
Trading partners and trading volumes:
Implementing the Helpman-Melitz-Rubinstein

model empirically∗

J.M.C. SANTOS SILVA† and SILVANA TENREYRO‡

† University of Essex and CEMAPRE. Wivenhoe Park, Colchester CO4 3SQ, UK
(e-mail: jmcss@essex.ac.uk)

‡ London School of Economics, CFM, CEP, and CEPR. St. Clement’s Building, Houghton

St., London WC2A 2AE, UK (e-mail: s.tenreyro@lse.ac.uk)

Abstract:

Helpman, Melitz, and Rubinstein (2008)– HMR– present a rich theoretical model

to study the determinants of bilateral trade flows across countries. The model is then

empirically implemented through a two-stage estimation procedure. We argue that this

estimation procedure is only valid under the strong distributional assumptions main-

tained in the paper. Statistical tests using the HMR sample, however, clearly reject such

assumptions. Moreover, we perform numerical experiments which show that the HMR

two-stage estimator is very sensitive to departures from the assumption of homoskedas-

ticity. These findings cast serious doubts on any inference drawn from the empirical

implementation of the HMR model.

JEL Classification codes: C13; C50; F10.

Key words: Gravity equation, Heteroskedasticity, Sample-selection, Weak instruments.

∗We are most grateful to three anonymous referees and to the Editors for many helpful sugges-
tions. We are also grateful to Elhanan Helpman, Marc Melitz, and Yona Rubinstein for generously
sharing their data. We thank especially Marc Melitz for useful conversations. Santos Silva gratefully
acknowledges the partial financial support from Fundação para a Ciência e Tecnologia, (Programme
PEst-OE/EGE/UI0491/2013). Tenreyro gratefully acknowledges financial support from the European
Research Council under the European Community’s ERC starting grant agreement 240852.



I. Introduction

In a highly insightful and stimulating paper, Helpman, Melitz and Rubinstein (2008),

hereinafter HMR, present a theoretical framework to study bilateral trade flows across

countries. The model is especially appealing because it can potentially explain three

prevalent regularities in trade data: The asymmetry in bilateral trade flows between

country pairs; the high prevalence of zeroes (in either one or both directions of bilateral

trade flows); and the remarkably good fit of the gravity equation.

HMR use their conceptual framework to develop a two-stage estimation procedure

that generalizes the empirical gravity equation by taking into account the extensive

margin (the decision to export from j to i), and the intensive margin (the volume

of exports from j to i, conditional on exporting).1 Although HMR’s model makes a

significant step towards a better understanding of the determinants of bilateral trade

flows, the proposed two-stage estimation procedure has some limitations.

In this paper we analyze the estimation method proposed by HMR and emphasize the

two following results. First, the approach used by HMR to deal with the selectivity bias

caused by dropping the observations with zero trade is only approximately correct. We

discuss the conditions under which the approximation tends to work better. Second,

and more importantly, the HMR model and associated estimator depend critically

on untested distributional assumptions. As we show in this paper, such assumptions

are strongly rejected by the HMR data. Moreover, we show that the results of the

two-stage estimation method proposed by HMR are very sensitive to the presence of

1An alternative two-stage procedure to estimate the extensive and intensive margins is proposed

by Egger, Larch, Staub, and Winkelmann (2011).
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heteroskedasticity.2 These findings cast serious doubts on any inference drawn from the

empirical implementation of the HMR model using their proposed two-stage estimator.

II. The HMR model

HMR specify a trade equation which can be written as (see equations (6) and (8) in

HMR):

Mij = B0ΛjXiτ
1−ε
ij max

{(
aij
aL

)k−ε+1
− 1, 0

}
, (1)

where Mij denotes the trade flow from j to i, Λj denotes a fixed effect for exporter j,

Xi is a fixed effect for importer i, τ ij represents the usual ‘melting iceberg’transport

cost, aij is a measure of the minimum productivity needed for it to be profitable for a

firm to export from j to i, aL is a measure of the productivity of the most productive

firm, and B0, k, and ε are parameters. Furthermore, the authors assume that

τ ε−1ij = Dγ
ij exp (−uij) , (2)

where γ is a parameter, Dij is the distance (and other factors creating trade resistance)

between countries i and j, and uij ∼ N (0, σu). Therefore,

Mij = B0ΛjXiD
−γ
ij max

{(
aij
aL

)k−ε+1
− 1, 0

}
exp (uij) . (3)

Direct estimation of this equation would require information about aij and aL, which

is typically not available. To overcome this problem HMR define the latent variable

(see equations (10) and (11) in HMR)

Zij = Γ0ΞjΥiD
−γ
ij Ψ−κij exp (vij + uij) , (4)

2Throughout we understand heteroskedasticity to mean that the skedastic function is not constant;

that is, that the conditional variances of the errors of the model are functions of the regressors.
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where Γ0 and κ are parameters, Ξj denotes a fixed effect for exporter j, Υi is a fixed

effect for importer i, Ψij denotes additional country-pair specific fixed trade costs, and

vij ∼ N (0, σv).

The new variable Zij can be interpreted as the ratio of the variable export profits

for the most productive firm to the fixed cost of exporting from j to i, and is not

observable. However, positive trade is observed only when Zij > 1, which leads HMR

to propose the following two-stage estimation strategy.

Let Tij be a binary variable defined as Tij = 1 [Mij > 0], where 1 [A] is the indicator

function of the event A. Then, defining zij = ln (Zij), γ0 = ln (Γ0), ξi = ln (Ξi),

yj = ln (Υj), dij = ln (Dij), and ψij = ln (Ψij), we have that the conditional probability

that j exports to i is3

ρij = Pr (Tij = 1) = Pr
(
γ0 + ξi + yj − γdij − κψij > − (vij + uij)

)
. (5)

Under the maintained assumptions of normality and homoskedasticity, the unknown

parameters can be consistently estimated up to scale using a probit. Indeed, under

these assumptions we have that

Pr (Tij = 1) = Φ

(
γ0 + ξi + yj − γdij − κψij

σu+v

)
, (6)

where σu+v denotes the standard deviation of (vij + uij) and Φ (·) is the CDF of the

standard normal distribution. Therefore, under the distributional assumptions made

by HMR it is possible to consistently estimate

Z∗ij =
(
Γ0ΞiΥjD

−γ
ij Ψ−κij

) 1
σu+v , (7)

3To simplify the notation, throughout we do not make explicit that this probability is conditional

on the regressors.
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by taking the exponential of the linear index estimated by the probit model. Using

this result and the fact that Zij =
(
aij
aL

)ε−1
for Tij = 1, it is possible to rewrite (3) as

Mij = TijB0ΛjXiD
−γ
ij

{[
Z∗ij exp (ς ij)

]δ − 1
}

exp (uij) , (8)

where ς ij = (vij + uij) /σu+v and δ = σu+v (k − ε+ 1) / (ε− 1).

The second stage in the HMR procedure is the estimation of the trade equation for

the positive observations of Mij. To do this, the authors take logs of both sides of (8),

leading to

mij = β0 + λj + χi − γdij + ln
{

exp
[
δ
(
z∗ij + ς ij

)]
− 1
}

+ uij, (9)

where, as usual, lower-case letters represent the log of the quantity corresponding to

the same upper case letter.

Distributional assumptions

The definition of δ shows that it is proportional to the standard deviation of (vij + uij).

Therefore, δ is a parameter if vij and uij are homoskedastic but otherwise it is a function

of the regressors. Hence, the homoskedasticity of the errors is critical to establish how

the regressors enter both (8) and (9). Indeed, under the assumptions in HMR, the

regressors enter the equation both directly and through Z∗ij, which is estimated in the

first stage. However, under heteroskedasticity, δ will also be a function of the regressors.

Therefore, under heteroskedasticity, the regressors will enter the model in a much

more complex form than what is assumed by HMR. Ignoring that δ is a function of the

regressors has the potential to introduce severe misspecification in (8) and (9), making

consistent estimation of the parameters of interest generally impossible. Moreover,

heteroskedasticity will also make the estimation of the first stage inconsistent, which
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will bring an additional source of misspecification into the model.4 Of course, one may

be tempted to tackle this problem by specifying σu+v as a function of the regressors,

but this approach is foiled by the fact that economic theory provides no guidance on

the possible heteroskedasticity patterns.

Most of the results in HMR are also obtained under the assumption of normality.

Although HMR partially relax it, normality is always assumed in the estimation of

the first stage. Therefore, the twin assumptions of homoskedasticity and normality are

critical for the correct specification of (8) and (9). Moreover, these assumptions are

also critical for the construction of the selectivity corrections used by HMR.

Cosslett (1991), Chen and Khan (2003), and Das, Newey, and Vella (2003), among

others, have studied semi-parametric estimators for linear sample selection models

which are robust to non-normality and heteroskedasticity. However, the validity of

these estimators depends on conditions such as particular forms of heteroskedasticity

or the existence of valid exclusion restrictions in the second stage, which are unlikely

to be valid in the context of trade data.5 More importantly, (9) has two random

components affected by sample selection and one of them enters the model in a non-

linear form; none of the currently available semi-parametric estimators can deal with

sample selection models of this form.

The selectivity correction

Estimation of (9) is performed using only observations with positive values of Mij,

which originates a sample-selection issue. To account for the fact that E [uij|Mij > 0] 6=
4As noted by Santos Silva and Tenreyro (2006), homoskedasticity is also critical for the validity

of the log-linearization leading from (8) to (9). However, in this paper we focus on a very different

issue: the additional implications that heteroskedasticity has in the context of the two-stage estimation

proposed by HMR.

5Additionally, due to the large number of regressors typically used, implementation of some of

these methods with trade data is far from trivial.
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0, HMR include in the regression equation the inverse Mills ratio from the first stage,

which (under normality and homoskedasticity) is proportional to E [uij|Mij > 0]. This

is the correct procedure to account for selectivity in an additive error (see, e.g., Wooldridge,

2010).

However, the equation of interest has a second random component, ς ij, which enters

the equation within a non-linear function. HMR deal with the effect of the sample-

selection on ς ij in a way that is akin to the ad-hoc method used by Greene (1994). In

particular, HMR replace ς ij with its expectation conditional on Mij > 0, which is the

inverse Mills ratio from the first stage. That is, using z∗ij to denote the linear index in

(6) and denoting the inverse Mills ratio by ηij = φ
(
z∗ij
)
/Φ
(
z∗ij
)
, the second stage of

HMR’s procedure is the estimation of

mij = β0 + λj + χi − γdij + ln
{

exp
[
δ
(
z∗ij + η̂ij

)]
− 1
}

+ βuηη̂ij + eij, (10)

where η̂ij denotes the fitted value of ηij and βuη is a parameter (see equation (14) in

HMR).

As noted for example by Terza (1998), this approach to correct the effect of the

sample selection on ς ij is generally inappropriate. Indeed, for any non-linear function

f (·), Jensen’s inequality implies that f [E(ς ij|Mij > 0)] 6= E [f (ς ij) |Mij > 0]. There-

fore, f
(
η̂ij
)
is not a consistent estimator of E [f (ς ij) |Mij > 0] and, consequently, the

proposed estimation method will generally be inconsistent for all the parameters of

interest.

Nevertheless, it is interesting to notice that the approximation used by HMR is likely

to be reasonably accurate in many practical situations. To see this, notice that

ln
{

exp
[
δ
(
z∗ij + ς ij

)]
− 1
}

= ln
{

exp
[
δ
(
z∗ij + ηij + ωij

)]
− 1
}
, (11)
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where ωij = ς ij − ηij. The approximation used by HMR consists of ignoring ωij, which

would be innocuous if the function was linear in this random term because in that

case ωij would just be added to the error of the equation. However, it is clear that for

a wide range of values of z∗ij and reasonable values of δ, (11) is approximately linear

in ωij. Therefore, under their assumptions, the approximation used by HMR is likely

to be reasonable, especially because positive values of Mij tend to be associated with

large values of z∗ij, which are the ones for which the approximation is better.
6

III. A reappraisal of the HMR study

In this section we reconsider the empirical study presented in HMR.7We start by testing

whether there is evidence of violations of the distributional assumptions required for

the validity of the HMR estimator and then study the sensitivity of the results to the

presence of heteroskedasticity.

Testing the distributional assumptions

Since δ is proportional to the standard deviation of the error in the first stage, the

assumption that δ is independent of the regressors can be tested by testing for het-

eroskedasticity in the probit defined by (6). Tests for this purpose were introduced

by Davidson and MacKinnon (1984) and are now described in textbooks such as

Wooldridge’s (2010, pp. 571-573). Although these tests are well known, it is perhaps

useful to briefly present them here.

6Santos Silva and Tenreyro (2009) show that, under the distributional assumptions maintained by

HMR, it is possible to obtain an exact selectivity correction.

7In order to maintain comparability with the results in HMR, we use exactly the same data, the

same set of regressors, and the same estimation methods used in the original study. HMR provide

details on the data and data sources.
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Consider the following generalization of (6)

Pr (Tij = 1) = Φ

(
γ0 + ξi + yj − γdij − κψij

σu+v(wijθ)

)
, (12)

where wij is a vector of functions of ξi, yj, dij, and ψij, θ is a vector of parameters, and

σu+v(wijθ) denotes the standard deviation of u + v. Moreover, let σu+v(wijθ) be such

that σu+v(0) = σu+v, which is constant. In this setup the null of homoskedasticity can

tested by testing H0 : θ = 0 and, as Davidson and MacKinnon (1984) show, under mild

regularity conditions the test can be derived without specifying the form of σu+v(wijθ).

Indeed, by expanding the argument of Φ (·) in a Taylor series around θ = 0 we obtain

Pr (Tij = 1) ' Φ
(
z∗ij − θσ′u+vz∗ijwij/σu+v

)
, (13)

where z∗ij is defined as before and σ
′
u+v denotes the derivative of σu+v(·) evaluated at

zero. Therefore, if σ′u+v 6= 0, (12) is locally equivalent to a homoskedastic probit where

the linear index z∗ij is augmented by the inclusion of variables of the form z∗ijwij and

H0 : θ = 0 can be tested by testing the significance of the parameters associated with

the additional regressors.

The test can be implemented in three simple steps: first, we estimate the model

under the null, i.e., (6); then we construct variables of the form ẑ∗ijwij, where ẑ
∗
ij is the

fitted value of z∗ij obtained under the null; finally, we estimate the augmented probit

model defined by (13) and check the significance of the parameters associated with the

additional regressors. That is, in the context of a probit model, homoskedasticity can

be tested by testing the exclusion of a particular type of regressors.

To implement the test it is necessary to choose the variables in wij. Although wij

can contain any function of the regressors, in what follows we will consider only the
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case where wij =
(
ẑ∗ij, ẑ

∗2
ij

)
;8 that is, the test is performed by checking for the joint

significance of the parameters associated with the additional regressors ẑ∗2ij and ẑ
∗3
ij .

This form of the heteroskedasticity test, which is analogous to a two-degrees-of-

freedom RESET test (Ramsey, 1969), is particularly interesting in the case of a probit

model because it can also be interpreted as a normality test. Heuristically, the intuition

for this can be provided as follows (see Cramer and Ridder, 1988, pp. 307-308). Suppose

that Pr (Tij = 1) = F
(
z∗ij
)
, where F (·) is a cumulative distribution function, and

rewrite F
(
z∗ij
)
as Φ

(
Φ−1

(
F
(
z∗ij
)))
. Then, approximating Φ−1

(
F
(
z∗ij
))
with a third

order polynomial we obtain F
(
z∗ij
)

= Φ
(
υ1z

∗
ij + υ2z

∗2
ij + υ3z

∗3
ij

)
. If F (·) = Φ (·), then

Φ−1
(
F
(
z∗ij
))

= z∗ij and therefore υ2 = υ3 = 0. That is, in a probit the assumption

of normality can be tested using a RESET test; see Newey (1985) for an alternative

derivation and more details.

Ramalho and Ramalho (2012) perform an extensive simulation study on the prop-

erties of RESET tests in the context of binary choice models and conclude that the

particular version of the RESET we use has very good performance under the null

and has good power against a range of alternatives, including heteroskedasticity and

non-normality. Therefore, this simple test provides a direct check for the validity of

the main distributional assumptions required for consistent estimation of the model

developed by HMR.

Additionally, because heteroskedasticity also impacts on the functional form of (10)

it is important to check whether the specification of this model is reasonably adequate.

In the spirit of Cosslett (1991), HMR partially relax the distributional assumptions

used to obtain (10) by estimating models of the form

mij = λj + χi − γdij +

Q∑
s=1

αs1
[
qs−1 < ρij ≤ qs

]
+ e∗ij, (14)

8This choice is motivated by analogy with the popular two-degrees-of-freedom special case of

White’s test for heteroskedasticity (see Wooldridge, 2010, p. 140).
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where, as before, ρij = Pr (Tij = 1) and 1 [A] is the indicator function of the event

A , α1, . . . , αQ are parameters, q0, . . . , qQ are constants defining quantiles of ρij, and

q0 = −∞ and qQ =∞. Although this model is more flexible than (10) it still assumes

that the selectivity correction depends on the regressors only through z∗ij; that is, like

(8), (9), and (10), (14) assumes that δ is constant. To check for departures from this

assumption one can test the significance of interactions between the indicator variables

and functions of the other regressors. A simple way of doing this is again to perform

a RESET test for the significance of additional variables constructed as powers of the

estimated linear indexes. By analogy with what is done for the probit, in what follows

we will also use two-degrees-of-freedom RESET tests to check the validity of (14).

The performance of the RESET in linear models has been studied, among others, by

Godfrey and Orme (1994), who conclude that the test has good behaviour under the

null and good power against alternatives of the type considered here.

Table 1 presents the test statistics and p-values for the two-degrees-of-freedom RE-

SET tests for some of the models estimated by HMR. In particular, for the two sets of

exclusion restrictions considered by HMR, we test the specification of the probit used

in the first stage and the two most flexible specifications of the second stage, which are

defined by (14) with Q ∈ {50, 100}. Although the simulation studies referred above

suggest that the RESET tests have good size properties, it is important to make sure

that in this particular application the tests do not lead to spurious rejections of the

null. Therefore, we computed the p-values of the test in 3 different ways: 1) using the

usual clustered standard errors, 2) using standard errors obtained with a bootstrap by

clusters, and 3) bootstrap p-values. Notice that because the test statistic is asymptoti-

cally pivotal the bootstrap p-values benefit from the well-know asymptotic refinements

and therefore lead to much more reliable inference than the p-values obtained by the

first two methods (see, e.g., Godfrey, 2009, pp. 69-72). In the three cases the results

are the same.
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TABLE 1: Specification test results

Costs excluded Religion excluded

Probit 50 Bins 100 Bins Probit 50 Bins 100 Bins

RESET statistic 105.45 24.99 24.00 323.04 58.58 58.87

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sample size 12, 198 6, 602 6, 602 24, 649 11, 146 11, 146

The p-values of the RESET tests for the probit models reveal clear signs of misspeci-

fication. As noted before, this particular version of the RESET test can be interpreted

as a test for the assumptions of homoskedasticity and normality of ui and vi and the

results in Table 1 strongly suggest that these assumptions are not valid in this con-

text. This impression is reinforced by the results for the second stage models, which

also clearly fail the RESET tests. Therefore, there are reasons to suspect that all the

models considered by HMR are misspecified; we next evaluate how sensitive the results

are to possible misspecification.

Gauging the consequences of heteroskedasticity

One way to assess the sensitivity of the HMR estimation procedure to the presence

of heteroskedasticity is to estimate (14) using fitted values of ρij obtained from an

heteroskedastic probit as in (12) rather than from a standard probit. To do that we

need to specify the functional form of σu+v(wijθ) and to define the set of variables to

include in wij. Here we follow Harvey (1976) and specify σu+v(wijθ) = exp(wijθ). As

for the choice of wij we consider two cases: a) wij =
(
dij, ψij

)
, that is, wij contains

all the regressors in the original probit regression except the importer and exporter

dummies; and b) wij is a set of indicator variables obtained by partitioning the fitted

values of (6) into bins as done in (14); in this case we use 35 bins.9 It is important
9Estimation of the heteroskedastic probit is relatively diffi cult and therefore it is necessary to be

somewhat parsimonious in the definition of wij .
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to notice that because economic theory provides no guidance on the choice of the

functional form of σu+v(wijθ) or of the variables in wij our decisions on these are

somewhat arbitrary and we do not in any way presume that they lead to adequate

specifications. Consequently, the results presented below should be interpreted merely

as illustrating the sensitivity of the HMR estimation procedure to alternative forms of

accounting for heteroskedasticity in the first stage.

Table 2 presents the results obtained by estimating (14) using three different specifi-

cations for the probit model in the fist stage:10 columns (A) and (D) correspond to the

results reported by HMR using the standard probit that ignores the possible presence

of heteroskedasticity, columns (B) and (E) correspond to the results obtained using

the heteroskedastic probit with wij =
(
dij, ψij

)
, and finally columns (C) and (F) are

obtained again by using an heteroskedastic probit where now wij is a set of indicator

variables obtained as described above.

The results presented in Table 2 show that the way heteroskedasticity is accounted for

in the first stage has dramatic consequences for the estimated elasticities of the firm’s

trade with respect to the different trade barriers. Indeed, changing the specification of

σu+v(wijθ) leads to important changes in the magnitude of the estimated elasticities,

sometimes changing their statistical significance (e.g., Colonial ties and FTA). For

example, the estimated distance elasticity varies between −0.623 and −1.073, and

the estimate for the coeffi cient on the currency union dummy varies between 0.782

and 1.376, implying that the effect of this variable varies by a factor of almost 2.5.

Additionally, we note that in (C) the coeffi cient on Religion has a p-value of 0.029, which

calls into question the use of this variable as the excluded instrument in the second set

of estimates. Finally, we note that although the models based on the heteroskedastic

probit are more general than the ones used by HMR, the results of the RESET test

10We only present results for the case where the indicators are obtained as percentiles of ρij , results

with fewer indicator dummies are essentially the same.
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TABLE 2: Estimation Results

Costs excluded Religion excluded

(A) (B) (C) (D) (E) (F)

wij Const. dij, ψij Bins Const. dij, ψij Bins

Log distance −0.789 −0.890 −1.062 −0.623 −0.965 −1.073

(0.088) (0.048) (0.041) (0.076) (0.044) (0.034)

Land border 0.863 1.166 0.705 0.924 0.808 0.636

(0.170) (0.177) (0.165) (0.150) (0.153) (0.146)

Island 0.197 −0.099 0.478 0.074 0.243 0.287

(0.258) (0.279) (0.266) (0.121) (0.119) (0.118)

Landlock 0.353 0.334 0.352 0.439 0.379 0.569

(0.187) (0.188) (0.190) (0.186) (0.192) (0.187)

Legal 0.418 0.339 0.489 0.345 0.354 0.442

(0.065) (0.068) (0.063) (0.050) (0.051) (0.049)

Language −0.036 −0.025 0.110 −0.062 0.081 0.135

(0.083) (0.076) (0.075) (0.068) (0.062) (0.060)

Colonial ties 0.838 −0.386 0.901 0.929 0.894 1.123

(0.153) (0.264) (0.152) (0.119) (0.339) (0.118)

Currency union 1.107 0.782 1.376 0.960 1.052 1.233

(0.346) (0.339) (0.334) (0.270) (0.267) (0.262)

FTA 0.065 0.203 0.751 −0.091 0.494 0.669

(0.348) (0.257) (0.224) (0.210) (0.311) (0.189)

Religion 0.100 −0.255 0.259 – – –

(0.128) (0.146) (0.119) – – –

RESET statistic 24.00 22.13 33.89 58.85 68.22 87.11

p-value 0.000 0.000 0.000 0.000 0.000 0.000

R2 0.706 0.706 0.703 0.723 0.722 0.720

Sample size 6, 602 6, 602 6, 602 11, 146 11, 146 11, 146

Note: Clustered standard errors in parentheses. All models include importer and

exporter dummies.
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suggest that they no not alleviate the misspecification of the second stage. This is

not surprising because, due to the log transformation, the consistency of the second

stage is also heavily dependent on the assumption of homoskedastic errors (see Santos

Silva and Tenreyro, 2006) and that is not at all taken into account in the estimation

procedure suggested by HMR.

The results in Table 2 clearly illustrate the sensitivity of the HMR estimation pro-

cedure to the presence of heteroskedasticity. However, because all of the models are

potentially severely misspecified, these results are not informative about the magnitude

of the biases caused by heteroskedasticity in the first stage.

To investigate this issue we performed a small simulation study in which data are

generated as follows. First, using (4), Zij is generated as

Zij = exp
(
γ0 + ξi + yj − γdij − κψij + vij + uij

)
. (15)

Then, for Zij > 1, mij is generated according to (9), that is

mij = β0 + λj + χi − γdij + ln

{
Z

k−ε+1
ε−1

ij − 1

}
+ uij. (16)

For the instruments ψij, we used either Costs or Religion as in HMR. We also

performed a set of experiments similar to those where Religion is the instrument but

replacing this variable by random draws from a normal distribution with mean 0 and

standard deviation equal to 3. When Costs and Religion are the instruments the sample

sizes are as in the HMR paper and when the random instrument is used the sample

size is the same as when Religion is used as the instrument.

The variables in dij are a subset of the trade barriers included in the original study.

Specifically, to speed-up the simulation experiments we considered only Log distance,
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Land border, Landlock, and Legal. As in HMR, when Costs are the excluded instru-

ment Religion is also included in dij.11

We performed experiments with homoskedastic and heteroskedastic errors. In the

homoskedastic case vij and uij are obtained as random draws from a normal distri-

bution with mean 0 and standard deviation equal to
√

0.5; therefore σu+v = 1. In

the heteroskedastic case uij is obtained as random draws from a normal distribu-

tion with mean 0 and standard deviation equal to 0.25 and vij is obtained as ran-

dom draws from a normal distribution with mean 0 and standard deviation equal to√
exp

(
θ1dij + θ2ψij

)2 − 0.252, implying σu+v(wijθ) = exp
(
θ1dij + θ2ψij

)
.12

To complete the specification of the data generation process it is necessary to set

the parameters of the model.13 In the homoskedastic case, the parameters in (15) are

set to match the estimates obtained when the first stage is a probit with the relevant

regressors. In the heteroskedastic case, the parameters in (15) and θ1 and θ2 are set

to match the estimates obtained when the first stage is a heteroskedastic probit. In

both cases the coeffi cients on the regressors in (16) were set to match the estimates

obtained from (14) and constructing the indicator functions as the percentiles of the

probabilities estimated in the first stage.14 Finally, we set k = 1.85 and ε = 2 (see

Broda and Weinstein, 2006).

After generating the data, the model was estimated using a probit in the first stage

and then estimating the second stage using (14) with indicator functions constructed

as the percentiles of the probabilities estimated in the first stage; i.e., estimation is per-

11We preformed some limited experiments with the full set of regressors and the results are quali-

tatively similar.

12Notice that in both cases uij , the error of the second stage, is homoskedastic.

13Values for the main parameters used in the simulations are given in Appendix A.

14Notice, however, that the biases to be reported below are invariant to the value of these parameters.
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formed exactly as in HMR and therefore ignores the possible presence of heteroskedas-

ticity.

Table 3 reports the biases of the estimates of the coeffi cients of dij obtained with

10, 000 replicas of the procedure described above. These results show that when Costs

or Religion are used as instruments there are substantial biases even if the errors are

homoskedastic; the bias on the coeffi cient of Log distance is particularly noteworthy.

This suggests that, at least with samples of this size, the instruments used by HMR

do not have enough influence in the first stage to lead to estimates of the parameters

of interest with reasonably small biases. However, when ψij ∼ N (0, 3) and the errors

are homoskedastic the biases are generally reasonably small.15

With heteroskedastic errors the biases again depend on how the data are generated

and on the instrument used, and can be very substantial. Moreover, the results show

that the sign of the biases depends on how the data is generated.16

TABLE 3: Simulation Results (estimated biases)

Homoskedastic errors Heteroskedastic errors

Instrument Costs Religion N (0, 3) Costs Religion N (0, 3)

Log distance −0.3558 −0.4607 −0.0086 −0.7928 −1.4192 −0.3872

Land border −0.0871 −0.1744 0.0190 0.8098 −0.0727 0.2943

Landlock 0.0772 0.1262 0.0040 0.0225 0.2468 −0.2038

Legal 0.1144 0.1311 0.0002 0.1649 0.3418 0.0274

Religion 0.2094 – – 0.1326 – –

Sample size 6, 602 11, 146 11, 146 6, 602 11, 146 11, 146

The results in Table 3 confirm that the two-stage estimation procedure suggested by

HMR is heavily reliant on the assumption that the errors of the model are homoskedas-

15Under homoskedasticity, smaller biases are also obtained with the other instruments if κ, the

coeffi cient of the instrument in the generation of Zij , is increased substantially.

16The results of additional experiments show that, as expected, the magnitude of the biases increase

with the value of (k − ε+ 1) / (ε− 1).
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tic. Moreover, these results show that even under homoskedasticity the ability of the

estimator to identify the parameters of interest depends on the availability of an in-

strument that not only can be validly excluded form the second stage regression but

also has a determinant role in the first stage. The results obtained using Costs and

Religion as instruments suggest that, even if they are valid, their role in the first stage

is not significant enough to allow the estimation of the parameters of interest with

reasonably small biases.

IV. Concluding remarks

In this paper we discuss some econometric aspects of the implementation of the model

for bilateral trade flows between countries proposed by Helpman, Melitz and Rubinstein

(2008).

In particular, we have emphasized that consistent estimation of the structural pa-

rameters in the model proposed by HMR is only possible under the assumption that

all random components of the model are homoskedastic. This dependence on the

homoskedasticity assumption is the most important drawback of the HMR model and

contrasts with more standard models for trade (e.g., Anderson and vanWincoop, 2003),

which can be made robust to the presence of heteroskedasticity. Additionally, our sim-

ulation results reveal that estimation of the HMR model using Costs or Religion as

instruments may lead to substantial biases, even if the errors are homeskedastic and

the instruments valid. This happens because Costs or Religion play only a minor role

in the first stage and in that sense they are weak instruments. Finally, we notice that

while it is likely to be reasonably accurate in many empirical studies, the selectivity

correction used by HMR is only approximately valid.

To gauge the severity of these problems we revisited the empirical illustration pre-

sented by HMR and found overwhelming evidence that all models used in their study
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are misspecified. Additionally, we illustrated that their proposed estimator is very sen-

sitive to the presence of heteroskedasticity. These findings cast doubts on the validity

of any inference drawn upon the results obtained using the two-stage estimator of the

model for bilateral trade flows proposed by HMR.
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Appendix A

TABLE A1: Main simulation parameters∗

Homoskedastic case Heteroskedastic case

Instrument Costs Religion Costs Religion

First Stage

Log distance −0.6801115 −0.7145263 −0.4630633 −0.6757597

Land border −0.2053883 −0.3268029 0.0353037 −0.2673540

Landlock 0.1500615 0.2062646 0.0874460 0.2586772

Legal 0.2199632 0.1902099 0.1652583 0.2026328

Religion 0.4301583 0.3176966 0.2002376 0.2962447

Reg. costs −0.2756534 – −0.1174301 –

Days & proc. −0.1513593 – −0.0756938 –

σu+v(wijθ)

Log distance – – −0.0665514 −0.0037485

Land border – – 0.4566915 0.2378667

Landlock – – −0.0991268 −0.2010872

Legal – – −0.1022340 −0.0682039

Religion – – −0.4798412 −0.1183847

Reg. costs – – −0.0624817 –

Days & proc. – – −0.0926002 –

Second Stage†

Log distance −0.9783899 −0.6726285 −0.8552656 −0.7001846

Land border 0.8397781 0.9048378 1.3515540 1.1654240

Landlock 0.3628381 0.4477573 0.2162446 0.1051300

Legal 0.4992202 0.4170539 0.3069886 0.3025640

Religion 0.2023377 – −0.6370270 –

∗ All models include importer and exporter dummies.
† The results are invariant to the choice of the second stage parameters.
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