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Abstract

In economic applications it is often the case that the variate of interest is non-

negative and its distribution has a mass-point at zero. Many regression strate-

gies have been proposed to deal with data of this type but, although there has

been a long debate in the literature on the appropriateness of different mod-

els, formal statistical tests to choose between the competing specifications are

not often used in practice. We use the non-nested hypothesis testing frame-

work of Davidson and MacKinnon (1981, “Several tests for model specification

in the presence of alternative hypotheses,”Econometrica, 49, 781-793) to de-

velop a novel and simple regression-based specification test that can be used to

discriminate between these models.

JEL codes: C12, C52

Key words: Health economics, international trade, non-nested hypotheses, C

test, P test.

∗We are grateful to the editor Jason Abrevaya and to an anonymous referee for many helpful and

constructive suggestions. We also thank Holger Breinlich, Francesco Caselli, Daniel Dias, Esmeralda

Ramalho, Joaquim Ramalho, and Rainer Winkelmann for helpful comments, and John Mullahy for

providing one of the datasets used in Section 4. Santos Silva acknowledges partial financial support

from Fundação para a Ciência e Tecnologia (FEDER/POCI 2010). Tenreyro acknowledges financial

support from ERC and Bank of Spain, the latter through the Bank of Spain Associate Professorship.

Windmeijer acknowledges financial support from ERC grant 269874 - DEVHEALTH.
†University of Essex and CEMAPRE, jmcss@essex.ac.uk.
‡London School of Economics, CREI, CEP and CEPR. S.Tenreyro@lse.ac.uk.
§University of Bristol, f.windmeijer@bristol.ac.uk.

1



1. INTRODUCTION

In many applications the variate of interest, say y, is non-negative and has a mixed

distribution characterized by the coexistence of a long right-tail and a mass-point

at zero. Applications using this sort of data are typical in health and international

economics, but data with these characteristics are also found in many other areas.

An example in international economics is the case of bilateral trade flows where the

zeros may result from the existence of fixed costs or access costs that preclude firms

or countries to sell into some destinations (see, for example, Melitz, 2003, Helpman,

Melitz, and Yeaple, 2004, Chaney, 2008, and Arkolakis, 2008). An example in health

economics is medical expenditures, which are zero for those individuals that do not

utilise health care, and positive for those who do.1

What is common to the cases we are considering here is that the zeros are not the

result of some observability problem but rather correspond to the existence of the

so-called “corner-solutions”. In this case researchers and policymakers are ultimately

interested in the effects of the covariates on the distribution of the fully observable

dependent variable y (see Wooldridge, 2002, and Dow and Norton, 2003).

One question that is central in specifying models for this type of data is whether

the zero and positive observations are generated by the same mechanism or whether

the zeros are somehow different. When it is assumed that a single mechanism is

at work the data are typically described by a single-index model such as the Tobit

(Tobin, 1958, Eaton and Tamura, 1994) or by models with an exponential conditional

expectation function (Mullahy, 1998, and Santos Silva and Tenreyro, 2006). If the

zeros are believed to be generated by a different process, the covariates are allowed to

affect the conditional distribution of y in two different ways, leading to double-index

models such as the two-part models of Duan, Manning, Morris, and Newhouse (1983)

and Mullahy (1998), models based on Heckman’s (1979) sample selection estimator,

or zero inflated models such as the p-Tobit of Deaton and Irish (1984).

1See Jones (2000) for a survey of applications in health economics. La Porta, López-de-Silanes,

and Zamarripa (2003) is an example of the use of this type of data in finance.
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In this paper we propose a statistical test to discriminate between competing models

for corner-solutions data. The test is specifically designed to discriminate between

single- and double-index models and therefore it can be used to test whether or not

the zero and positive observations are generated by different mechanisms. Developing

tests for this purpose is not trivial because the competing models can imply very

different estimation methods and it is not immediately clear what test can be used to

choose between them. Our approach is based on the observation that, although the

models being considered are based on very different modelling approaches and differ

widely in the nature of the assumptions they make, they all define the conditional

expectation of y given a set of covariates x. Therefore, the suitability of each of the

competing models can be gauged by testing the corresponding conditional expectation

against that of any of the alternatives being considered. Heuristically, our test will

check whether the estimate of the conditional expectation of y obtained under the

alternative can be used to improve the prediction of y obtained under the null. If

that is the case, we have evidence against the null because this implies that the model

under the null is not explaining some features of the data that are captured by the

alternative.

Of course, there are general specification tests that can be used to check the ade-

quacy of the models we consider here (e.g., Bierens, 1982 and 1990, and Wooldridge,

1992). However, these tests do not use information about the precise alternative

that is being considered and, more importantly, despite being available for decades

these tests were never really adopted by practitioners. Therefore, our purpose is to

introduce a test that has good performance and is simple enough to be appealing to

practitioners; after all, a test needs to be performed to have non-zero power.

Having an appropriate test to choose between competing models is important for

several reasons. First, because none of the proposed specifications nests or generally

dominates its competitors, deciding which of the models is more appropriate is an

empirical question that has to be answered for each specific dataset the researcher

is considering. Second, and related, the test may help to empirically discriminate
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among competing theories and thus shed more light on the mechanisms affecting

the variable of interest. Thus, for example, the structural gravity model for trade

of Anderson and Yotov (2010), which in turn builds on Anderson and van Wincoop

(2003), leads to a single-index specification with minimal distributional assumptions

at the estimation stage; instead, the model of Helpman, Melitz and Rubinstein (2008)

leads to a double-index specification and relies on strong distributional assumptions.

Even if the researcher favours one specification on theoretical grounds, it is important

to check its adequacy by testing it against competing specifications because this can

help to confirm (or reject) the researcher’s views on the models. Finally, the model

choice plays a critical role in the estimation of marginal effects and elasticities that

are often used to assess the impact of different public policies and, as said, corner-

solutions data are of high prevalence in key areas of public policy such as health and

international economics.

The remainder of the paper is organised as follows. Section 2 develops the proposed

specification test and compares and contrasts it with alternative testing procedures.

Section 3 presents the results of a simulation study illustrating the finite sample

performance of the proposed test, and Section 4 employs two well-known datasets to

illustrate the practical use of the approach we suggest. Finally, Section 5 contains brief

concluding remarks and an Appendix gives technical details on the proposed testing

procedure and presents a complementary result on the relation between two-part and

sample selection models.

2. THE PROPOSED TEST

2.1. The testing strategy

A feature that is common to all the models regularly used to describe corner-

solutions data is that, implicitly or explicitly, they specify E [y|x], the conditional

expectation of y given x. Moreover, E [y|x] is often the object of interest in empirical

applications because it is the function needed to compute key quantities of interest,
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such as marginal effects and elasticities, which in turn can shed light on welfare effects

(e.g., Arkolakis, Costinot and Rodríguez-Clare, 2009). Therefore, we compare the

different models on the basis of the adequacy of the implied conditional expectations.

In particular, we suggest testing the specification of E [y|x] implied by one model

against alternatives in the direction of competing specifications. This can be done by

framing the problem as a test of non-nested hypotheses.

The motivation for using tests of non-nested hypotheses is obvious when the purpose

is to compare models whose implied conditional expectations are non-nested, in the

sense that they cannot be obtained by imposing restrictions on the parameters of the

competing specifications. For instance, the Tobit does not nest, and is not nested

by, the exponential conditional expectation model. But, perhaps less obviously, we

argue that the use of the non-nested hypotheses framework is needed even when the

functional form of the conditional expectation of one model is identical to, or nested

within, that of the competing alternative. This is because the models imply not

only a functional form for E [y|x] but they also prescribe a method to estimate the

parameters of interest. Therefore, even if two models specify the same functional form

for E [y|x], the implied conditional expectations will generally be different because

they are evaluated at different parameter values, even asymptotically. In this case,

none of the models leads to an estimated conditional expectation that nests the

others in the sense that it will always fit the data at least as well as that of its

competitors. For example, Heckman’s selection model nests the two-part model of

Duan et al. (1983), but when these models are used to describe corner-solutions data

there is no guaranty that the conditional expectation implied by the sample selection

model will fit the data better than the conditional expectation implied by the two-part

model.2

2Therefore, using the usual t-statistic on the inverse Mills ratio coeffi cient to check if the two-part

model is a valid simplification of the sample selection model gives no information about the ability

of these models to describe corner-solutions data (cf. Dow and Norton, 2003 and Norton, Dow and

Do, 2008). In an often cited paper, Duan, Manning, Morris and Newhouse (1984) argue that there

can be correlation between the error terms in the two parts of the two-part model and that therefore

5



Table 1: Some models for corner solutions data

Model Specification E [y|x]

ECE E [y|x] = exp (x′β) exp (x′β)

2PM

Pr (y > 0|x) = Φ (x′γ)

for y > 0 : ln (y) = x′β + e

e|x ∼ N (0, σ2)

exp
(
x′β + σ2

2

)
Φ (x′γ)

M-2PM
Pr (y > 0|x) = Φ (x′γ)

E [y|x, y > 0] = exp (x′β)
exp (x′β) Φ (x′γ)

Sample

Selection

(in logs)

Pr (y > 0|x) = Pr (x′γ + e1 > 0|x)

for y > 0 : ln (y) = x′β + e2[
e1

e2

]
|x ∼ N

([
0

0

]
,

[
1 ρσ

ρσ σ2

]) exp
(
x′β + σ2

2

)
Φ (x′γ + ρσ)

Notes: ECE is Exponential Conditional Expectation; 2PM is Two-Part Model; M-2PM

is Modified Two-Part Model.

Most tests of non-nested hypotheses require the specification of the entire condi-

tional density of y given x (Cox, 1961, Atkinson, 1970, Quandt, 1974, Pesaran and

Deaton, 1978, Vuong, 1989, Gourieroux and Monfort, 1994, and Santos Silva, 2001),

and therefore are not appropriate in this context. An exception is Davidson and

MacKinnon (1981), who introduced the P and C tests of non-nested hypotheses that

only require the specification of the conditional mean. In the next subsection we build

on these results to develop a testing procedure specifically designed to discriminate

between competing models for corner-solutions data.

In the development of the test below, we specifically consider single- and double-

index models of the type illustrated in Table 1. The models in Table 1 are the

exponential conditional expectation (ECE); the two-part model (2PM) of Duan et

al. (1983);3 Mullahy’s (1998) modified two-part model (M-2PM), and the sample

the two models are not nested. We show in the Appendix that their example is misleading and does

not lead to the conclusion that the errors can be correlated.
3Our results also apply to the case where normality of e is not assumed and the conditional

expectation of the 2PM is estimated by smearing, as suggested by Duan (1983). In this case,

E [y|x] = exp (x′β + s) Φ (x′γ), where s is the log of the scaling factor estimated by smearing.
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selection model in logs.4 The conditional means of these models can all be represented

as E [y|x] = g (x′β)F (x′γ), where F (x′γ) = Φ (x′γ) for the double-index models (with

implicit intercept shifts where applicable) and F (x′γ) ≡ 1 for the single-index ECE

model, and g (x′β) = exp (x′β) in both cases. Our results below apply not only to

these models but also to any models with E [y|x] = g (x′β)F (x′γ), with g (·) > 0 and

0 < F (·) ≤ 1.

2.2. The test statistic

We build on Davidson and MacKinnon’s (1981) seminal work to develop a testing

procedure specifically designed to discriminate between competing models for corner-

solutions data. Let {yi, x′i}
n
i=1 be an i.i.d. sample of size n and assume that standard

regularity conditions are satisfied (see Appendix A1). Furthermore, as in Davidson

and MacKinnon (1981), suppose that we want to test Model A, implying

MA : E [yi|xi] = gA (x′iβA)FA (x′iγA) ,

against Model B,

MB : E [yi|xi] = gB (x′iβB)FB (x′iγB) ,

where, for j ∈ {A,B}, gj (·) > 0, 0 < Fj (·) ≤ 1, βj and γj are vectors of parameters,

and the models have a single index when Fj (·) ≡ 1.

As noted before, Models A and B will be non-nested even if gA (·)FA (·) and

gB (·)FB (·) have the same form because in general these functions are evaluated at

sets of parameter estimates with different probability limits. Therefore, as in David-

son and MacKinnon (1981), we start by nesting the competing specifications in a

compound model of the form

MC : E [yi|xi] = (1− α) gA (x′iβA)FA (x′iγA) + αgB (x′iβB)FB (x′iγB) ,

and want to check the correct specification of MA by testing H0 : α = 0 against

H1 : α = 1.5 As noted by Davidson and MacKinnon (1981), in general α, βA, γA, βB,
4The conditional expectation for this model was obtained by van de Ven and van Praag (1981).
5A two-tailed test could also be used. However, here we follow Fisher and McAleer (1979),

who argue that, when the purpose is to discriminate between two competing models, one-sided (in
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and γB are not separately identified and therefore the test has to be performed by

conditioning on parameter estimates. In particular, Davidson and MacKinnon (1981)

consider two cases: the P test, which conditions on the estimates obtained under the

alternative, and the C test that conditions on estimates obtained under both the null

and alternative.6 For reasons that will be clear in Subsection 2.3 below, we propose

conditioning on estimates obtained under both the null and alternative, as in the C

test; however, unlike in the C test, we will not condition on all parameter estimates

under the null, but only on the estimates of γA. That is, βA is allowed to be freely

estimated, and the hypothesis of interest is tested in the artificial regression

yi = (1− α) gA (x′iβA)FA (x′iγ̂A) + αgB

(
x′iβ̂B

)
FB (x′iγ̂B) + ξi, (1)

where β̂j and γ̂j denote estimates obtained under model j ∈ {A,B}.

Like in the P test, estimation of (1) can be avoided by linearizing the model around

βA = β̂A. Moreover, in the specific context we have in mind, the variance of ξi is likely

to increase with E [yi|xi] and therefore we suggest estimating the linearization of (1) by

weighted least squares, under the assumption that Var [yi|xi] ∝ gA (x′iβA)FA (x′iγA).

As discussed in the next subsection, this modification is not only likely to improve

the performance of the test in finite samples but, more importantly, it also leads to

an interesting interpretation of the test.

Implementing the test in practice is very simple. Defining ŷji = gj

(
x′iβ̂j

)
Fj
(
x′iγ̂j

)
and δ = (1− α)

(
β̂A − βA

)
, the proposed test is just a (robust) t-test for H0 : α = 0

against H1 : α = 1 in the OLS estimation of an artificial regression of the form

yi − ŷAi√
ŷAi

=
∇gA

(
x′iβ̂A

)
FA (x′iγ̂A)x′i√
ŷAi

δ + α
ŷBi − ŷAi√

ŷAi
+ νi, (2)

where ∇gA
(
x′iβ̂A

)
denotes the derivative of gA (·) evaluated at x′iβ̂A. This

regression can be conveniently performed, for example in Stata (StataCorp.,

the direction of the alternative) tests should be used. This is in line with the seminal procedure

developed by Cox (1961).
6The J test described in Davidson and MacKinnon (1981) could also be used in this context.

However, this procedure is not as attractive as the P and C tests because its implementation is

cumbersome when the null is a nonlinear model.
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2013), as a least squares regression of
(
yi − ŷAi

)/
∇gA

(
x′iβ̂A

)
FA (x′iγ̂A) on x and(

ŷBi − ŷAi
)/
∇gA

(
x′iβ̂A

)
FA (x′iγ̂A), using

(
∇gA

(
x′iβ̂A

)
FA (x′iγ̂A)

)2

/ŷAi as weights.
7

The test based on (2) will be referred to as the HPC test because it has features of

the P and C tests and accounts for the presence of heteroskedasticity.

As in the C test, the asymptotic variance of the t-statistic for the significance of

α in (2) is not equal to 1 because the test does not take into consideration that

γA is evaluated at estimates under the null. Indeed, as sketched in Appendix A.1

(see also Davidson and MacKinnon, 1981, Pierce, 1982, and Lee, 2010), when γA

is evaluated at its maximum likelihood estimates, the t-statistic for H0 : α = 0 in

(2) will be asymptotically normal with variance smaller than 1 and therefore the

test based on it will be undersized. Still, we expect this problem to be much less

severe than in the C test because the HPC test does not condition on β̂A. Naturally,

as detailed in the Appendix, an asymptotically correct estimator of the variance

of the estimate of α can be obtained using the misspecification-robust version of

the methods presented in Davidson and MacKinnon (1981) and the t-statistic for

H0 : α = 0 based on this estimator will be asymptotically distributed as a standard

normal. Alternatively, an asymptotically valid covariance matrix estimator can be

obtained using a simple pairs-bootstrap approach (Freedman, 1981).8 However, in the

next section we present Monte Carlo evidence suggesting that the HPC test suffers

only from small size distortions even when it is based on the uncorrected estimate

7Note that for the case where g (x′β) = exp (x′β) the artificial regression simplifies to

yi − ŷAi√
ŷAi

= x′i

√
ŷAi δ + α

ŷBi − ŷAi√
ŷAi

+ νi,

which can be performed as a least squares regression of
(
yi − ŷAi

)/
ŷAi on x and

(
ŷBi − ŷAi

)/
ŷAi ,

using ŷAi as weights. In this case the test can also be performed with the hpc command we have

written for Stata (StataCorp., 2013).
8Alternatively, it is possible to compute bootstrap p-values using a pairs-bootstrap procedure

and a modified test for which the null is valid in the bootstrap samples (see, e.g., Davidson and

MacKinnon, 2006, p. 822). However, bootstrapping the t-statistic is likely to require more bootstrap

draws than the computation of the covariance matrix and, because the uncorrected test statistic is

not asymptotically pivotal, it does not lead to the usual asymptotic refinements.
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of the variance. Therefore, we conjecture that, for most empirical applications, the

computational effort of correcting the covariance estimator may not be necessary.

The important case where the null is a single-index model is noteworthy. In this

case FA (x′iγA) ≡ 1 and therefore γ̂A vanishes from (1). Hence, when the null is a

single-index model, the variance of the estimate of α does not need to be corrected. In

this case the test based on (2) is just a weighted version of the P test and consequently

the (robust) t-test will asymptotically have the correct size.9 This means that the

HPC test is particularly easy to perform when the null is a single-index model, which

is often of interest in applied work.

Finally, it is important to mention that, as is standard with tests of non-nested

hypotheses, the roles of the null and alternative can be reversed. This leads to

three possible outcomes of the HPC test: one model may be rejected and the other

accepted, both models may be accepted, or both rejected. Therefore, unlike model

selection criteria that always choose one of the models being compared, the HPC test

has the ability to reject both specifications when neither is appropriate. Conversely,

if the two specifications are very close and the sample is not rich enough, the test

may be unable to discriminate between the two competitors.

2.3. Comparison with other tests

The HPC test is obviously closely related to the P and C tests of Davidson and

MacKinnon (1981). In our context, these tests essentially check a moment condition

of the form

E {[yi − gA (x′iβA)FA (x′iγA)] [gB (x′iβB)FB (x′iγB)− gA (x′iβA)FA (x′iγA)]} = 0.

That is, the tests check the correct specification of MA by testing whether the errors

y−gA (x′iβA)FA (x′iγA) have zero expectation, giving more weight to the observations

9Likewise, when gA (·) 6= gB (·) and FA (·) 6= FB (·), the test can be performed without condition-

ing on the estimates of γA. In this case the test will again be just an heteroskedasticity adjusted

version of the P test, and therefore the (robust) t-test will asymptotically have the correct size.
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for which the difference between the conditional means implied by MA and MB is

larger.

In contrast, the test based on (2) checks a moment condition of the form

E

{
[yi − gA (x′iβA)FA (x′iγA)]

gB (x′iβB)FB (x′iγB)− gA (x′iβA)FA (x′iγA)

gA (x′iβA)FA (x′iγA)

}
= 0.

That is, like the P and C tests, the HPC test checks whether the errors of the

model under the null have zero expectation when the weight given to each observation

depends on the difference between the conditional expectations of the two models.

The difference here is that, because of the weights accounting for the presence of

heteroskedasticity in the HPC auxiliary regression, a percentage difference between

the two conditional means is used as a weight in the moment condition. The use of a

percentage difference is appropriate and appealing in this particular context because

all models being considered imply specifications of the conditional mean of yi which

are strictly positive, but can be close to zero for a large proportion of the observations

in the sample. These observations with fitted values close to zero, which are critical

in distinguishing between single- and double-index models, are all but ignored when

the weights are just the difference between the two sets of fitted values, as in the P

and C tests, and not a percentage difference, as in the proposed test.

Therefore, we expect the HPC test to outperform the P and C tests because it

partially accounts for the presence of heteroskedasticity and consequently it is better

suited to the particular context we have in mind.10 Moreover, as will be illustrated,

the P test has very low power when the null is a single index model that can be

obtained as a limiting case of the alternative when FB (x′iγB) approaches 1.11 This

10Notice that the P and C tests can be made robust to heteroskedasticity by using an appropriate

covariance matrix, as we do in the simulations in Section 3. What makes the HPC test different,

however, is that the moment condition it checks is weighted to account for the likely presence of

heteroskedasticity.
11This happens because the P test checks whether there is some set of parameters such that the

conditional mean under the null is correctly specified, but it does not check whether the estimation

method implied by the null identifies these parameters. This problem is illustrated, in a related

context, by the results of Ramalho, Ramalho and Murteira, (2010).

11



is an important drawback because the null and alternative hypotheses satisfy this

relation in many interesting cases, e.g., the ECE model and the M-2PM of Mullahy

(1998). The HPC test bypasses this problem by conditioning on the estimates of γA.

However, because it does not condition on estimates of βA, its performance is likely

to be reasonable even if the corrected covariance estimator is not used, which makes

it more appealing than the C test. The simulation results in the next section suggest

that conditioning on γA but not on βA is indeed a good compromise.

In his seminal paper, Mullahy (1998) considers several tests to check the specifica-

tion of models for corner-solutions data which are related to the test proposed here.

The first is a split-sample test having as the null the two-part model (Duan et al.,

1983), and as alternative the M-2PM. The test is based on a random partition of the

original sample into two sub-samples, and compares the slope parameter estimates

β̂A obtained from one sub-sample with the slope parameter estimates β̂B obtained in

the other. The second test has the ECE model as the null and again the M-2PM as

the alternative, and it is a test for whether the slope parameters in γB are equal to

0.12 Therefore, like the HPC test, these procedures check the adequacy of a model in

the direction of an alternative of interest. However, these tests are very specific and

are diffi cult to extended to check the adequacy of other models, such as the M-2PM

or models based on Heckman’s (1979) sample selection estimator.

Mullahy (1998) also considers a set of conditional moment tests (Newey, 1985,

Tauchen, 1985) which check the orthogonality between the residual
(
yi − ŷAi

)
and

regressors and their squares and cross products. Unlike the two other tests described

above, these tests can be used to check the validity of any model. However, this

approach has a number of drawbacks. First, it is not clear what is the most relevant

set of orthogonality conditions to check. Second, checking separately the validity of

different sets of moments conditions, as done by Mullahy (1998), makes it diffi cult to

control the global significance level of the family of tests. Finally, although the tests

are likely to have power against a wide range of alternatives, they are unlikely to be

12Mullahy (1998) shows that the modified two-part model can be estimated in one or two steps.

However, this test is valid only when the one-step approach is used.
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particularly powerful in directions of special interest. The HPC test is closely related

to these conditional moment tests in the sense that it can also be seen as a check of

a moment condition. However, it avoids the drawbacks of the procedures proposed

by Mullahy (1998) by identifying a single moment condition that is likely to lead to

a test that is particularly powerful against alternatives of interest.

Finally, although we focus on corner-solutions data, our results can be extended to

the case where y is bounded between 0 and 1, or is a count. Therefore, for example,

the HPC test can be used to check for zero-inflation in the models of Gaundry

and Dagenais (1979) and Mullahy (1986), and for the presence of under-reporting

or under-recording in the models of Feinstein (1989), Winkelmann and Zimmermann

(1993), and Mukhopadhyay and Trivedi (1995). In particular, the test can be used

to check for zero-inflation in count data models, even when the null hypothesis only

specifies the conditional expectation of interest.13 Stata (StataCorp., 2013) offers the

possibility of testing Poisson and negative-binomial count data models against their

zero inflated counterparts using Vuong’s (1989) test. However, Vuong’s (1989) test

is likelihood based and therefore it is invalid if the purpose is to compare the ECE

model estimated by pseudo-maximum likelihood with a zero inflated counterpart.14

3. SIMULATION EVIDENCE

In this section we report the results of a simulation study evaluating the finite

sample performance of the HPC test and contrasting it with that of some of the

13Indeed, if the zero inflation is defined by a probit, the conditional expectation of zero-inflated

Poisson or negative binomial models are identical to that of the M-2PM in Table 1. Therefore,

the test comparing these zero-inflated models and their standard counterparts can be performed

exactly as the test comparing the M-2PM and the ECE. Similar tests can be obtained when the

zero inflation is defined by a logit or any other binary choice model. In any case, the test comparing

the zero-inflated model and the standard Poisson or negative binomial regression can be performed

using the hpc command we have written for Stata (StataCorp., 2013).
14Additionally, Stata (StataCorp., 2013) implements the version of Vuong’s (1989) test for non-

nested models when the models being compared are actually overlapping. Therefore the procedure

is invalid even if the null hypothesis is that the conditional distribution of y is Poisson.
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related procedures discussed before. More specifically, two sets of simulations were

performed. In the first set we study the performance of tests comparing the logarith-

mic specification of Heckman’s selection model, estimated by maximum likelihood,

with an ECE model, estimated by Poisson pseudo-maximum likelihood (PPML). The

second set of simulations studies tests comparing an ECE model, again estimated by

PPML, and the M-2PM of Mullahy (1998), in which the first part is a probit and the

second part is an ECE model estimated by non-linear least squares. This choice of

models to compare is motivated by the empirical illustrations in the next section in

which these specifications are tested against each other.

In the experiments in which the double-index models are used to generate the data,

the following data generating process is used

Pr (yi > 0|xi) = Pr (0.2xi1 + 0.8xi2 + ei > 0|xi) ,

for yi > 0 : ln (yi) = 1 + 0.8xi1 + ui,[
ei

u
i

]
|xi ∼ N

([
0

0

]
,

[
1 ρσ

ρσ σ2

])
,

where xi = [xi1, xi2]′. In the first set of experiments, when the data are generated by

the M-2PM, we set ρ = 0 and σ = 0.5. For the second set of experiments, when the

data are generated using the selection model, ρ = 0.75 and σ = 0.5.

When the ECE model is used to generate the data, we follow Santos Silva and

Tenreyro (2011) and obtain yi as a χ2 random variable with ηi degrees of freedom,

where ηi are draws from a negative-binomial distribution with

E [ηi|xi] = exp (0.5 + 0.9xi1 + 0.4xi2) ,

Var [ηi|xi] = 3E [ηi|xi] .

In all data generation processes, x1 is obtained as a random draw from the standard

normal distribution, x2 is a dummy variable with Pr (x2 = 1) = 0.4, and new sets of
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regressors are drawn for each Monte Carlo replication.15 In all designs, yi is equal to

zero for about 40 percent of the observations.

The HPC test is performed as a heteroskedasticity-robust t-statistic for H0 : α =

0 versus H1 : α = 1 in (2). When a double-index model is the null, the test is

performed in three different ways: with the uncorrected covariance matrix, with the

valid covariance matrix obtained as decribed in Appendix A.1, and with the covariance

matrix estimated using 50 bootstrap samples. When the single-index model is the

null the corrections are not needed.

In addition to the proposed test, these simulations also consider some related test

procedures. In particular, we consider heteroskedasticity-robust versions of the P

and C tests of Davidson and MacKinnon (1981), and conditional moment (CM) tests

as in Mullahy (1998).16 We note that when the null is a single-index model the

heteroskedasticity-robust P test is closely related to the HPC test (the difference be-

ing that the former does not use weights to partially account for the heteroskedasticity

of the data), and also that the C test is performed with the uncorrected covariance

matrix, with the valid covariance matrix obtained along the lines described in Ap-

pendix A.1, and with the covariance matrix estimated using 50 bootstrap samples.

Like Mullahy (1998), we will also consider CM tests based on the orthogonality be-

tween the residuals of the model and covariates and their squares and cross-products.

However, the choice of the specific conditional moments to use requires some care. In

15Experiments in which x1 is generated as draws from a uniform or χ2(8) distribution were also

performed but are not reported in detail because the results are not substantially different from

those reported here.
16The other two tests proposed by Mullahy (1998) are not considered here. The first of these tests

compares the traditional two-part model with its modified version proposed by Mullahy. The nature

of this problem is very different from the one we consider here and it has been comprehensively

discussed by Manning and Mullahy (2001) and Santos Silva and Tenreyro (2006). The second test

proposed by Mullahy (1998) compares the exponential conditional function model with the modified

two-part model. As noted before, this test is valid only when the double-index model is estimated

in a single step. However, this tends to be a diffi cult task and convergence is often not possible,

making the estimator diffi cult to use in simulations.
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our simple models, one obvious choice is to use all relevant moments.17 Because this

approach is unlikely to be feasible in realistic settings, we also consider a one degree

of freedom test based only on the square of x1, the only continuous regressor. In what

follows, these tests will be labelled CM-Full and CM-x2
1, respectively.

The simulation results were obtained for samples of size 500, 2000, and 8000 and

are based on 10, 000 Monte Carlo replications. Table 2 below presents the rejection

frequencies at the conventional 5% level for the first set of simulations in which

the competing models are the M-2PM and the ECE model. Table 3 presents the

corresponding results for the cases in which the sample selection and the ECE models

are considered.

The results in Tables 2 and 3 suggest that theHPC test has a reasonable behaviour

under the null, at least for sample sizes currently used in empirical applications.

This is true whether or not the test is performed using the corrected estimators

of the covariance matrix, confirming our conjecture that this correction is relatively

unimportant. The closely related P test is also reasonably well behaved under the null,

although it is more prone to over-reject. Therefore, the heteroskedasticity correction

used by the proposed test seems to improve its behaviour under the null. In contrast,

the performance of the C test, either with or without the correction of the covariance,

is erratic. Indeed, the C test is sometimes under-sized, but can also be severely

oversized, especially when the null is a double-index model. As for the CM tests,

CM-x2
1 is always reasonably well behaved under the null, but CM-Full is severely

oversized when the null is the M-2PM.

17In our setting, this test has 5 degrees of freedom when the null is a double-index model, and 3

degrees of freedom when the null is the single-index model. This is because, by construction, the

PPML residuals are orthogonal to the regressors.
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Table 2: Rejection frequencies at the 5% nominal level
(M-2PM and ECE models)

Null is true Null is false

n = 500 2000 8000 500 2000 8000

The null is the modified two-part model

HPC Test 0.0471 0.0598 0.0502 0.7365 0.9931 0.9984

(Bootstrapped) 0.0589 0.0575 0.0489 0.7314 0.9918 0.9980

(Uncorrected) 0.0700 0.0561 0.0484 0.7257 0.9905 0.9976

C Test 0.1634 0.1076 0.0528 0.1622 0.6613 0.9813

(Bootstraped) 0.2429 0.1763 0.1056 0.4121 0.8017 0.9862

(Uncorrected) 0.0706 0.0682 0.0462 0.1744 0.6101 0.9524

P Test 0.0763 0.0885 0.0850 0.0835 0.1344 0.2529

CM-Full 0.6098 0.6607 0.7048 0.7757 0.9999 1.0000

CM-x2
1 0.0885 0.0751 0.0601 0.5115 0.8135 0.9683

The null is the exponential conditional expectation model

HPC Test 0.0750 0.0638 0.0560 0.2213 0.4227 0.8314

C Test 0.3539 0.1955 0.1181 0.2382 0.3438 0.5240

(Bootstrapped) 0.4280 0.2426 0.1393 0.2643 0.3438 0.5208

(Uncorrected) 0.1558 0.1122 0.0881 0.1231 0.1958 0.3661

P Test 0.0910 0.0857 0.0827 0.1739 0.2055 0.3051

CM-Full 0.0829 0.0570 0.0533 0.3121 0.4558 0.8108

CM-x2
1 0.0702 0.0556 0.0526 0.2289 0.2429 0.3011

The behaviour of the tests under the alternative reveals some interesting features.

Given its erratic performance under the null, the results for the C test are diffi cult to

interpret and will not be discussed further. As for the P test, its rejection frequencies

are always quite low, even for the largest sample size considered, confirming that

this test is not attractive for the purpose we consider here. The performances of the

CM tests are somewhat mixed, with CM-Full comprehensively outperforming CM-x2
1.

Lastly, the performance of the HPC test is encouraging and, as expected, the loss

of power resulting from using the uncorrected covariance matrix is very small and it

vanishes reasonably quickly when the sample size increases. Therefore, at least with

reasonably sized samples, it may not be necessary to incur the additional costs in

computing the corrected test-statistic.
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Table 3: Rejection frequencies at the 5% nominal level
(Sample Selection and ECE models)

Null is true Null is false

n = 500 2000 8000 500 2000 8000

The null is the sample selection model

HPC Test 0.0316 0.0413 0.0444 0.7647 0.9995 1.0000

(Bootstraped) 0.0544 0.0525 0.0459 0.7546 0.9998 1.0000

(Uncorrected) 0.0527 0.0436 0.0426 0.7590 0.9991 1.0000

C Test 0.4470 0.2988 0.1618 0.9424 0.9998 1.0000

(Bootstraped) 0.5457 0.3494 0.1863 0.9755 0.9999 1.0000

(Uncorrected) 0.2079 0.1482 0.0973 0.9534 0.9999 1.0000

P Test 0.1177 0.1243 0.1006 0.1108 0.1510 0.2329

CM-Full 0.0668 0.0513 0.0489 0.8569 0.9958 1.0000

CM-x2
1 0.0509 0.0460 0.0482 0.7700 0.9636 1.0000

The null is the exponential conditional expectation model

HPC Test 0.0843 0.0681 0.0585 0.1966 0.3687 0.7659

C Test 0.0234 0.0460 0.0637 0.0069 0.0286 0.1497

(Bootstraped) 0.0654 0.0802 0.0823 0.1032 0.1540 0.2491

(Uncorrected) 0.0343 0.0316 0.0236 0.0307 0.0838 0.2170

P Test 0.1027 0.0780 0.0623 0.1642 0.1927 0.2929

CM-Full 0.0839 0.0552 0.0493 0.2799 0.3939 0.7121

CM-x2
1 0.0769 0.0551 0.0510 0.2060 0.2211 0.2684

Overall, the proposed test compares favourably with its competitors. Indeed, the

only test that regularly outperforms the HPC test is CM-Full, but this test is less

reliable under the null and it is unlikely to be practical in realistic applications with

many regressors. It is also interesting to recall that, when the null is the single-index

model, the only difference between the HPC and the heteroskedasticity-robust P test

is the way heteroskedasticity is taken into account. Therefore, the heteroskedasticity

correction used in the HPC test not only improves its behaviour under the null,

but it also greatly improves its power. In summary, not only is the HPC test easy

to implement, it is also reasonably well behaved both under the null and under the

alternative.
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It is also noteworthy that all tests are substantially less powerful when the null is the

single-index model. This issue deserves further exploration, but we conjecture that

this difference in power results from the fact that the ECE model is able to reasonably

approximate the true conditional expectation, even when the data is generated by the

competing model, while the reverse is not true. Indeed, of all the models considered

in these experiments, the ECE model is the only one that directly estimates E [yi|xi]

and, therefore, delivers an estimate of the conditional expectation of yi which is

optimal in some sense (depending on the estimation method), even when the model

is misspecified. This suggests that, at least for the designs considered here, the ECE

model often is flexible enough to approximate the E [yi|xi] implied by the double-index

models. A more complete study of the ability of the ECE model to approximate the

functional form of the conditional mean of other models is beyond the scope of the

present paper.

4. EMPIRICAL ILLUSTRATIONS

In this section we illustrate the use of the HPC test with two examples based on

well-known data sets, one in international trade and the other in the demand for

health care. In both cases, the ECE model is tested against a double-index model

and vice-versa. In view of the simulation results presented in the previous section,

when the null is the double-index model, only the results of the test based on the

bootstrapped and uncorrected covariance matrices are presented, because these are

the versions of the test that are more likely to be used in practice.

4.1. A gravity model for trade

Santos Silva and Tenreyro (2006) use cross-sectional bilateral export flows data

from 137 countries to estimate different specifications of the gravity equation for

trade, which is an ECE model. Besides the dependent variable, the dataset includes

traditional gravity regressors, such as the GDP of importer and exporter, bilateral

distance, and dummies indicating contiguity, common language, colonial ties, access
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to water, and the existence of preferential-trade agreements. Further details on the

data, including sources and descriptive statistics, are provided in Santos Silva and

Tenreyro (2006).18 In this section we use the same data to illustrate the application

of the proposed test by testing a gravity equation estimated by the PPML, as in

Santos Silva and Tenreyro (2006), against a logarithmic specification of Heckman’s

(1979) sample selection estimator, used in this context by Hallack (2006); a related

estimator is also used by Helpman, Melitz and Rubinstein (2008).

Table 4 presents the main estimation results obtained with the sample selection es-

timator (estimated by maximum likelihood) and with the ECE model, both with and

without the multilateral resistance terms suggested by Anderson and van Wincoop

(2003).19 The last few lines of the Table also include the R2 for each model (computed

as the square of the correlation between the dependent variable and the estimated

conditional mean), and the p-value of the HPC test of the sample selection estimator

against the ECE model and vice-versa. We computed the HPC test using both the

uncorrected covariance matrix (which is valid when the null is the ECE model) and

a covariance matrix estimated using 1000 pairs-bootstrap draws.

Comparing the R2s for the competing models it is possible to see that for both spec-

ifications the ECE model fits the data substantially better than the sample selection

estimator. However, goodness-of-fit statistics give no indication about the adequacy

of the models being contrasted and therefore it is important to use the proposed pro-

cedure to test the two models against each other. The results in the last two rows

of Table 4 show that, either with or without the multilateral resistance terms, the

HPC test clearly rejects the sample selection model, while providing no evidence of

departures of the ECE model in the direction of its competitor. The results also show

that there is little difference between the p-values of the HPC test computed with

and without the bootstrap.

18These data are available at http://privatewww.essex.ac.uk/~jmcss/LGW.html.
19The multilateral resistance terms are importer and exporter dummies.
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Table 4: Gravity Equations for Trade

Specification: Selection model
1st part 2nd part

ECE Selection model
1st part 2nd part

ECE

Log distance −0.452 −1.200 −0.784 −0.730 −1.349 −0.750

(0.025) (0.034) (0.055) (0.029) (0.031) (0.041)

Log exp.’s GDP 0.461 0.979 0.733 – – –
(0.009) (0.012) (0.027) – – –

Log imp.’s GDP 0.329 0.826 0.741 – – –
(0.008) (0.012) (0.027) – – –

Log exp.’s GDP per capita 0.102 0.215 0.157 – – –
(0.010) (0.017) (0.053) – – –

Log imp.’s GDP per capita 0.110 0.115 0.135 – – –
(0.010) (0.017) (0.045) – – –

Common border −0.491 0.256 0.193 −0.657 0.170 0.370

(0.112) (0.129) (0.104) (0.118) (0.128) (0.091)

Common language 0.334 0.709 0.746 0.320 0.408 0.383

(0.039) (0.067) (0.135) (0.050) (0.067) (0.093)

Colonial ties 0.158 0.412 0.024 0.301 0.668 0.079

(0.040) (0.070) (0.150) (0.053) (0.069) (0.134)

Landlocked exp. 0.054 −0.061 −0.864 – – –
(0.033) (0.062) (0.157) – – –

Landlocked imp. −0.065 −0.672 −0.697 – – –
(0.034) (0.061) (0.141) – – –

Exp.’s remoteness 0.132 0.485 0.660 – – –
(0.051) (0.079) (0.134) – – –

Imp.’s remoteness −0.043 −0.204 0.561 – – –
(0.052) (0.085) (0.118) – – –

Free-trade agreement 1.156 0.480 0.181 1.097 0.3058 0.376

(0.163) (0.100) (0.088) (0.181) (0.098) (0.077)

Openness dummy 0.295 −0.130 −0.107 – – –
(0.027) (0.053) (0.131) – – –

Multilateral resistance terms No No No Yes Yes Yes

Observations 18360 9613 18360 18360 9613 18360

R2 0.580 0.862 0.391 0.928

HPC test p-values

Uncorrected 0.000 0.999 0.029 1.000

Bootstraped 0.000 0.998 0.025 1.000
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Naturally, this result is specific to this particular example and therefore it should

not be viewed as indicating that the ECE model is generally preferable to the sample

selection specification in applications describing bilateral export flows.

4.2. Much ado about two redux

Mullahy (1998) studied the choice between single- and double-index models for

the demand for health care. To illustrate the methods considered in the paper,

Mullahy (1998) estimates different models for the number of doctor visits during

the previous year. The data used are a sample of 36, 111 observations from the

1992 National Health Interview Survey. Besides the dependent variable, the data

contains information on a number of covariates: age of the respondent, gender, ethnic

background, schooling, marital status, and dummies for health status. Mullahy (1998)

provides descriptive statistics and more information about the data.

Table 5 presents the estimation results for the M-2PM proposed by Mullahy (1998)

and for the ECE model, also considered by Mullahy (1998), as well as the R2 values

andHPC test p-values computed as described above.20 In this particular application,

the R2s of the models are virtually identical, which may suggest that there is little

to choose between the two models. However, the results of the HPC test provide

no evidence against the M-2PM, while clearly rejecting the ECE model. Again, the

results of the HPC test with and without the bootstrap are almost identical.

Up to a point, these results are in line with those of Mullahy (1998) who, using a

number CM tests and goodness-of-fit criteria, also finds that the M-2PM specification

is preferable to the ECE model in this particular data set. However, our results

contrast with those of Mullahy (1998) in that he finds that both models fail the

CM tests checking the orthogonality between the residuals and regressors and their

20The first part of the modified two-part model is a logit, as in Mullahy (1998). Both the second

part of the modified two-part model and the exponential conditional expectation model are esti-

mated by non-linear least squares, as in Mullahy (1998). In this particular example, the qualitative

results hardly change if a these models are estimated by Poisson pseudo-maximum likelihood, as

recommended by Santos Silva and Tenreyro (2006).
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squares and cross products. In view of the simulation results presented in the previous

section, the rejection of the M-2PM may be just a consequence of the tendency of the

CM tests to severely over-reject this particular null hypothesis.

Finally, we emphasize that the finding that the M-2PM outperforms the ECE

model is specific to the particular example being considered and should not be taken

as evidence that the M-2PM should in general be preferred to the ECE model in

health care utilization applications.

Table 5: Demand for Health Care

Specification: M-2PM
1st part 2nd part

ECE

Age 0.007 −0.009 −0.007

(0.001) (0.002) (0.002)

Male −0.913 −0.047 −0.199

(0.026) (0.045) (0.047)

White 0.151 0.132 0.175

(0.034) (0.052) (0.054)

Schooling 0.103 0.037 0.055

(0.004) (0.007) (0.007)

Married 0.120 −0.148 −0.130

(0.028) (0.041) (0.043)

Health: Excellent −1.394 −1.612 −1.828

(0.057) (0.048) (0.049)

Health: Very Good −1.056 −1.340 −1.480

(0.057) (0.045) (0.046)

Health: Good −0.898 −0.856 −0.973

(0.057) (0.044) (0.045)

Observations 36, 111 27, 598 36, 111

R2 0.078 0.078

HPC test p-values
Uncorrected 0.682 0.000

Bootstapped 0.673 0.000
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5. CONCLUDING REMARKS

The choice of the most appropriate model for corner-solutions data has been the

subject of numerous studies and even some controversy. In this paper we argue that

this problem should be addressed as a test of non-nested hypotheses and propose an

easily implementable regression-based test which is particularly suited to discriminate

between single- and double-index models. Moreover, the proposed test explicitly takes

into account the heteroskedasticity that is likely to be present in data of this type,

and has an intuitive interpretation in terms of orthogonality conditions. We present

the results of a simulation study which suggest that the proposed test is reasonably

well behaved both under the null and under the alternative, at least for the sample

sizes that are commonly used in empirical studies. Moreover, the test compares very

favourably with alternative procedures that could be used for this purpose. Two

illustrative applications show that the test can be quite useful in practice.

APPENDIX

A1. Asymptotic distribution and adjusted covariance matrix

The proposed test is based on the OLS estimation of an artificial model of the form

yi − ŷAi√
ŷAi

=
∇gA

(
x′iβ̂A

)
FA (x′iγ̂A)x′i√
ŷAi

δ + α
ŷBi − ŷAi√

ŷAi
+ νi.

The easiest way of obtaining the asymptotic distribution of the OLS estimates of

θ = (δ, α), say θ̂ =
(
δ̂, α̂
)
, is to consider the joint estimation of θ and φA = (βA, γA)

by system GMM as in Newey (1984). The results in this appendix are presented

for the case in which βA and γA are jointly estimated by maximum likelihood, as in

Heckman’s (1979) selection model. For cases such as the two-part model in which γA

can be estimated independently of βA, the same results are valid if one considers only

the moment conditions for the joint estimation of γA and θ.

Let S1 and S2 denote the vector of moment conditions for the model under

the null and for the test equation, respectively, and define S (λ) = (S ′1, S
′
2)′, with
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λ = (β′A, γ
′
A, δ, α)

′. The just-identified system-GMM estimator of λ is defined as the

solution of

n−1

n∑
i=1

S
(
λ̂
)

= 0,

where λ̂ =
(
β̂A, γ̂A, δ̂, α̂

)
, and we assume the following standard regularity conditions

(see, e.g., theorems 2.6 and 3.4 in Newey and McFadden, 1994).

A1 E (S (λ)) = 0 only if λ = λ0, where λ0 denotes the true value of λ.

A2 λ0 ∈ interior of Λ, which is compact.

A3 S (λ) is continuous at each λ ∈ Λ with probability one.

A4 With probability approaching one S (λ) is continuously differentiable in a neigh-

borhood ς of λ0.

A5 E (supλ∈Λ ‖S (λ)‖) <∞, E
(
‖S (λ0)‖2) <∞, and E

(
supλ∈ς

∥∥ ∂
∂λ′S (λ)

∥∥) <∞.
A6 The matrix M ′M is non-singular, where M = E

(
∂
∂λ′S (λ0)

)
.

Then, the results in Newey and McFadden (1994) imply that

√
n
(
λ̂− λ

)
d→ N

(
0,M−1ΣM−1′) ,

where

Σ = E

[
S1S

′
1 S1S

′
2

S2S
′
1 S2S

′
2

]
.

Noting that

M−1 =

[
H−1 0

−H−1
2 H1H

−1 H−1
2

]
,

where H denotes the expectation of the matrix of derivatives of S1 with respect to

φA and H1 and H2 denote the expectation of the derivatives of S2 with respect to φA

and θ, respectively, the variance of θ̂ can then be written as

V
(
θ̂
)

= H−1
2 E (S2S

′
2)H−1′

2 −H−1
2 E (S2S

′
1)H−1′H ′1H

−1′
2

−H−1
2 H1H

−1E (S1S
′
2)H−1′

2 +H−1
2 H1H

−1E (S1S
′
1)H−1′H ′1H

−1′
2 ,

or

V
(
θ̂
)

= Vθ̂ +H−1
2

{
H1V

(
φ̂A

)
H ′1 − E (S2S

′
1)H−1′H ′1 −H1H

−1E (S1S
′
2)
}
H−1′

2 ,
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where V
(
φ̂A

)
is the estimated variance of φ̂A =

(
β̂A, γ̂A

)
and Vθ̂ is the uncorrected

estimated variance of θ̂.

Whether V
(
θ̂
)
is smaller, larger, or equal to Vθ̂, in the positive semidefinite sense,

depends on the particular case being considered. For example, if H1 = 0, the two

matrices are equal and when E (S2S
′
1) = 0, V

(
θ̂
)
is larger than Vθ̂ in the positive

semidefinite sense.

In the context of theHPC test, it is of special interest to consider the case where γA

is estimated by maximum likelihood. In this case, V
(
φ̂A

)
= −H−1 and E (S2S

′
1) =

−H1, and therefore

V
(
θ̂
)

= Vθ̂ −H
−1
2 H1

(
−H−1

)
H ′1H

−1′
2 ,

implying that V
(
θ̂
)
is smaller than Vθ̂ (see Pierce, 1982, and Lee, 2010, pp. 104-

5). Therefore, when γA is estimated by maximum-likelihood, the test-statistic con-

structed using the uncorrected covariance will have variance smaller than 1 and,

therefore, the test will be asymptotically undersized.

Finally, we reiterate that the correction of the covariance matrix is needed only

when MA is a double-index model.

A2. Correlation in the Two-Part Model

In Duan et al. (1984) an example is given that argues that there can be correlation

between the two error terms in the two-part model and that therefore this model is

not nested by the sample selection model, in the sense that the two-part model cannot

be obtained by imposing a restriction on the selection model. Since then, numerous

papers have quoted this result, e.g. Leung and Yu (1996) and Norton et al. (2008).

Here we argue that the example is misleading.

26



In the notation of Duan et al. (1984), the two-part model is given by

Ii = x′iδ1 + η1i, η1i|xi ∼ N (0, 1)

ln (yi) = x′iδ2 + η2i

(η2i|Ii > 0, xi) ∼ f
(
0, σ2

)
(η2i|Ii ≤ 0, xi) ≡ −∞ (yi ≡ 0)

where f is a continuous distribution with mean zero and variance σ2. Hence,

(ln (yi) |Ii > 0, xi) ∼ f (x′iδ2, σ
2).

To show that correlation between η1 and η2 is possible Duan et al. (1984) con-

structed the following example (pages 285-286): Let Z1i and Z2i follow a standard

bivariate normal distribution with correlation coeffi cient ρ. Let Gi be the left- and

Hi be the right-truncated standard normal cdf, with −x′iδ1 as truncation point:

Gi (u) =

∫ u

−x′iδ1
φ (z) dz/Φ (x′iδ1) , − x′iδ1 ≤ u,

Hi (v) =

∫ v

−∞
φ (z) dz/Φ (x′iδ1) , v ≤ −x′iδ1,

where φ denotes the standard normal pdf.

Construct (η1i, η2i) as follows: With probability Φ (x′iδ1), define

η1i = G−1
i (Φ (Z1i)) ; η2i = f−1 (Φ (Z2i)) .

With probability (1− Φ (x′iδ1)) define

η1i = H−1
i (Φ (Z1i)) ; η2i = −∞.

Then the two-part model assumptions are satisfied and there is correlation between

η1i and η2i. Duan et al. (1984) show that when f is assumed to be normal then the

conditional expectation is given by

E (η2i|η1i) = ρσΦ (Gi (η1i)) , η1i > −x′iδ1,

E (η2i|η1i) ≡ −∞, η1i ≤ −x′iδ1

and consequently η1i and η2i are stochastically dependent and positively associated.
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The problem with this argument lies in the fact that with probability Φ (x′iδ1) we

draw an η1i such that η1i is larger than −x′iδ1. This essentially introduces a new

uniformly distributed random variable, say ζ i, and changes the model to

ζ i|xi ∼ U (0, 1)

Ii = x′iδ1 + η1i

Ii > 0 if ζ i < Φ (x′iδ1) ,

so ζ i determines the outcome Ii > 0 and is independent of η2i. Therefore, there is no

selection problem, as

E (ln (yi) |Ii > 0) = x′iδ2 + E (η2i|Ii > 0)

= x′iδ2 + E (η2i|ζ i < Φ (x′iδ1))

= x′iδ2.

Clearly, the model of the example can be specified as

ζ i|xi ∼ U (0, 1)

I∗i = 1 (ζ i < Φ (x′iδ1))

ln (yi) = x′iδ2 + η2i

(η2i|I∗i = 1, xi) ∼ f
(
0, σ2

)
(η2i|I∗i = 0, xi) ≡ ∞ (yi ≡ 0) ,

with ζ i independently distributed of η2i and the value of η1i is immaterial. Therefore,

this example does not show that the errors η1i and η2i in the original model can be

correlated.

In summary, under the maintained assumptions, there is no evidence to support

the view that the two-part model cannot be obtained by imposing a restriction on

the sample selection model. However, the assumptions of the sample selection model

are unlikely to hold when it is used to describe corner solutions data, and in that case

there is no guaranty that the conditional expectation implied by the sample selection

model will fit the data better than the conditional expectation implied by the two-part
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model. For example, if η2i is homoskedastic but non-normal, the two-part model can

be used to consistently estimate the conditional expectation of yi, while that is not

possible with the sample selection model. In that sense, the two models are indeed

not nested.
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