈ Sn,
we have

(f ◦ ι)(k) = f(ι(k)) = f(k) = ι(f(k)) = (ι ◦ f)(k), ∀k ∈ {1, 2, 3, . . . , n}.

Thus f ◦ ι = f = ι ◦ f .

G3. If f ∈ Sn, then since f is a bijection, it follows that for all k ∈ {1, 2, 3, . . . , n}, there
exists a unique element k′ such that f(k′) = k. Define f−1 : {1, 2, 3, . . . , n} →
{1, 2, 3, . . . , n} as follows: if k ∈ {1, 2, 3, . . . , n}, then f−1(k) = k′, where k′ ∈
{1, 2, 3, . . . , n} is such that f(k′) = k. Then for all k ∈ {1, 2, 3, . . . , n}, we have

(f ◦ f−1)(k) = f(f−1(k)) = k = ι(k) = k = f−1(f(k)) = (f−1 ◦ f)(k),

and so f ◦ f−1 = ι = f−1 ◦ f .

Hence Sn with the composition of functions is a group.

(b) The number of bijections from a set with n elements onto itself is n!, and so the order
of Sn is n!.

Indeed, in order to specify the bijection f , one needs to specify f(1), . . . , f(n). The
number of ways of specifying f(1) is n (as it can be any one of the numbers 1, . . . , n). As
f is one-to-one, f(2) can be only be any one of the elements of the set {1, 2, 3, . . . , n} \
{f(1)} (which has n − 1 elements). Proceeding in this way, the number of distinct
bijections we get are n · (n− 1) · · · · · 2 · 1 = n!.

(c) Let f : {1, 2, 3} → {1, 2, 3} be the function

f(1) = 2

f(2) = 1

f(3) = 3,

and g : {1, 2, 3} → {1, 2, 3} be the function

g(1) = 1

g(2) = 3

g(3) = 2.

Then
(f ◦ g)(1) = f(g(1)) = f(1) = 2 6= 3 = g(2) = g(f(1)) = (g ◦ f)(1),

and so f ◦ g 6= g ◦ f .
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(d) If: S1 has the only element ι : {1} → {1}, and so ι ◦ ι = ι = ι ◦ ι. Thus S1 is abelian.

S2 has the two elements ι : {1, 2} → {1, 2}, and r : {1, 2} → {1, 2} given by

r(1) = 2

r(2) = 1.

Since ι ◦ r = r ◦ ι we see that S2 is abelian.

So if n ≤ 2, then Sn is abelian.

Only if: If n > 2, then consider the bijections f : {1, 2, 3, . . . , n} → {1, 2, 3, . . . , n}
and g : {1, 2, 3, . . . , n} → {1, 2, 3, . . . , n} given by

f(1) = 2
f(2) = 1
f(n) = n ∀n ∈ {3, . . . , n}

and

g(1) = 1
g(2) = 3
g(3) = 2
g(n) = n ∀n ∈ {1, 2, 3, . . . , n} \ {1, 2, 3}

.

Then
(f ◦ g)(1) = f(g(1)) = f(1) = 2 6= 3 = g(2) = g(f(1)) = (g ◦ f)(1),

and so f ◦ g 6= g ◦ f . Thus Sn is not abelian.

Hence Sn is abelian iff n ≥ 2.

3. We note that if [
a b

−b a

]

,

[
a′ b′

−b′ a′

]

∈ S,

then [
a b

−b a

] [
a′ b′

−b′ a′

]

=

[
aa′ − bb′ ab′ + ba′

−(ab′ + ba′) aa′ − bb′

]

,

and

(aa′ − bb′)2 + (ab′ + ba′)2 = a2a′2 − 2aa′bb′ + b2b′2 + a2b′2 − 2ab′ba′ + b2a′2

= a2(a′2 + b′2) + b2(b′2 + a′2)

= (a2 + b2)(a′2 + b′2)

6= 0.

Hence matrix multiplication is a law of composition on S. Next we verify that the group
axioms are satisfied:

G1. Matrix multiplication is associative, and so for all A,B,C ∈ S, (AB)C = A(BC).

G2. Let I denote the identity matrix. Then we have

I =

[
1 0
0 1

]

=

[
1 0
−0 1

]

and moreover, 12 + 02 = 1 6= 0. So I belongs to S. Furthermore, for every A ∈ S,
AI = A = IA.

G3. Let

A =

[
a b

−b a

]

∈ S.

Then a2 + b2 6= 0. If

B :=

[
a

a2+b2
b

a2+b2
−b

a2+b2
a

a2+b2

]

,
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then
(

a

a2 + b2

)2

+

(
b

a2 + b2

)2

=
a2 + b2

(a2 + b2)2
=

1

a2 + b2
6= 0.

So B ∈ S, and furthermore, AB = I = BA.

So S is a group with matrix multiplication.

4. (a) Let a, b, c ∈ G, and suppose that a ∗ b = a ∗ c. Since a ∈ G, there exists a−1 ∈ G such
that a ∗ a−1 = e = a−1 ∗ a, where e denotes the identity element in G. Then we have

b = e ∗ b (since e is the identity element)

= (a−1 ∗ a) ∗ b (since a−1 is the inverse of a)

= a−1 ∗ (a ∗ b) (associativity)

= a−1 ∗ (a ∗ c) (since a ∗ b = a ∗ c)
= (a−1 ∗ a) ∗ c (associativity)

= e ∗ c (since a−1 is the inverse of a)

= c (since e is the identity element).

(b) Clearly
a ∗ (a−1 ∗ b) = (a ∗ a−1) ∗ b = e ∗ b = b,

and so x = a−1 ∗ b is a solution to a ∗ x = b.

If there are two solutions, say x1 and x2, then

a ∗ x1 = b = a ∗ x2,

and by part 4a above, it follows that x1 = x2. Hence a ∗ x = b has the unique solution
x = a−1 ∗ b.

(c) Since a, b ∈ G, there exist elements a−1, b−1 ∈ G such that

a ∗ a−1 = e = a−1 ∗ a and b ∗ b−1 = e = b−1 ∗ b.

We have

(a ∗ b) ∗ (b−1 ∗ a−1) = a ∗ (b ∗ (b−1 ∗ a−1)) (associativity)

= a ∗ ((b ∗ b−1) ∗ a−1) (associativity)

= a ∗ (e ∗ a−1) (since b−1 is the inverse of b)

= a ∗ a−1 (since e is the identity element)

= e (since a−1 is the inverse of a),

and

(b−1 ∗ a−1) ∗ (a ∗ b) = ((b−1 ∗ a−1) ∗ a) ∗ b (associativity)

= (b−1 ∗ (a−1 ∗ a)) ∗ b (associativity)

= (b−1 ∗ e) ∗ b (since a−1 is the inverse of a)

= b−1 ∗ b (since e is the identity element)

= e (since b−1 is the inverse of b).

Thus b−1 ∗ a−1 is an inverse of a ∗ b. Since the inverse of a ∗ b is unique, it follows that
(a ∗ b)−1 = b−1 ∗ a−1.
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Solutions to the exercises on page 46

1. (a) FALSE. Although H1 and H2 hold, H3 does not hold. Indeed, 1 is a nonnegative integer,
but its inverse −1 is not a nonnegative integer.

(b) FALSE. H1 and H2 are not true. Indeed, the sum of the odd integers 1 and −1 is 0,
which is not an odd integer. So H1 and H2 do not hold. But H3 is true, since if m is
an odd integer, then so is −m.

(c) TRUE. For all a, b ∈ H , we have that a, b also belong to G, and as G is abelian, we
know that a ∗ b = b ∗ a.

2. Yes. For instance, given any infinite group G, the set {e} comprising the identity element e
is a subgroup of the group G. Thus {0} is a finite subgroup of the infinite group Z of integers
with addition. The subgroup {−1, 1} of the set of nonzero real numbers with multiplication
is another example.

3. (a) We note that

H = {4m | m ∈ Z} = {. . . ,−12,−8,−4, 0, 4, 8, 12, . . .}, and

K = {6m | m ∈ Z} = {. . . ,−18,−12,−6, 0, 6, 12, 18, . . .}.

Claim: H ∩K = {12m | m ∈ Z} = {. . . ,−12, 0, 12, . . .}.
Proof If k ∈ H∩K, then k ∈ H and k ∈ K. Hence 4|k and 6|k. So there exist integers
k1 and k2 such that k = 4k1 and k = 6k2. Thus 4k1 = 6k2 and so 2k1 = 3k2. Since
integers possess a unique factorization into primes, it follows that 2|k2. Consequently,
k2 = 2k′2, and so k = 6k2 = 6(2k′2) = 12k′2. Hence k ∈ {12m | m ∈ Z}. So we have
shown that H ∩K ⊂ {12m | m ∈ Z}.
Conversely, if k ∈ {12m | m ∈ Z}, then k = 12m for some m ∈ Z. Thus k = 4(3m) =
6(2m), and so k is a multiple of 4 and 6. Consequently k belongs to H as well as K.
Hence {12m | m ∈ Z} ⊂ H ∩K.

(b) We check that H1, H2, H3 hold:

H1. If a, b ∈ H ∩ K, then a, b belong to both H and K. As H is a subgroup and
a, b ∈ H , it follows that a ∗ b ∈ H . Similarly, as K is a subgroup and a, b ∈ K, it
follows that a ∗ b ∈ K as well. Hence a ∗ b ∈ H ∩K.

H2. As H is a subgroup, e ∈ H . Also, as K is a subgroup, it follows that e ∈ K as well.
Thus e ∈ H ∩K.

H3. If a ∈ H ∩K, then a ∈ H and a ∈ K. Since H is a subgroup and a ∈ H , it follows
that a−1 ∈ H . Also, since K is a subgroup and a ∈ K, it follows that a−1 ∈ K.
Consequently a−1 ∈ H ∩K.

So H ∩K is a subgroup of G.

4. (a) We check that H1, H2, H3 hold:

H1. If f, g ∈ H1, then f and g are continuous on the interval [0, 1], and moreover,
f
(

1
2

)
= 0 and g

(
1
2

)
= 0. As f, g are continuous on the interval [0, 1], it follows

that f + g is also continuous on [0, 1]. Furthermore,

(f + g)

(
1

2

)

= f

(
1

2

)

+ g

(
1

2

)

= 0 + 0 = 0.

Consequently, f + g ∈ H1.
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H2. The constant function 0 : [0, 1] → R, defined by 0(x) = 0 for all x ∈ [0, 1], is the
identity element in the group C[0, 1] with addition of functions. Moreover,

0

(
1

2

)

= 0,

and so 0 ∈ H1.

H3. If f ∈ H1, then f
(

1
2

)
= 0. The inverse of f in C[0, 1] is the function −f : [0, 1] → R,

defined by (−f)(x) = −f(x) for all x ∈ [0, 1]. As

(−f)

(
1

2

)

= −f
(

1

2

)

= −0 = 0,

it follows that −f ∈ H1.

So H1 is a subgroup of the group C[0, 1] with addition of functions.

(b) We check that H1, H2, H3 hold:

H1. If p, q ∈ H2, then p and q are continuous on the interval [0, 1], and moreover, there
exist n,m ∈ N ∪ {0} and real numbers a0, a1, a2, . . . , an, b0, b1, . . . , bm, such that

p(x) = a0 + a1x+ a2x
2 + · · · + anx

n, for all x ∈ [0, 1], and

q(x) = b0 + b1x+ b2x
2 + · · · + bmx

m, for all x ∈ [0, 1].

If n ≤ m, then for all x ∈ [0, 1],

(p+ q)(x) = p(x) + q(x)

= a0 + a1x+ a2x
2 + · · · + anx

n + b0 + b1x+ b2x
2 + · · · + bmx

m

= a0 + b0 + (a1 + b1)x+ (a2 + b2)x
2 + · · · + (an + bn)xn + bn+1x

n+1 + · · · + bmx
m,

and so p+ q ∈ H2.
On the other hand, if n > m, then for all x ∈ [0, 1],

(p+ q)(x) = p(x) + q(x)

= a0 + a1x+ a2x
2 + · · · + anx

n + b0 + b1x+ b2x
2 + · · · + bmx

m

= a0 + b0 + (a1 + b1)x+ (a2 + b2)x
2 + · · · + (am + bm)xm + am+1x

m+1 + · · · + anx
n,

and so p+ q ∈ H2.

H2. The constant function 0 : [0, 1] → R, defined by 0(x) = 0 for all x ∈ [0, 1], is the
identity element in the group C[0, 1] with addition of functions. Clearly, 0 ∈ H2

(with n = 0 and a0 = 0).

H3. If p ∈ H2, then there exists an n ∈ N ∪ {0} and real numbers a0, a1, a2, . . . , an,
such that p(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n, for all x ∈ [0, 1]. The inverse of p in

C[0, 1] is the function −p : [0, 1] → R, defined by (−p)(x) = −p(x) for all x ∈ [0, 1].
As

(−p)(x) = −p(x)
= −(a0 + a1x+ a2x

2 + · · · + anx
n)

= −a0 + (−a1)x+ (−a2)x
2 + · · · + (−an)xn,

for all x ∈ [0, 1], it follows that −p ∈ H2.

So H2 is a subgroup of the group C[0, 1] with addition of functions.

5. Let e denote the identity in the group G.
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(a) Since e ∈ G, and for every a ∈ G, a ∗ e = a = e ∗ a, it follows that e ∈ Z(G). Thus
Z(G) is not empty.

(b) Clearly Z(G) ⊂ G.

Let z ∈ G. For every a ∈ G, z ∗ a = a ∗ z, since G is abelian. So z ∈ Z(G). Hence
G ⊂ Z(G).

Thus Z(G) = G.

(c) We check that H1, H2, H3 hold:

H1. If z1, z2 ∈ Z(G), then for every a ∈ G, we have

(z1 ∗ z2) ∗ a = z1 ∗ (z2 ∗ a) (associativity)

= z1 ∗ (a ∗ z2) (since z2 ∈ Z(G))

= (z1 ∗ a) ∗ z2 (associativity)

= (a ∗ z1) ∗ z2 (since z1 ∈ Z(G))

= a ∗ (z1 ∗ z2) (associativity).

Thus z1 ∗ z2 ∈ Z(G).

H2. e ∈ Z(G) since for every a ∈ G, e ∗ a = a = a ∗ e.
H3. Let z ∈ Z(G). Then for every a ∈ G, we have a−1 ∈ G, and so

z ∗ a−1 = a−1 ∗ z.

Consequently (z ∗ a−1)−1 = (a−1 ∗ z)−1, that is, (a−1)−1 ∗ z−1 = z−1 ∗ (a−1)−1.
But a ∗ a−1 = e = a−1 ∗ a, and from the uniqueness of inverses, it follows that
(a−1)−1 = a. Thus we obtain a ∗ z−1 = (a−1)−1 ∗ z−1 = z−1 ∗ (a−1)−1 = z−1 ∗ a.
Hence z−1 ∈ Z(G).

So Z(G) is a subgroup of the group G.

(d) If z =

[
α β

γ δ

]

∈ Z(GL(2,R)), then since

a =

[
1 1
0 1

]

∈ GL(2,R),

it follows that [
α β

γ δ

] [
1 1
0 1

]

=

[
1 1
0 1

] [
α β

γ δ

]

.

Thus [
α α+ β

γ γ + δ

]

=

[
α+ γ β + δ

γ δ

]

,

and so it follows that γ = 0 and α = δ. Also, since

b =

[
1 0
1 1

]

∈ GL(2,R),

it follows that [
α β

0 α

] [
1 0
1 1

]

=

[
1 0
1 1

] [
α β

0 α

]

.

Thus [
α+ β β

α α

]

=

[
α β

α β + α

]

,

and so it follows that β = 0. Hence we have shown that

Z(GL(2,R)) ⊂
{

α · I =

[
α 0
0 α

] ∣
∣
∣
∣
α ∈ R \ {0}

}

. (2.29)
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Let α ∈ R \ {0}. Then α · I ∈ GL(2,R), and for all

[
p q

r s

]

∈ GL(2,R),

we have
[
α 0
0 α

][
p q

r s

]

=

[
αp αq

αr αs

]

=

[
pα qα

rα sα

]

=

[
p q

r s

] [
α 0
0 α

]

.

Hence α · I ∈ Z(GL(2,R). Thus

{[
α 0
0 α

] ∣
∣
∣
∣
α ∈ R \ {0}

}

⊂ Z(GL(2,R). (2.30)

From (2.29) and (2.30), we conclude that

Z(GL(2,R)) =

{[
α 0
0 α

] ∣
∣
∣
∣
α ∈ R \ {0}

}

.

Solutions to the exercises on page 48

1. We know that S = {e, a, a2, a3, . . . , a|G|} ⊂ G, and that S has |G| + 1 elements, while
G has |G| elements. So from the pigeonhole principle, it follows that there exist distinct
k1, k2 ∈ {0, 1, 2, 3, . . . , |G|} such that ak1 = ak2 . We may assume that k2 > k1 (otherwise we
can interchange them), and so ak2−k1 = e. As k2 − k1 ∈ N, it follows that a has finite order.
Furthermore, as k2 ≤ |G| and k1 ≥ 0, we obtain k2 − k1 ≤ |G|. Thus

ord(a) = min{m ∈ N | am = e} ≤ k2 − k1 ≤ |G|.

So a has order at most equal to |G|.

2. Claim: For all m,n ∈ N, am ∗ an = am+n.

Proof We prove this in several steps.

Step 1. Let m ≥ 0. We show that am ∗ an = am+n for all n ≥ 0 by induction on n. Clearly

am ∗ a0 = am ∗ e = am = am+0,

and so the result is true for n = 0. If am ∗ ak = am+k for some k ≥ 0, then we have

am ∗ ak+1 = am ∗ (ak ∗ a) (definition of ak+1)

= (am ∗ ak) ∗ a (associativity)

= am+k ∗ a (induction hypothesis)

= a(m+k)+1 (definition of a(m+k)+1)

= am+(k+1).

So by induction, we have am ∗ an = am+n for all n ≥ 0. But the choice of m ≥ 0 was
arbitrary, and so we have shown that

for all m ≥ 0, and all n ≥ 0, am ∗ an = am+n. (2.31)

Step 2. Let m < 0 and n ≥ 0. Then we have the following two cases:
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1◦ If n + m > 0, then from (2.31), we have a−m ∗ an+m = a−m+(n+m) = an, and so
a−m ∗ an+m = an. We observe that am ∗ a−m = (a−m)−1 ∗ a−m = e. So we obtain
an+m = e ∗ an+m = (am ∗ a−m) ∗ an+m = am ∗ (a−m ∗ an+m) = am ∗ an.

2◦ If n + m ≤ 0, then from (2.31), we have an ∗ a−n−m = an+(−n−m) = a−m, and so
an ∗ a−n−m = a−m. So by premultiplying by am = (a−m)−1 and postmultiplying by
an+m = (a−n−m)−1, we obtain am ∗ an = an+m = am+n.

Hence we have shown that for all m < 0, and all n ≥ 0, am ∗ an = am+n. Combining this
result with the result from Step 1, we obtain

for all m ∈ Z, and all n ≥ 0, am ∗ an = am+n. (2.32)

Step 3. Let m ∈ Z and n < 0. Then from Step 2, we have am+n ∗ a−n = a(m+n)−n = am.
By postmultiplying both sides by an = (a−n)−1, we then obtain am+n = am ∗ an. Hence we
have shown that for all m ∈ Z and all n < 0, am∗an = am+n. Combining this result with the
result from Step 2, namely (2.32), we obtain that for all integers m and n, am ∗an = am+n.

Next we prove the following claim.

Claim: For all m,n ∈ N, (am)n = amn.

Proof First we show that for all m ∈ Z and all n ≥ 0, (am)n = amn, by induction on n.
Let m ∈ Z. We have (am)0 = e = a0 = am0, and so the statement holds with n = 0. If for
some k ≥ 0 there holds that (am)k = amk, then we have

(am)k+1 = (am)k ∗ am = amk ∗ am = amk+m = am(k+1).

So by induction, we have that (am)n = amn for all n ≥ 0. But the choice of m ∈ Z was
arbitrary, and so it follows that for all m ∈ Z and all n ≥ 0, (am)n = amn.

If n < 0, then we have (am)n =
(
(am)(−n)

)−1
= (am(−n))−1 = (a−mn)−1 = amn, where

the last equality follows from the following fact: for all k ∈ Z, (a−k)−1 = ak (Indeed, for
k < 0, we know that ak = (a−k)−1, by the definition of ak for a negative k. If k ≥ 0,
then −k ≥ 0, and so a−k = (a−(−k))−1 = (ak)−1. Hence by taking inverses, we obtain
(a−k)−1 = ((ak)−1)−1 = ak.)

3. We have

[
1 1
−1 0

]1

=

[
1 1
−1 0

]

,

[
1 1
−1 0

]2

=

[
1 1
−1 0

]1 [
1 1
−1 0

]

=

[
1 1
−1 0

] [
1 1
−1 0

]

=

[
0 1
−1 −1

]

,

[
1 1
−1 0

]3

=

[
1 1
−1 0

]2 [
1 1
−1 0

]

=

[
0 1
−1 −1

] [
1 1
−1 0

]

=

[
−1 0
0 −1

]

,

[
1 1
−1 0

]4

=

[
1 1
−1 0

]3 [
1 1
−1 0

]

=

[
−1 0
0 −1

] [
1 1
−1 0

]

=

[
−1 −1
1 0

]

,

[
1 1
−1 0

]5

=

[
1 1
−1 0

]4 [
1 1
−1 0

]

=

[
−1 −1
1 0

] [
1 1
−1 0

]

=

[
0 −1
1 1

]

,

[
1 1
−1 0

]6

=

[
1 1
−1 0

]5 [
1 1
−1 0

]

=

[
0 −1
1 1

] [
1 1
−1 0

]

=

[
1 0
0 1

]

.
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Thus

ord

([
1 1
−1 0

])

= min

{

m ∈ N

∣
∣
∣
∣

[
1 1
−1 0

]m

=

[
1 0
0 1

]}

= 6.

4. If a ∗ b has finite order, say m, then (a ∗ b)m = e, that is,

(a ∗ b) ∗ · · · ∗ (a ∗ b)
︸ ︷︷ ︸

m times

= e,

and so
a ∗ (b ∗ a) ∗ · · · ∗ (b ∗ a)
︸ ︷︷ ︸

(m−1) times

∗b = e,

that is,
a ∗ (b ∗ a)m−1 ∗ b = e. (2.33)

Hence by premultiplying (2.33) by b, and postmultiplying by b−1, we obtain

(b ∗ a) ∗ (b ∗ a)m−1 = e,

that is, (b∗a)m = e. So we see that b∗a has finite order, and ord(b∗a) ≤ m. By interchanging
the roles of a and b, we obtain that m ≤ ord(b ∗ a), and so ord(b ∗ a) = m.

So we have shown that

if a ∗ b has finite order m, then b ∗ a has finite order m.

By interchanging a and b, we obtain

a ∗ b has finite order m iff b ∗ a has finite order m.

Hence if a ∗ b has infinite order, then b ∗ a has infinite order as well.

So the orders of a ∗ b and b ∗ a are the same.

5. Yes, since 〈1〉 = Z.

1 is a generator of Z with addition.

As 〈−1〉 = Z, we see that −1 is also a generator of Z with addition. So the cyclic group Z

with addition does not have a unique generator.

Solutions to the exercises on page 51

1. (a) For all a, b in G, we have

(ψ ◦ ϕ)(a ∗ b) = ψ(ϕ(a ∗ b)) (definition of ψ ◦ ϕ)

= ψ(ϕ(a) ∗′ ϕ(b)) (since ϕ is a homomorphism)

= ψ(ϕ(a)) ∗′′ ψ(ϕ(b)) (since ψ is a homomorphism)

= (ψ ◦ ϕ)(a) ∗′′ (ψ ◦ ϕ)(b) (definition of ψ ◦ ϕ),

and so ψ ◦ ϕ : G→ G′′ is a homomorphism.

(b) We have

ker(ψ ◦ ϕ) = {a ∈ G | (ψ ◦ ϕ)(a) = e′′}
= {a ∈ G | ψ(ϕ(a)) = e′′}
= {a ∈ G | ϕ(a) ∈ ker(ψ)}
= ϕ−1(ker(ψ)).



109

2. If a ∈ ker(ϕ), then ϕ(a) = e′. Thus for all b ∈ G,

ϕ(b∗a∗b−1) = ϕ(b)∗′ϕ(a)∗′ϕ(b−1) = ϕ(b)∗′e′∗′ϕ(b−1) = ϕ(b)∗′ϕ(b−1) = ϕ(b)∗′(ϕ(b))−1 = e′,

and so b ∗ a ∗ b−1 ∈ ker(ϕ). Since the choice of a ∈ ker(ϕ) was arbitrary, it follows that

∀a ∈ ker(ϕ) and ∀b ∈ G, b ∗ a ∗ b−1 ∈ ker(ϕ),

and so ker(ϕ) is a normal subgroup of G.

3. For all a, b ∈ G, we have

ϕ(a ∗ b) = (a ∗ b)−1 (definition of ϕ)

= b−1 ∗ a−1 (Exercise 4c from the exercises on page 44)

= a−1 ∗ b−1 (since G is abelian)

= ϕ(a) ∗ ϕ(b) (definition of ϕ),

and so ϕ : G → G is a homomorphism.

Let a, b ∈ G and a 6= b. Then a−1 6= b−1 (for otherwise, a = (a−1)−1 = (b−1)−1 = b). Hence
ϕ(a) = a−1 6= b−1 = ϕ(b), and so ϕ : G → G is one-to-one. For all a ∈ G, we have a−1 ∈ G

and ϕ(a−1) = (a−1)−1 = a, and so ϕ : G → G is onto. As ϕ : G → G is one-to-one and
onto, it is a bijection.

Consequently ϕ : G→ G is an isomorphism.

4. First we show that ϕ−1 : G′ → G is a homomorphism.

Let a′, b′ ∈ G′. Since ϕ : G → G′ is a bijection, it follows that there exist unique a, b ∈ G

such that ϕ(a) = a′ and ϕ(b) = b′. We have

ϕ(a ∗ b) = ϕ(a) ∗′ ϕ(b) = a′ ∗′ b′,

and so ϕ−1(a′ ∗′ b′) = a ∗ b = ϕ−1(a′) ∗ ϕ−1(b′). So ϕ−1 is a homomorphism.

If a′ 6= b′, then clearly ϕ−1(a′) 6= ϕ−1(b′) (for otherwise a′ = ϕ(ϕ−1(a′)) = ϕ(ϕ−1(b′)) = b′).
Thus ϕ−1 : G′ → G is one-to-one. For all a ∈ G, we have ϕ−1(ϕ(a)) = a, and so ϕ−1 : G′ →
G is onto. Hence ϕ−1 : G′ → G is a bijection.

Consequently ϕ−1 : G′ → G is an isomorphism.

5. Let us denote the homomorphism m 7→ am from Z to 〈a〉 by ϕ.

(a) For allm,n ∈ Z, we have ϕ(m+n) = am+n = am∗an = ϕ(m)∗ϕ(n), and so ϕ : Z → 〈a〉
is a homomorphism.

(b) If m 6= n, then ϕ(m) = am 6= an = ϕ(n) (for otherwise, if m > n, then am−n = e, and
if m < n, then an−m = e; in either case we get a contradiction to the fact that a has
infinite order). Hence ϕ is one-to-one.

Furthermore, if b ∈ 〈a〉, then b = am for some m ∈ Z. We have ϕ(m) = am = b, and so
ϕ is onto.

So ϕ is a bijection and consequently, ϕ : Z → 〈a〉 is an isomorphism.
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Solutions to the exercises on page 54

1. (a) FALSE.

For example, consider the group Z of integers with addition, and let H be the subgroup
of even integers. Then 0 6= 2, but 0 +H = 2 +H (both these cosets are equal to H).

(b) TRUE.

Consider the function f : H → a ∗ H given by h 7→ a ∗ h, for all h ∈ H . Then it
can be seen that f is a bijection as follows. If a ∈ G and h1, h2 ∈ H are such that
a ∗ h1 = a ∗ h2, then by premultiplication with a−1, we obtain h1 = h2. Thus f is
one-to-one. Furthermore, if b ∈ a ∗H , then there exists a h ∈ H such that b = a ∗ h.
Consequently f(h) = a ∗h = b. Hence f is onto. So f is a bijection, and it follows that
the cardinalities of H and a ∗H are the same.

(c) TRUE.

As in part 1b above, one can show that the function g : H → H ∗a, given by h 7→ h∗a,
for all h ∈ H , is a bijection. Thus a ∗H , H and H ∗ a all have the same cardinalities.

2. (a) Matrix multiplication is a law of composition on G:

if A =

[
x y

0 1

]

and B =

[
x′ y′

0 1

]

belong to G, then x > 0 and x′ > 0.

We have

AB =

[
x y

0 1

] [
x′ y′

0 1

]

=

[
xx′ xy′ + y

0 1

]

and xx′ > 0,

and so AB ∈ G. Moreover the group axioms are satisfied:

G1. As matrix multiplication is associative, it follows that in particular for elements
A,B,C from G, there holds (AB)C = A(BC).

G2. The identity matrix

I =

[
1 0
0 1

]

∈ G (x := 1 > 0, y := 0),

and furthermore, for all A ∈ G, clearly we have AI = A = IA.

G3. If [
x y

0 1

]

∈ G,

then x > 0. Thus 1
x
> 0, and

[
1
x

− y
x

0 1

]

∈ G.

Moreover,

[
x y

0 1

][
1
x

− y
x

0 1

]

=

[
1 0
0 1

]

=

[
1
x

− y
x

0 1

] [
x y

0 1

]

.

So G is a group with matrix multiplication.

(b) Clearly H ⊂ G. We now check that H1, H2, H3 are satisfied:

H1. If [
x 0
0 1

]

,

[
x′ 0
0 1

]

∈ H,
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then x > 0 and x′ > 0. We have
[
x 0
0 1

][
x′ 0
0 1

]

=

[
xx′ 0
0 1

]

and xx′ > 0. So [
x 0
0 1

] [
x′ 0
0 1

]

∈ H.

H2. Clearly the identity element from G, namely the identity matrix

I =

[
1 0
0 1

]

,

also belongs to H .

H3. If [
x 0
0 1

]

∈ H,

then x > 0. So 1
x
> 0, and the inverse of

[
x 0
0 1

]

in the group G, namely the matrix

[
1
x

0
0 1

]

,

also belongs to H .

Thus H is a subgroup of the group G.

(c) Let

a =

[
x0 y0
0 1

]

∈ G.

Then the corresponding left coset of H is

aH =

{[
x0 y0
0 1

] [
x 0
0 1

] ∣
∣
∣
∣
x ∈ R and x > 0

}

=

{[
xx0 y0
0 1

] ∣
∣
∣
∣
x ∈ R and x > 0

}

.

Thus the left coset aH is a straight line parallel to the x-axis, and it passes through
the point (x0, y0). See Figure 2.7. The right coset of H corresponding to the element

a =

[
x0 y0
0 1

]

∈ G

is

Ha =

{[
x 0
0 1

][
x0 y0
0 1

] ∣
∣
∣
∣
x ∈ R and x > 0

}

=

{[
xx0 xy0
0 1

] ∣
∣
∣
∣
x ∈ R and x > 0

}

.

Thus the right coset Ha is a straight line passing through the origin and the point
(x0, y0). See Figure 2.8.
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Figure 2.7: Partition of the group G (represented by the right half plane: x > 0, y ∈ R) by left
cosets aH , a ∈ G (represented by lines parallel to the x-axis).
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Figure 2.8: Partition of the group G by right cosets Ha, a ∈ G.

3. H ∩K is a subset of the group H . Furthermore, the following hold:

H1. If a, b ∈ H ∩K, then a, b ∈ H and a, b ∈ K. As H and K are subgroups of G, it follows
that a ∗ b ∈ H and a ∗ b ∈ K. Hence a ∗ b ∈ H ∩K.

H2. The identity element in the group H is the identity element e from G. As K is a
subgroup of G, it follows that e also belongs to K. Thus e ∈ H ∩K.

H3. If a ∈ H ∩ K, then a ∈ H and a ∈ K. As H and K are subgroups, a−1 ∈ H and
a−1 ∈ K. Consequently a−1 ∈ H ∩K.

So H ∩K is a subgroup of H .

By interchanging the roles of H and K, it follows that H ∩K is also a subgroup of K.

Thus by Lagrange’s theorem, we have that

|H ∩K| divides |H | = 3, and |H ∩K| divides |K| = 5.

As gcd(3, 5) = 1, it follows that |H ∩K| divides 1. So |H ∩K| = 1, and so it comprises just
one element. As e ∈ H ∩K, it follows that H ∩K = {e}.

4. The cardinality of the group S4 is 4! = 24. As 16 does not divide 24, it follows from Corollary
2.1.8 that S4 cannot have an element of order 16.

5. (a) If p does not divide a, then [a] 6= [0], and so [a] ∈ Z∗
p. The set Z∗

p = {[1], . . . , [p − 1]}
has cardinality equal to p − 1. As [1] is the identity element in the group Z∗

p with
multiplication modulo p, from Corollary 2.1.8 it follows that [a]p−1 = [1].
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(b) If p divides a, then p also divides ap, and hence it divides ap − a as well, that is,
ap ≡ a(mod p).

If p does not divide a, then [a] 6= [0], and so by part 5a above, [a]p−1 = [1]. Hence
[ap−1] = [1], and so [ap−1 − 1] = [0]. Thus p divides ap−1 − 1, and consequently, it also
divides a(ap−1 − 1) = ap − a. So ap ≡ a(mod p).

(c) Note that 2222 = 317 · 7 + 3, so that in Z7,

[22225555] = [2222]5555 = [3]5555.

As [3] 6= [0] in Z7, from part (5b) above, it follows that [3]7−1 = [3]6 = [1]. Thus we
obtain

[22225555] = [3]5555 = [3]925·6+5 = ([3]6)925[3]5 = [1]925[3]5 = [1][3]5 = [3]5.

Proceeding in a similar manner, we can show that [55552222] = [32]. Indeed, 5555 =
793 · 7 + 4, so that

[55552222] = [5555]2222 = [4]2222.

Again, [4] 6= [0] in Z7, and so by part (5b), [4]7−1 = [4]6 = [1]. Hence

[55552222] = [4]2222 = [4]370·6+2] = ([4]6)370[4]2 = [1][4]2 = [4]2 = [−3]2 = [(−3)2] = [32].

Finally,
[22225555 + 55552222] = [35 + 32] = [32 · 28] = [0],

which proves that 7|22225555 + 55552222.
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Solutions to the exercises on page 58

1. (a) NO.

For instance the sum of two invertible matrices may not be invertible. The identity
matrix I is invertible, and so is its additive inverse, −I . However, I + (−I) = 0, which
is not invertible. So matrix addition, (A,B) 7→ A + B is not a law of composition on
the set of invertible matrices, and so it does not form an abelian group. Consequently
it is not a vector space.

Alternately, we can observe that the scalar multiplication of the real number 0 with an
invertible matrix is the zero matrix, which is not invertible.

(b) NO.

The scalar multiplication of the real number 0 with an invertible matrix is the zero
matrix, which is not invertible.

2. Let α ∈ R and v ∈ V be such that
α · v = 0. (2.34)

Then if α 6= 0, then we obtain

0 = α−1 · 0 (Theorem 2.2.1)

= α−1 · (α · v) (using (2.34))

= (α−1α) · v (using V2)

= (1) · v (since α−1α = 1)

= v (using V1).

This proves the claim.

3. First we check that R∞, with addition defined by (2.4), is an abelian group. Clearly (2.4)
gives a law of composition on R∞. Moreover, we have:

G1. For all (an)n∈N, (bn)n∈N, (cn)n∈N in R∞, we have

((an)n∈N + (bn)n∈N) + (cn)n∈N = (an + bn)n∈N + (cn)n∈N

= ((an + bn) + cn)n∈N

= (an + (bn + cn))n∈N

= (an)n∈N + (bn + cn)n∈N

= (an)n∈N + ((bn)n∈N + (cn)n∈N).

G2. The sequence (0)n∈N serves as the identity element: for all (an)n∈N ∈ R∞, we have

(an)n∈N + (0)n∈N = (an + 0)n∈N = (an)n∈N = (0 + an)n∈N = (0)n∈N + (an)n∈N.

G3. If (an)n∈N ∈ R∞, then (−an)n∈N ∈ R∞, and furthermore,

(an)n∈N+(−an)n∈N = (an+−an)n∈N = (0)n∈N = (−an+an)n∈N = (−an)n∈N+(an)n∈N.

G4. Finally, commutativity holds, since for all (an)n∈N, (bn)n∈N ∈ R∞, we have

(an)n∈N + (bn)n∈N = (an + bn)n∈N = (bn + an)n∈N = (bn)n∈N + (an)n∈N.

Next we check that V1, V2, V3, V4 are also satisfied:

V1. For all (an)n∈N ∈ R∞, 1 · (an)n∈N = (1an)n∈N = (an)n∈N.
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V2. For all α, β ∈ R and all (an)n∈N ∈ R∞,

α · (β · (an)n∈N) = α · (βan)n∈N = (α(βan))n∈N = ((αβ)an)n∈N = (αβ) · (an)n∈N.

V3. For all α, β ∈ R and all (an)n∈N ∈ R∞,

(α+ β) · (an)n∈N = ((α + β)an)n∈N = (αan + βan)n∈N = (αan)n∈N + (βan)n∈N

= α · (an)n∈N + β · (an)n∈N.

V4. For all α ∈ R and all (an)n∈N, (bn)n∈N ∈ R∞,

α · ((an)n∈N + (bn)n∈N) = α · (an + bn)n∈N = (α(an + bn))n∈N

= (αan + αbn)n∈N = (αan)n∈N + (αbn)n∈N

= α · (an)n∈N + α · (bn)n∈N.

So R∞ is a vector space with addition defined by (2.4) and scalar multiplication defined by
(2.5).

Solutions to the exercises on page 62

1. (a) FALSE.

Consider the subspaces

U1 = span

{[
1
0

]}

and U2 = span

{[
0
1

]}

of R2. Then

v1 :=

[
1
0

]

∈ U1 ⊂ U1 ∪ U2 and v2 :=

[
0
1

]

∈ U2 ⊂ U1 ∪ U2,

but

v1 + v2 =

[
1
1

]

6∈ U1 ∪ U2,

since [
1
1

]

6∈ span

{[
1
0

]}

and

[
1
1

]

6∈ span

{[
0
1

]}

.

Thus S2 is not satisfied, and so U1 ∪ U2 is not a vector space.

(Each vector

[
x

y

]

in R2 can be represented by a point in the (x, y)-plane, and the

above can be seen pictorially in Figure 2.9).

(b) TRUE.

Let U1, U2 be susbpaces of the vector space V . We check that S1, S2, S3 hold for
U1 ∩ U2:

S1. As U1, U2 are susbpaces, 0 ∈ U1 and 0 ∈ U2. Thus 0 ∈ U1 ∩ U2.

S2. If v1, v2 belong to U1 ∩U2, then v1, v2 belong to U1 and v1, v2 belong to U2. As U1

is a subspace, v1 + v2 ∈ U1. Moreover, as U2 is a subspace, v1 + v2 ∈ U2. Hence
v1 + v2 ∈ U1 ∩ U2.

S3. Let α ∈ R and v ∈ U1∩U2. Thus v ∈ U1 and v ∈ U2. As U1 is a subspace, it follows
that α · v ∈ U1. Also, as U2 is a subspace, it follows that α · v ∈ U2. Consequently
α · v ∈ U1 ∩ U2.

So U1 ∩ U2 is a susbpaces of the vector space V .
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Figure 2.9: The union U1 ∪ U2 of subspaces U1 and U2 is not a subspace.

(c) TRUE.

Indeed,




1
2
3



 = 1 ·





1
3
4



+ (−1) ·





0
1
1



 .

(d) FALSE.

We have

(3) ·





1
0
1



+ (−3) ·





1
2
1



+ (2) ·





0
3
0



 =





0
0
0



 .

(e) TRUE.

Suppose that there exist scalars such that α1 · v1 + α2 · v2 + α3 · v3 = 0. Then we have

α1 ·v1 +α2 ·v2+α3 ·v3 +0 ·v4 = α1 ·v1+α2 ·v2 +α3 ·v3 +0 = α1 ·v1 +α2 ·v2+α3 ·v3 = 0,

and by the independence of v1, v2, v3, v4, it follows that α1 = α2 = α3 = 0. So v1, v2, v3
are linearly independent.

(f) FALSE.

For instance, in R3, the vectors

v1 :=





1
0
0



 , v2 :=





0
1
0



 , v3 :=





0
0
1



 , v4 :=





1
1
1



 ,

are linearly dependent, since 1 · v1 + 1 · v2 + 1 · v3 + (−1) · v4 = 0, while the vectors
v1, v2, v3 are linearly independent.

2. (a) Clearly,

span

({[
1
t1

]

,

[
1
t2

]})

⊂ R2.

(In order to prove the reverse inclusion, observe that if
[
x

y

]

= α ·
[

1
t1

]

+ β ·
[

1
t2

]

,

then we obtain the linear equations

α+ β = x,

αt1 + βt2 = y,
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which have the solution α = y−xt2
t1−t2

and β = xt1−y
t1−t2

.) We now complete the proof as
follows: suppose that

[
x

y

]

∈ R2.

As t1 − t2 6= 0, we have
[
x

y

]

=
y − xt2

t1 − t2
·
[

1
t1

]

+
xt1 − y

t1 − t2
·
[

1
t2

]

∈ span

({[
1
t1

]

,

[
1
t2

]})

.

So

R2 ⊂ span

({[
1
t1

]

,

[
1
t2

]})

.

Hence the claim follows.

(b) Suppose that U1, . . . , Un are subspaces of R2, such that U1 ∪ · · · ∪ Un = R2. Since the
infinite set

S :=

{[
1
t

] ∣
∣
∣
∣
t ∈ R

}

is contained in R2 = U1 ∪ · · · ∪ Un, it follows that infinitely many elements from S

belong to one of the subspaces, say Uk for some k ∈ {1, . . . , n}. Thus there exist real
numbers t1, t2 such that

[
1
t1

]

,

[
1
t2

]

∈ Uk.

As Uk is a subspace of R2, it follows that

span

({[
1
t1

]

,

[
1
t2

]})

⊂ Uk.

From the result of the part above, we obtain R2 ⊂ Uk, and so Uk = R2, that is Uk is
not a proper subspace.

3. `∞ is a subspace of R∞. We have:

S1. The sequence (0)n∈N is the zero vector in R∞, and it belongs to `∞, since it is bounded:
indeed for all n ∈ N, the nth term of the sequence (0)n∈N is equal to 0, and |0| = 0 ≤ 1.

S2. If (an)n∈N, (bn)n∈N belong to `∞, then there exist M1,M2 > 0 such that for all n ∈ N,
|an| ≤M1 and |an| ≤M2. Hence for all n ∈ N, |an + bn| ≤ |an|+ |bn| ≤M1 +M2, and
so the sequence (an + bn)n∈N is bounded, that is, (an)n∈N + (bn)n∈N belongs to `∞.

S3. Let α ∈ R and (an)n∈N ∈ `∞. Then there exists an M > 0 such that for all n ∈ N,
|an| ≤ M . Thus for all n ∈ N, |αan| = |α||an| ≤ (|α| + 1)M , and so the sequence
(αan)n∈N is bounded, that is, α · (an)n∈N belongs to `∞.

So `∞ is a subspace of R∞.

c is a subspace of `∞. Indeed, there holds:

S1. The sequence (0)n∈N is the zero vector in `∞, and it belongs to c, since it is convergent.

S2. If (an)n∈N, (bn)n∈N belong to c, then by Theorem 1.2.4, it follows that the sequence
(an + bn)n∈N is also convergent, and so (an)n∈N + (bn)n∈N belongs to c.

S3. Let α ∈ R and (an)n∈N ∈ c. Then by Theorem 1.2.4, the sequence (αan)n∈N is also
convergent, that is, α · (an)n∈N belongs to c.

Thus c is a subspace of `∞.

c0 is a subspace of c. We have:
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S1. The sequence (0)n∈N is the zero vector in c, and it belongs to c0, since it is a convergent
sequence with limit equal to 0.

S2. If (an)n∈N, (bn)n∈N belong to c0, then by Theorem 1.2.4, it follows that the sequence
(an + bn)n∈N is also convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn = 0 + 0 = 0,

and so (an)n∈N + (bn)n∈N belongs to c0.

S3. Let α ∈ R and (an)n∈N ∈ c0. Then by Theorem 1.2.4, the sequence (αan)n∈N is also
convergent and

lim
n→∞

αan = α lim
n→∞

an = α0 = 0,

that is, α · (an)n∈N belongs to c0.

Hence c0 is a subspace of c.

c00 is a subspace of c0. Indeed, there holds:

S1. The sequence (0)n∈N is the zero vector in c0, and it belongs to c00, since for all n > 1,
an = 0.

S2. If (an)n∈N, (bn)n∈N belong to c00, then there exist N1, N2 ∈ N such that

∀n > N1, an = 0 and ∀n > N2, bn = 0.

Thus with N := max{N1, N2} ∈ N, for all n > N , we obtain an + bn = 0 + 0 = 0.
Hence (an)n∈N + (bn)n∈N = (an + bn)n∈N belongs to c00.

S3. Let α ∈ R and (an)n∈N ∈ c00. Then there exists an N ∈ N such that for all n > N ,
an = 0, and so αan = α0 = 0. Thus (αan)n∈N = α · (an)n∈N belongs to c00.

Hence c00 is a subspace of c0.

(The examples

(
1

n

)

n∈N

∈ c0, (1)n∈N ∈ c, ((−1)n)n∈N ∈ `∞, (n)n∈N ∈ R∞,

show that each of the inclusions are strict.)

4. If: Let y1 = 0 = y2. Then we have:

S1. The zero function 0 ∈ S(0, 0), since 0 is continuous on [0, 1] and moreover, 0(0) = 0
and 0(1) = 0.

S2. If f, g ∈ S(0, 0), then f+g ∈ S(0, 0). Indeed, as f, g are continuous on [0, 1], so is f+g,
and also (f + g)(0) = f(0) + g(0) = 0+ 0 = 0 and (f + g)(1) = f(1) + g(1) = 0 +0 = 0.

S3. Let f ∈ S(0, 0) and α ∈ R. Then α · f is continuous on [0, 1], and furthermore,
(α · f)(0) = αf(0) = α0 = 0 and (α · f)(1) = αf(1) = α0 = 0.

Hence S(0, 0) is a subspace of C[0, 1].

Only if: Suppose that S(y1, y2) is a subspace of C[0, 1]. If f ∈ S(y1, y2), then 2 · f ∈
S(y1, y2). Thus (2·f)(0) = y1 and (2·f)(1) = y2, and so 2y1 = y1 and 2y2 = y2. Consequently
y1 = 0 = y2.
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Solutions to the exercises on page 64

1. We have:

B1. If 



x

y

z



 ∈ R3,

then




x

y

z



 = (x−y)·





1
0
0



+(y−z)·





1
1
0



+z·





1
1
1



 ∈ span















1
0
0



 ,





1
1
0



 ,





1
1
1













 .

Thus

span















1
0
0



 ,





1
1
0



 ,





1
1
1













 = R3.

B2. If α, β, γ are scalars such that

α ·





1
0
0



+ β ·





1
1
0



+ γ ·





1
1
1



 =





0
0
0



 ,

then we obtain

α+ β + γ = 0,

β + γ = 0,

γ = 0,

and so it follows that α = β = γ = 0. So B is linearly independent.

Since B1, B2 hold it follows that B is a basis.

2. Suppose that B = {v1, . . . , vn} is a basis of the vector space V , and let v ∈ V . As v ∈ V =
span(B), it follows that there exist scalars α1, . . . , αn such that v = α1 · v1 + · · · + αn · vn.
So v is a linear combination of vectors from V . In order to prove uniquness, suppose that
there exist scalars α′

1, . . . , α
′
n such that

α1 · v1 + · · · + αn · vn = v = α′
1 · v1 + · · · + α′

n · vn.

So we obtain (α1 −α′
1) · v1 + · · ·+ (αn −α′

n) · vn = 0, and by the independence of v1, . . . , vn,
it then follows that α1 − α′

1 = · · · = αn − α′
n = 0, that is α1 = α′

1, . . . , αn = α′
n.

3. We prove this by contradiction. Suppose that C[0, 1] is a finite dimensional vector space
with dimension d, say.

Consider the d functions f1, . . . , fd defined by

f1(x) = x

f2(x) = x2

f3(x) = x3

...
fd(x) = xd







for all x ∈ [0, 1]. (2.35)

The functions f1, . . . , fd are all polynomials and so they are all continuous on [0, 1], that is,
f1, . . . , fd ∈ C[0, 1]. Now we prove the following.
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Claim: The functions f1, . . . , fd given by (2.35) are linearly independent in C[0, 1].

Proof Suppose that there exist scalars α1, . . . , αd, not all zeros, such that

α1 · f1 + · · · + αd · fd = 0.

Then for all x ∈ [0, 1], (α1 · f1 + · · · + αd · fd)(x) = 0(x), that is,

for all x ∈ [0, 1], α1x+ · · · + αdx
d = 0.

Let k ∈ {1, 2, . . . , d} be the smallest number such that αk 6= 0. Then we obtain

for all x ∈ [0, 1], αkx
k + αk+1x

k+1 + · · · + αdx
d = 0,

and so for all x ∈ [0, 1], xk(αk + αk+1x + αk+2x
2 + · · · + αdx

d−k) = 0. For all n ∈ N,
0 < 1

n
< 1, and so we have

for all n ∈ N,

(
1

n

)k
(

αk + αk+1

(
1

n

)

+ αk+2

(
1

n

)2

+ · · · + αd

(
1

n

)d−k
)

= 0,

that is,

for all n ∈ N, αk + αk+1

(
1

n

)

+ αk+2

(
1

n

)2

+ · · · + αd

(
1

n

)d−k

= 0.

Hence

0 = lim
n→∞

0

= lim
n→∞

(

αk + αk+1

(
1

n

)

+ αk+2

(
1

n

)2

+ · · · + αd

(
1

n

)d−k
)

= αk + 0 + · · · + 0

= αk,

a contradiction. So f1, . . . , fd are linearly independent in C[0, 1].

Consequently, by Theorem 2.2.3, it follows that {f1, . . . , fd} is a basis of C[0, 1], and in
particular, they span the whole space C[0, 1].

The constant function 1 : [0, 1] → R, defined by 1(x) = 1 for all x ∈ [0, 1] clearly belongs to
C[0, 1], and so, from the above, there must exist scalars β1, . . . , βd such that

1 = β1 · f1 + · · · + βd · fd.

Thus for all x ∈ [0, 1], 1(x) = (β1 · f1 + · · · + βd · fd)(x), that is,

for all x ∈ [0, 1], 1 = β1x+ · · · + βdx
d.

In particular, with x = 0, we obtain 1 = 0, a contradiction. So C[0, 1] is not a finite
dimensional vector space.

4. (a) We have

B1. Let (an)n∈N ∈ c00. Then there exists an N ∈ N such that for all n > N , an = 0.
Clearly

(an)n∈N = a1 · e1 + · · · + an · en ∈ span({ek | k ∈ N}).
So c00 ⊂ span(B).
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On the other hand, suppose that k1, . . . , km ∈ N, and α1, . . . , αm be scalars. If
N := max{k1, . . . , km}, then for all n > N , the nth term of the sequence

α1 · ek1 + · · · + αm · ekm

is α10 + · · · + αm0 = 0. Thus α1 · ek1 + · · · + αm · ekm
∈ c00. Consequently

span(B) ⊂ c00.
So span(B) = c00.

B2. Suppose that k1 < · · · < km are natural numbers, and α1, . . . , αm be scalars, not
all zeros, such that

α1 · ek1 + · · · + αm · ekm
= (0)n∈N.

Let l ∈ {1, . . . ,m} be the largest number such that αl 6= 0. Then equating the
klth term on both sides, we obtain that αl = 0, a contradiction. So B is linearly
independent.

(b) Indeed, if B were a basis for R∞, then the sequence (1)n∈N would be a linear combination
of elements from B. But as seen above, any linear combination of elements from B is
in c00, that is, it is a sequence that is eventually zero. Clearly (1)n∈N 6∈ c00, and so it
is not a linear combination of elements from c00.

Solutions to the exercises on page 68

1. (a) We have

ker(TA) =

{[
x

y

] ∣
∣
∣
∣
TA

[
x

y

]

=

[
0
0

]}

=

{[
x

y

] ∣
∣
∣
∣

[
x+ y

y

]

=

[
0
0

]}

=

{[
x

y

] ∣
∣
∣
∣
x = y = 0

}

=

{[
0
0

]}

.

We depict this set in the (x, y)-plane in Figure 2.10.

PSfrag replacements
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ker(TA)

Figure 2.10: Kernel of TA.

Clearly im(TA) ⊂ R2. On the other hand, if

[
x

y

]

∈ R2, then

[
x

y

]

= TA

[
x− y

y

]

,

and so R2 ⊂ im(TA). Hence im(TA) = R2. We depict this set in the (x, y)-plane in
Figure 2.11.
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PSfrag replacements
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x
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Figure 2.11: Image of TA.

(b) We have

ker(TA) =

{[
x

y

] ∣
∣
∣
∣
TA

[
x

y

]

=

[
0
0

]}

=

{[
x

y

] ∣
∣
∣
∣

[
x+ y

0

]

=

[
0
0

]}

=

{[
x

y

] ∣
∣
∣
∣
x+ y = 0

}

.

We depict this set in the (x, y)-plane in Figure 2.12.

PSfrag replacements
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Figure 2.12: Kernel of TA.

We have

im(TA) ⊂ S :=

{[
x

0

]

∈ R2

∣
∣
∣
∣
x ∈ R

}

,

since

for all

[
x

y

]

∈ R2, TA

[
x

y

]

=

[
x+ y

0

]

∈ S.

Conversely, since [
x

0

]

= TA

[
x

0

]

,

it follows that S ⊂ im(TA). Hence im(TA) = S. We depict this set in the (x, y)-plane
in Figure 2.13.
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Figure 2.13: Image of TA.

(c) We have

ker(TA) =

{[
x

y

] ∣
∣
∣
∣
TA

[
x

y

]

=

[
0
0

]}

=

{[
x

y

] ∣
∣
∣
∣
x ∈ R and y ∈ R

}

= R2.

We depict this set in the (x, y)-plane in Figure 2.14.

PSfrag replacements
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Figure 2.14: Kernel of TA.

Clearly

im(TA) =

[
0
0

]

.

We depict this set in the (x, y)-plane in Figure 2.15.

2. L1 is not satisfied, since

T

([
−1
0

]

+

[
0
1

])

= T

([
−1
1

])

=

[
(−1)2

1
1

]

=

[
1
1

]

,

while

T

[
−1
0

]

+ T

[
0
1

]

=

[
−1
0

]

+

[
0
1

]

=

[
−1
1

]

.
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Figure 2.15: Image of TA.

If α ∈ R \ {0} and

[
x1

x2

]

∈ R2, then we have

T

(

α ·
[
x1

x2

])

= T

[
αx1

αx2

]

=







[
α2x2

1

αx2

αx2

]

if x1x2 6= 0

[
αx1

αx2

]

if x1x2 = 0







=







α ·
[

x2
1

x2

x2

]

if x1x2 6= 0

α ·
[
x1

x2

]

if x1x2 = 0







= α ·
(

T

[
x1

x2

])

.

If α = 0, and

[
x1

x2

]

∈ R2, we have

T

(

α ·
[
x1

x2

])

= T

[
0
0

]

=

[
0
0

]

= 0 ·
(

T

[
x1

x2

])

.

Thus for all α ∈ R, and all

[
x1

x2

]

∈ R2,

T

(

α ·
[
x1

x2

])

= α ·
(

T

[
x1

x2

])

,

and so L2 holds.

3. (a) We verify that L1 and L2 hold:
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L1. For all (an)n∈N and (bn)n∈N in c, we have

T ((an)n∈N + (bn)n∈N) = T ((an + bn)n∈N)

= lim
n→∞

(an + bn)

= lim
n→∞

an + lim
n→∞

bn (Theorem 1.2.4)

= T ((an)n∈N) + T ((bn)n∈N).

L2. For all α ∈ R, and all (an)n∈N ∈ c, we have

T (α · (an)n∈N) = T ((αan)n∈N)

= lim
n→∞

αan

= α lim
n→∞

an (Theorem 1.2.4)

= α · T ((an)n∈N).

So T is a linear transformation from c to R.

(b) We have

ker(T ) = {(an)n∈N ∈ c | T ((an)n∈N) = 0} = {(an)n∈N ∈ c | lim
n→∞

an = 0},

and so ker(T ) is the set comprising all convergent sequences with limit 0, that is, the
subspace c0.

(c) Clearly, im(T ) ⊂ R. Moreover, if L ∈ R, then the constant sequence L,L, L, . . . is
convergent with limit L. Thus T ((L)n∈N) = L, and so L ∈ im(T ). So R ⊂ im(T ).
Consequently, im(T ) = R.
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