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1 Introduction

This note presents a model of how anticipated and unanticipated shocks to demand and supply

move prices in rational markets. That unanticipated shocks can move prices is not surprising,

assuming that the market has limited risk-absorption capacity. That anticipated shocks can move

prices is more surprising. The explanation for the price effect of anticipated shocks presented in

this note is based on the theory of rational momentum in Vayanos and Woolley (2013, VW).

This note is an extended version of my discussion of Hartzmark and Salomon (2021) at the

NBER Asset Pricing meeting in Fall 2021. HS show that the aggregate stock market rises on days

when aggregate dividend payments are large, even though the size of these payments is known more

than a month in advance. HS’s explanation, which is backed by a number of additional tests, is

that many institutional investors reinvest dividend payments, generating buying pressure. HS also

show that stocks of firms with large stock grants to their employees drop on the days after earnings

announcements, even though the size of these grants is known well in advance. HS’s explanation

is that employees are allowed to sell their shares after earnings announcements, generating selling

pressure.

In principle, the dividend reinvestment effect in HS could attract round-trip arbitrage. Realizing

that stock prices rise predictably on days of large dividend payments, arbitrageurs could buy the

aggregate stock market on the day before the payments and sell on the day after. Transaction costs

dent significantly the profitability of this strategy, however. HS find that the average abnormal

return across the fifty largest payment days is 6bps. Trading commissions for S& P500 futures are

0.25bps and price impact costs for a $100 million order are 1.25bps.1 This results in round-trip

transaction costs of 3bps. While these costs are low in absolute terms, they eat up half of the 6bps

profit, leaving an abnormal return of only 150bps (=3× 50) per year for the 50 largest payment

days.

1https://www.cmegroup.com/trading/equity-index/report-a-cost-comparison-of-futures-and-etfs.html
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Although transaction costs dent significantly the profitability of round-trip arbitrage, they have

no effect on timing arbitrage. Suppose that a market order to buy hits the market on the day before

a large dividend payment. Why should a liquidity provider sell to meet that order knowing that

prices will rise predictably on the next day? Transaction costs are immaterial here: the liquidity

provider will incur them one day or the next. Hence, HS’s finding that the aggregate stock market

rises on days when aggregate dividend payments are large seems puzzling in a rational world where

investors know about the dividend payments. This note suggests a resolution to this puzzle. It

lays out a simple model in which there are anticipated demand shocks, and derives their price

multiplier. It also compares the price multiplier of anticipated shocks to that of unanticipated

shocks, and determines the drivers of each multiplier.

2 Model

There is an infinite number of discrete trading periods t = 0, 1, ... The riskless rate between periods

is constant and equal to r > 0. A risky asset pays a dividend dt in period t, and is in supply of

θ > 0 shares. The dividend follows the random walk

dt+1 = dt + ϵd,t+1, (1)

where the shocks ϵd,t are normally distributed with mean zero and variance σ2
d, and are independent

across periods.

There is a single competitive investor with CARA utility over intertemporal consumption

E0

∞∑
t=0

exp(−αct − βt).

In period t0 > 0, there is a supply shock of u shares. This shock is generated by unmodelled

noise traders. The shock is normally distributed with mean ū and variance σ2
u, and is independent

of the dividend shocks ϵd,t. If ū ̸= 0, the shock is anticipated, in the sense that the investor expects

sales if ū > 0 and purchases if ū < 0. The exact size of the shock is uncertain as long as σ2
u > 0.

The shock reverts to zero at a rate κu. The mean-reversion rate can represent the entry of offsetting

orders in the market, as in Grossman and Miller (1988) and Duffie (2010).
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3 Equilibrium

3.1 No Supply Shock

Consider first the case where there is no supply shock. This corresponds to the special case of the

model where ū = σu = 0. We look for an equilibrium price of the risky asset of the form

St =
dt
r
− Z, (2)

where Z is a constant. The price in period t is equal to the present value of expected future

dividends discounted at the riskless rate r, minus a discount Z. We look for a value function for

the investor of the form

V (Wt) = − exp(−AWt −B), (3)

where (A,B) are constants.

Proposition 1. The equilibrium price and value function are given by (2) and (3), respectively,

with

Z =
1

r
Aθ

(1 + r)2

r2
σ2
d, (4)

A =
rα

1 + r
, (5)

B =
1

r

[
β + r log(r)− (1 + r) log(1 + r) +

1

2
A2θ2

(1 + r)2

r2
σ2
d

]
. (6)

In equilibrium, the price discount Z is constant over time. The expected return of risky asset

in excess of riskless rate is

Et(Rt+1) = Et [dt+1 + St+1 − (1 + r)St] = rZ = Aθ
(1 + r)2

r2
σ2
d,

and is also constant over time.

3.2 Supply Shock – Dynamics After the Shock

Consider next the case where there is a supply shock. The shock evolves according to ut0 = u and

ut+1 = ut(1− κu), (7)
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for t ≥ t0. We look for an equilibrium price of the risky asset at t ≥ t0 of the form

St =
dt
r
− Z − Zuut, (8)

where Z is given by (4) and Zu is a constant. We look for a value function for the investor at t ≥ t0

of the form

V (Wt) = − exp
(
−AWt −B −Buut −Buuu

2
t

)
, (9)

where A and B are given by (5) and (6), respectively, and (Bu, Buu) are constants.

Proposition 2. The equilibrium price and value function are given by (8) and (9), respectively,

with

Zu =
1

r + κu
A
(1 + r)2

r2
σ2
d, (10)

Bu =
1

r + κu
A2θ

(1 + r)2

r2
σ2
d, (11)

Buu =
1

2(r + 2κu − κ2u)
A2 (1 + r)2

r2
σ2
d. (12)

Following a positive supply shock u, the price (8) of the risky asset decreases, and then increases

gradually to its no-shock value. The asset’s expected return

Et(Rt+1) = A(θ + ut)
(1 + r)2

r2
σ2
d

increases following the shock, and then decreases gradually to its no-shock value.

The constant Zu is equal to the price multiplier of an unanticipated shock. Indeed, we can

define the price effect of the shock as St0 − (1 + r)St0−1, i.e., the difference in price adjusted by

riskless discounting. For an unanticipated shock, the price St0−1 is given by (2) as in the no-shock

case. Therefore, (8) and (2) imply that the shock’s price effect is

St0 − (1 + r)St0−1 = Zuut.

Equation (10) shows that the price multiplier of an unanticipated shock increases in the risk-aversion

coefficient A in the value function, the variance σ2
d of dividend shocks, and the persistence 1

κu
of

the supply shock.
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3.3 Supply Shock – Dynamics Before the Shock

We next determine the equilibrium before the shock hits. We look for an equilibrium price of the

risky asset at t < t0 of the form

St =
dt
r
− Z − zt, (13)

where Z is given by (4) and zt is a deterministic function of t. We look for a value function for the

investor at t < t0 of the form

V (Wt) = − exp(−AWt −B − bt), (14)

where A and B are given by (5) and (6), respectively, and bt is a deterministic function of t.

Proposition 3. The equilibrium price and value function are given by (13) and (14), respectively,

with

zt =

{ zt0−1

(1+r)t0−1−t for t < t0 − 1

Zuū
1+r

1
1+x for t = t0 − 1

, (15)

bt =


bt0−1

(1+r)t0−1−t for t < t0 − 1

(Bu+Buuū)ūσ2
u

(1+r)(1+2Buuσ2
u)

+ 1
2 log

(
1 + 2Buuσ

2
u

)
for t = t0 − 1

, (16)

x =
r + κu

r + 2κu − κ2u
AZuσ

2
u. (17)

In anticipation of a positive supply shock u, i.e., when the shock’s expectation ū is positive,

the price (8) of the risky asset decreases gradually until t0 − 1 because the discount zt increases.

The price then decreases more sharply at t0. The asset’s expected return is equal to its no-shock

value

Et(Rt+1) = Aθ
(1 + r)2

r2
σ2
d

for t < t0 − 1, and to

Et0−1(Rt0) = Aθ
(1 + r)2

r2
σ2
d − Zuū

x

1 + x

for t = t0 − 1.

5



Equations (8) and (13) imply that the expected price effect of an anticipated shock is

Et0−1St0 − (1 + r)St0−1 = Zuū
x

1 + x
.

The effect is non-zero, with price multiplier Zu
x

1+x . The price multiplier of an anticipated shock

is equal to the price multiplier Zu of an unanticipated shock, times x
1+x . The ratio x

1+x of price

multipliers increases in x. In turn, x increases in the risk-aversion coefficient A in the value function,

the variance σ2
u of the supply shock, and the price multiplier Zu of an unanticipated shock. Two

comparative statics that ensue are (i) the price multiplier of an anticipated shock increases in the

shock’s variance σ2
u, and (ii) the price multiplier of an anticipated shock is a convex function of

market liquidity, as measured by the price multiplier Zu of an unanticipated shock.

Figure 1 plots the price effect of an anticipated shock. In the no-shock case, the average price,

represented by the blue line, is constant over time. In the case where there is a shock, the average

price declines slightly until the day before the shock hits (Day -1), and more sharply on the day

when the shock hits (Day 0). It then increases gradually to its no-shock value. The price effect of

the anticipated shock is 1.22 and the price effect of a non-anticipated shock of equal magnitude is

1.98.

Figure 1: Price Effect of Anticipated Shock
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Figure 2 plots the price effect of an anticipated shock when the shock’s standard deviation is

half as large. The effect of the shock is better anticipated in the price before the shock. The price

effect of the anticipated shock drops to 0.57. The price effect of a non-anticipated shock does not

change.
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Figure 2: Price Effect of Anticipated Shock
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3.4 Bird-in-the-Hand Effect

Why is an anticipated supply shock not fully reflected into the price just before the shock hits?

Why is its price multiplier non-zero? Why do rational traders trade against the shock before the

shock hits, rather than waiting to trade at a better price on average after it hits? The explanation

provided by the model presented in this note goes back to the theory of rational momentum in

Vayanos and Woolley (2013, VW).

Consider the following three-period example, shown in Figure 3. An asset is expected to pay

off 100 in Period 2. If a large sell order does not materialize in Period 1, then the price will be

100. If instead the sell order materializes, then the price will drop to 80. Each scenario is equally

likely. Buying the asset in Period 0 at 92 earns an investor a two-period expected capital gain of 8.

Buying in Period 1 earns an expected capital gain of 20 if outflows occur and 0 if they do not. A

risk-averse investor might prefer earning 8 rather than 20 or 0 with equal probabilities. Hence, the

investor might prefer to buy the asset before the sell order hits rather than waiting to buy after it

hits, even though the price will decline on average when it hits. VW term this the bird-in-the-hand

effect: the investor goes for the bird in the hand by buying at t = 0, rather than for two birds in

the bush by buying at t = 1.

The bird-in-the-hand effect can be interpreted formally in the language of Merton’s ICAPM.

The investor buys an underpriced asset even though the price is expected to drop even further in

the short term, to hedge against a reduction in the mispricing. The state in period 1 where the sell

order hits is a low marginal utility one for the investor, as the investor gains from large mispricing.

7



Figure 3: Bird-in-the-Hand Effect
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Coversely, the state in period 1 where the sell order does not hit is a high marginal utility one

because there is no mispricing to be exploited.

The mapping with the ICAPM in context of the model presented in this note can be seen

through the value function (9) at time t ≥ t0 after the shock hits. The value function depends

on the supply shock ut, which is a state variable in addition to wealth Wt. Large values of ut in

either direction raise the value function because of the quadratic term Buuu
2
t . Intuitively, the value

function is high because the investor can achieve large gains by trading a highly mispriced asset.

VW build a theory of rational momentum and reversal based on the price effect of anticipated

demand/supply shocks. In VW, flows between mutual funds chase performance, and are grad-

ual. Following underperformance by an asset, funds holding this asset experience gradual outflows.

These outflows cause the prices of the assets held by the funds to drop gradually and predictably

because of the bird-in-the-hand effect. The drop concerns also the asset hit by the original shock,

causing asset-level momentum. Note that whether flows are between institutions rather than be-

tween retail investors is not key to the argument: what is key is that flows chase performance and

are gradual. Empirical studies linking momentum to flows through this mechanism are Lou (2012)

and Ben-David, Li, Rossi, and Song (2021).
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Appendix

Proof of Proposition 1: Denoting by xt the number of shares of the risky asset held by the

investor in period t, we can write the investor’s budget constraint as

Wt+1 = (1 + r)(Wt − ct) + xt [dt+1 + St+1 − (1 + r)St] . (A.1)

Substituting the price St from (2) into (A.1), and using (1), we find

Wt+1 = (1 + r)(Wt − ct) + xt

(
1 + r

r
ϵd,t+1 + rZ

)
. (A.2)

The investor’s Bellman equation is

V (Wt) = max
ct,xt

[− exp(−αct) + exp(−β)EtV (Wt+1)] . (A.3)

Substituting the value function V (Wt) from (3) and the wealth Wt+1 from (A.2) into (A.3), we find

− exp(−AWt −B) = max
ct,xt

[
− exp(−αct)

−Et exp

(
−A

[
(1 + r)(Wt − ct) + xt

(
1 + r

r
ϵd,t+1 + rZ

)]
−B − β

)]
. (A.4)
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Taking expectations in the right-hand side of (A.4) over the shock ϵd,t+1, which is normally dis-

tributed with mean zero and variance σ2
d, we find

− exp(−AWt −B) = max
ct,xt

[
− exp(−αct)

− exp

(
−A

[
(1 + r)(Wt − ct) + xtrZ − 1

2
x2tA

(1 + r)2

r2
σ2
d

]
−B − β

)]
. (A.5)

The first-order condition with respect to xt yields

rZ = xtA
(1 + r)2

r2
σ2
d. (A.6)

The first-order condition with respect to ct yields

α exp(−αct) = A(1 + r) exp

(
−A

[
(1 + r)(Wt − ct) + xtrZ − 1

2
x2tA

(1 + r)2

r2
σ2
d

]
−B − β

)
(A.7)

⇒ ct =
log

(
α

A(1+r)

)
+A

[
(1 + r)Wt + xtrZ − 1

2x
2
tA

(1+r)2

r2
σ2
d

]
+B + β

α+A(1 + r)
. (A.8)

Market clearing implies

xt = θ. (A.9)

Substituting xt from (A.9) into (A.6), we find (4). Substituting exp(−αct) from (A.7) into

(A.5), and using (A.6) and (A.9), we find

exp(−AWt −B) =
α+A(1 + r)

α
exp

(
−A

[
(1 + r)(Wt − ct) +

1

2
Aθ2

(1 + r)2

r2
σ2
d

]
−B − β

)
.

(A.10)

Substituting ct from (A.8) into (A.10), and using (A.6) and (A.9), we find

exp(−AWt −B) =
α+A(1 + r)

α

× exp

−
αA

[
(1 + r)Wt +

1
2Aθ

2 (1+r)2

r2
σ2
d

]
+ α(B + β)−A(1 + r) log

(
α

A(1+r)

)
α+A(1 + r)

 . (A.11)
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Identifying terms in Wt on both sides of (A.11), we find

A =
αA(1 + r)

α+A(1 + r)
,

which implies (5). Identifying the remaining terms, we find

B = log

(
α

α+A(1 + r)

)
+

1
2αA

2θ2 (1+r)2

r2
σ2
d + α(B + β)−A(1 + r) log

(
α

A(1+r)

)
α+A(1 + r)

,

which, combined with (5), implies (6).

Proof of Proposition 2: The counterparts of (A.2) and (A.5) are

Wt+1 = (1 + r)(Wt − ct) + xt

(
1 + r

r
ϵd,t+1 + rZ + (r + κu)Zuut

)
(A.12)

and

− exp
(
−AWt −B −Buut −Buuu

2
t

)
= max

ct,xt

[
− exp(−αct)− exp

(
−A

[
(1 + r)(Wt − ct)

+xt[rZ + (r + κu)Zuut]−
1

2
x2tA

(1 + r)2

r2
σ2
d

]
−B −Buut(1− κu)−Buuu

2
t (1− κu)

2 − β

)]
,

(A.13)

respectively.

The counterparts of (A.6) and (A.9) are

rZ + (r + κu)Zuut = xtA
(1 + r)2

r2
σ2
d (A.14)

and

xt = θ + ut, (A.15)

respectively. Substituting xt from (A.15) into (A.14), and identifying terms in ut, we find (10).

Identifying the remaining terms, we find (4).
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The counterpart of (A.11) is

exp
(
−AWt −B −Buut −Buuu

2
t

)
=

α+A(1 + r)

α
exp

−
αA

[
(1 + r)Wt +

1
2A(θ + ut)

2 (1+r)2

r2
σ2
d

]
α+A(1 + r)



× exp

−
α(B +Buut(1− κu) +Buuu

2
t (1− κu)

2 + β)−A(1 + r) log
(

α
A(1+r)

)
α+A(1 + r)

 . (A.16)

Identifying terms in Wt on both sides of (A.11), we find (5). Identifying terms in ut, we find

Bu =
αA2θ (1+r)2

r2
σ2
d + αBu(1− κu)

α+A(1 + r)
,

which combined with (5) implies (11). Identifying terms in u2t , we find

Buu =
1
2αA

2 (1+r)2

r2
σ2
d + αBuu(1− κu)

2

α+A(1 + r)
,

which combined with (5) implies (12). Identifying the remaining terms and using (5), we find (6).

To prove Proposition 3, we recall the following lemma (e.g., Lemma A.1 in Vayanos and Wang

(2012)).

Lemma A.1. Let x be an n × 1 normal vector with mean zero and covariance matrix Σ, A a

scalar, B an n× 1 vector, C an n× n symmetric matrix, I the n× n identity matrix, and |M | the

determinant of a matrix M . Then,

Ex exp

{
−α

[
A+B′x+

1

2
x′Cx

]}
= exp

{
−α

[
A− 1

2
αB′Σ(I + αCΣ)−1B

]}
1√

|I + αCΣ|
.

(A.17)

Proof: When C = 0, (A.17) gives the moment-generating function of the normal distribution. We

can always assume C = 0 by also assuming that x is a normal vector with mean 0 and covariance

matrix Σ(I + αCΣ)−1.
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Proof of Proposition 3: Suppose first t < t0 − 1. The counterparts of (A.2) and (A.5) are

Wt+1 = (1 + r)(Wt − ct) + xt

(
1 + r

r
ϵd,t+1 + rZ + (1 + r)zt − zt+1

)
(A.18)

and

− exp(−AWt −B − bt) = max
ct,xt

[
− exp(−αct)− exp

(
−A

[
(1 + r)(Wt − ct)

+xt[rZ + (1 + r)zt − zt+1]−
1

2
x2tA

(1 + r)2

r2
σ2
d

]
−B − bt+1 − β

)]
, (A.19)

respectively.

The counterpart of (A.6) is

rZ + (1 + r)zt − zt+1 = xtA
(1 + r)2

r2
σ2
d, (A.20)

and (A.9) carries through unchanged. Substituting xt from (A.9) into (A.20), and using (4), we

find (15) for t < t0 − 1.

The counterpart of (A.11) is

exp(−AWt −B − bt) =
α+A(1 + r)

α

× exp

−
αA

[
(1 + r)Wt +

1
2Aθ

2 (1+r)2

r2
σ2
d

]
+ α(B + bt+1 + β)−A(1 + r) log

(
α

A(1+r)

)
α+A(1 + r)

 .

(A.21)

Identifying terms in Wt on both sides of (A.21), we find (5). Identifying the remaining terms and

using (5) and (6), we find (16) for t < t0 − 1.

Suppose next t = t0 − 1. Using (8) for t = t0 and (13) for t = t0 − 1, we can write the

counterpart of (A.2) as

Wt0 = (1 + r)(Wt0−1 − ct0−1) + xt0−1

(
1 + r

r
ϵd,t0 + rZ + (1 + r)zt0−1 − Zuu

)
. (A.22)
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Using (9) for t = t0 and (14) for t = t0 − 1, we can write the counterpart of (A.5) as

− exp(−AWt0−1 −B − bt0−1) = max
ct0−1,xt0−1

[
− exp(−αct0−1)− Eu exp

(
−A

[
(1 + r)(Wt0−1 − ct0−1)

+xt0−1[rZ + (1 + r)zt0−1 − Zuu]−
1

2
x2t0−1A

(1 + r)2

r2
σ2
d

]
−B −Buu−Buuu

2 − β

)]
.

(A.23)

respectively. The key difference between (A.23) and its counterparts for all other cases is that

expectation must be taken over u. To compute that expectation, we use Lemma A.1 and set

x ≡ u− ū,

Σ ≡ σ2
u,

α ≡ 1,

A ≡ A

[
(1 + r)(Wt0−1 − ct0−1) + xt0−1[rZ + (1 + r)zt0−1 − Zuū]−

1

2
x2t0−1A

(1 + r)2

r2
σ2
d

]
+B +Buū+Buuū

2 + β,

B ≡ Bu + 2Buuū−Axt0−1Zu,

C ≡ 2Buu.

Using Lemma A.1, we can write (A.23) as

− exp(−AWt0−1 −B − bt0−1) = max
ct0−1,xt0−1

[
− exp(−αct0−1)− exp

(
−A

[
(1 + r)(Wt0−1 − ct0−1)

+xt0−1[rZ + (1 + r)zt0−1 − Zuū]−
1

2
x2t0−1A

(1 + r)2

r2
σ2
d

]
−B −Buū−Buuū

2 − β

+
(Bu + 2Buuū−Axt0−1Zu)

2 σ2
u

2(1 + 2Buuσ2
u)

)
1√

1 + 2Buuσ2
u

]
. (A.24)

The counterpart of (A.6) is

rZ + (1 + r)zt0−1 − Zuū = xt0−1A
(1 + r)2

r2
σ2
d −

Zu (Bu + 2Buuū−Axt0−1Zu)σ
2
u

1 + 2Buuσ2
u

, (A.25)

and (A.9) carries through unchanged. Substituting xt from (A.9) into (A.25), and using (4), (11)

and (12), we find (15) for t = t0 − 1.
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The counterpart of (A.11) is

exp(−AWt0−1 −B − bt0−1) =
α+A(1 + r)

α
exp

−
αA

[
(1 + r)Wt +

1
2Aθ

2 (1+r)2

r2
σ2
d

]
α+A(1 + r)



× exp

−
α(B +Buū+Buuū

2 + β)−A(1 + r) log
(

α
A(1+r)

)
α+A(1 + r)



× exp

α (Bu+2Buuū−AθZu)(Bu+2Buuū+AθZu)σ2
u

2(1+2Buuσ2
u)

α+A(1 + r)

 1√
1 + 2Buuσ2

u

. (A.26)

Identifying terms in Wt on both sides of (A.26), we find (5). Identifying the remaining terms and

using (5), (6), (10), (11) and (12) we find (16) for t = t0 − 1.
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