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Abstract

We model asset management as a continuum between active and passive: managers can

deviate from benchmark indices to exploit noise-trader induced distortions, but agency frictions

constrain these deviations. Because constraints force managers to buy assets that they under-

weight when these assets appreciate, overvalued assets have high volatility, and the risk-return

relationship becomes inverted. Distortions are more severe for overvalued assets than for un-

dervalued ones because trading against the former entails more risk and tighter constraints. We

provide empirical evidence supporting our model’s main mechanisms. Using the data, we infer

the constraints’ tightness and compute a measure of effective arbitrage capital.
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1 Introduction

Financial markets have become highly institutionalized. For example, individual investors were

holding directly 47.9% of U.S. stocks in 1980, but only 21.5% in 2007, with most of the remain-

der held by financial institutions such as mutual funds and pension funds (French (2008)). The

portfolios of these institutions are chosen by professional asset managers.

The institutionalization of financial markets has stimulated research on the performance of

professional managers and their effects on equilibrium asset prices and market efficiency. A vast

literature examines whether actively-managed funds outperform passively-managed ones. A related

literature investigates whether the growth of passive funds has made markets less efficient, and

whether efficiency increases in the ratio of active to passive.1

Drawing a sharp distinction between passive funds constrained to hold specific portfolios, and

active funds investing without constraints, can be misleading. This is because much of active

management is done around benchmark indices, with managers being constrained in how much

they can deviate from them. A common constraint is a bound on tracking error (TE), defined as

the standard deviation of the difference between a fund’s return and the return of its benchmark

index. Bounds can also be imposed on the deviation between a fund’s portfolio weight in each

asset class, geographical area, or industry sector, and the corresponding index weight.2 Viewing

asset management as a continuum between active and passive, depending on the tightness of man-

agers’ constraints, seems a better description of reality. In this paper we flesh out that alternative

view, provide empirical evidence for it, and explore theoretically its implications for equilibrium

asset prices and market efficiency. We show that these implications differ significantly from the

conventional view.

A simple example helps motivate our analysis. Suppose that some asset managers must keep

their portfolio weight in each industry sector within 5% of the sector’s weight in a benchmark index.

Suppose also that a sector that the managers view as overvalued has 10% weight in the index, while

the managers give it 5% weight. If the sector appreciates and reaches 20% weight in the index, then

its weight in the managers’ portfolio reaches (approximately) 10%, but must rise further to 15% so

that the constraint is met. Buying pressure by the managers amplifies the sector’s appreciation,

1See, for example, Elton and Gruber (2013) for a survey of the literature on mutual-fund performance, and
Franzoni, Ben-David, and Moussawi (2017) for a survey of exchange-traded funds (ETFs) and their effects on market
performance.

2For example, the Norwegian Sovereign Wealth Fund (NBIM), one of the largest institutional investors globally,
reports the following regarding its TE constraint: “The Ministry of Finance has set limits for how far the fund may
deviate from the benchmark index. The most important limit is expressed using the statistical concept of expected rel-
ative volatility, or tracking error. The limit for expected relative volatility has been set at 125 basis points. This means
that the difference between the return on the fund and the return on the benchmark portfolio is expected to be more
than 1.25 percentage points in only one out of every three years.” (https://www.nbim.no/en/investments/investment-
risk/)
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raising its volatility. Overvalued sectors thus have high volatility, in addition to their low expected

return, causing the risk-return relationship to become weak or inverted, consistent with empirical

evidence.3 Amplification does not arise when managers are constrained to hold the index, or when

they are unconstrained. The example implies additionally that overvaluation is harder to correct

than undervaluation. Indeed, managers must stick closer to the index in overvalued sectors: a 5%

difference in weight allows less leeway in relative terms when the sector’s benchmark weight is large.

Section 2 presents evidence on the portfolio constraints of asset managers and the behavior they

induce. Active funds investing in U.S. equities exhibit large differences in their TE: the average TE

for funds in Quintile 5 of TE is about four times as large as for funds in Quintile 1. Moreover, these

differences persist over time and can thus be viewed as a fund characteristic: a fund in Quintile 1

of TE lies on average in Quintile 1.63 after three years. Persistence is even stronger for active share

(AS), computed by summing across assets the deviations between an asset’s portfolio weight in a

fund and in the fund’s benchmark index. These findings extend Cremers and Petajisto (2009).

While the persistence of TE and AS could, in principle, be due to inertia, we present new evi-

dence that it reflects constraints, and that the constraints’ effects are consistent with our model’s

main mechanisms. Funds buy stocks that they underweight relative to their benchmark indices,

and do so procyclically : they buy to a larger extent after the stocks perform well. Conversely,

funds sell stocks that they overweight, and do so slightly countercyclically : they sell to a larger

extent after the stocks perform well. The procyclical (momentum) buying of underweighted stocks

is stronger for funds with low TE or AS. Funds in Quintile 1 of TE or AS eliminate 40% of their un-

derweight in overperforming stocks in the two semesters during and following the overperformance.

By comparison, they eliminate 20% of their underweight in underperforming stocks.

Section 3 presents the model. Investors can invest in a riskless asset and in multiple risky assets

over an infinite horizon. The riskless rate is constant, and each risky asset’s dividend flow per share

follows a square-root process. Investors maximize a mean-variance objective over instantaneous

changes in wealth. Some investors are unconstrained, while others face a constraint limiting the

deviation between the portfolio weight they give to each asset and the asset’s weight in a benchmark

index. Investors deviate from the index to exploit price distortions created by noise traders.

Section 4 derives the equilibrium prices of the risky assets taking the constraint as exogenous

and not distinguishing between investors and the asset managers they employ. We analyze two

polar cases first: no constraint, in which case all investors are fully active; and an infinitely tight

constraint, in which case constrained investors hold the index and are fully passive. In both cases,

we derive a closed-form solution for each asset’s price and show that it is affine in the asset’s

dividend flow. An increase in noise-trader demand raises price and lowers expected return. It does

3References to the empirical literature on risk-return inversion are in Section 4.4.
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not affect, however, return volatility: the price becomes more sensitive to the dividend flow, but the

effect is proportional to the increase in the price level. Moving from no constraint (all investors fully

active) to an infinitely tight constraint (constrained investors fully passive) exacerbates the price

distortions created by noise traders. This is because the constraint prevents constrained investors

from absorbing noise-trader demand. The constraint does not affect return volatility, however,

because volatility is independent of demand.

We next analyze the general case. For each asset, the equilibrium involves a region where the

constraint on that asset’s portfolio weight does not bind and a region where it binds. The constraint

binds for high values of the asset’s dividend flow because the asset’s portfolio weight is high.

The equilibrium price of each risky asset is convex in the asset’s dividend flow if the asset is in

high noise-trader demand, and concave if it is in low demand. The convexity reflects the amplifica-

tion effect. The concavity reflects the opposite dampening effect: since constrained investors give

higher weight to an undervalued asset relative to the asset’s index weight, they must sell the asset

when it appreciates, dampening the appreciation. These effects map to the evidence in Section 2 on

the procyclical buying of underweighted stocks and countercyclical selling of overweighted stocks.

They generate a negative cross-sectional relationship between volatility and expected return. That

relationship is most pronounced for intermediate levels of the constraint (and is absent in the polar

cases of no or infinitely tight constraint, where volatility is independent of noise-trader demand).

Consistent with empirical evidence, the inverted risk-return relationship in our model is driven

primarily by the overvalued assets, and distortions for these assets are larger. Our model is also

consistent with evidence that return momentum is more pronounced within overvalued assets.

Overvaluation is often attributed to a combination of heterogeneous beliefs and short-selling costs

(e.g., Harrison and Kreps (1978), Scheinkman and Xiong (2003), Hong and Stein (2007)). Our

results suggest that short-selling costs are not necessary for overvaluation distortions to be more

severe than undervaluation ones. Indeed, short-selling costs are not present in our model, and all

investors hold long positions in our calibrated example. Overvaluation is harder to correct than

undervaluation because overvalued assets make up a larger fraction of the market, so trading against

them entails more risk and tighter constraints.

Because overvaluation is more severe than undervaluation, market segments with more het-

erogeneous noise-trader demand across their component assets earn lower expected returns than

segments with less heterogeneity and same average demand. An analogous result is shown in the

literature on heterogeneous beliefs and short-selling costs, but our result assumes no short-selling

costs. Our model implies additionally that the relationship between heterogeneity and overvaluation

is stronger when managers are more constrained to remain close to their benchmark indices.
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Section 5 endogenizes the parameters of the constraint within a simple contracting model in

which investors employ asset managers. Managers can be skilled and observe noise-trader demand

and the dividend flow, or unskilled and trade on uninformative signals. Investors optimize over:

the wealth they allocate to their managers; a performance-based fee they pay the managers; and

an investment restriction that limits how much the managers’ portfolio weight in each asset can

deviate from the index weight. The optimal fee aligns managers’ risk preferences with those of their

investors. Investors must guard, however, against the possibility that their managers are unskilled,

and do so through the investment restriction. They impose no restriction when all managers are

skilled, and an infinitely tight one when all managers are unskilled.

In a calibrated example, we infer the constraints’ tightness from the data. Interpreting assets as

industry-sector portfolios, we find that observed differences in AS across funds are consistent with

a bound on deviations from sector index weights by managers of constrained funds of around 5%.

Investors find it optimal to impose such a bound when they believe that the fraction of unskilled

managers ranges between 20-40%. One interpretation of the high inferred fraction of unskilled

managers is that 5% reflects not only an explicit bound that investors impose on managers, but

also an implicit bound that managers impose on themselves to limit their reputational risk from

underperforming the index. Our calibrated example also allows us to compute effective capital,

defined as the capital that if managed without constraints would reduce price distortions to the

same extent as a given capital managed with empirically plausible constraints.

Our paper relates to several strands of work on asset management and asset pricing. One litera-

ture concerns the performance of active versus passive funds, and their impact on market efficiency.

That literature builds on the seminal paper by Grossman and Stiglitz (1980), in which informed

and uninformed investors trade with noise traders, there is a cost to becoming informed, and price

informativeness increases in the fraction of the informed. In Subrahmanyam (1991), the introduc-

tion of index futures induces noise traders to trade the index rather than the component assets.

This lowers liquidity for the component assets, and has ambiguous effects on market efficiency.

Related mechanisms are at play in Cong and Xu (2016) and Bhattacharya and O’Hara (2018), who

study how ETFs affect market efficiency and liquidity, and Bond and Garcia (2021) who study the

effects of lowering the costs of passive investing. Pastor and Stambaugh (2012) and Stambaugh

(2014) explain the decline in active funds’ expected returns based on the increase in the assets they

manage and the decline in noise trading, respectively.4 In Garleanu and Pedersen (2018), active

funds’ expected returns decline when investors are better able to locate skilled managers. In these

papers, active funds invest without investor-imposed constraints, while constraints are central to

our analysis.

4Berk and Green (2004) show that decreasing returns to scale at the level of individual funds help explain why
investors flow into funds with good past performance even though performance does not persist.
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In emphasizing constraints, our paper is related to the literature on leverage constraints and fire-

sales (see Gromb and Vayanos (2010) and Shleifer and Vishny (2011) for surveys). In that literature,

constraints tighten when asset prices fall, generating procyclicality. Moreover, distortions are largest

in down markets. In our model, by contrast, constraints tighten when asset prices rise, and this

generates counterclicality for undervalued assets, which managers overweight, and procyclicality

for overvalued assets. Moreover, distortions are largest for overvalued assets and in up markets.

Another related literature studies asset management contracts. Within its strand that takes

asset prices as given, our paper relates most closely to He and Xiong (2013) and Parlour and Rajan

(2019), in which investors constrain managers’ choice of assets to better incentivize them to acquire

information or to guard against other forms of moral hazard. Investors in our model constrain

managers to guard against the possibility that they are unskilled.

Within the strand of the asset-management-contracts literature that endogenizes prices, our

paper relates most closely to papers that examine the effects of compensating managers based

on their performance relative to a benchmark index. A common theme in several papers is that

such compensation raises the price of the benchmark index and of assets covarying highly with

it. Brennan (1993), Basak and Pavlova (2013) and Buffa and Hodor (2018) show this result in

settings where managers derive direct utility from relative performance. Kapur and Timmermann

(2005) and Cuoco and Kaniel (2011) show a similar result in settings where managers receive a

linear fee. The latter paper also finds that the result can reverse when the fee has option-like

components. Kashyap, Kovrijnykh, Li, and Pavlova (2021a) explore the result’s implications for

real investment.5 Tighter constraints in our model can instead lower the price of the benchmark

index because investors respond to overvaluation by cutting down their investment with asset

managers.

An alternative explanation for risk-return inversion is based on leverage constraints (Black

(1972), Frazzini and Pedersen (2014)): investors prefer assets with high CAPM beta because they

provide leverage, which investors cannot replicate by investing in low-beta assets and borrowing.

Leverage constraints generate a negative relationship between CAPM beta and alpha, but a positive

one between beta and expected return. In our model both relationships can be negative.

5Other papers on the equilibrium effects of benchmarking include Qiu (2017) and Cvitanic and Xing (2018). See
Garcia and Vanden (2009), Gorton, He, and Huang (2010), Kyle, Ou-Yang, and Wei (2011), Malamud and Petrov
(2014), Sato (2016), Huang (2018) and Sockin and Xiaolan (2018) for other models that determine jointly asset
management contracts and equilibrium prices.
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2 Evidence

A basic premise of our theory is that investment funds must maintain their deviations from bench-

mark indices within bounds. Our theory treats the bound for each fund as a characteristic of the

fund, similar to other basic characteristics such as the fees the fund charges and the asset classes the

fund invests in. Our theory implies additionally that some of the trades that fund managers make

are triggered by the requirement to maintain deviations from indices within bounds. These trades

are procyclical for assets that funds underweight relative to the indices, and countercyclical for

assets that funds overweight. In this section we provide supportive evidence for the basic premise

and mechanisms of our theory.

2.1 Deviation from Benchmark as a Fund Characteristic

A fund’s deviation from its benchmark index can be measured by comparing the return of the

fund to that of the index, or by comparing the portfolio weights. A measure that reflects the first

comparison is tracking error (TE). TE is commonly defined (e.g., Roll (1992), Grinold and Kahn

(2000), Jorion (2003)) as the standard deviation of the difference between the return of a fund and

the return of its benchmark index:

TEfund,t ≡
√
Var(Rfund,t −Rindex,t). (2.1)

A measure that reflects the second comparison is active share (AS). AS is computed (Cremers and

Petajisto (2009)) by taking the absolute value of the difference between an asset’s portfolio weight

in the fund and in the fund’s benchmark index, summing across assets, and dividing by two:

ASfund,t =
1

2

N∑
n=1

|wfund,n,t − windex,n,t| . (2.2)

When portfolio weighs are non-negative, AS lies between zero and one.

Table 1 presents evidence on the heterogeneity of TE across funds and on the persistence of TE

over time for a given fund. Table 2 does the same for AS. These tables extend findings of Cremers

and Petajisto (2009) to our sample period.

Tables 1 and 2, as well as the rest of the empirical exercise in Section 2, are calculated for

actively managed mutual funds that invest in U.S. stocks. Our sample period is January 1999 to

December 2018. We express TE, AS, returns and portfolio weights as percentages, e.g., an AS of

0.9 as 90, and a portfolio weight of 1% as 1. We compute TE using daily fund returns over an

one-year lookback window.
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Table 1: Cross-sectional Heterogeneity and Persistence of Tracking Error

Quintile after

TE 1Yr 2Yrs 3Yrs

TE Quintile 1 2.11 1.37 1.53 1.63
TE Quintile 5 8.49 4.65 4.51 4.43

Note.—Average tracking error (TE) and average TE quintile one, two, and three years later, for
active funds in Quintiles 1 and 5 of TE.

We source asset and fund returns from the Centre for Research in Security Prices (CRSP), fund

portfolio weights from Thomson Reuters, fund benchmark indices from Morningstar, index returns

from Morningstar, and index weights from CRSP, Morningstar and Russell. Because our dataset

includes only S&P500 and Russell index weights, we exclude funds benchmarked on other indices.

We also exclude funds whose combined portfolio weight in stocks does not always lie between 80

and 120; funds younger than one year; and funds that CRSP flags as index funds or ETFs or that

have index-related words in their name.

Our main sample consists of funds whose benchmark indices include large stocks. These indices

in our data are the S&P 500, and the Russell 200, 1000 and 3000 and their value and growth versions.

There are 1118 funds with these indices as their benchmarks (as reported by Morningstar). We

also report findings in Online Appendix C for an additional sample of 677 funds whose benchmark

indices include only small or mid-cap stocks. These indices are the Russell 2000, 2500, Midcap and

Small Cap Completeness, and their value and growth versions.

We compute the statistics in Table 1 by sorting funds into quintiles at the end of each year

based on their TE. The average TE for funds in Quintile 1 is 2.11, while the average TE for funds

in Quintile 5 is 8.49, about four times as large. The large differences in TE across funds seem to

reflect an underlying characteristic that persists over time in relative terms. The average quintile

where Quintile 1 funds in a given year lie one, two and three years later is 1.37, 1.53, and 1.63,

respectively.

The columns in Table 2 are constructed in the same manner as those in Table 1, except that

funds are sorted into quintiles at the end of each year based on their AS. AS is somewhat more

persistent than TE in relative terms. The average quintile where Quintile 1 funds in a given year

lie one, two and three years later is 1.27, 1.40 and 1.50, respectively.6

6The high persistence of TE and AS for funds in Quintile 1 is not driven by closet indexers, defined as active
funds that invest in a near-passive manner. Cremers and Petajisto (2009) take closet indexers to be the funds with
AS below 60. When excluding these funds from our sample and recomputing the quintiles, the average quintile where
Quintile 1 funds in a given year lie three years later rises from 1.63 to 1.76 in the case of TE, and from 1.50 to 1.68
in the case of AS. Hence, TE and AS remain quite persistent.
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Table 2: Cross-sectional Heterogeneity and Persistence of Active Share

Quintile after

AS 1Yr 2Yrs 3Yrs

AS Quintile 1 52.24 1.27 1.40 1.50
AS Quintile 5 91.11 4.81 4.72 4.66

Note.—Average active share (AS) and average AS quintile one, two, and three years later, for
active funds in Quintiles 1 and 5 of AS.

2.2 Funds Trade to Maintain Deviations within Bounds

One might argue that the persistence of TE and AS shown in Tables 1 and 2 is due to inertia. If

a fund holds a portfolio close to the benchmark at the end of a given year, and turns over a small

fraction of its portfolio during the following year, then the portfolio at the end of that year will be

close to the benchmark as well. The significant persistence of TE and AS over two- and three-year

horizons is evidence against the inertia explanation. We next present more direct evidence, by

showing that funds with low TE or AS trade actively to maintain their deviations from benchmark

indices within bounds.

We measure the extent to which a fund underweights or overweights an asset by active weight,

defined as the asset’s portfolio weight in the fund minus the weight in the fund’s benchmark index:

Awfund,n,t = wfund,n,t − windex,n,t.

We compute funds’ trading activity at a semi-annual frequency. If a fund does not trade during

semester t, then asset n’s portfolio weight ŵfund,n,t in the fund at the end of semester t is

ŵfund,n,t =
wfund,n,t−1(1 +Rn,t)∑N

n′=1wfund,n′,t−1(1 +Rn′,t)
, (2.3)

where wfund,n,t−1 is asset n’s weight at the end of semester t−1, and Rn,t is asset n’s return during

semester t.7 The change in asset n’s weight due to trading during semester t is asset n’s weight at

the end of semester t minus asset n’s no-trade weight:

∆wfund,n,t = wfund,n,t − ŵfund,n,t.

The assets held by the funds in our sample are mainly stocks, but also include cash and bonds. We

7Equation (2.3) remains valid when the fund trades due to inflows or outflows or due to assets paying dividends.
In the case of flows, we must assume that when the fund experiences inflows (outflows) it buys (sells) assets according
to its current portfolio weights. In the case of dividends, we must assume that they are reinvested in the assets paying
them, and define the return Rn,t to include the dividends.

8



Table 3: Funds’ Trading of Stocks as Function of Stocks’ Active Weight and Re-
turn

Aw Return ∆w 6Mths ∆w 1Yr

Aw Decile 1 & Return Quintile 1 -1.66 -15.53 0.08 0.16
Aw Decile 1 & Return Quintile 5 -1.66 21.03 0.20 0.33
Aw Decile 10 & Return Quintile 1 2.09 -15.76 -0.51 -0.87
Aw Decile 10 & Return Quintile 5 2.09 28.25 -0.56 -1.03

Note.—Change in weight due to trading (∆w) for fund/stock pairs in Deciles 1 and 10 of active
weight (Aw) and in Quintiles 1 and 5 of stock return. The change in weight is computed over the
same semester, or over the same and subsequent semester, as the return.

observe the returns on stocks. We take the return on cash to be the one-month Treasury bill rate

(rolled over a semester), and the return on bonds to be that of the Bloomberg (Lehman) Aggregate

Bond Index.

Table 3 presents evidence on how funds trade stocks that they underweight or overweight relative

to their benchmark index, as a function of the stocks’ return. At the end of each semester t − 1,

we compute active weight for each fund/stock pair such that the stock belongs to the 100 largest

stocks in the fund’s benchmark index. We sort these fund/stock pairs into deciles based on active

weight, and then sort within each decile into quintiles based on the stock’s return during the next

semester t. We compute the change in the stock’s portfolio weight in the fund due to trading during

semester t (Column ∆w 6Mths), and during the year formed by semesters t and t+1 (Column ∆w

1Yr). We consider only the 100 largest stocks in each fund’s benchmark index so that stock returns

have a significant effect on index weights. As a robustness check, we extend the set of stocks to

include the 250 largest. The effects are in the same direction but slightly weaker (Table C.1 in

Online Appendix C, where all figures and tables referenced by C in this section are located). For

the indices in our main sample, the 100 largest stocks account for 54-72% of index value, and the

250 largest stocks for 71-89%.

A first observation from Table 3 is that funds tend to buy stocks that they underweight and sell

stocks that they overweight—an effect also documented in DeVault, Sias, and Starks (2019). The

change in portfolio weight due to trading is positive for fund-stock pairs in Decile 1 of active weight

and negative for pairs in Decile 10, regardless of whether the stock earns a low return (Quintile 1

of return) or high return (Quintile 5).

A second observation from Table 3, which is particularly relevant for our theory, is that funds’

buying of underweighted stocks is procyclical and selling of overweighted stocks is countercyclical.

Funds increase the portfolio weight of an underweighted stock that underperforms (Decile 1 &

Quintile 1) by 0.16 in the semesters during and following the underperformance. They increase
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the weight of an equally underweighted but overperforming stock (Decile 1 & Quintile 5) by 0.33,

so twice as much. Conversely funds decrease the weight of an overweighted stock that underper-

forms (Decile 10 & Quintile 1) by 0.87. They decrease the weight of an equally overweighted but

overperforming stock (Decile 10 & Quintile 5) more, by 1.03.

Funds’ buying of underweighted stocks is procyclical for all such stocks, and not only for the

stocks with the most negative active weight in Decile 1. Active weight is negative for fund/stock

pairs in Deciles 1 through 7, is approximately zero in Decile 8, and is positive in Deciles 9 and

10. Active weight is positive in only two deciles because funds hold a relatively small fraction of

the stocks in their benchmark index—the average fund in our sample gives nonzero weight to only

23 of the largest 100 stocks in its benchmark index. In all Deciles 1 through 7, funds buy stocks

on average, and buying is procyclical. In Deciles 9 and 10, funds sell stocks on average. Selling

is procyclical in Decile 9, but becomes countercyclical in Decile 10. Aggregating across Deciles 9

and 10, selling of overweighted stocks is slightly countercyclical. (Table C.2 extends Table 3 to all

deciles.8) Thus, procyclical buying of underweighted stocks is more pervasive than countercyclical

selling of overweighted stocks.

Averaging across all deciles of active weight, our findings imply that mutual funds engage in

procyclical trading. Momentum (procyclical) trading by mutual funds is documented in Nofsinger

and Sias (1999) and Wermers (1999). We complement these papers by showing that momentum

trading is driven by the stocks that funds underweight.

We next examine how funds’ procyclical trading of underweighted stocks depends on their TE

and AS. We proceed as in Table 3, sorting fund/stock pairs into deciles based on active weight at

the end of each semester t − 1. We then sort within each decile into two sets of quintiles based

on the stock’s return during the next semester t and based on the TE or AS of the fund at the

end of semester t − 1. We compute the change in the stock’s portfolio weight in the fund due to

trading during semester t, and during the year formed by semesters t and t+ 1. Figure 1 plots the

change in weight as a function of the quintile of TE (left panel) and of AS (right panel) for the

stocks in Decile 1 of active weight. The dashed lines represent the stocks with the lowest return

(Quintile 1 of return) and the solid lines the stocks with the highest return (Quintile 5). The gray

lines represent the change in weight over semester t (during which return is calculated) and the

black lines over semesters t and t+ 1.

Figure 1 shows that procyclical trading of underweighted stocks is driven by the funds with low

TE or AS. Indeed, for funds in the highest TE or AS quintile, purchases of underweighted stocks

8We construct a counterpart of Table C.2 that excludes stocks with zero weights (Table C.3). That table re-
sembles a truncated version of Table C.2 to its larger deciles, with procyclical buying of underweighted stocks and
countercyclical selling of overweighted stocks.
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Figure 1: Funds’ trading of stocks in Decile 1 of active weight as function of stocks’ return and
funds’ TE and AS.

are almost independent of performance (the dashed and solid lines are close to each other). When

moving to the lower TE or AS quintiles, purchases of underweighted underperforming stocks rise

slightly (the dashed line has small negative slope), while purchases of underweighted overperforming

stocks rise sharply (the solid line has large negative slope). The negative relationship between the

procyclical buying of underweighted stocks and TE or AS (larger negative slope of the solid line

than of the dashed line) is statistically significant at the 1% level (Table C.4).

The negative relationship between procyclical buying and TE or AS extends beyond the stocks

with the most negative active weight in Decile 1. It remains negative and statistically significant

at the 1% level when Deciles 1 through 7 are pooled together, except for TE and the six-month

horizon where significance drops to 5% (Table C.5). When each decile is considered in isolation,

significance is at the 1% level for AS and Deciles 1 through 7, and for TE and Deciles 1 and 2.

In terms of economic significance, funds in the lowest TE or AS quintile eliminate 40% of their

underweight in overperforming stocks in Deciles 1 through 7, in the semesters during and following

the overperformance. By comparison, they eliminate 20% of their underweight in underperforming

stocks in the same deciles.

When restricting our analysis to funds whose benchmark indices include only small or mid-cap

stocks, we still find procyclical buying of underweighted stocks, countercyclical selling of over-

weighted stocks, and a negative relationship between procyclical buying and TE or AS (Table C.6

and Figure C.1). The procyclicality is weaker, which is consistent with our theory because the

weights of the largest stocks in small or mid-cap indices are smaller than for large-cap indices.

We finally perform the same analysis at the level of industry sectors rather than stocks. We

classify the stocks held by each active fund into eleven industry sectors using the Global Industry

Classification Standard (GICS), and compute the fund’s industry portfolio weights. We compute

the same weights for the fund’s benchmark index. Active weight for sectors is distributed more

symmetrically around zero than for stocks: it is negative for fund/sector pairs in Deciles 1 through
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5, is approximately zero in Decile 6, and is positive in Deciles 7 through 10. Thus, funds include

stocks from most sectors in their portfolio, even though each sector may be represented by a few

stocks. Funds buy underweighted sectors procyclically. They sell overweighted sectors procyclically

in Deciles 7 through 9, and countercyclically in Decile 10 (Table C.7). Funds’ procyclical buying

of underweighted sectors is more pronounced for funds with low TE or AS (Figure C.2).

2.3 Asset-Level versus Portfolio-Level Constraints

TE and AS are portfolio-level measures of a fund’s deviation from its benchmark index, and bounds

on these measures are portfolio-level constraints. In our model, we assume instead constraints at

the level of individual assets, which we interpret as stocks or industry sectors. The evidence on

procyclical trading of underweighted stocks or sectors, and on a negative relationship between that

trading and TE or AS, is consistent with portfolio- or asset-level constraints. We next provide

evidence that asset-level constraints matter.

One test is whether trading of underweighted stocks remains procyclical when TE or AS do

not change. As in Table 3, we sort fund/stock pairs into deciles based on active weight at the end

of each semester t − 1. We focus on Decile 1 and sort within it into two sets of quintiles based

on the stock’s return during the next semester t and based on the no-trade change in AS during

semester t. The no-trade change in AS is the change computed under the assumption that the

fund does not trade during semester t, in which case portfolio weights are given by (2.3). If the

no-trade change in AS is zero, then constraints on AS should not induce trade by the fund. We do

not compute a no-trade change for TE because of measurement issues explained in Appendix C,

but we supplement our analysis with actual change in TE and AS.

We find that changes in weights are similar to those in Table 3 across the first four quintiles

of no-trade change in AS—including in the third quintile, in which the no-trade change in AS is

almost zero (Table C.8). This suggests that asset-level constraints matter. Changes in weights are

larger in the fifth quintile, and procyclicality is about 50% larger than in the other quintiles. Since

the no-trade change in AS is largest in the fifth quintile, portfolio-level constraints seem to matter

as well. We corroborate these findings with a regression analysis, with no-trade change in AS as a

continuous variable (Table C.9). The findings are similar when using actual change in TE or AS.

Another test is whether portfolio spillover effects are small. Under portfolio-level constraints,

a high return by a heavily underweighted stock n should induce a fund to not only buy stock n

but also execute similar-size purchases of other heavily underweighted stocks and sales of heavily

overweighted stocks. We characterize spillovers associated to stock n by adding (negative) weight

changes due to trading for stocks other than n that the fund overweights and subtracting (positive)
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weight changes for stocks other than n that the fund underweights. We compute the procyclicality

of the resulting quantity by comparing it for high and low values of stock n’s return. We find that

the high-minus-low difference aggregated across all industry sectors other than stock n’s is less than

40% of the same difference in stock n’s sector (Table C.10). Thus, spillover effects across sectors

appear to be small, providing further evidence for asset-level constraints.

3 Model

Time t is continuous and goes from zero to infinity. The riskless rate is exogenous and equal to

r > 0. There are N risky assets. Asset n = 1, .., N pays a dividend flow Dnt per share and is in

supply of θn > 0 shares. The price Snt per share of the risky asset is determined endogenously in

equilibrium.

The return per share of risky asset n in excess of the riskless rate is

dRsh
nt ≡ Dntdt+ dSnt − rSntdt, (3.1)

and its return per dollar in excess of the riskless rate is

dRnt ≡
dRsh

nt

Snt
=

Dntdt+ dSnt

Snt
− rdt. (3.2)

We refer to dRsh
nt as share return, omitting that it is in excess of the riskless rate. We refer to dRnt

as return, omitting that it is per dollar and in excess of the riskless rate.

The dividend flow Dnt of risky asset n follows the square-root process

dDnt = κn
(
D̄n −Dnt

)
dt+ σn

√
DntdBnt, (3.3)

where {κn, D̄n, σn}n=1,..,N are positive constants and Bnt is a Brownian motion. For simplicity,

we take the Brownian motions {Bnt}n=1,..,N to be independent, thus assuming that assets have

independent dividends.

The square-root specification (3.3) allows for closed-form solutions while also ensuring that

dividends remain positive. A property of the square-root specification that is important for our

results is that the volatility (standard deviation) of dividends per share Dnt increases with the level

of dividends. This property is realistic: if a firm becomes larger and keeps the number of its shares

constant, then its dividends per share become more uncertain.9

9Two alternative common specifications of dividends are geometric Brownian motion (GBM) and arithmetic
Brownian motion (ABM). The volatility of dividends per share is proportional to the dividend level under GBM, and
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Investors form a continuum with measure one. They are of two types: unconstrained investors

who can invest in all assets without any limitations, and constrained investors who are limited in the

risk they can take. Unconstrained investors are in measure 1−x ∈ (0, 1), and constrained investors

are in the complementary measure x. We denote by W1t and W2t the wealth of an unconstrained

and a constrained investor, respectively, and by z1nt and z2nt the number of shares of risky asset n

that they hold.

At time t, investors choose their asset positions to maximize the mean-variance objective

Et(dWit)−
ρ

2
Vart(dWit), (3.4)

subject to the budget constraint

dWit =

(
Wit −

N∑
n=1

zintSnt

)
rdt+

N∑
n=1

zint(Dntdt+ dSnt) = Witrdt+

N∑
n=1

zintdR
sh
nt , (3.5)

where ρ is a risk-aversion coefficient common to all investors, i = 1 for unconstrained investors,

and i = 2 for constrained investors. The mean and variance in the objective (3.4) are computed

over the infinitesimal change in investor wealth. That change is equal to the riskless rate paid on

wealth between t and t + dt, plus the sum over risky assets of the capital gains from each risky

asset in excess of the riskless rate. The capital gains for risky asset n are equal to the number of

shares zint times the share return dRsh
nt .

The objective (3.4) renders our equilibrium analysis tractable because of two key properties: (i)

the coefficient of absolute risk aversion is independent of wealth and (ii) there is no intertemporal

hedging demand. Investors with the objective (3.4) can be interpreted as infinitely lived, but in

that case (3.4) does not follow from a Von Neumann-Morgenstern (VNM) utility over intertemporal

consumption.10 Alternatively, investors can be interpreted as overlapping generations living over

infinitesimal periods. In that case, (3.4) follows from all VNM utilities, with ρ equal to −U ′′(W )
U ′(W )

and W equal to the investors’ initial wealth.

The constraint limits the deviation of each constrained investor’s risky-asset portfolio from a

benchmark index. We denote by η̂n the number of shares of risky asset n in the index, and interpret

is independent of the dividend level under ABM. Our main results would hold under GBM, but we do not adopt that
specification because it does not yield closed-form solutions. ABM yields closed-form solutions, but our main results
would hold only under the AS-based constraint (3.7) and not under the TE-based constraint (3.9). Indeed, under
ABM and the TE-based constraint, equilibrium prices would be linear functions of dividends, volatility per share
would be constant, and the constraint would not tighten when dividends increase. An additional drawback of ABM
is that dividends and prices can become negative, complicating calculations of returns. Dividends remain positive
under GBM (as they do under the square-root specification).

10In the polar cases where the constraint is absent or is infinitely tight, our equilibrium analysis remains tractable
and the results are similar when investors have negative exponential utility over intertemporal consumption. This is
shown in an earlier version of this paper (Buffa, Vayanos, and Woolley (2014)).
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it as the number of shares sold by the issuing firm. The supply θn of asset n can differ from η̂n

because it includes demand by other (unmodeled) traders. We refer to these traders as noise traders.

Their demand can differ across assets in a way not proportional to η̂n. We take their demand to be

constant over time (capturing slow mean reversion), and treat it as a model parameter in Section

4. Because demand differs across assets, however, it is effectively random at the stage when the

parameters of the constraint are determined in Section 5.

We consider two specifications of the constraint. The first specification is in the spirit of active

share (AS), defined in (2.2). Suppose that a constrained investor allocates wealth W2zt in a fund

investing in the risky assets and possibly in the riskless asset, and the remaining wealth W2t−W2zt

in the riskless asset. The weight of asset n in the fund is z2ntSnt
W2zt

. The weight of asset n in the

benchmark index is η̂nSnt∑N
n′=1 η̂n′Sn′t

. Requiring the two weights to differ by no more than L̂ ≥ 0 yields

the constraint∣∣∣∣∣z2ntSnt

W2zt
− η̂nSnt∑N

n′=1 η̂n′Sn′t

∣∣∣∣∣ ≤ L̂, (3.6)

a simplified version of which we adopt below. The constraint (3.6) is in the spirit of AS because AS

is based on the difference in portfolio weights. We impose a bound not on AS but on the difference

in portfolio weights asset by asset. This helps eliminate spillover effects, whereby price movements

in one asset impact the constraint’s tightness for other assets. The evidence in Section 2 motivates

an asset-level constraint because spillover effects are small. To fully eliminate spillover effects,

rendering our analysis more tractable, we approximate
∑N

n′=1 η̂n′Sn′t in (3.6) by its unconditional

expectation—an approximation that becomes more accurate as the number N of independent risky

assets increases. We also take W2zt to be a constant W2z—an assumption that is in the spirit

of the previous approximation and consistent with the coefficient of absolute risk aversion being

independent of wealth. Under these assumptions, (3.6) simplifies to

|z2nt − ηn|Snt ≤ L (3.7)

for all n, where ηn ≡ W2z

E(
∑N

n′=1 η̂n′tSn′t)
η̂n and L ≡ L̂W2z. Equation (3.7) is our first specification of

the constraint. We refer to ηn as the benchmark position.

The second specification is in the spirit of tracking error (TE), defined in (2.1). As with the

AS-based constraint, we impose a bound not on TE but on the standard deviation of the difference

between fund and index return that is generated by each specific asset. Since assets are independent,

the standard deviation that is generated by asset n is the absolute value of the difference in portfolio
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weights times the standard deviation of the asset return. The constraint for asset n thus is∣∣∣∣∣z2ntSnt

W2zt
− η̂nSnt∑N

n′=1 η̂n′Sn′t

∣∣∣∣∣
√

Vart(dRnt)

dt
≤ L̂. (3.8)

When
∑N

n′=1 η̂n′Sn′t is approximated by its unconditional expectation and W2zt is a constant W2z,

(3.8) simplifies to

|z2nt − ηn|

√
Vart

(
dRsh

nt

)
dt

≤ L (3.9)

for all n. Equation (3.9) is our second specification of the constraint.

The constraints (3.7) and (3.9) depend on the parameters (W2z, L̂). These parameters determine

L and ηn for all n. When L̂ is infinite, there is no constraint and constrained investors are fully

active. When instead L̂ = 0, constrained investors hold the benchmark index and are fully passive.

For intermediate values L̂ ∈ (0,∞), constrained investors combine elements of active and passive:

they are active in the sense that they have some leeway when choosing their position in each

risky asset, but passive in the sense that they cannot deviate much from the index. We take the

parameters (W2z, L̂) as exogenous in Section 4 and endogenize them in Section 5.

4 Equilibrium with Exogenous Constraint

4.1 No Constraint

We first derive the equilibrium when the bound L̂ in the constraint is infinite and constrained

investors are identical to unconstrained investors. We look for an equilibrium in which the price

Snt of each risky asset n is a function of that asset’s dividend flow Dnt only. Denoting that function

by Sn(Dnt) and assuming that it is twice continuously differentiable, we can write the share return

dRsh
nt as

dRsh
nt = Dntdt+ dSn(Dnt)− rSn(Dnt)dt

=

[
Dnt + κn(D̄n −Dnt)S

′
n(Dnt) +

1

2
σ2
nDntS

′′
n(Dnt)− rSn(Dnt)

]
dt+ σn

√
DntS

′
n(Dnt)dBnt,

(4.1)

where the second step follows from (3.3) and Ito’s lemma.

Using the budget constraint (3.5) and the mutual independence of the Brownian motions
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{Bnt}n=1,..,N , we can write the objective (3.4) as

N∑
n=1

(
zintEt(dR

sh
nt)−

ρ

2
z2intVart(dRsh

nt)
)
.

The first-order condition with respect to zint is

Et(dR
sh
nt) = ρzintVart(dRsh

nt). (4.2)

The expected share return Et(dR
sh
nt) is the drift term in (4.1), and the share return variance

Vart(dRsh
nt) is the square of the diffusion term.

Since unconstrained and constrained investors are identical, the market-clearing condition

(1− x)z1nt + xz2nt = θn (4.3)

implies z1nt = z2nt = θn. Each investor’s position in asset n is thus equal to the asset’s supply

θn, which coincides with the supply per investor since investors form a continuum with mass one.

Setting zint = θn in (4.2), we find the following ordinary differential equation (ODE) for the function

Sn(Dnt):

Dnt + κn(D̄n −Dnt)S
′
n(Dnt) +

1

2
σ2
nDntS

′′
n(Dnt)− rSn(Dnt) = ρθnσ

2
nDntS

′
n(Dnt)

2. (4.4)

The ODE (4.4) is second-order and non-linear, and must be solved over (0,∞). We require that

its solution Sn(Dnt) has a derivative that converges to finite limits at zero and infinity. This yields

one boundary condition at zero and one at infinity.

We look for an affine solution to the ODE (4.4):

Sn(Dnt) = an0 + an1Dnt, (4.5)

where (an0, an1) are constant coefficients. This function satisfies the boundary conditions since its

derivative is constant. Substituting this function into (4.4) and identifying terms, we can compute

(an0, an1).

Proposition 4.1. Suppose L̂ = ∞ and θn > − (r+κn)2

4ρσ2
n

. An affine solution Sn(Dnt) = an0+ an1Dnt
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to (4.4) exists, with

an0 =
κn
r
an1D̄n, (4.6)

an1 =
2

r + κn +
√
(r + κn)2 + 4ρθnσ2

n

. (4.7)

The price Sn(Dnt) of asset n and the sensitivity S′
n(Dnt) of the price to changes in the dividend

flow Dnt are decreasing and convex functions of the asset’s supply θn.

The intuition for (4.6) and (4.7) is as follows. The coefficient an1 is the sensitivity S′
n(Dnt) of

the price of risky asset n to changes in the asset’s dividend flow Dnt. Consider a unit increase

in Dnt. When the asset’s supply θn is equal to zero, (4.7) implies that the price Snt increases by

an1 = 1
r+κn

. This is the present value of the increase in future expected dividends discounted at

the riskless rate r. Indeed, a unit increase in Dnt raises the expected dividend flow Et(Dnt′) at

time t′ > t by e−κn(t′−t). Hence, the present value of future expected dividends increases by∫ ∞

t
e−κn(t′−t)e−r(t′−t)dt′ =

1

r + κn
.

When the supply θn is positive, the price Sn(Dnt) increases by an1 < 1
r+κn

in response to a

unit increase in Dnt. This is because the increase in Dnt not only raises expected dividends, but

also makes them riskier due to the square-root specification of Dnt. Moreover, since investors hold

a long position, the increase in risk makes them more willing to unwind their position and sell the

asset. This results in a smaller price increase than when θn = 0. When instead θn < 0, investors

hold a short position, and the increase in risk makes them more willing to buy the asset. This

results in a larger price increase than when θn = 0, i.e., an1 > 1
r+κn

. Equation (4.7) confirms that

an1 decreases in θn.

The effect of θn on an1 is stronger when θn is small, implying that the price sensitivity S′
n(Dnt)

is convex in θn. Convexity is related to an1 being decreasing in θn and bounded below by zero.

Indeed, these properties imply that the derivative of an1 with respect to θn converges to zero when

θn becomes large (while it is negative for smaller values of θn).

The coefficient an0 is equal to the price level when the dividend flow Dnt is zero. If the mean-

reversion parameter κn were equal to zero, and thus the dividend flow were to stay at zero forever,

then an0 would be equal to zero. Because, however, κn is positive, and thus the dividend flow

returns with certainty to positive values, an0 is positive. Moreover, an0 inherits properties of an1

since the larger an1 is, the more the price increases when the dividend flow becomes positive. In

particular, an0 is decreasing and convex in the supply θn of the risky asset, and so is the price

18



Snt = an0 + an1Dnt. Corollary 4.1 examines how θn affects the asset’s expected return and the

return volatility.

Corollary 4.1. Suppose L̂ = ∞ and θn > − (r+κn)2

4ρσ2
n

. An increase in the supply θn of risky asset n

raises the asset’s conditional expected return Et(dRnt) and leaves the return’s conditional volatility√
Vart(dRnt) unaffected. The effects on the unconditional values E(dRnt) of expected return and√
Var(dRnt) of volatility are the same as on the conditional values.

Recall from (3.2) that the return of the risky asset is

dRnt =
Dnt

Snt
dt+

dSnt

Snt
− rdt.

Return volatility is caused by the term dSnt
Snt

, i.e., the capital gains per dollar invested. Since an

increase in θn lowers the sensitivity an1 of the price Snt to changes in the dividend flow Dnt, it

makes the capital gains dSnt = an1dDnt per share less volatile. At the same time, the share price

Snt = an0+an1Dnt decreases. Because θn has the same percentage effect on an0 and an1, the capital

gains dSnt
Snt

per dollar invested do not change, and neither does return volatility
√
Vart(dRnt). On

the other hand, expected return E(dRnt) increases because of the term Dnt
Snt

dt, i.e., the dividends

per dollar invested. An increase in θn does not affect the dividend flow Dnt per share but lowers

the share price Snt.

4.2 Infinitely Tight Constraint

We next derive the equilibrium when the bound L̂ in the constraint is zero and constrained investors

hold the benchmark position of ηn shares in each risky asset n. Since the constrained investors’

position z2nt is equal to ηn, the market-clearing condition (4.3) implies z1nt =
θn−xηn
1−x . Substituting

z1nt into (4.2) for i = 1, we find the ODE

Dnt+κn(D̄n−Dnt)S
′
n(Dnt)+

1

2
σ2
nDntS

′′
n(Dnt)− rSn(Dnt) =

ρ(θn − xηn)

1− x
σ2
nDntS

′
n(Dnt)

2. (4.8)

The ODE (4.8) is identical to (4.4) except that supply θn is replaced by θn−xηn
1−x . The solution

Sn(Dnt) of the ODE can be derived from Proposition 4.1 with the same substitution.

Proposition 4.2. Suppose L̂ = 0 and θn > xηn − (1−x)(r+κn)2

4ρσ2
n

. An affine solution Sn(Dnt) =
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an0 + an1Dnt to (4.8) exists, with an0 given by (4.6) and

an1 =
2

r + κn +
√
(r + κn)2 +

4ρ(θn−xηn)
1−x σ2

n

. (4.9)

Relative to the case L̂ = ∞:

� Sn(Dnt) is lower when θn > ηn, and higher when θn < ηn.

� S′
n(Dnt) is lower when θn > ηn, and higher when θn < ηn.

Under an infinitely tight constraint (L̂ = 0), noise-trader demand has a larger effect on the

price than under no constraint (L̂ = ∞). Recall from Proposition 4.1 that when L̂ = ∞, the price

decreases in the supply θn of the risky asset. In particular, the price is higher when θn < ηn,

corresponding to high noise-trader demand, than when θn > ηn, corresponding to low noise-trader

demand. When L̂ = 0, the difference is exacerbated: the price is even higher when θn < ηn, and

is even lower when θn > ηn. Intuitively, the constraint exacerbates the effect that noise-trader

demand has on the price because it prevents constrained investors from absorbing that demand.

Indeed, if the constraint is imposed, constrained investors must change their position from θn to

ηn. Therefore, they must buy the asset when θn < ηn, which is when noise-trader demand is high,

and must sell the asset when θn > ηn, which is when noise-trader demand is low.

The constraint exacerbates the effects of noise-trader demand not only on the price level but

also on the price sensitivity to changes in the dividend flow Dnt. Recall from Proposition 4.1 that

when L̂ = ∞, the price is more sensitive to Dnt (i.e., S
′
n(Dnt) is larger) when θn < ηn than when

θn > ηn. When L̂ = 0, the difference in sensitivities is exacerbated because θn is replaced by θn−xηn
1−x :

the price becomes more sensitive to Dnt when θn < ηn because θn−xηn
1−x < θn, and it becomes less

sensitive to Dnt when θn > ηn because θn−xηn
1−x > θn.

While an infinitely tight constraint exacerbates the mispricing, it does not affect return volatility.

Indeed, since volatility is independent of θn, it does not change when θn is replaced by θn−xηn
1−x .

Corollary 4.2. Suppose L̂ = 0 and θn > xηn− (1−x)(r+κn)2

4ρσ2
n

. The conditional volatility
√
Varnt(dRnt)

and the unconditional volatility
√
Var(dRnt) of risky asset n’s return are independent of the asset’s

supply θn and are the same as when L̂ = ∞.

4.3 General Case

We next derive the equilibrium for L̂ ∈ (0,∞). The equilibrium is described by an unconstrained

region, where the constraint does not bind, and a constrained region where it binds. We nest the
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constraints (3.7) and (3.9) into

|z2nt − ηn|Gn(Dnt) ≤ L, (4.10)

whereGn(Dnt) ≡ Sn(Dnt) in the case of the AS-based constraint (3.7) andGn(Dnt) ≡ σn
√
DntS

′
n(Dnt)

in the case of the TE-based constraint (3.9). The value of Gn(Dnt) for the TE-based constraint

follows from (4.1) and assuming that Sn(Dnt) increases in Dnt (which we confirm is the case in

equilibrium).

In the unconstrained region all investors are identical. Therefore, their positions z1nt and z2nt

are equal to the supply θn, and the function Sn(Dnt) solves the same ODE (4.4) as when the

constraint never binds. Substituting z2nt = θn into (4.10), we find that the unconstrained region is

defined by

|θn − ηn|Gn(Dnt) ≤ L. (4.11)

In the constrained region (4.10) holds as an equality. Using the market-clearing condition to

write z1nt as function of z2nt, and substituting into (4.2) for i = 1, we find

Dnt+κn(D̄n−Dnt)S
′
n(Dnt)+

1

2
σ2
nDntS

′′
n(Dnt)−rSn(Dnt) = ρ

θn − xz2nt
1− x

σ2
nDntS

′
n(Dnt)

2. (4.12)

A binding constraint forces the position of constrained investors closer to ηn while keeping it on

the same side of ηn as for unconstrained investors. When, for example, θn < ηn, unconstrained

investors hold a position z1nt < ηn, and constrained investors hold a position z2nt ∈ (z1nt, ηn).

Substituting z2nt from (4.10), which holds as an equality in the constrained region, into (4.12), and

noting that z2nt − ηn has the same sign as θn − ηn, we find the ODE

Dnt + κn(D̄n −Dnt)S
′
n(Dnt) +

1

2
σ2
nDntS

′′
n(Dnt)− rSn(Dnt)

=
ρ(θn − xηn)

1− x
σ2
nDntS

′
n(Dnt)

2 − ρ sgn(θn − ηn)xL

1− x

σ2
nDntS

′
n(Dnt)

2

Gn(Dnt)
, (4.13)

where sgn(θn − ηn) is the sign function, equal to one if θn > ηn and to minus one if θn < ηn. The

constrained region is defined by the opposite inequality to (4.11), i.e.,

|θn − ηn|Gn(Dnt) > L. (4.14)

The price function Sn(Dnt) solves the ODE (4.4) in the unconstrained region (4.11), and (4.13)

in the constrained region (4.14). The two ODEs are second-order and non-linear, and must be
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solved as a system over (0,∞). As in Sections 4.1 and 4.2, we require that S′
n(Dnt) converges to

finite limits at zero and infinity.

At a boundary point D∗
n between the constrained and the unconstrained region, the values of

Sn(D
∗
n) implied by the two ODEs must be equal, and the same is true for the values of S′

n(D
∗
n).

These are the smooth-pasting conditions, and they follow from Sn(Dnt) being twice continuously

differentiable. The boundary point(s) between the constrained and the unconstrained region must

be solved together with the ODEs. This makes the problem a free-boundary one.

The system of ODEs (4.4) and (4.13) does not have a closed-form solution. We can prove,

however, that in the case the TE-based constraint (3.9) a solution exists and has a number of key

properties. In the case of the AS-based constraint (3.7) we do not have a general proof but compute

the solution numerically and show that it has the same properties.

Theorem 4.1. Suppose Gn(Dnt) = σn
√
DntS

′
n(Dnt), L̂ ∈ (0,∞), θn > xηn − (1−x)(r+κn)2

4ρσ2
n

and

κnD̄n > σ2
n
4 . A solution Sn(Dnt) to the system of ODEs (4.4) in the unconstrained region (4.11),

and (4.13) in the constrained region (4.14), with a derivative that converges to finite limits at zero

and infinity, exists and has the following properties:

� It is positive and increasing in Dnt.

� It lies between the affine solution derived for L̂ = ∞ and that derived for L̂ = 0.

� Its derivative S′(Dnt) lies between the derivative of the affine solution derived for L̂ = ∞ and

that derived for L̂ = 0.

� It is concave when θn > ηn, and convex when θn < ηn.

� The unconstrained and constrained regions are separated by only one boundary point D∗
n.

Theorem 4.1 confirms that an increase in the dividend flow Dnt raises the price Snt. It also

shows that Snt lies between the values that it takes in the polar cases L̂ = ∞ and L̂ = 0. For given

Dnt, the difference in price between θn < ηn and θn > ηn is positive when there is no constraint

(L̂ = ∞), higher when there is a constraint (L̂ ∈ (0,∞)), and even higher when the constraint is

infinitely tight (L̂ = 0). The same comparisons hold for the difference in price sensitivity S′
n(Dnt)

between θn < ηn and θn > ηn.

A key difference with the polar cases L̂ = ∞ and L̂ = 0 is that the price is non-linear in Dnt:

it is concave for θn > ηn and convex for θn < ηn, while it is affine in the polar cases. The non-

linearities are driven by the trading that the constraint induces, and in turn drive the risk-return
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inversion. In the polar cases, there is no constraint-induced trading, either because the constraint

never binds (L̂ = ∞) or because constrained investors hold the index (L̂ = 0).

The intuition for the non-linearities is as follows. Suppose that θn > ηn and Dnt is in the

constrained region. Following an increase in Dnt, investors’ positions go up in value and their

volatility rises. To continue meeting the constraint, constrained investors must bring their positions

closer to ηn. Since θn > ηn, they must sell some shares of asset n to unconstrained investors.

This dampens the price rise. The dampening effect is weaker when Dnt is smaller and in the

unconstrained region because it concerns not actual sales but an expectation that sales might occur

in the future. The price increase is thus larger for smaller Dnt, resulting in concavity. Conversely,

suppose that θn < ηn andDnt is in the constrained region. Following an increase inDnt, constrained

investors must bring their positions closer to ηn. Since θn < ηn, they must buy some shares of asset

n from unconstrained investors. This amplifies the price rise. The amplification effect is weaker

when Dnt is smaller and in the unconstrained region, resulting in convexity.

To illustrate our results in this and subsequent sections, we use a calibrated example. We set

the risk-aversion coefficient ρ and the number of shares η̂n of each risky asset n = 1, .., N in the

benchmark index to one. These are normalizations. In the case of ρ, we redefine the numeraire in

the units of which wealth is expressed. In the case of η̂n, we redefine one share of each asset by

rescaling the dividend flow. We set the wealth W2z to E
(∑N

n′=1 η̂n′tSn′t

)
. This implies that the

benchmark position ηn in the constraints (3.7) and (3.9) is η = η̂n = 1. We assume that assets

differ in their supply θn, and that supply is distributed symmetrically around η = 1.

We set the number N of risky assets to 10, and interpret them as industry-sector portfolios.

An advantage of calibrating our model on industry sectors rather than on individual stocks is that

the former are of comparable size (measured in our model by the average dividend per share D̄n),

while size varies sharply across the latter. The evidence in Section 2 is consistent with constraints

at the level of industry sectors.

We assume that the values of (κn, D̄n, σn) are identical across assets, and set them to (κ, D̄, σ) =

(0.05, 0.15, 0.4). We choose these values based on the asset-level volatility and Sharpe ratio (SR).

Within our model, we compute unconditional versions of these quantities using the stationary

distribution of Dnt, which is gamma, with mean D̄ = 0.15 and 95th percentile D95 = 0.873. The

unconditional volatility averaged across assets is 20.07, and the unconditional SR is 0.27. (As

in Section 2, we express TE, AS, returns and portfolio weights as percentages, and do the same

for return moments.) For comparison, the average volatility of the eleven value-weighted GICS

industry-sector portfolios within the S&P500 index is 18.72 during our sample period. Moreover,

the average SR of these portfolios is 0.34. While we use three parameters (κ, D̄, σ) to target two

moments (volatility and SR), the third degree of freedom has a small effect on our numerical results.
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We set the interest rate r to 3%. This parameter has a small effect on our main results.

We set the fraction x of constrained investors to x = 0.6, i.e., 60% of investors are constrained

and 40% are unconstrained. Identifying the set of unconstrained and constrained investors with

that of active funds, we can interpret unconstrained investors as the funds in the top two AS

quintiles, and constrained investors as the funds in the bottom three quintiles.

We assume that the supply θn of the ten assets takes the ten values (0.6, 0.7, 0.8, 0.9, 1, 1, 1.1, 1.2,

1.3, 1.4). We choose the spread of the distribution of θn around η = 1 based on the active share (AS)

of the aggregate portfolio of unconstrained and constrained investors. (The supply θn corresponds to

the aggregate holdings of asset n by unconstrained and constrained investors.) Under our chosen

values, this AS is 10.17. The empirical counterpart of this quantity is the AS of the aggregate

portfolio of all active funds, constructed at the industry-sector level. We construct that portfolio

in two steps. First, we compute industry portfolio weights for each active fund in our sample by

classifying the stocks held by the fund into the eleven GICS industry sectors. Second, we aggregate

these portfolio weights across all active funds by weighting the portfolio of each fund by that fund’s

assets under management. We compute the AS of the resulting portfolio weights relative to the

same weights for the S&P500 index. AS is 10.81 during our sample period. Repeating this exercise

only for funds with S&P500 as their benchmark yields an AS of 9.78.

We assume the AS-based constraint (3.7). The results for the TE-based constraint (3.9) are

similar (Online Appendix D). We set the upper bound L̂ on the deviation between the weight of an

asset in the portfolio of constrained investors and in the index to 5 (same as in the simple example

in the Introduction). We choose L̂ based on the difference between the AS of the portfolio of

unconstrained investors and that of constrained investors: a smaller L̂ implies a tighter constraint

and a larger AS difference. The AS, constructed at the industry-sector level, of the aggregate

portfolio of all S&P500-benchmarked active funds in the top two (stock-level) AS quintiles is 13.57

during our sample period. Its counterpart for the funds in the bottom three quintiles is 9.93.

The difference thus is 3.64, and rises to 9.00 when using only the top quintile instead of the top

two quintiles. For L̂ = 5 the difference is 4.97 (AS of unconstrained investors is 13.74 and of

constrained investors is 8.78). We also consider the value L̂ = 4, under which the difference is 6.23

(AS of unconstrained investors is 14.77 and of constrained investors is 8.55).

The left panel of Figure 2 plots the price of an asset n as a function of the asset’s dividend

flow Dnt. The thick lines represent the price when there is a constraint (L̂ ∈ (0,∞)). The thin

lines represent the price in the two polar cases where there is no constraint (L̂ = ∞) and where

the constraint is infinitely tight (L̂ = 0), with the price in the latter case corresponding to the

more extreme values. In all three cases, the dashed gray line is drawn for the asset n with θn = 0.6

(highest noise-trader demand), and the solid black line is drawn for the asset n with θn = 1.4 (lowest
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Figure 2: Effect of AS-based constraint on prices and portfolio weights.

noise-trader demand). The area between the price in the two polar cases is shaded. Consistent

with Theorem 4.1, the gray lines lie above the black lines, and the thick lines lie inside the shaded

area.

The left panel of Figure 2 shows additionally that noise-trader demand has larger effects on

prices when it is high (θn = 0.6) than when it is low (θn = 1.4). Moreover, the asymmetry is more

pronounced when the constraint is tighter. We return to the asymmetry in subsequent sections.

The middle panel of Figure 2 plots the portfolio weight of the asset n with θn = 0.6 as function

of the asset’s dividend flow Dnt. The dotted line represents the asset’s benchmark weight. The

solid and dashed-dotted lines represent the weight in a constrained and an unconstrained investor’s

portfolio, respectively. The dashed line represents the weight in a constrained investor’s portfolio

when he does not trade away from his Dnt = 0 position when Dnt increases. That weight almost

coincides with its counterpart no-trade weight for an unconstrained investor (not plotted). When

Dnt increases within the constrained region, constrained investors buy asset n from unconstrained

investors: the difference between the solid and the dashed line (shaded area) increases, and so does

the difference between the dashed and the dashed-dotted line. The right panel of Figure 2 plots

the counterpart portfolio weights of the asset n with θn = 1.4. When Dnt increases within the

constrained region for that asset, constrained investors sell the asset to unconstrained investors.

A key implication of the portfolio weight panels is that constrained investors hold larger positions

than unconstrained investors in overvalued assets, and smaller positions in undervalued assets.
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4.4 Risk-Return Inversion

In the polar cases L̂ = ∞ and L̂ = 0, the volatility of an asset’s return is the same and is independent

of the asset’s supply θn. For intermediate values of L̂ in (0,∞), volatility differs from the polar

cases and depends on supply. When θn < ηn, volatility is higher than in the polar cases. This

is because of the amplification effect, which generates the price convexity in Theorem 4.1. When

instead θn > ηn, volatility is lower than in the polar cases. This is because of the dampening effect,

which generates the price concavity. Hence, volatility is higher for an asset n with θn < ηn than

for an asset n′ with θn′ > ηn′ and identical other characteristics.

Proposition 4.3. Consider assets (n, n′) with θn < ηn and θn′ > ηn′, and identical other charac-

teristics. If their prices have the properties in Theorem 4.1, then:

� Asset n has higher conditional volatility
√
Vart(dRnt) and unconditional volatility

√
Var(dRnt)

than asset n′.

� The conditional and unconditional volatilities of asset n are higher than their counterparts

for L = ∞ and L = 0, while those of asset n′ are lower.

Proposition 4.3 implies a negative cross-sectional relationship between volatility and expected

return. For asset n with θn < ηn, expected return is low, so that investors are induced to hold

small positions, and volatility is high. For asset n′ with θn′ > ηn′ instead, expected return is

high, so that investors are induced to hold large positions, and volatility is low. High volatility goes

together with overvaluation (low expected return) because they are both driven by high noise-trader

demand. Indeed, to accommodate the high demand, investors underweight asset n relative to the

benchmark position ηn. When the market goes up, the constraint forces them to underweight less,

and hence to buy the asset. This yields amplification and high volatility.

A negative cross-sectional relationship between volatility and expected return has been docu-

mented empirically, and is known as the volatility anomaly because it is at odds with standard

theories. Haugen and Baker (1996) and Ang, Hodrick, Xing, and Zhang (2006) document the

volatility anomaly in the cross-section of U.S. stocks.

Figure 3 illustrates risk-return inversion in the calibrated example. The left and middle panels

plot the unconditional average of the price and of return volatility, respectively, as functions of L̂.

In both panels, the dashed gray line is drawn for the asset n with θn = 0.6 (highest noise-trader

demand), and the solid black line is drawn for the asset n′ with θn′ = 1.4 (lowest noise-trader

demand). Consistent with Propositions 4.1 and 4.2, the difference between the prices of the two

assets increases when the constraint tightens (L̂ decreases). Consistent with Proposition 4.3, the
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Figure 3: Risk-return inversion.

difference between the assets’ return volatilities is largest for intermediate values of L̂. When L̂ is

below 0.5 or above 10, the volatility difference does not exceed one, and both volatilities are close

to 20. When instead L̂ lies between 2.5 and 4.5, the volatility difference exceeds four. The increase

is driven primarily by the amplification effect for the asset in high noise-trader demand (θn = 0.6).

Its volatility rises to above 23, while the volatility of the asset in low demand drops to about 19.

The right panel of Figure 3 plots unconditional expected return as function of return volatility

for L̂ = 5. The triangles correspond to the assets with θn < η = 1, the circles to the assets with

θn > η = 1, and the square to the assets with θn = η = 1. Consistent with Proposition 4.3,

variation driven by θn generates a negative relationship between volatility and expected return.

An additional measure of risk that we can relate to expected return is CAPM beta. The CAPM

predicts a positive relationship between beta and expected return. Empirically, however, a flat

or negative relationship has been documented, and is known as the beta anomaly. Black (1972),

Black, Jensen, and Scholes (1972), and Frazzini and Pedersen (2014) document a flat relationship

in the cross-section of U.S. stocks. Baker, Bradley, and Wurgler (2011) find that the relationship

turns negative in recent decades. Asness, Frazzini, and Pedersen (2014) find that the beta anomaly

holds across industry sectors as well as within sectors.

Our model generates a negative cross-sectional relationship between beta and expected return.

This is because with independent dividend flows, an asset’s beta is proportional to the asset’s return

variance times the asset’s weight in the market portfolio. An asset n with θn < ηn has higher beta

than an asset n′ with θn′ > ηn′ = ηn because it has both higher return volatility (Proposition

4.3) and higher market-portfolio weight due to its higher price (Theorem 4.1). In the calibrated

example, the beta of the asset n with θn = 0.6 (highest noise-trader demand) exceeds that of the
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asset n′ with θn′ = 1.4 (lowest noise-trader demand) by 0.65 when L̂ = 4 and by 0.56 when L̂ = 5.

Proposition 4.4. Consider assets (n, n′) with θn < ηn = ηn′ < θn′ and identical other character-

istics. If their prices have the properties in Theorem 4.1, then asset n has higher conditional and

unconditional CAPM beta than asset n′.

In addition to generating volatility and beta anomaly patterns, our model makes two predictions

about these anomalies, both of which are borne out in the data. The first is that investors whose

deviations from indices are constrained more tightly give larger weight to high-volatility and high-

beta assets than less-constrained investors. This prediction is consistent with the empirical finding

in Christoffersen and Simutin (2017, CS) that mutual-fund managers who manage pension-fund

assets, and hence are evaluated more tightly relative to benchmarks, hold a larger fraction of their

portfolios in high-beta stocks. CS also find that these managers achieve lower CAPM alphas,

consistent with our model.

The second prediction is that the profitability of the volatility and beta anomalies derives

primarily from the overvalued assets. For example, in the right panel of Figure 3, the expected

return of the highest-volatility assets lies at a larger distance below the median than the expected

return of the lowest-volatility assets lies above. This reflects the asymmetric effects of noise-trader

demand: larger effects when demand is high than when it is low. The asymmetry is consistent with

the empirical finding in Stambaugh, Yu, and Yuan (2012) that the profitability of anomalies comes

primarily from the stocks that are sold short. It is also consistent with the finding in Stambaugh,

Yu, and Yuan (2015) that the cross-sectional relationship between volatility and expected return

is negative for overvalued stocks and positive for undervalued stocks. Indeed, the negative cross-

sectional relationship driven by θn dominates the standard positive relationship, driven in our model

by the dividend volatility coefficient σn, when noise-trader demand has large effects, which is when

it is high.

A third prediction can be derived from an extension of our model in which constrained investors

can only trade gradually to meet their constraint, consistent with the evidence in Section 2. As-

suming that gradual future trading is not fully reflected into current prices (as, e.g., in the rational

theory of momentum in Vayanos and Woolley (2013)), procyclical buying for overvalued, under-

weighted assets would generate return momentum. This is consistent with the empirical finding in

Favilukis and Zhang (2021) that the momentum anomaly is more profitable within the set of over-

valued (low alpha) stocks. It is also consistent with the finding in Lou, Polk, and Skouras (2019,

LPS) (Table 8, Panel C) that momentum in intraday returns is more profitable for stocks that

mutual funds underweight. Indeed, according to LPS, intraday returns are driven by institutional
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trading to a larger extent than overnight returns.

4.5 Overvaluation Bias

Since noise-trader demand has asymmetric effects on prices, it does not cancel out when aggregating

assets into portfolios, but it introduces an overvaluation bias. To show overvaluation bias, we

assume that the asset market consists of segments and each segment consists of two sub-segments.

We identify the assets in our model with the sub-segments, and assume that noise-trader demand

differs across them. Propositions 4.1 and 4.2 imply that in the polar cases L̂ = ∞ and L̂ = 0, the

price is a convex function of θn. Hence, a segment in which θn varies across sub-segments trades

at a higher price than a segment with lower such variation and same average θn.

Proposition 4.5. Suppose L̂ = ∞ or L̂ = 0, and θn > xηn− (1−x)(r+κn)2

4ρσ2
n

for all n = 1, .., N . For a

segment consisting of assets (n, n′) and a segment consisting of assets (n̂, n̂′) with θn < θn̂ ≤ θn̂′ <

θn′,
θn+θn′

2 =
θn̂+θn̂′

2 ≡ θ̄, ηn = ηn′ = ηn̂ = ηn̂′ ≡ η and other characteristics being identical across

assets,

O(Dt) ≡ [Sn(Dt) + Sn′(Dt)]− [Sn̂(Dt) + Sn̂′(Dt)] > 0. (4.15)

Moreover, O(Dt) is larger when L̂ = 0 than when L̂ = ∞ under the sufficient condition θ̄ ≤ η.

Proposition 4.5 implies a negative relationship between the variability of noise-trader demand,

or equivalently of expected returns, within a segment, and the segment’s own expected return. The

negative relationship arises because the price sensitivity S′
n(Dnt) to the dividend flow Dnt decreases

in θn (Proposition 4.1). When θn is large, volatility per share is low because price sensitivity is

low. Hence, an increase in the number of shares θn causes a small price drop. When instead θn

is small, volatility per share is high, and hence an equal decrease in θn causes a large price rise.

Averaging across the two cases, a segment with more extreme values of θn trades at a higher price

than a segment with less extreme values.

Proposition 4.5 shows additionally that the negative relationship between within-segment vari-

ability of noise-trader demand and segment expected return strengthens when the constraint tight-

ens (from L̂ = ∞ to L̂ = 0). This is because the constraint prevents constrained investors from

absorbing noise-trader demand, increasing the demand’s effective variability.

Figure 4 illustrates overvaluation bias in the calibrated example. We group the ten assets

into the five segments (0.6, 1.4), (0.7, 1.3), (0.8, 1.2), (0.9, 1.1) and (1, 1). The left panel plots the

unconditional averages of the prices of the two extreme segments as functions of L̂: the segment
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Figure 4: Overvaluation bias.

with (θn, θn′) = (0.6, 1.4), represented by the thick line, and the segment with (θn̂, θn̂′) = (1, 1),

represented by the thin line. Consistent with Proposition 4.5, the former segment trades at a higher

price, and the price difference increases when L̂ decreases. Since the price of the latter segment

does not depend on L̂ (the constraint does not bind for assets (n̂, n̂′) because θn̂ = θn̂′ = η = 1),

the price of the former segment increases when L̂ decreases. This reflects the asymmetry shown in

Figures 2 and 3: the constraint raises the price of the asset with θn = 0.6 more than it lowers the

price of the asset with θn′ = 1.4.

The middle and right panels of Figure 4 plot expected return at the segment level as function

of the dispersion in expected returns within the segment. The middle panel is drawn for L̂ = 5,

and the right panel for L̂ = 4. Both panels show a negative relationship between within-segment

dispersion in expected returns and segment expected return. The slope of the relationship is steeper

(more negative) when L̂ = 4, consistent with the comparison that Proposition 4.5 derives between

L̂ = ∞ and L̂ = 0.

5 Equilibrium with Endogenous Constraint

5.1 Information and Contracts

In this section we endogenize the parameters of the constraint within a static contracting model,

which we next embed into our dynamic equilibrium model. We sketch the contracting model briefly

here and develop it more fully in Appendix A. An investor can invest in multiple independent risky

assets through a fund run by a manager. Contracting between the investor and the manager
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takes place in period 0, information is observed and assets are traded in period 1, and assets

pay off in period 2. The manager is either skilled or unskilled. A skilled manager observes an

informative signal about the payoff distribution of each asset. An unskilled manager observes an

uninformative signal that she wrongly treats as informative. The probability that the manager is

unskilled is λ ∈ [0, 1). The uninformative signal makes the unskilled manager excessively optimistic

or excessively pessimistic, with equal probabilities. The investor allocates wealth Wz to the fund

in period 0. The manager can invest Wz in the risky assets and possibly also in the riskless asset.

The contract between the investor and the manager consists of a fee and an investment re-

striction. The fee can be any non-negative and increasing function f(Wz2) of the investor’s wealth

Wz2 held by the fund in period 2. The investment restriction requires that the distance between

the fund’s portfolio weight in each risky asset and the asset’s weight in a benchmark index lies

in a closed set L. The investor chooses his wealth Wz allocated to the fund, and the contract

parameters (f(Wz2),L), to maximize his expected utility. He is subject to the manager’s incentive-

compatibility constraint, whereby the manager chooses positions in the risky assets to maximize

her expected utility derived from the fee.

Proposition A.1 characterizes the solution to the investor’s optimization problem. The optimal

set L has the form [0, L̂] with L̂ > 0. Hence, the investor allows portfolio weights in the fund

to differ from index weights as long as the distance does not exceed a positive bound L̂. The

position chosen by the skilled manager in each asset is the optimal position given the investor’s risk

preferences if the resulting distance in portfolio weights is smaller than L̂. Otherwise, the position

is the maximum or the minimum allowed by the constraint. The unskilled manager chooses the

maximum or the minimum position.

Intuitively, the optimal fee f(Wz2) aligns the manager’s risk preferences with the investor’s.

Absent the constraint, the skilled manager would choose the investor’s optimal position for all real-

izations of her signal, but the unskilled manager would choose extreme positions. The investment

restriction limits extreme positions. This is desirable when the extreme positions are chosen by

the unskilled manager, but undesirable when they are chosen by the skilled manager (observing an

extreme informative signal). An increase in the probability λ that the manager is unskilled results

in a smaller value for the optimal L̂, i.e., a tighter constraint. When λ goes to one, the optimal L̂

goes to zero, i.e., the investor renders the constraint infinitely tight, replicating passive investing.

The contracting model endogenizes the constraint (3.6) only in a parametric sense, i.e., it yields

optimal values for the parameters (W2z, L̂). The general form of the constraint, as a function of

the distance in portfolio weights asset-by-asset, remains exogenous. Nevertheless, the exercise has

two advantages. First, by deriving the parameters (W2z, L̂) in the constraint as a function of more

primitive parameters, such as the probability λ that the manager is unskilled, we can map our asset
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pricing analysis to these primitives. Second, the exercise resolves the tension in Section 4 that a

constrained investor optimizes over positions but constrains himself over that choice. Under the

contracting model, the skilled manager chooses the position that is optimal for the investor because

the optimal fee aligns her risk preferences with the investor’s. Moreover, the constraint exists to

guard against the unskilled manager.

We next embed the static contracting model into our dynamic equilibrium model. As in our

calibrated example, we set the number of shares η̂n of each risky asset n in the benchmark index

to one (a normalization), and assume that assets differ in their supply θn but not in their other

characteristics (κn, D̄n, σn). We denote the latter characteristics by (κ, D̄, σ). We assume that

unconstrained investors can invest in the risky assets directly, and observe (θn, Dnt) for all n.

By contrast, constrained investors do not observe (θn, Dnt) and can invest through a fund. As

in the static contracting problem, they choose their wealth Wz allocated to the fund, and the

contract parameters (f(Wz2),L), to maximize their expected utility. They compute expected utility

using the cross-sectional distribution for θn and the unconditional time-series distribution for Dnt.

Since they do not observe (θn, Dnt), their optimal values for (Wz, f(Wz2),L) do not depend on

(θn, Dnt). Fund managers can be skilled or unskilled. Skilled managers observe (θn, Dnt) for all n.

The parameters (Wz, L̂) determine the parameters (ηn, L) in the constraint, as in Section 3. The

benchmark position ηn is the same across assets, since η̂n is, and we denote it by η.

Implicit in our formulation is that constrained investors do not contract dynamically and do not

learn over time. These assumptions can be imposed as restrictions on infinitely lived investors, or

can follow more directly by interpreting investors as overlapping generations living over infinitesimal

periods.

5.2 Equilibrium

Solving for equilibrium involves a fixed-point problem: asset prices must clear the market given the

constraint, and the parameters (η, L) in the constraint must be optimal given equilibrium prices.

The determination of equilibrium prices given the constraint is as in Section 4. The only change is

that constrained investors whose manager turns out to be unskilled do not invest optimally subject

to the constraint. Half of them employ a manager who is excessively optimistic about asset n

and invests the maximum value of z2nt that meets the constraint. The remaining half employ a

manager who is excessively pessimistic and invests the minimum value. Since the average of the

maximum and the minimum value is η, and the measure of uninformed investors employing an

unskilled manager is λx, the market-clearing condition (4.3) is replaced by

(1− x)z1nt + (1− λ)xz2nt + λxη = θn. (5.1)
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The definition of the unconstrained and the constrained regions is modified similarly. Since in the

unconstrained region z1nt = z2nt, (5.1) implies z2nt = θn−λxη
1−λx . Substituting into the constraint

(4.10), we find that the unconstrained region is defined by

|θn − η|
1− λx

Gn(Dnt) ≤ L, (5.2)

which replaces (4.11). The ODE system is modified similarly, as shown in the proof of Proposition

5.1. The investment restriction in the static contracting model yields the AS-based constraint

with Gn(Dnt) = Sn(Dnt). Modifying that model so that the investment restriction concerns the

standard deviation of the difference between fund and index return yields the TE-based constraint

with Gn(Dnt) = σ
√
DntS

′
n(Dnt). Under either constraint, the determination of the optimal values

of (η, L) follows in Proposition A.1. Proposition 5.1 characterizes these values.

Proposition 5.1. The optimal values of (η, L) have the following properties:

� When θn is the same across assets, η = θ and L = 0, where θ is the common value of θn.

� When θn differs across assets, η ∈ (θmin, θmax), where θmin is the minimum and θmax is

the maximum value of θn. Moreover, L = ∞ when λ = 0, L ∈ (0,∞) when λ > 0, and

limλ→1 L = 0.

When asset supply θn takes the same value θ for all assets, holding an equal number of shares

of each asset is optimal for an investor. Moreover, the optimal number of shares of each asset is θ:

since investors form a mass-one continuum, θ is the asset supply per investor. Constrained investors

achieve the optimal outcome by requiring the fund to hold the index (L̂ = 0) and allocating to it

wealth Wz such that the number of shares that it holds of each asset is η = θ.

When θn differs across assets, holding an equal number of shares of each asset is not optimal. If

all managers are skilled, then constrained investors achieve the optimal outcome by not restricting

the fund (L̂ = ∞). If instead some managers are unskilled, then constrained investors impose a

restriction (L̂ ∈ (0,∞)). The wealth Wz they allocate to the fund is such that the benchmark

position η is smaller than E(θn). This choice of Wz reflects an optimal response of (rational)

constrained investors to the asymmetric effects of noise-trader demand. To explain the intuition,

suppose for simplicity that constrained investors always require the fund to hold the index (L̂ = 0),

in which case η is the number of shares that the fund holds of each asset. Suppose also that θn

takes the same value θ for all assets, in which case constrained investors set Wz such that η = θ.

Suppose next that noise traders buy some shares of one asset and sell an equal number of shares

of another asset, so that E(θn) remains equal to θ. Because of the asymmetry, the price of the

33



0 20 40 60 80
0.6

0.8

1.0

1.2

1.4

1.6

0 20 40 60 80
19.0

19.5

20.0

20.5

0 20 40 60 80
0

5

10

15

20

25

0.85

0.86

0.87

0.88

0.89

Figure 5: Endogenous constraint.

latter asset rises more than the price of the former asset drops. Constrained investors respond to

the aggregate overvaluation by changing Wz so that the fund holds a smaller number of shares η

of each asset.

The optimal response of constrained investors tempers the asymmetry but does not eliminate

it. This is shown in the left and middle panels of Figure 5, which are the counterparts of the

same panels of Figure 3 for the endogenous constraint. The two panels plot the unconditional

average of the price and of return volatility as functions of the fraction λ of unskilled managers.

Parameter values are as in the calibrated example of Section 4, except that (Wz, L̂) are solutions

to the contracting problem and functions of λ. Noise-trader demand has larger effects on price and

volatility when it is high (θn = 0.6) than when it is low (θn = 1.4). The asymmetry thus remains,

but is weaker than in Figure 5. In particular, the maximum spread in return volatilities, which is

mainly driven by the high-demand asset, drops to 1.82% from 4.49% in Figure 3.

The right panel of Figure 5 plots the optimal values of L̂ (left scale) and η (right scale) as

functions of λ. Consistent with Proposition 5.1, the optimal L̂ becomes large when λ goes to zero,

and decreases to zero when λ goes to one. The optimal η is smaller than E(θ) = 1, and decreases

in λ.

The right panel of Figure 5 shows that for a fraction λ of unskilled managers up to 30%, the

constraint is laxer than implied by the data. When λ = 10%, the bound L̂ in the constraint is 10.1,

and the difference between the AS of unconstrained and of constrained investors is 1.67—smaller

than its empirical counterpart of 3.64 (or 9.00 when identifying unconstrained investors with the

funds in the top AS quintile). When λ rises to 20%, L̂ drops to 7.4, and the AS difference rises

to 2.62. It takes λ to rise all the way to 40% for L̂ to drop to 5, as in the calibrated example of
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Section 4. For that value of λ, the AS difference becomes 4.12.

When the constraint is specified in TE rather than AS terms, its data-implied tightness is

consistent with values of λ smaller than 30%. For example, when λ = 20%, the AS difference

is 4.05.11 Nevertheless, the fraction of unskilled managers that it takes to generate a constraint

of the observed tightness remains significant. One interpretation of this result is that constraints

incorporate not only an explicit bound that investors impose on managers, but also a bound that

managers impose on themselves to limit their reputational risk from underperforming the index.

5.3 Effective Capital

We finally use our model to compute effective capital. According to the market-efficiency view,

noise-trader induced distortions should be small because institutions such as mutual funds and

pension funds can deploy large pools of capital to trade against them. According to the limits-

of-arbitrage view, that capital can be ineffective because agency problems between the managers

in these institutions and the investors who own the capital limit the managers’ ability to take

risk. Our model can inform the debate between the two views because it determines how agency-

induced constraints on asset managers affect equilibrium asset prices. Suppose that a given amount

of capital is invested with constrained asset managers. What is the equivalent amount of capital,

which if managed without constraints would result in the same price distortions?

To compute effective capital, we assume that a subset of constrained investors with measure

y < x can invest with skilled managers, to whom they (optimally) impose no constraints, and the

remaining subset, with measure x − y, invests in the index. We determine the value of y such

that price distortions are the same as when all constrained investors can invest with managers of

unknown skill, to whom they impose constraints. We refer to y as effective capital, and express it

as a fraction of x, to which we refer as total capital. We measure price distortions by the average

difference between the price of assets in high noise-trader demand and the price of assets in low

demand.

We compute y
x within our calibrated example under both the AS-based and the TE-based

constraint. Under either constraint, we consider two values of λ: one that generates a difference

between the AS of unconstrained and of constrained investors of 4, and one that generates a

difference of 6. The implied value of λ is sensitive to the specification of the constraint, but

11The AS- and TE-based specifications differ in the relationship between λ and the optimal L̂ because of the
dependence of conditional return volatility on the dividend flow. Since the volatility of dividend per share Dnt goes
to zero when Dnt goes to zero, and the price Snt does not go to zero, return volatility goes to zero. With low return
volatility in the unconstrained region, the cost to investors of a large investment by unskilled managers is small, and
investors can afford to raise L̂. This effect is absent under the TE-based constraint, as that constraint is specified in
volatility terms and thus becomes laxer when volatility drops.
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Table 4: Effective Capital

∆AS = 4 ∆AS = 6

AS-Based TE-Based AS-Based TE-Based

Fraction of unskilled managers λ, % 38.4 19.6 55.8 37.0

Constraint bound L̂, % 5.2 1.6 3.8 1.1

Effective to total capital y
x , % 42.6 52.0 23.2 28.4

Note.—Effective to total capital y
x as function of the type and severity of the constraint.

effective capital, shown in Table 4, is less so. For an AS difference of 4, effective capital is around

50% of total capital. For an AS difference of 6, effective capital drops to around 25%.

6 Conclusion

We argue that asset management should be viewed as a continuum between active and passive

rather than as two polar extremes. Active managers are not required to hold benchmark indices.

Yet, they are often required to maintain their deviations from indices within bounds. These bounds

differ significantly across funds, and can be viewed as a characteristic of each fund.

We provide new empirical evidence supporting the “continuum view,” and interpret findings in

the literature in that light. We also explore theoretically the implications of the continuum view

for equilibrium asset prices and market efficiency. We show that constrained asset managers buy

underweighted assets procyclically, and this generates a positive association between overvaluation

and high volatility. We also show that overvaluation is harder to correct than undervaluation, even

in the absence of short-sale costs. These mechanisms have attracted policy attention because of

their links with asset bubbles.12

Our research can be extended in a number of directions. One direction is to explore the optimal

design of benchmark indices—which we show matter not only for passive funds but also for active

funds.13 For example, should asset managers be required to remain close to an index portfolio or to

an average portfolio of other managers? A related and broader direction is to explore the optimal

12For example, a 2003 report by the Committee on the Global Financial System (BIS (2003)) report notes: “Overval-
ued assets/stocks tend to find their way into major indices, which are generally capitalization-weighted and therefore
will more likely include overvalued securities than undervalued securities. Asset managers may therefore need to buy
these assets even if they regard them as overvalued; otherwise they risk violating agreed tracking errors.” (p.19). In
a similar spirit, a 2015 IMF working paper (Jones (2015)) notes: “Another source of friction capable of amplifying
bubbles stems from the ‘captive buying’ of securities in momentum-biased market capitalization-weighted financial
benchmarks. Underlying constituents that rise most in price will see their benchmark weights increase irrespective
of fundamentals, inducing additional purchases from fund managers seeking to minimize benchmark tracking error.”

13Recent evidence that benchmarks matter for active funds is in Pavlova and Sikorkaya (2022), who examine active
funds’ trading around dates when benchmark composition changes.
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design of asset manager contracts and constraints. Linking the contracts to equilibrium asset prices,

as we do in this paper, raises welfare questions as well. Would a social planner internalizing the

links between contracts and prices employ the same contracts as private investors?14

An additional extension is to introduce dynamic contracts and reputational concerns. Our

calibrated example suggests that constraints may partly reflect managers’ concern to limit their

reputational risk from underperforming their benchmark index. A number of papers show that

reputational concerns of asset managers generate herding and a preference for negative skewness.15

The links between reputational concerns and the asset pricing effects that we derive in this paper,

such as risk-return inversion, could be explored.

14Kashyap, Kovrijnykh, Li, and Pavlova (2021b) compare privately and socially optimal contracts in a two-period
model of asset management.

15See, for example, Froot, Scharftstein, and Stein (1992), Dasgupta and Prat (2008), Dasgupta, Prat, and Verardo
(2011), and Guerrieri and Kondor (2012).
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Appendix

A Endogenous Constraint

There are three periods, 0, 1 and 2. In period 0, contracts are written. In period 1, information is

observed and assets are traded. In period 2, assets pay off. There is one riskless asset and N risky

assets. The riskless asset has return r. Risky asset n = 1, .., N trades at price Sn per share and

has return Rn in excess of the riskless asset.

An investor has wealth W . In period 0, he allocates W −Wz to the riskless asset and Wz ≥ 0

to a fund run by a manager. The manager can invest Wz in the risky assets and possibly also in

the riskless asset. The investor has prior distribution Π0 on {(Sn, Rn)}n=1,..,N in period 0. Under

Π0, the pair (Sn, Rn) is independent across assets. We denote expectations under Π0 by E0.

The manager is either skilled or unskilled. A skilled manager observes informative signals

{sn}n=1,..,N about asset returns {Rn}n=1,..,N . An unskilled manager observes uninformative signals

about returns but she wrongly treats them as informative.16 Signals are independent across assets.

Both the skilled and the unskilled manager observe prices {Sn}n=1,..,N . Signals and prices are

observed in period 1. The posterior distribution that a skilled manager has on Rn after observing

signal sn is Πn(sn). The posterior distribution Πn that an unskilled manager has on Rn is either an

optimistic one ΠO
n or a pessimistic one ΠP

n , with the two outcomes equally likely. The probability

that the manager is unskilled is λ ∈ [0, 1). The investor and the manager have negative exponential

utility over consumption in period 2, with coefficient of absolute risk aversion equal to ρ for the

investor and ρ̄ for the manager.

The signal sn that a skilled manager observes about Rn is continuous, and yields a posterior

distribution Πn(sn) that gives positive probability to positive and to negative values of Rn. As a

consequence, the position z∗n(sn) that maximizes the investor’s expected utility conditional on sn

is finite. We take the range of z∗n(sn) to be the real line. The unskilled manager gives positive

probability only to positive values of Rn under the optimistic posterior distribution ΠO
n , and only to

negative values under the pessimistic distribution ΠP
n . Thus, the unskilled manager either believes

that each asset n either has no downside or has no upside.

If the investor allocates wealth Wz > 0 to the fund in period 0, then he offers the manager a

contract. If the manager accepts the contract, then she observes prices and her private signals about

returns in period 1, and chooses a portfolio for the investor. The portfolio consists of {zn}n=1,..,N

shares in the risky assets and Wz −
∑N

n=1 znSn dollars in the riskless asset. The investor’s wealth

16See Vayanos (2018) for a related model in which the unskilled manager is rational, and takes extreme positions
despite observing uninformative signals because she is less risk-averse than the skilled manager.
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held by the fund in period 2 is Wz2 = Wz(1 + r) +
∑N

n=1 znSnRn.

The contract consists of a fee, which depends on the investor’s wealth Wz2 held by the fund

in period 2, and of an investment restriction. The fee can be a general function f(Wz2), subject

to a non-negativity and a monotonicity constraint. The non-negativity constraint is f(Wz2) ≥ 0,

and arises because the manager has limited liability. The monotonicity constraint is that f(Wz2) is

increasing, and could arise from moral hazard in period 2. Indeed, a decreasing fee could incentivize

the manager to engage in wasteful activities that reduceWz2 so to increase her fee. A non-decreasing

fee could also incentivize such activities if they yield an infinitesimally small private benefit to the

manager. An additional reason to assume an increasing fee is to rule out the implausible outcome

that the investor can induce the manager to choose any positions {zn}n=1,..,N just by offering her a

constant fee and exploiting her indifference. To ensure that an optimal fee exists, we formulate the

monotonicity constraint as a weak rather than a strict inequality: f ′(Wz2) ≥ ϵg′(Wz2) > 0 where

ϵ is a positive constant and g(Wz2) is an increasing and bounded function defined over (−∞,∞).

We derive the optimal fee for each ϵ, and take the limit when ϵ goes to zero.

The investment restriction concerns the positions {zn}n=1,..,N chosen by the manager in period

1. We assume that the investor observes the distance

∣∣∣∣ znSn
Wz

− η̂nSn∑N
n′=1 η̂n′Sn′

∣∣∣∣ between the portfolio

weight znSn
Wz

of each risky asset n in the fund, and the asset’s weight η̂nSn∑N
n′=1 η̂n′Sn′

in a benchmark

index that includes η̂n shares of asset n. The investor restricts that distance to lie in a closed set

L, same for all assets. To ensure that the investor allocates positive wealth in the fund, we assume

that the index earns non-negative unconditional expected return in excess of the riskless asset, i.e.,

E0

(∑N
n=1 η̂nSnRn∑N
n=1 η̂nSn

)
≥ 0.

The investor chooses in period 0 wealth Wz ≥ 0 allocated to the fund, as well as contract

parameters (f(Wz2),L) if Wz > 0, to maximize his expected utility. He is subject to the manager’s

incentive-compatibility constraint, whereby the manager chooses positions in the risky assets to

maximize her expected utility derived from the fee. He must also ensure that the fee satisfies

non-negativity and monotonicity. Non-negativity ensures that the manager’s individual rationality

constraint is satisfied.

Since the constraint

∣∣∣∣ znSn
Wz

− η̂nSn∑N
n′=1 η̂n′Sn′

∣∣∣∣ ∈ L implies zn = 0 when Wz = 0, we can nest the case

Wz = 0 within the case Wz > 0 when solving the investor’s maximization problem. That is, we can

assume that even when the investor allocates wealth Wz = 0 to the fund, he offers the manager a

contract. Under that contract, positions zn are zero, and so is the manager’s fee f(Wz2) (for the

only possible value Wz2 = 0).

Our contracting model is in the spirit of the literature on optimal delegation (e.g., Alonso and

Matouschek (2008), Amador and Bagwell (2013)). A key result in that literature is that instead
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of taking an action based on information sent by the agent, the principal can equivalently let the

agent take the action within a restricted delegation set. The delegation literature generally precludes

monetary transfers between the principal and the agent. We allow monetary transfers, but in the

spirit of the delegation literature, restrict the fee function f(Wz2) to not depend on information

sent by the agent. We also restrict the delegation set L to depend only on some statistics of the

agent’s action. That restriction could be arising from investors’ limited ability to observe or process

information.

Proposition A.1 shows that in the limit when ϵ goes to zero, the investor allocates wealth

Wz > 0 to the fund and chooses a delegation set L of the form [0, L̂] with L̂ > 0. The propo-

sition also characterizes the optimal values of (Wz, L̂) and the optimal fee f(Wz2). We denote

by z̄n and
¯
zn, respectively, the maximum and minimum value of zn that meet the constraint∣∣∣∣ znSn

Wz
− η̂nSn∑N

n′=1 η̂n′Sn′

∣∣∣∣ ≤ L̂.

Proposition A.1. In the limit when ϵ goes to zero:

� The investor allocates wealth Wz > 0 to the fund.

� The optimal delegation set L has the form [0, L̂], with L̂ > 0.

� The position zGn(sn) in asset n chosen by the skilled manager is z̄n when z∗n(sn) > z̄n,
¯
zn

when z∗n(sn) < ¯
zn, and z∗n(sn) otherwise.

� The position zBn in asset n chosen by the unskilled manager is z̄n when her posterior is ΠO
n ,

and
¯
zn when her posterior is ΠP

n .

� The optimal values of (Wz, L̂) solve

max
(Wz ,L̂)∈[0,∞)2

E0

[
−(1− λ)e−ρ(W (1+r)+

∑N
n=1 zGn(sn)SnRn) − λe−ρ(W (1+r)+

∑N
n=1 zBnSnRn)

]
.

(A.1)

� The optimal fee f(Wz2) converges to zero for all Wz2.

B Proofs

Proof of Proposition 4.1. Substituting the affine price function (4.5) into the ODE (4.4), we

find

Dnt + κn(D̄n −Dnt)an1 − r(an0 + an1Dnt) = ρθnσ
2
nDnta

2
n1. (B.1)
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Equation (B.1) is affine in Dnt. Identifying the terms that are linear in Dnt yields the equation

ρθnσ
2
na

2
n1 + (r + κn)an1 − 1 = 0. (B.2)

Equation (B.2) is quadratic in an1. When θn > 0, the left-hand side is increasing for positive values

of an1, and (B.2) has a unique positive solution, given by (4.7). When θn < 0, the left-hand side is

hump-shaped for positive values of an1, and (B.2) has either two positive solutions, or one positive

solution, or no solution. Condition θn > − (r+κn)2

4ρσ2
n

ensures that two positive solutions exist when

θn < 0. Equation (4.7) gives the smaller of the two solutions, which is the continuous extension of

the unique positive solution when θn > 0. Identifying the constant terms yields the equation

κnD̄nan1 − ran0 = 0,

whose solution is (4.6).

To show that Sn(Dnt) and S′
n(Dnt) are decreasing and convex in θn, we note that an1 takes the

form

Ψ(θn) ≡
1

A+
√
B + Cθn

for positive constants (A,B,C). The function Ψ(θn) is decreasing. It is also convex because its

derivative

Ψ′(θn) = − C

2
√
B + Cθn

1(
A+

√
B + Cθn

)2
is increasing. Hence, an1 is decreasing and convex in θn. These properties extend to an0 from (4.6),

and to S′(Dnt) = an1 and S(Dnt) = an0 + an1Dnt.

Proof of Corollary 4.1. Substituting the price from (4.5) into (4.1), we find that the share return

of asset n is

dRsh
nt =

[
Dnt + κn(D̄n −Dnt)an1 − r(an0 + an1Dnt)

]
dt+ σn

√
Dntan1dBnt

= ρθnσ
2
nDnta

2
n1dt+ σn

√
Dntan1dBnt, (B.3)

where the second step follows from (B.1). Substituting the share return from (B.3) and the price
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from (4.5) into (3.2), we find that the (dollar) return of asset n is

dRnt =
ρθnσ

2
nDnta

2
n1dt+ σn

√
Dntan1dBnt

an0 + an1Dnt

=
ρθnσ

2
nDntan1dt+ σn

√
DntdBnt

κn
r D̄n +Dnt

=

2ρθnσ2
nDntdt

r+κn+
√

(r+κn)2+4ρθnσ2
n

+ σn
√
DntdBnt

κn
r D̄n +Dnt

, (B.4)

where the second step follows from (4.6) and the third step follows from (4.7).

The conditional expected return is the drift coefficient in (B.4) times dt,

Et(dRnt) =
2ρθnσ

2
nDntdt(

r + κn +
√
(r + κn)2 + 4ρθnσ2

n

) (
κn
r D̄n +Dnt

) .
It takes the form Φ(θn)

2ρσ2
nDntdt

κn
r
D̄n+Dnt

, where

Φ(θn) ≡
θn

A+
√
B + Cθn

for positive constants (A,B,C). The function Φ(θn) is increasing, and hence the conditional ex-

pected return is increasing in θn. (The derivative of Φ(θn) has the same sign as

A+
√

B + Cθn − C

2
√
B + Cθn

θn = A+
1√

B + Cθn

(
B +

Cθn
2

)
.

This expression is positive for B+Cθn > 0, a condition which is required for the term in the square

root to be positive.) The unconditional expected return is the unconditional expectation of the

conditional expected return,

E(dRnt) = E (Et(dRnt)) ,

because of the law of iterative expectations. Since Et(dRnt) is increasing in θn for any given Dnt,

E(dRnt) is increasing in θn.

The return’s conditional volatility is the diffusion coefficient in (B.4) times
√
dt,

√
Vart(dRnt) =

σ
√
Dntdt

κn
r D̄n +Dnt

. (B.5)

It is independent of θn. The return’s unconditional variance is the unconditional expectation of the
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return’s conditional variance,

Var(dRnt) = E (Vart(dRnt)) . (B.6)

Since Vart(dRnt) is independent of θ for any given Dnt, Var(dRnt) is independent of θ, and so is

the return’s unconditional volatility
√

Var(dRnt). Equation (B.6) is implied by the law of total

variance

Var(dRnt) = E (Vart(dRnt)) + Var (Et(dRnt)) (B.7)

and because in continuous time the second term in the right-hand side of (B.7) is negligible relative

to the first: the second term is of order dt2 while the first is of order dt.

Proof of Proposition 4.2. Since the ODE (4.8) is identical to (4.4) except that θn is replaced

by θn−xηn
1−x , (4.9) can be derived from (4.7) with the same substitution. The comparisons with the

case L̂ = ∞ follow because the function Ψ(θn) defined in the proof of Proposition 4.1 is decreasing.

Since θn−xηn
1−x > θn when θn > ηn, (4.7) and (4.9) imply that an1 is smaller in the case L̂ = 0 than

in the case L̂ = ∞. Conversely, since θn−xηn
1−x < θn when θn < ηn, (4.7) and (4.9) imply that an1

is larger in the case L̂ = 0 than in the case L̂ = ∞. These comparisons of an1 extend to an0,

S′(Dnt) = an1 and Sn(Dnt) = an0 + an1Dnt.

Proof of Corollary 4.2. The price in the case L̂ = 0 can be derived from the price in the case

L̂ = ∞ by replacing θn by θn−xηn
1−x . Since the conditional and unconditional volatility in the case

L̂ = ∞ are independent of θn (Corollary 4.2), they are also independent of θn in the case L̂ = 0,

and they are equal across the two cases.

Proof of Theorem 4.1. The proof of Theorem 4.1 is in Online Appendix E. The existence part of

the proof is along similar lines as in Kondor and Vayanos (2019). We start with a compact interval

[ϵ,M ] ⊂ (0,∞) and show that there exists a unique solution to the ODEs with one boundary

condition at ϵ and one at M . The boundary conditions are derived from the limits of S′(Dt) at

zero and infinity. In the case of M , for example, the requirement that S′(Dt) has a finite limit at

infinity determines that limit uniquely, and we set S′(M) equal to that value. To construct the

solution over [ϵ,M ], we use S′(M) and an arbitrary value for S′′(M) as initial conditions for the

ODEs at M , and show that there exists a unique S′′(M) such that the boundary condition at ϵ is

satisfied. Showing uniqueness uses continuity of solutions with respect to the initial conditions, as

well as a monotonicity property with respect to the initial conditions that follows from the structure

of the ODEs. We next show that when ϵ converges to zero and M to infinity, the solution over
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[ϵ,M ] converges to a solution over (0,∞). The monotonicity property of solutions with respect to

the initial conditions is key to the convergence proof because it yields monotonicity of the solution

with respect to ϵ and M .

Proof of Proposition 4.3. Substituting asset n’s share return from (4.1) into (3.2), and setting

Snt = Sn(Dnt), we find that the asset’s dollar return is

dRnt =

[
Dnt + κn(D̄n −Dnt)S

′
n(Dnt) +

1
2σ

2
nDntS

′′
n(Dnt)

]
dt+ σn

√
DntS

′
n(Dnt)dBnt

Sn(Dnt)
−rdt. (B.8)

The conditional volatility of asset n’s return is the diffusion coefficient in (B.8) times
√
dt:

√
Vart(dRnt) =

σn
√
DntS

′
n(Dnt)

√
dt

Sn(Dnt)
. (B.9)

The conditional volatility under the affine solutions derived for L̂ = 0 and L̂ = ∞ is given by (B.5).

Comparing (B.5) and (B.9), we find that the conditional volatility of asset n’s return is higher than

under the affine solutions if

Zn(Dnt) ≡ S′
n(Dnt)(κnD̄n + rDnt)− rSn(Dnt) > 0.

Likewise, the conditional volatility of asset n′’s return is lower than under the affine solutions if

Zn′(Dn′t) ≡ Sn′(Dn′t)(κn′D̄n′ + rDn′t)− rSn′(Dn′t) < 0.

Since S′
n(Dt) converges to a finite limit when Dnt goes to zero, DntS

′′
n(Dnt) converges to zero. Since,

in addition, Gn(Dnt) > L
|θn−ηn| > 0 in the constrained region, (4.4) and (4.13) imply Zn(0) = 0.

Convexity of Sn(Dnt) and Zn(0) = 0 imply Zn(Dnt) > 0, and hence the conditional volatility of asset

n’s return is higher than under the affine solutions. Likewise, concavity of Sn′(Dn′t) and Zn′(0) = 0

imply that the conditional volatility of asset n′’s return is lower than under the affine solutions. The

comparison of conditional volatility across assets n and n′ follows from the comparison of each case

with the affine solutions since volatility under the affine solutions is the same for the two assets.

Since the return’s unconditional variance is the unconditional expectation of the return’s con-

ditional variance, the comparisons derived for conditional volatility carry over to unconditional

volatility.

Proof of Proposition 4.4. The conditional beta of asset n is

βnt =
Covt(dRnt, dRMt)

Vart(dRMt)
, (B.10)
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where dRnt denotes the return of asset n and dRMt denotes the return of the market portfolio.

Assuming that the market portfolio includes ηm shares of asset m = 1, .., N , its return is

dRMt =
dRsh

Mt

SMt
=

∑N
m=1 ηmdRsh

mt∑N
m=1 ηmSmt

=
N∑

m=1

ηmSmt∑N
m=1 ηmSmt

dRmt =
N∑

m=1

ωmtdRmt, (B.11)

where SMt denotes the market portfolio’s price and

ωmt ≡
ηmSmt∑N

m=1 ηmSmt

denotes asset m’s weight in the market portfolio. Equation (B.10) implies that the conditional beta

of asset n exceeds that of asset n′ if

Covt(dRnt, dRMt) > Covt(dRn′t, dRMt)

⇔ ωnVart(dRnt) > ωn′Vart(dRn′t)

⇔ ηnSntVart(dRnt) > ηn′Sn′tVart(dRn′t), (B.12)

where the second step follows from (B.11) and the independence of returns across assets.

Suppose next that θn < ηn = ηn′ < θn′ and that other characteristics of assets n and n′ are

identical (κn = κn′ , D̄n = D̄n′ , σn = σn′ and Dnt = Dn′t). Since a1n decreases in θn (Proposition

4.1), the affine solution derived for L̂ = ∞ is larger for θn than for θ′n. Since, in addition, Snt

lies above the affine solution for θn, while Sn′t lies below the affine solution for θ′n, Snt > Sn′t.

Since, finally, Vart(dRnt) > Vart(dRn′t) (Proposition 4.3), (B.12) implies Covt(dRnt, dRMt) >

Covt(dRn′t, dRMt) and hence βnt > βn′t.

The unconditional beta of asset n is

βnt =
Cov(dRnt, dRMt)

Var(dRMt)
=

E (Covt(dRnt, dRMt))

E (Vart(dRMt))
,

Since the conditional covariance of Covt(dRnt, dRMt) is larger for asset n than for asset n′, the

same is true for the unconditional covariance, and hence for the unconditional beta.

Proof of Proposition 4.5. Since (4.6) implies S(Dt) = a1
(
κ
r D̄ +Dt

)
, (4.15) is equivalent to

a1n + a1n′ − (a1n̂ + a1n̂′) > 0. (B.13)

When L̂ = ∞, Proposition 4.1 implies that (B.13) is equivalent to

Ψ(θn) + Ψ(θn′)− [Ψ(θn̂) + Ψ(θn̂′)] > 0, (B.14)
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where the function Ψ(θ) is defined in the proof of Proposition 4.1. Setting ℓ ≡ θ̄− θn = θn′ − θ̄ > 0

and ℓ̂ ≡ θ̄ − θn̂ = θn̂′ − θ̄ ∈ (0, ℓ), we can write (B.14) as

Ψ(θ̄ − ℓ) + Ψ(θ̄ + ℓ)−
[
Ψ(θ̄ − ℓ̂) + Ψ(θ̄ + ℓ̂)

]
> 0∫ ℓ

ℓ̂
Ψ′(θ̄ + x)dx−

∫ ℓ

ℓ̂
Ψ′(θ̄ − x)dx > 0

⇔
∫ ℓ

ℓ̂

(∫ x

−x
Ψ′′(θ̄ + y)dy

)
dx > 0. (B.15)

Equation (B.15) holds because Ψ(θ) is convex. When L̂ = 0, Proposition 4.2 implies that (B.13)

is equivalent to (B.14) with the function Ψ( θ−xη
1−x ) instead of Ψ(θ). Since Ψ( θ−xη

1−x ) is convex, the

modified (B.14) holds.

Propositions 4.1 and 4.2 imply that the comparison between L̂ = ∞ and L̂ = 0 in the corollary

is equivalent to

Ψ

(
θn − xη

1− x

)
+Ψ

(
θn′ − xη

1− x

)
−
[
Ψ

(
θn̂ − xη

1− x

)
+Ψ

(
θn̂′ − xη

1− x

)]
> Ψ(θn) + Ψ(θn′)− [Ψ(θn̂) + Ψ(θn̂′)]

⇔ Ψ

(
θ̄ − xη

1− x
− ℓ

1− x

)
+Ψ

(
θ̄ − xη

1− x
+

ℓ

1− x

)
−

[
Ψ

(
θ̄ − xη

1− x
− ℓ̂

1− x

)
+Ψ

(
θ̄ − xη

1− x
+

ℓ̂

1− x

)]
> Ψ(θ̄ − ℓ) + Ψ(θ̄ + ℓ)−

[
Ψ(θ̄ − ℓ̂) + Ψ(θ̄ + ℓ̂)

]
⇔
∫ ℓ

1−x

ℓ̂
1−x

(∫ x

−x
Ψ′′
(
θ̄ − xη

1− x
+ y

)
dy

)
dx >

∫ ℓ

ℓ̂

(∫ x

−x
Ψ′′(θ̄ + y)dy

)
dx. (B.16)

Since Ψ(θ) is convex and x ∈ [0, 1),

∫ ℓ
1−x

ℓ̂
1−x

(∫ x

−x
Ψ′′
(
θ̄ − xη

1− x
+ y

)
dy

)
dx >

∫ ℓ̂
1−x

+ℓ−ℓ̂

ℓ̂
1−x

(∫ x

−x
Ψ′′
(
θ̄ − xη

1− x
+ y

)
dy

)
dx

>

∫ ℓ

ℓ̂

(∫ x

−x
Ψ′′
(
θ̄ − xη

1− x
+ y

)
dy

)
dx.

Since, in addition,

Ψ′′(θ) =
C2

4(B + Cθ)
3
2

1(
A+

√
B + Cθ

)2 +
C2

2(B + Cθ)

1(
A+

√
B + Cθ

)3
is decreasing, (B.16) holds under the sufficient condition θ̄−xη

1−x ≤ θ̄, which is equivalent to θ̄ ≤ η.

Proof of Proposition A.1. We proceed in three steps. In the first step we show that for any
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ϵ > 0, the investor’s expected utility under any contract does not exceed the utility (A.1). This is

the utility that the investor achieves when (Wz,L) are as in the proposition and the fee f(Wz2) is

zero. In the first step we also show that the difference in utilities is bounded away from zero when

the parameters (Wz,L) in the contract or the manager’s positions are not as in the proposition.

In the second step we show that there exists a contract with parameters (Wz,L) and manager’s

positions as in the proposition under which the investor’s expected utility converges to the utility

(A.1) when ϵ goes to zero. In the third step we show that the maximum in (A.1) is achieved for

Wz > 0 and L̂ > 0.

The first and second steps imply that in a contract maximizing the investor’s expected utility

when ϵ goes to zero, the parameters (Wz,L) and the manager’s positions are as in the proposition.

Indeed, if a utility-maximizing contract involved different parameters (Wz,L) or manager’s posi-

tions, then it would yield a utility bounded away from (A.1), while the contract involving these

parameters and positions yields (A.1) when ϵ goes to zero. Adding the third step implies that the

investor employs the manager. Indeed, not employing her is equivalent to setting Wz = 0, but this

generates a utility bounded away from (A.1) because Wz = 0 is not as in the proposition.

Step 1: Since the fee f(Wz2) is increasing and ΠO
n gives positive probability only to positive

values ofRn, an unskilled manager with posterior distribution ΠO
n onRn chooses the maximum value

of zn that meets the constraint

∣∣∣∣ znSn
Wz

− η̂nSn∑N
n′=1 η̂n′Sn′

∣∣∣∣ ∈ L. Conversely, since f(Wz2) is increasing

and ΠP
n gives positive probability only to negative values of Rn, an unskilled manager with posterior

distribution ΠP
n on Rn chooses the minimum value of zn such that

∣∣∣∣ znSn
Wz

− η̂nSn∑N
n′=1 η̂n′Sn′

∣∣∣∣ ∈ L. We

denote these maximum and minimum values by z̄n and
¯
zn, respectively, using the same notation as

in the case L = [0, L̂]. We denote the resulting position in asset n chosen by an unskilled manager

by zBn. We denote the position in asset n chosen by a skilled manager by zn(sn).

Since f(Wz2) is non-negative, the investor’s expected utility is smaller than the utility achieved

when the manager’s positions remain the same and the fee is zero. The latter utility is

E0

[
−(1− λ)e−ρ(W (1+r)+

∑N
n=1 zn(sn)SnRn) − λe−ρ(W (1+r)+

∑N
n=1 zBnSnRn)

]
= −(1− λ)e−ρW (1+r)

N∏
n=1

E0

[
e−ρzn(sn)SnRn

]
− λe−ρW (1+r)E0

[
e−ρ

∑N
n=1 zBnSnRn

]
, (B.17)

where the second step follows from independence across assets. Since the conditional expected

utility −Esn

[
e−ρznSnRn

]
is concave in zn, it is increasing for zn < z∗n(sn) and decreasing for zn >

z∗n(sn). Therefore, when z∗n(sn) > z̄n, conditional expected utility for zn(sn) is smaller than for

z̄n > zn(sn). Conversely, when z∗n(s) < ¯
zn, conditional expected utility for zn(sn) is smaller than

for
¯
zn < zn(sn). Since, in addition, conditional expected utility is maximum for z∗n(sn), the law of
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iterative expectations implies

−E0

[
e−ρzn(sn)SnRn

]
≤ −E0

[
e−ρzGn(sn)SnRn

]
, (B.18)

where we denote by zGn(sn) the position that is equal to z̄n when z∗n(sn) > z̄n,
¯
zn when z∗n(sn) < ¯

zn,

and z∗n(sn) when z∗n(sn) ∈ [
¯
zn, z̄n], using the same notation as in the case L = [0, L̂]. Equation

(B.18) implies that (B.17) does not exceed

− (1− λ)e−ρW (1+r)
N∏

n=1

E0

[
e−ρzGn(sn)SnRn

]
− λe−ρW (1+r)E0

[
e−ρ

∑N
n=1 zBnSnRn

]
= E0

[
−(1− λ)e−ρ(W (1+r)+

∑N
n=1 zGn(sn)SnRn) − λe−ρ(W (1+r)+

∑N
n=1 zBnSnRn)

]
. (B.19)

Equation (B.19) describes also the expected utility when the set L is replaced by [0, L] with L ≡
supL, since (z̄n,

¯
zn) are the same for both sets. Since replacing L by [0, L] yields the term in square

brackets in (A.1), and since (A.1) is the maximum of that term over (Wz, L̂), it exceeds the utility

under any contract.

For (Wz, L̂) not maximizing the term in square brackets in (A.1), (B.19) is smaller than (A.1).

For L differing from [0, L̂] by a positive-measure set, (B.17) is smaller than (B.19) and hence also

than (A.1). Indeed, since the range of z∗n(sn) is the real line, zn(sn) differs from z∗n(sn) in a positive-

measure set. For zn(sn) differing from the values in (B.19) in a positive-measure set (while meeting

the constraint

∣∣∣∣ znSn
Wz

− η̂nSn∑N
n′=1 η̂n′Sn′

∣∣∣∣ ∈ L), (B.17) is smaller than (B.19) and hence also than (A.1).

Since (A.1), (B.17) and (B.19) are independent of ϵ, the difference between (A.1) and the utility

under a contract in which the parameters (Wz,L) or the manager’s positions are not as in the

proposition is bounded away from zero.

Step 2: Suppose that (Wz,L) are as in the proposition and

f(Wz2) = ϵg(Wz2) + ϵ
1
2

(
ϵ−

1
8 − e−ρWz2

)
1{Wz2>

1
8ρ

log(ϵ)}. (B.20)

(The term 1{Wz2>
¯
W} is the indicator function, equal to one if Wz2 >

¯
W and zero otherwise.) Since

the function ϵ−
1
8 −e−ρWz2 is positive and increasing for Wz2 >

1
8ρ log(ϵ), the fee f(Wz2) satisfies the

non-negativity and monotonicity constraints. Since the function g(Wz2) is bounded over (−∞,∞)

and the function 1−ϵ
1
8 e−ρWz2 is bounded over Wz2 >

1
8ρ log(ϵ), f(Wz2) converges uniformly to zero

when ϵ goes to zero.

Equation (B.20) implies that the manager’s utility is

−e−ρ̄f(Wz2) = −1 + ρ̄ϵ
1
2

(
ϵ−

1
8 − e−ρWz2

)
1{Wz2>

1
8ρ

log(ϵ)} + ϵ
3
4k(Wz2), (B.21)
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where the function k(Wz2) is uniformly bounded when ϵ goes to zero. Since the dominant term

in (B.21) in the interval Wz2 > 1
4ρ log(ϵ) is an affine transformation of the investor’s utility, the

position that maximizes the skilled manager’s expected utility when ϵ goes to zero converges to the

position that maximizes the investor’s expected utility. Hence, when ϵ goes to zero, the investor’s

expected utility is given by (A.1).

Step 3: Using the definitions of (zGn(sn), zBn), we find that the derivative of (A.1) with respect

to y ∈ {Wz, L̂} is

ρE0

[
(1− λ)e−ρ(W (1+r)+

∑N
n=1 zGn(sn)SnRn)

N∑
n=1

(
∂z̄n
∂y

1{z∗n(sn)>z̄n} +
∂
¯
zn
∂y

1{z∗n(sn)<¯
zn}

)
SnRn

+λe−ρ(W (1+r)+
∑N

n=1 zBnSnRn)
N∑

n=1

(
∂z̄n
∂y

1{Πn=ΠO
n } +

∂
¯
zn
∂y

1{Πn=ΠP
n }

)
SnRn

]
. (B.22)

The definitions of (z̄n,
¯
zn) imply

z̄n =
Wz η̂n∑N

n′=1 η̂n′Sn′
+

WzL̂

Sn
, (B.23)

¯
zn =

Wz η̂n∑N
n′=1 η̂n′Sn′

− WzL̂

Sn
. (B.24)

Differentiating (B.23) and (B.24) with respect to (Wz, L̂), we find

∂z̄n
∂Wz

=
η̂n∑N

n′=1 η̂n′Sn′
+

L̂

Sn
, (B.25)

∂
¯
zn

∂Wz
=

η̂n∑N
n′=1 η̂n′Sn′

− L̂

Sn
, (B.26)

∂z̄n

∂L̂
= −∂

¯
zn

∂L̂
=

Wz

Sn
. (B.27)

When Wz = 0, (B.23) and (B.24) imply (z̄n,
¯
zn) = 0 for all n, and hence (zGn, zBn) = 0 for all

n. Substituting into (B.22) and using (B.25) and (B.26), we find that the derivative of (A.1) with

respect to Wz at Wz = 0 is

ρe−ρW (1+r)E0

[∑N
n=1 η̂nSnRn∑N
n=1 η̂nSn

+ (1− λ)L̂
N∑

n=1

(
1{z∗n(sn)>0}Rn − 1{z∗n(sn)<0}Rn

)]
. (B.28)

Since the unconditional expected return on the index is non-negative, the first term in (B.28) is

non-negative. The second term in (B.28) is positive since z∗n(sn) has the same sign as Esn(Rn).

Hence, (B.28) is positive, which means that the maximum in (A.1) is achieved for Wz > 0.
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When L̂ = 0, (B.23) and (B.24) imply z̄n =
¯
zn = Wz η̂n∑N

n′=1 η̂n′Sn′
for all n, and hence zGn(sn) =

zBn = Wz η̂n∑N
n′=1 η̂n′Sn′

for all n. Substituting into (B.22) and using (B.27), we find that the derivative

of (A.1) with respect to L̂ at L̂ = 0 is

ρ(1− λ)WzE0

[
e
−ρ

(
W (1+r)+

Wz
∑N

n=1 η̂nSnRn∑N
n=1 η̂nSn

)
N∑

n=1

(
1{z∗n(sn)>z̄n}Rn − 1{z∗n(sn)<z̄n}Rn

)]
. (B.29)

Since Esn

(
e−ρz̄nSnRnRn

)
> 0 for all sn such that z∗n(sn) > z̄n, and Esn

(
e−ρ

¯
znSnRnRn

)
< 0 for all

sn such that z∗n(sn) < ¯
zn, (B.29) is positive, which means that the maximum in (A.1) is achieved

for L̂ > 0.

Proof of Proposition 5.1. The maximum position z̄n and minimum position
¯
zn that meet the

constraint |z2nt − η|Gn(Dnt) ≤ L are

z̄n = η +
L

Gn(Dnt)
, (B.30)

¯
zn = η − L

Gn(Dnt)
, (B.31)

respectively. The position z∗n(sn) that maximizes an investor’s expected utility conditional on sn is

the position that unconstrained investors hold in equilibrium. In the unconstrained region, defined

by (5.2), z∗n(sn) can be derived by setting z1nt = z2nt in the market-clearing condition (5.1), and is

z1nt = z∗n(sn) =
θn − λxη

1− λx
.

To derive z∗n(sn) in the constrained region, defined by

|θn − η|
1− λx

Gn(Dnt) > L,

we distinguish cases. When θn > η, z∗n(sn) can be derived by setting z2nt = z̄n in (5.1), and is

z1nt = z∗n(sn) =
θn − xη − (1−λ)xL

Gn(Dnt)

1− x
.

When instead θn < η, z∗n(sn) can be derived by setting z2nt =
¯
zn in (5.1), and is

z1nt = z∗n(sn) =
θn − xη + (1−λ)xL

Gn(Dnt)

1− x
.

Hence, when θn > η, z∗n(sn) ∈ (η, z̄n] in the unconstrained region, and z∗n(sn) > z̄n in the constrained

region. When instead θn < η, z∗n(sn) ∈ [
¯
zn, η) in the unconstrained region, and z∗n(sn) < ¯

zn in the
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constrained region.

The ODEs in the unconstrained and constrained region can be derived from (4.2) by replacing

Et(dR
sh
t ) by the drift term in (4.1), Vart(dRsh

t ) by the square of the diffusion term, and z1nt by

z∗n(sn). This yields

Dnt + κ(D̄−Dnt)S
′
n(Dnt) +

1

2
σ2DntS

′′
n(Dnt)− rS(Dnt) =

ρ(θn − λxη)

1− λx
σ2DntS

′
n(Dnt)

2 (B.32)

in the unconstrained region, and

Dnt + κ(D̄ −Dnt)S
′
n(Dnt) +

1

2
σ2DntS

′′
n(Dnt)− rS(Dnt)

=
ρ(θn − xη)

1− x
σ2DntS

′
n(Dnt)

2 − ρ sgn(θn − η)(1− λ)xL

1− x

σ2DntS
′
n(Dnt)

2

Gn(Dnt)
(B.33)

in the constrained region.

The derivative of (A.1) with respect to η and L in the continuous-time limit can be derived

from (B.22) by replacing SnRn by dRsh
nt , and is

ρE0

[
(1− λ)e−ρ(W (1+r)+

∑N
n=1 zGn(sn)dR

sh
nt)

N∑
n=1

(
∂z̄n
∂y

1{z∗n(sn)>z̄n} +
∂
¯
zn
∂y

1{z∗n(sn)<¯
zn}

)
dRsh

nt

+λe−ρ(W (1+r)+
∑N

n=1 zBndR
sh
nt)

N∑
n=1

(
∂z̄n
∂y

1{Πn=ΠO
n } +

∂
¯
zn
∂y

1{Πn=ΠP
n }

)
dRsh

nt

]
. (B.34)

To simplify (B.34), we use

Esn

(
e−ρzndRsh

ntdRsh
nt

)
= Esn

(
(1− ρzndR

sh
nt)dR

sh
nt

)
= Esn(dR

sh
nt)− ρznVars(dRsh

nt)

= ρ[z∗n(sn)− zn]Vars(dRsh
t )

= ρ[z∗n(sn)− zn]σ
2DntS

′
n(Dnt)

2, (B.35)

where the third step follows because z∗n(sn) is optimal for unconstrained investors, and hence
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satisfies the first-order condition (4.2). We also use

∂z̄n
∂η

= 1, (B.36)

∂
¯
zn
∂η

= 1, (B.37)

∂z̄n
∂L

=
1

Gn(Dnt)
, (B.38)

∂
¯
zn
∂L

= − 1

Gn(Dnt)
, (B.39)

which follow by differentiating (B.30) and (B.31).

Using (B.35)-(B.37), we can write (B.34) for y = η as

ρϵ−ρ(1+r)WE0

(1− λ)

 ∑
n:θn>η

[z∗n(sn)− z̄n]1{z∗n(sn)>z̄n}σ
2DntS

′
n(Dnt)

2

+
∑

n:θn<η

[z∗n(sn)− ¯
zn]1{z∗n(sn)<¯

zn}σ
2DntS

′
n(Dnt)

2

+
λ

2

N∑
n=1

[2z∗n(sn)− z̄n −
¯
zn]σ

2DntS
′
n(Dnt)

2

 .

(B.40)

Setting (B.40) to zero, and using (B.30) and (B.31) to simplify the third term, we find

E0

 ∑
n:θn>η

[z∗n(sn)− z̄n]1{z∗n(sn)>z̄n}σ
2DntS

′
n(Dnt)

2 +
∑

n:θn<η

[z∗n(sn)− ¯
zn]1{z∗n(sn)<¯

zn}σ
2DntS

′
n(Dnt)

2

+
λ

1− λ

N∑
n=1

[z∗n(sn)− η]σ2DntS
′
n(Dnt)

2

]
= 0. (B.41)

Using (B.35), (B.38) and (B.39), we can write (B.34) for y = L as

ρϵ−ρ(1+r)WE0

(1− λ)

 ∑
n:θn>η

[z∗n(sn)− z̄n]1{z∗n(sn)>z̄n}
σ2DntS

′
n(Dnt)

2

Gn(Dnt)

−
∑

n:θn<η

[z∗n(sn)− ¯
zn]1{z∗n(sn)<¯

zn}
σ2DntS

′
n(Dnt)

2

Gn(Dnt)

+
λ

2

N∑
n=1

[
¯
zn − z̄n]

σ2DntS
′
n(Dnt)

2

Gn(Dnt)

 .

(B.42)
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Setting (B.42) to zero, and using (B.30) and (B.31) to simplify the third term, we find

E0

 ∑
n:θn>η

[z∗n(sn)− z̄n]1{z∗n(sn)>z̄n}
σ2DntS

′
n(Dnt)

2

Gn(Dnt)
−
∑

n:θn<η

[z∗n(sn)− ¯
zn]1{z∗n(sn)<¯

zn}
σ2DntS

′
n(Dnt)

2

Gn(Dnt)

− λL

1− λ

N∑
n=1

σ2DntS
′
n(Dnt)

2

Gn(Dnt)2

]
= 0. (B.43)

When η > θmax, the first term in the left-hand side of (B.41) is zero because the summation is

over an empty set of n, the second term is negative because the summation is over a non-empty

set of n and the set of values of Dnt such that z∗n(sn) <
¯
zn has positive measure, and the third

term is negative because z∗n(sn) < η when θn < η. Hence, the left-hand side of (B.41) is negative,

which means that the investor can raise his utility by lowering η. When instead η < θmin, the first

term is positive because the summation is over an non-empty set of n and the set of values of Dnt

such that z∗n(sn) > z̄ has positive measure, the second term is zero because the summation is over

an empty set of n, and the third term is positive because z∗n(sn) > η when θn > η. Hence, the

left-hand side of (B.41) is positive, which means that the investor can raise his utility by raising η.

Therefore, η ∈ [θmin, θmax].

When θn can take only one value, θmin and θmax coincide with that value, and so does η ∈
[θmin, θmax]. Moreover, the first and second terms in the left-hand side of (B.43) are zero because

the summations are over empty sets of n. Hence, L = 0.

When θn can take multiple values, the argument showing that the left-hand side of (B.41) is

negative when η > θmax can be extended to η ≥ θmax because the set of n such that θn < η

is non-empty. Likewise, the argument showing that the left-hand side of (B.41) is positive when

η < θmin can be extended to η ≤ θmin because the set of n such that θ > η is non-empty. Therefore,

η ∈ (θmin, θmax). Fixing η ∈ (θmin, θmax), the first and second terms in the left-hand side of (B.43)

are positive and bounded for L ≥ 0, and converge to zero when L goes to infinity. When λ = 0, the

third term is zero. Hence, the left-hand side of (B.43) is positive, which means that the investor can

raise his utility by raising L to infinity. When λ ∈ [0, 1), the third term is a linear and decreasing

function of L. Hence, the solution L to (B.43) is finite. When λ goes to one, the third term

converges to infinity for any finite L. Hence, the solution L to (B.43) converges to zero.
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Online Appendix for

“Asset Management Contracts and Equilibrium Prices”

by Andrea M. Buffa, Dimitri Vayanos and Paul Woolley

C Empirical Results

C.1 250 Largest Stocks

Table C.1 is the counterpart of Table 3 for the 250 rather than the 100 largest stocks in funds’

benchmark indices. Funds’ buying of underweighted stocks is procyclical and selling of overweighted

stocks is countercyclical, as in Table 3. The effects are slightly weaker than in Table 3.

Table C.1: Funds’ Trading of 250 Largest Stocks as Function of Stocks’ Active
Weight and Return

Aw Return ∆w 6Mths ∆w 1Yr

Aw Decile 1 & Return Quintile 1 -1.11 -17.22 0.06 0.11
Aw Decile 1 & Return Quintile 5 -1.05 23.44 0.14 0.25
Aw Decile 10 & Return Quintile 1 1.58 -17.42 -0.39 -0.66
Aw Decile 10 & Return Quintile 5 1.57 30.06 -0.42 -0.77

Note.—Change in weight due to trading (∆w) for fund/stock pairs in Deciles 1 and 10 of active
weight (Aw) and in Quintiles 1 and 5 of stock return. The change in weight is computed over the
same semester, or over the same and subsequent semester, as the return. Fund/stock pairs are
formed from the 250 largest stocks in each fund’s benchmark index.

C.2 All Deciles

Table C.2 extends Table 3 to all deciles of active weight. Table C.3 is a counterpart of Table C.2

that excludes stocks with zero weights. In Table C.3, we sort fund/stock pairs into active-weight

quintiles rather than deciles, as only 23% of fund/stock pairs have nonzero weights.

C.3 Statistical Significance Calculations for Underweighted Stocks

The statistical significance calculations follow from the regression

∆wfund,n,s = α+β1×TE/ASfund,t−1+β2×Winnern,t+γ×TE/ASfund,t−1×Winnern,t+ϵfund,n,s,

(C.1)
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Table C.2: Funds’ Trading of Stocks in All Deciles of Active Weight as Function
of Stocks’ Active Weight and Return

Aw Return ∆w 6Mths ∆w 1Yr

Aw Decile 1 & Return Quintile 1 -1.66 -15.53 0.08 0.16
Aw Decile 1 & Return Quintile 5 -1.66 21.03 0.20 0.33
Aw Decile 2 & Return Quintile 1 -0.79 -16.98 0.06 0.11
Aw Decile 2 & Return Quintile 5 -0.79 24.02 0.15 0.25
Aw Decile 3 & Return Quintile 1 -0.54 -17.01 0.05 0.09
Aw Decile 3 & Return Quintile 5 -0.54 26.12 0.12 0.20
Aw Decile 4 & Return Quintile 1 -0.41 -15.46 0.05 0.09
Aw Decile 4 & Return Quintile 5 -0.41 27.90 0.09 0.16
Aw Decile 5 & Return Quintile 1 -0.34 -15.32 0.04 0.07
Aw Decile 5 & Return Quintile 5 -0.34 28.25 0.08 0.13
Aw Decile 6 & Return Quintile 1 -0.29 -11.57 0.04 0.07
Aw Decile 6 & Return Quintile 5 -0.28 30.99 0.07 0.13
Aw Decile 7 & Return Quintile 1 -0.24 -6.94 0.03 0.05
Aw Decile 7 & Return Quintile 5 -0.24 34.01 0.07 0.13
Aw Decile 8 & Return Quintile 1 -0.02 -12.73 -0.08 -0.13
Aw Decile 8 & Return Quintile 5 -0.10 33.31 0.03 0.04
Aw Decile 9 & Return Quintile 1 0.58 -15.33 -0.26 -0.40
Aw Decile 9 & Return Quintile 5 0.58 28.77 -0.19 -0.36
Aw Decile 10 & Return Quintile 1 2.09 -15.76 -0.51 -0.87
Aw Decile 10 & Return Quintile 5 2.09 28.25 -0.56 -1.03

Note.——Change in weight due to trading (∆w) for fund/stock pairs in all deciles of active weight
(Aw) and in Quintiles 1 and 5 of stock return. The change in weight is computed over the same
semester, or over the same and subsequent semester, as the return.

where ∆wfund,n,s is the change in weight due to trading for a fund and stock n during semester

t or during the year formed by semesters t and t + 1, TE/ASfund,t−1 is a discrete variable taking

the values 1 to 5 according to the TE or AS quintile of the fund at the end of semester t− 1, and

Winnern,t is a dummy variable taking the value zero if the return of stock n in semester t lies in

the bottom return quintile and one if it lies in the top quintile. The regression (C.1) is run in

the sub-sample of fund-stock pairs that lie in a given set of deciles of active weight at the end of

semester t− 1 and in the bottom and top return quintiles in semester t. That sub-sample is pooled

across all semesters. The regression includes time fixed effects. Standard errors are in parentheses,

and are computed by double-clustering across funds and time. Statistical significance at the 1%

level is denoted by ***, at the 5% level by **, and at the 10% level by *.

Table C.4 reports results for Decile 1 of active weight. The statistical significance calculations

in the table thus correspond to Figure 1. The relationship between change in weight for under-

weighted overperforming stocks relative to underweighted underperforming stocks and TE or AS

is characterized by the coefficient γ, which is negative and significant at the 1% level. Table C.5 is

2



Table C.3: Funds’ Trading of Stocks with Nonzero Portfolio Weight as Function
of Stocks’ Active Weight and Return

Aw Return ∆w 6Mths ∆w 1Yr

Aw Quintile 1 & Return Quintile 1 -0.67 -14.82 0.10 0.15
Aw Quintile 1 & Return Quintile 5 -0.56 26.03 0.20 0.27
Aw Quintile 2 & Return Quintile 1 0.09 -14.43 0.02 0.03
Aw Quintile 2 & Return Quintile 5 0.09 29.96 0.07 0.08
Aw Quintile 3 & Return Quintile 1 0.51 -14.08 -0.04 -0.06
Aw Quintile 3 & Return Quintile 5 0.51 29.15 -0.04 -0.10
Aw Quintile 4 & Return Quintile 1 1.09 -14.09 -0.11 -0.18
Aw Quintile 4 & Return Quintile 5 1.08 29.08 -0.18 -0.36
Aw Quintile 5 & Return Quintile 1 2.63 -14.56 -0.28 -0.49
Aw Quintile 5 & Return Quintile 5 2.61 28.77 -0.55 -1.00

Note.—Change in weight due to trading (∆w) for fund/stock pairs in all quintiles of active weight
(Aw) and in Quintiles 1 and 5 of stock return. The change in weight is computed over the same
semester, or over the same and subsequent semester, as the return. Fund/stock pairs are formed
from stocks with nonzero portfolio weight in each fund.

Table C.4: Funds’ Trading of Stocks in Decile 1 of Active Weight as Function of
Stocks’ Return and Funds’ TE or AS—Regression Analysis

Tracking Error Active Share

6 Mths 1Yr 6 Mths 1Yr

α 0.14975*** 0.25941*** 0.12883*** 0.23568***
(0.01278) (0.02184) (0.01284) (0.02210)

β1 -0.02258*** -0.03368*** -0.01560*** -0.02581**
(0.00306) (0.00490) (0.00336) (0.00542)

β2 0.17258*** 0.28062*** 0.23108*** 0.34741***
(0.02859) (0.04839) (0.03547) (0.05715)

γ -0.01765*** -0.03356*** -0.03759*** -0.05678***
(0.00563) (0.00917) (0.00702) (0.01068)

R2 0.0327 0.0387 0.0357 0.0417
Obs. 53815 47098 53815 47098

Note.—Change in weight due to trading (∆w) for fund/stock pairs in Decile 1 of active weight
regressed on a discrete variable taking the values 1 to 5 according to the TE or AS quintile of the
fund (coefficient β1), a dummy variable taking the value zero if the stock’s return lies in the bottom
quintile and one if it lies in the top quintile (coefficient β2), and the interaction of the two variables
(coefficient γ). The change in weight is computed over the same semester, or over the same and
subsequent semester, as the return. TE and AS are computed at the end of the previous semester.

the counterpart of Table C.4 obtained by pooling Deciles 1 through 7. The coefficient γ remains

negative and significant at the 1% level.
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Table C.5: Funds’ Trading of Stocks in Deciles 1 to 7 of Active Weight as Function
of Stocks’ Return and Funds’ TE or AS—Regression Analysis

Tracking Error Active Share

6 Mths 1Yr 6 Mths 1Yr

α 0.07835*** 0.14029*** 0.06953*** 0.12398***
(0.00412) (0.00681) (0.00427) (0.00694)

β1 -0.00979*** -0.01538*** -0.00680*** -0.00979**
(0.00110) (0.00181) (0.00115) (0.00194)

β2 0.08834*** 0.14368*** 0.12747*** 0.19947***
(0.00996) (0.01584) (0.01215) (0.01825)

γ -0.00632** -0.01247*** -0.01955*** -0.03154***
(0.00241) (0.00363) (0.00256) (0.00361)

R2 0.0146 0.0177 0.0171 0.0204
Obs. 359239 286992 359239 286992

Note.—Change in weight due to trading (∆w) for fund/stock pairs in Deciles 1 to 7 of active
weight regressed on a discrete variable taking the values 1 to 5 according to the TE or AS quintile
of the fund (coefficient β1), a dummy variable taking the value zero if the stock’s return lies in the
bottom quintile and one if it lies in the top quintile (coefficient β2), and the interaction of the two
variables (coefficient γ). The change in weight is computed over the same semester, or over the
same and subsequent semester, as the return. TE and AS are computed at the end of the previous
semester.

Table C.6: Funds’ Trading of Small and Mid-Cap Stocks as Function of Stocks’
Active Weight and Return

Aw Return ∆w 6Mths ∆w 1Yr

Aw Decile 1 & Return Quintile 1 -0.67 -19.34 0.04 0.08
Aw Decile 1 & Return Quintile 5 -0.64 30.75 0.09 0.14
Aw Decile 10 & Return Quintile 1 1.15 -14.98 -0.29 -0.48
Aw Decile 10 & Return Quintile 5 1.14 41.60 -0.40 -0.69

Note.—Change in weight due to trading (∆w) for fund/stock pairs in Deciles 1 and 10 of active
weight (Aw) and in Quintiles 1 and 5 of stock return. The change in weight is computed over the
same semester, or over the same and subsequent semester, as the return. Fund/stock pairs are
formed from funds whose benchmark indices include only small or mid-cap stocks.

C.4 Small and Mid-Cap Stocks

Table C.6 and Figure C.1 are the counterparts of Table 3 and Figure 1, respectively, for funds

whose benchmark indices include only small or mid-cap stocks.
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Figure C.1: Funds’ trading of small and mid-cap stocks in Decile 1 of active weight as function of
stocks’ return and funds’ TE and AS.
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Figure C.2: Funds’ trading of industry sectors in Decile 1 of active weight as function of sectors’
return and funds’ TE and AS.

C.5 Industry Sectors

Table C.7 and Figure C.2 are the counterparts of Table C.2 and Figure 1, respectively, for industry

sectors. We compute industry portfolio weights for each active fund in our sample by classifying

the stocks held by the fund into the eleven GICS industry sectors. We report results for semesters

t and t+1 (Column ∆w 1Yr) and semesters t to t+3 (Column ∆w 2Yrs). We use longer horizons

than for stocks since rebalancing across sectors is typically slower than within a sector.

C.6 Asset-Level versus Portfolio-Level Constraints

Table C.8 breaks down the findings for Decile 1 of active weight in Table 3 by quintile of ∆̂AS,

the no-trade change in AS. We do not construct a no-trade change in TE because of measurement

issues. Recall that we compute TE using daily fund returns over an one-year lookback window. To

compute no-trade change in TE during semester t, we would need to compute hypothetical daily

fund returns during that semester using the portfolio weights at the end of semester t − 1 and

combine them with actual daily fund returns during semester t− 1. Kacperczyk, Sialm, and Zheng
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Table C.7: Funds’ Trading of Industry Sectors in All Deciles of Active Weight as
Function of Sectors’ Active Weight and Return

Aw Return ∆w 1Yr ∆w 2Yrs

Aw Decile 1 & Return Quintile 1 -8.74 -14.27 0.83 0.96
Aw Decile 1 & Return Quintile 5 -8.21 12.57 1.59 1.80
Aw Decile 2 & Return Quintile 1 -4.05 -13.72 0.07 0.05
Aw Decile 2 & Return Quintile 5 -4.06 14.25 0.93 0.88
Aw Decile 3 & Return Quintile 1 -2.51 -14.01 -0.18 -0.36
Aw Decile 3 & Return Quintile 5 -2.47 16.08 0.74 0.55
Aw Decile 4 & Return Quintile 1 -1.44 -14.85 -0.38 -0.70
Aw Decile 4 & Return Quintile 5 -1.41 20.20 0.49 0.21
Aw Decile 5 & Return Quintile 1 -0.63 -17.38 -0.62 -1.02
Aw Decile 5 & Return Quintile 5 -0.60 27.72 0.25 -0.20
Aw Decile 6 & Return Quintile 1 0.01 -18.26 -0.68 -1.08
Aw Decile 6 & Return Quintile 5 0.02 37.94 -0.01 -0.56
Aw Decile 7 & Return Quintile 1 0.82 -15.50 -1.41 -2.06
Aw Decile 7 & Return Quintile 5 0.83 26.54 -0.44 -1.24
Aw Decile 8 & Return Quintile 1 1.99 -15.18 -1.86 -2.82
Aw Decile 8 & Return Quintile 5 2.02 25.16 -0.85 -1.84
Aw Decile 9 & Return Quintile 1 4.01 -15.08 -2.53 -3.69
Aw Decile 9 & Return Quintile 5 4.03 25.35 -1.76 -3.27
Aw Decile 10 & Return Quintile 1 10.27 -13.57 -3.89 -6.42
Aw Decile 10 & Return Quintile 5 9.79 25.19 -3.80 -6.72

Note.——Change in weight due to trading (∆w) for fund/industry-sector pairs in all deciles of
active weight (Aw) and in Quintiles 1 and 5 of sector return. The change in weight is computed
over the same and subsequent semester, or over the same and subsequent three semesters, as the
return.

(2008) show, however, that hypothetical returns calculated on a fund portfolio can misrepresent

actual returns earned on that portfolio.

We corroborate the findings in Table C.8 using the regression

∆wfund,n,s = α+β1× ∆̂ASfund,t+β2×Winnern,t+γ× ∆̂ASfund,t×Winnern,t+ ϵfund,n,s, (C.2)

where ∆wfund,n,s is the change in weight due to trading for a fund and stock n during semester t

or during the year formed by semesters t and t+ 1, ∆̂ASfund,t is the no trade change in the fund’s

AS during semester t, and Winnern,t is a dummy variable taking the value zero if the return of

stock n in semester t lies in the bottom return quintile and one if it lies in the top quintile. Table

C.9 reports results from the regression (C.2) run in the sub-sample of fund-stock pairs that lie in

Decile 1 of active weight at the end of semester t − 1 and in the bottom and top return quintiles

in semester t. That sub-sample is pooled across all semesters. The regression includes time fixed
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Table C.8: Funds’ Trading of Stocks in Decile 1 of Active Weight as Function of
Stocks’ Return and Funds’ No-trade Change in AS

Aw Return ∆̂AS ∆w 6Mths ∆w 1Yr

Return Quintile 1 & ∆̂AS Quintile 1 -1.71 -15.56 -1.20 0.08 0.15

Return Quintile 1 & ∆̂AS Quintile 2 -1.64 -15.54 -0.33 0.07 0.14

Return Quintile 1 & ∆̂AS Quintile 3 -1.64 -15.49 0.14 0.08 0.15

Return Quintile 1 & ∆̂AS Quintile 4 -1.63 -15.63 0.65 0.08 0.16

Return Quintile 1 & ∆̂AS Quintile 5 -1.66 -15.44 2.03 0.10 0.19

Return Quintile 5 & ∆̂AS Quintile 1 -1.70 20.40 -1.27 0.18 0.28

Return Quintile 5 & ∆̂AS Quintile 2 -1.63 20.75 -0.33 0.17 0.27

Return Quintile 5 & ∆̂AS Quintile 3 -1.64 21.35 0.12 0.18 0.31

Return Quintile 5 & ∆̂AS Quintile 4 -1.66 21.10 0.64 0.20 0.34

Return Quintile 5 & ∆̂AS Quintile 5 -1.67 21.43 1.92 0.26 0.42

Note.—Change in weight due to trading (∆w) for fund/stock pairs in Decile 1 of active weight
(Aw), in Quintiles 1 and 5 of stock return and in all quintiles of no-trade change in active share
(∆̂AS). The change in weight is computed over the same semester, or over the same and subsequent
semester, as the return.

effects. Standard errors are in parentheses, and are computed by double-clustering across funds

and time.

The procyclical buying of underweighted stocks when the no-trade change in AS is zero is

characterized by the coefficient β2, which is positive and significant at the 1% level. The relationship

between procyclical buying and no-trade change in AS is characterized by the coefficient γ, which

is positive but not statistically significant. When ∆̂ASfund,t is demeaned each month (not shown in

the table), the coefficient β2 and its significance do not change, but γ rises and becomes significant.

We compute portfolio spillover effects by fixing a pair of a fund and a stock n, and calculating

the change in weight due to trading for each stock n′ ̸= n. We then add weight changes for the

stocks n′ that the fund overweights and subtract weight changes for the stocks n′ that the fund

underweights. We compute that measure for stocks n′ in stock n’s industry sector and for stocks

n′ in all other industry sectors. Table C.10 reports results when the pair of fund and stock n are

in Decile 1 of active weight.

Compared to the case where stock n earns low return, the additional spillovers in all industry

sectors other than stock n’s under a high return are 7.30-7.24 for a one-semester horizon. Likewise,

the additional spillovers in stock n’s industry sector are 3.51-3.43, and the additional weight ad-

justment for stock n is 0.20-0.08 from Table 3. Therefore, the procyclicality in spillovers aggregated
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Table C.9: Funds’ Trading of Stocks in Decile 1 of Active Weight as Function of
Stocks’ Return and Funds’ No-trade change in AS—Regression Analysis

Active Share

6 Mths 1Yr

α 0.09524*** 0.17874***
(0.01478) (0.01992)

β1 1.84233*** 2.11647***
(0.47615) (0.71562)

β2 0.17669*** 0.22333***
(0.03429) (0.04408)

γ 0.23716. 2.22912
(1.42566) (1.76039)

R2 0.0299 0.0303
Obs. 53815 47098

Note.—Change in weight due to trading (∆w) for fund/stock pairs in Decile 1 of active weight
regressed on the no-trade change in active share (coefficient β1), a dummy variable taking the value
zero if the stock’s return lies in the bottom quintile and one if it lies in the top quintile (coefficient
β2), and the interaction of the two variables (coefficient γ). The change in weight is computed over
the same semester, or over the same and subsequent semester, as the return. The no-trade change
in active share is computed over the same semester as the return.

across all industry sectors other than stock n’s relative to the procyclicality in stock n’s sector is

7.30− 7.24

(3.51− 3.43) + (0.20− 0.08)
= 30%

for a one-semester horizon. The analogous calculation yields

10.91− 10.77

(7.29− 7.08) + (0.33− 0.16)
= 37%

for a two-semester horizon.

D TE-Based Constraint

Figures D.1-D.3 are the counterparts of Figures 2-4, respectively, for the TE-based constraint. The

parameters (ρ, {(η̂n, θn, κn, D̄n, σn)}n=1,..,N ,W2z, N, r, x) are the same as for Figures 2-4. We set

the upper bound L̂ in the TE-based constraint to 2. For L̂ = 2, the difference between the AS

of unconstrained and of constrained investors is 4.68. This is close to the AS difference of 4.93

generated by the upper bound L̂ = 5 in the AS-based constraint assumed in Figures 2-4.

All three panels of Figure D.1, the right panel of Figure D.2, and the middle and right panels
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Table C.10: Portfolio Spillover Effects for Stocks in Decile 1 of Active Weight

6 Mths 1Yr

∆w sector ∆w other sectors ∆w sector ∆w other sectors

Return Quintile 1 -3.43 -7.24 -7.08 -10.77
Return Quintile 5 -3.51 -7.30 -7.29 -10.91

Note.—Change in weight due to trading (∆w) at the industry-sector level for funds in fund/stock
pairs in Decile 1 of active weight (Aw) and in Quintiles 1 and 5 of stock return. For each fund/stock
pair, we compute changes in weight due to trading for all stocks in the portfolio of the fund. We
add weight changes for the stocks that the fund overweights and subtract weight changes for the
stocks that the fund underweights. We perform this calculation for the stocks in the same sector
as the stock in the fund/stock pair, and for the stocks in all other sectors. Weight changes are
computed over the same semester, or over the same and subsequent semester, as the return.
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Figure D.1: Effect of the TE-based constraint on prices and portfolio weights.

of Figure D.3 are similar, both qualitatively and quantitatively, to their counterparts in Figures

2-4. The remaining panels of Figures D.2 and D.3 are also similar to their counterparts in Figures

3 and 4, after rescaling L̂ in the x-axis. For example, the maximum spread in return volatilities

is approximately 4.52 in the middle panel of Figure D.2 and 4.49 in the middle panel of Figure 3.

That maximum is achieved for L̂ approximately equal to 1.5 under the TE-based constraint (Figure

D.2) and 4 under the AS-based constraint (Figure 3).

Figure D.4 is the counterpart of Figure 5 for the TE-based constraint. The parameters (ρ, {(η̂n, θn,
κn, D̄n, σn)}n=1,..,N , N, r, x) are the same as for Figure 5. The parameters (Wz, L̂) are solutions to

the contracting problem and functions of λ.

All three panels of Figure D.4 are similar qualitatively to their counterparts in Figure 5. Quan-

titatively, however, smaller values of λ generate the maximum spread in return volatilities: that
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Figure D.2: Risk-return inversion for the TE-based constraint.
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Figure D.3: Overvaluation bias for the TE-based constraint.

maximum is achieved for λ approximately equal to 20% under the TE-based constraint (Figure D.4)

and to 40% under the AS-based constraint (Figure 5). This result is consistent the observation

in Section 5.2 that when the constraint is specified in TE rather than AS terms, its data-implied

tightness is achieved for smaller values of λ.

E Proof of Theorem 4.1

We prove Theorem 4.1 through a series of lemmas. In all the lemmas we drop the asset subscript n

for notational simplicity. Lemma E.1 shows existence of a solution to the ODE system in a compact

interval and with initial conditions at the one end of the interval.
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Figure D.4: Endogenous TE-based constraint.

Lemma E.1. [Existence in compact interval with conditions at one boundary] Consider

ϵ > 0 and M > ϵ sufficiently large. A solution S(Dt) to the system of ODEs (4.4) in the uncon-

strained region (4.11), and (4.13) in the constrained region (4.14), with the initial conditions

S′(M) =
2

r + κ+
√
(r + κ)2 + 4ρ(θ−xη)

1−x σ2
, (E.1)

S(M) =
1

r

(
(κD̄ + rM)S′(M) +

1

2
σ2MΦ+

ρ sgn(θ − η)xL

1− x
σ
√
MS′(M)

)
, (E.2)

exists, either in the entire interval [ϵ,M ], or in a maximal interval (ϵ̂,M ] with ϵ̂ ≥ ϵ. In the latter

case limDt→ϵ̂ |S′(Dt)| = ∞.

Proof of Lemma E.1. The ODEs (4.4) and (4.13) satisfy the conditions of the Cauchy-Lipschitz

theorem for any Dt > 0. To show this for the ODE (4.4), we write it as a system of two first-order

ODEs:

S′(Dt) = T (Dt),

T ′(Dt) =
2

σ2Dt

(
ρθ

1− λx
σ2DtT (Dt)

2 −Dt − κ(D̄ −Dt)T (Dt) + rS(Dt)

)
.

The function

(Dt, S, T ) −→

(
T

2
σ2Dt

(
ρθ

1−λxσ
2DtT

2 −Dt − κ(D̄ −Dt)T + rS
) )

is continuously differentiable for (Dt, S, T ) ∈ (0,∞) × (−∞,∞) × (−∞,∞). Hence, it is locally
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Lipschitz in that set, and the Cauchy-Lipschitz theorem implies that for any (Dt, S, T ) ∈ (0,∞)×
(−∞,∞) × (−∞,∞), the ODE (4.4) has a unique solution in a neighborhood of Dt with initial

conditions S(Dt) = S and S′(Dt) = T . The same argument establishes local existence of a solution

to the ODE (4.13).

Consider the solution to the ODE (4.13) with initial conditions (E.1) and (E.2). The value of

S(M) in (E.2) is implied from the ODE (4.13) by setting S′′(M) = Φ. Indeed, (E.2) is equivalent

to

S(M) =
1

r

(
M + κ(D̄ −M)S′(M) +

1

2
σ2MΦ− ρ(θ − xη)

1− x
σ2MS′(M)2 +

ρ sgn(θ − η)xL

1− x
σ
√
MS′(M)

)
(E.3)

because the value of S′(M) in (E.1) solves the equation

ρ(θ − xη)

1− x
σ2S′(M)2 + (r + κ)S′(M)− 1 = 0. (E.4)

Equation (E.4) is quadratic in S′(M). When θ > xη, the left-hand side is increasing for positive

values of S′(M), and (E.4) has a unique positive solution, given by (E.1). When θ < xη, the left-

hand side is hump-shaped for positive values of S′(M), and (E.4) has either two positive solutions,

or one positive solution, or no solution. Condition θ > xη− (1−x)(r+κ)2

4ρσ2 in Theorem 4.1 ensures that

two positive solutions exist when θ < xη. Equation (E.1) gives the smaller of the two solutions,

which is the continuous extension of the unique positive solution when θ > xη.

Since S′(M) is independent of M , (4.14) is met for M sufficiently large. Continuity then implies

that the solution to the ODE (4.13) with initial conditions (E.1) and (E.2) lies in the constrained

region (4.14) in a neighborhood to the left of M . We extend the solution maximally to the left

of M , up to a point m1 where either the solution explodes (limDt→m1 |S′(Dt)| = ∞) or condition

(4.14) that defines the constrained region is violated in a neighborhood to the left of m1. In the

second case, we extend the solution to the left of m1 by using the ODE (4.4) instead of (4.13). If

the first derivative of
√
DtS

′(Dt) at m1 is non-zero, then it has to be positive because (4.14) is

violated to the left of m1, and the extended solution lies in the unconstrained region (4.11) in a

neighborhood to the left of m1, by continuity. (Extending the solution to the left of m1 by using the

ODE (4.4) instead of (4.13) yields the same first derivative of
√
DtS

′(Dt), i.e., the first derivatives

of
√
DtS

′(Dt) from the left, using (4.4), and the right, using (4.13), coincide. The first derivatives

of S(Dt) from the left and the right coincide because the first derivative from the right is used as

initial condition when extending the solution to the left. The second derivatives of S(Dt) from the

left and the right coincide because the first derivatives coincide and (4.11) holds with equality at
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m1. The result, used next in the proof, that higher-order derivatives of
√
DtS

′(Dt) from the left and

the right coincide if all lower-order derivatives are zero uses a similar argument and differentiation

of (4.4) and (4.13).) If the first derivative of
√
DtS

′(Dt) at m1 is zero, then the second derivative

must also be zero because otherwise (4.14) would not be violated to the left of m1. If the third

derivative of
√
DtS

′(Dt) at m1 is non-zero, then it has to be positive because (4.14) is violated to

the left of m1, and the extended solution lies in the unconstrained region (4.11) in a neighborhood

to the left of m1, by continuity. Proceeding in this manner for higher-order derivatives, we conclude

that the extended solution (using the ODE (4.4) instead of (4.13) to the left of m1) may not lie in

the unconstrained region (4.11) in a neighborhood to the left of m1 only if all n-th order derivatives

of
√
DtS

′(Dt) at m1, for n ≥ 1, are zero. Writing, however, the ODE (4.13) in terms of the function

U(Dt) ≡
√
DtS

′(Dt) taking the (n + 1)-th order derivative of the resulting equation at m1, and

using U(m1) > 0 and dn+1

dDn+1
t

[U(Dt)]Dt=m1
= 0 for all n ≥ 0, we find

dn+1

dDn+1
t

[
Dt + κ(D̄ −Dt)

U(Dt)√
Dt

+
1

2
σ2
√

Dt

(
U ′(Dt)−

1

2Dt
U(Dt)

)
− rS(M)

−r

∫ Dt

M

U(D′
t)√

D′
t

dD′
t

]
Dt=m1

=
dn+1

dDn+1
t

[
ρ(θ − xη)

1− x
σ2U(Dt)

2 − ρ sgn(θ − η)xL

1− x
σU(Dt)

]
Dt=m1

⇒ dn+1

dDn+1
t

[
κ
D̄ −Dt√

Dt
− 1

4
σ2 1√

Dt

]
Dt=m1

− r
dn

dDn
t

[
1√
Dt

]
Dt=m1

= 0

for all n ≥ 0, a contradiction. Hence, the extended solution lies in the unconstrained region (4.11)

in a neighborhood to the left of m1. We extend that solution maximally to the left of m1, up to

a point m2 where either the solution explodes (limDt→m2 |S′(Dt)| = ∞) or where condition (4.11)

is violated in a neighborhood to the left of m2. In the second case, we extend the solution to the

left of m1 by using the ODE (4.13) instead of (4.4). Repeating this process yields a solution to

the system of ODEs (4.4) in the unconstrained region (4.11), and (4.13) in the constrained region

(4.14), with initial conditions (E.1) and (E.2), which either is defined in [ϵ,M ] or explodes at an

ϵ̂ ≥ ϵ.

Lemma E.2 shows that the solution derived in Lemma E.1 is either increasing in Dt or is

decreasing and then increasing.

Lemma E.2. [Monotonicity] For the solution derived in Lemma E.1, either S′(Dt) > 0 for all

Dt, or there exists m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m,

and S(m) > 0.

Proof of Lemma E.2. Since S′(M) > 0, S′(Dt) > 0 for Dt smaller than and close to M . Suppose
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that there exists Dt < M such that S′(Dt) ≤ 0, and consider the supremum m within that set.

The definition of m implies S′(Dt) > 0 for all Dt in the non-empty set (m,M), S′(m) = 0, and

S′′(m) ≥ 0. If S′′(m) = 0, then differentiation of (4.4) and (4.13) at m yields S′′′(m) < 0, which

contradicts S′(Dt) > S′(m) = 0 for Dt > m. Hence, S′′(m) > 0, which in turn implies S′(Dt) < 0

for Dt smaller than and close to M

Suppose next, by contradiction, that there exists Dt < m such that S′(Dt) ≥ 0, and consider

the supremum m1 within that set. The definition of m1 implies that S′(Dt) < 0 for all Dt in the

non-empty set (m1,m), S′(m1) = 0, and S′′(m1) ≤ 0.

Substituting S′(m) = 0 and S′′(m) > 0 in (4.4) and (4.13), we find that in both cases

m− rS(m) < 0. (E.5)

Likewise, substituting S′(m1) = 0 and S′′(m1) ≤ 0 in (4.4) and (4.13), we find

m1 − rS(m1) ≥ 0. (E.6)

Equations (E.5) and (E.6) imply

S(m)− S(m1) >
m−m1

r
> 0,

which contradicts S′(Dt) < 0 for all Dt ∈ (m1,m). Hence, either S′(Dt) > 0 for all Dt, or there

exists m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ] and S′(Dt) < 0 for all Dt < m. In the

latter case, (E.5) implies S(m) > m
r > 0.

Lemma E.3 shows a monotonicity property of the solution with respect to the initial conditions.

If a solution S1(Dt) lies below another solution S2(Dt) at M , and their first derivatives are equal

at M , then S1(Dt) lies below S2(Dt) for all Dt < M , while the comparison reverses for the first

derivatives.

Lemma E.3. [Monotonicity over initial conditions] Consider two solutions S1(Dt) and S2(Dt)

derived in Lemma E.1 for Φ1 and Φ2 > Φ1, respectively. For all Dt < M , S1(Dt) < S2(Dt) and

S′
1(Dt) > S′

2(Dt).

Proof of Lemma E.3. Equation (E.1) implies S′
1(M) = S′

2(M). Equations (E.3) and Φ1 < Φ2

imply S1(M) < S2(M) and S′′
1 (M) < S′′

2 (M). Combining the latter inequality with S′
1(M) =

S′
2(M), we find S′

1(Dt) > S′
2(Dt) for Dt smaller than and close to M . Moreover, by continuity,

S1(Dt) < S2(Dt) for Dt smaller than and close to M . Suppose, by contradiction, that there exists
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Dt < M such that S1(Dt) ≥ S2(Dt) or S
′
1(Dt) ≤ S′

2(Dt), and consider the supremum m within that

set. The definition of m implies S1(Dt) < S2(Dt) and S′
1(Dt) > S′

2(Dt) for all Dt in the non-empty

set (m,M), and S1(m) = S2(m) or S′
1(m) = S′

2(m).

Since S1(M) < S2(M) and S′
1(Dt) > S′

2(Dt) for all Dt ∈ (m,M), S1(m) < S2(m). Hence,

S′
1(m) = S′

2(m). Equations (4.4) and (4.13) both imply, however, that since S1(m) < S2(m),

S′′
1 (m) < S′′

2 (m). Hence, S′
1(Dt) < S′

2(Dt) for Dt close to and larger than m, a contradiction.

Lemma E.4 derives properties of the solution for Φ = 0. For this and subsequent results, we

use the function Z(Dt) defined by

Z(Dt) ≡ (κD̄ + rDt)S
′(Dt)− rS(Dt).

Lemma E.4. [Solution for Φ = 0] The solution S(Dt) derived in Lemma E.1 has the following

properties for Φ = 0:

� When θ > η, the solution satisfies Z(ϵ) < 0 if it can be defined in [ϵ,M ], and satisfies

limDt→ϵ̂ S
′(Dt) = −∞ and limDt→ϵ̂ S(Dt) > 0 if it explodes at ϵ̂ ≥ ϵ.

� When θ < η, the solution can be defined in [ϵ,M ], and satisfies Z(ϵ) > 0.

Proof of Lemma E.4. We start with the case θ > η. Suppose first that there exists Dt < M

such that S′(Dt) ≤ 0. Lemma E.2 implies that there exists a unique m < M such that S′(Dt) > 0

for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m, and S(m) > 0. Hence, if the solution can be defined

in [ϵ,M ], it satisfies

(κD̄ + rϵ)S′(ϵ) ≤ 0 < rS(m) ≤ rS(ϵ),

which implies Z(ϵ) < 0. If instead the solution explodes at ϵ̂ ≥ ϵ, it satisfies limDt→ϵ̂ S
′(Dt) = −∞

and limDt→ϵ̂ S(Dt) > S(m) > 0.

Suppose next that S′(Dt) > 0 for all Dt ≤ M . We will show that the solution is convex, can be

defined in [ϵ,M ], and satisfies Z(ϵ) < 0. We first show that S′′′(M) < 0. We write the ODE (4.13)

as

1

2
σ2S′′(Dt) =

ρ(θ − xη)

1− x
σ2S′(Dt)

2−ρ sgn(θ − η)xL

1− x
σ

1√
Dt

S′(Dt)−1+
rS(Dt)− κD̄S′(Dt)

Dt
+κS′(Dt).

(E.7)
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Differentiating both sides, we find

1

2
σ2S′′′(Dt) =2

ρ(θ − xη)

1− x
σ2S′(Dt)S

′′(Dt)−
ρ sgn(θ − η)xL

1− x
σ

 1√
Dt

S′′(Dt)−
1

2D
3
2
t

S′(Dt)


+

rS′(Dt)− κD̄S′′(Dt)

Dt
− rS(Dt)− κD̄S′(Dt)

D2
t

+ κS′′(Dt). (E.8)

Setting Dt = M in (E.8) and using S′′(M) = Φ = 0, we find

1

2
σ2S′′′(M) =

ρ sgn(θ − η)xL

1− x
σ

1

2M
3
2

S′(M) +
rS′(M)

M
− rS(M)− κD̄S′(M)

M2

= −ρ sgn(θ − η)xL

1− x
σ

1

2M
3
2

S′(M) < 0, (E.9)

where the second step follows by substituting S(M) from (E.2) and using again Φ = 0.

Since S′′′(M) < 0 and S′′(M) = 0, S′′(Dt) > 0 for Dt smaller than and close to M . Suppose,

by contradiction, that there exists Dt < M such that S′′(Dt) ≤ 0, and consider the supremum

m within that set. The definition of m implies that S′′(Dt) > 0 for all Dt in the non-empty set

(m,M), S′′(m) = 0, and S′′′(m) ≥ 0.

Suppose that m lies in the constrained region. Setting Dt = m in (E.8), and using S′′(m) = 0

and S′′′(m) ≥ 0, we find

ρ sgn(θ − η)xL

1− x
σ

1

2m
3
2

S′(m) +
rS′(m)

m
− rS(m)− κD̄S′(m)

m2
≥ 0

⇔ −ρ sgn(θ − η)xL

1− x
σ

1

2m
3
2

S′(m) +
1

m

(
ρ(θ − xη)

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
≥ 0,

(E.10)

where the second step follows by substituting S(m) from (4.13) and using again S′′(m) = 0. The

contradiction follows because both terms in the left-hand side of (E.10) are negative. The first

term is negative because S′(m) > 0. The second term is negative because (i) S′′(Dt) > 0 for all

Dt ∈ (m,M) implies S′(m) < S′(M), and (ii) the latter inequality together with S′(m) > 0 imply

that the left-hand side of (E.4) becomes negative when S′(M) is replaced by S′(m).

Suppose next that m lies in the unconstrained region. The ODE (4.4) yields the following

counterpart of (E.8):

1

2
σ2S′′′(Dt) = 2ρθσ2S′(Dt)S

′′(Dt)+
rS′(Dt)− κD̄S′′(Dt)

Dt
− rS(Dt)− κD̄S′(Dt)

D2
t

+κS′′(Dt). (E.11)

Setting Dt = m in (E.11), and using S′′(m) = 0, S′′′(m) ≥ 0, and (4.4), we find the following
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counterpart of (E.10):

1

m

(
ρθσ2S′(m)2 + (r + κ)S′(m)− 1

)
≥ 0. (E.12)

The contradiction follows because (i) S′′(Dt) > 0 for all Dt ∈ (m,M) implies S′(m) < S′(M),

(ii) the latter inequality together with S′(m) > 0 imply that the left-hand side of (E.4) becomes

negative when S′(M) is replaced by S′(m), and (iii) the left-hand side of (E.4) being negative and

θ > η imply that the left-hand side of (E.12) is negative. Since S′′(Dt) > 0 for all Dt < M , S(Dt)

is convex.

If the solution explodes at ϵ̂ ≥ ϵ, then convexity implies limDt→ϵ̂ S
′(Dt) = −∞, contradicting

S′(Dt) > 0 for all Dt. Hence, the solution can be defined in [ϵ,M ]. Moreover, convexity implies

rS(ϵ) ≥ rS(M) + r(ϵ−M)S′(M)

= (κD̄ + rϵ)S′(M) +
ρ sgn(θ − η)xL

1− x
σ
√
MS′(M), (E.13)

where the second step follows by substituting S(M) from (E.2) and using Φ = 0. Equation (E.13)

implies Z(ϵ) < 0 because S′(M) > 0 and S′(M) > S′(ϵ).

We next consider the case θ < η. We will show that the solution is concave, can be defined

in [ϵ,M ], and satisfies Z(ϵ) > 0. Equation (E.9) implies S′′′(M) > 0. Since S′′′(M) > 0 and

S′′(M) = 0, S′′(Dt) < 0 for Dt smaller than and close to M . Suppose, by contradiction, that there

exists Dt < M such that S′′(Dt) ≥ 0, and consider the supremum m within that set. The definition

of m implies that S′′(Dt) < 0 for all Dt in the non-empty set (m,M), S′′(m) = 0, and S′′′(m) ≤ 0.

Suppose that m lies in the unconstrained region. Since S′′(m) = 0 and S′′′(m) ≤ 0, (E.12) holds

as an inequality in the opposite direction, i.e.,

1

m

(
ρθσ2S′(m)2 + (r + κ)S′(m)− 1

)
≤ 0. (E.14)

When η > θ > xη, (E.14) yields a contradiction because (i) S′′(Dt) < 0 for all Dt ∈ (m,M) implies

S′(m) > S′(M), (ii) the latter inequality implies that the left-hand side of (E.4) becomes positive

when S′(M) is replaced by S′(m), and (iii) the left-hand side of (E.4) being positive and θ < η

imply that the left-hand side of (E.14) is positive. When, however, xη > θ, (E.14) does not yield

a contradiction because the left-hand side of (E.4) is hump-shaped for positive values of S′(M),

rather than increasing. It increases until the mid-point between the two positive roots, and then

decreases to −∞.
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To derive a contradiction when xη > θ, we examine the behavior of Z(Dt) in (m,M). Since

Z ′(Dt) = (κD̄ + rDt)S
′′(Dt) < 0 (E.15)

for all Dt ∈ (m,M), Z(Dt) is decreasing in (m,M). Moreover, (E.2) and Φ = 0 imply

Z(M) = (κD̄ + rM)S′(M)− rS(M) = −ρ sgn(θ − η)xL

1− x
σ
√
MS′(M), (E.16)

and (4.4) and S′′(m) = 0 imply

Z(m) = (κD̄ + rm)S′(m)− rS(m) = m
(
ρθσ2S′(m)2 + (r + κ)S′(m)− 1

)
. (E.17)

Since Z(Dt) is decreasing,

Z(m) > Z(M)

⇔ m
(
ρθσ2S′(m)2 + (r + κ)S′(m)− 1

)
> −ρ sgn(θ − η)xL

1− x
σ
√
MS′(M) > 0, (E.18)

where the second step follows from (E.16) and (E.17). Equation (E.18) contradicts (E.14).

Suppose next that m lies in the constrained region. Since S′′(m) = 0 and S′′′(m) ≤ 0, (E.10)

holds as an inequality in the opposite direction, i.e.,

−ρ sgn(θ − η)xL

1− x
σ

1

2m
3
2

S′(m) +
1

m

(
ρ(θ − xη)

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
≤ 0. (E.19)

When η > θ > xη, (E.19) yields a contradiction because both terms in the left-hand side are

positive. The first term is positive because S′(m) > 0. The second term is positive because (i)

S′′(Dt) < 0 for all Dt ∈ (m,M) implies S′(m) > S′(M), and (ii) the latter inequality implies

that the left-hand side of (E.4) becomes positive when S′(M) is replaced by S′(m). To derive a

contradiction when xη > θ, we examine the behavior of Z(Dt) in (m,M). Equations (4.13) and

S′′(m) = 0 imply

Z(m) = (κD̄ + rm)S′(m)− rS(m)

= m

(
ρ(θ − xη)

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
− ρ sgn(θ − η)xL

1− x
σ
√
mS′(m). (E.20)
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Equation (E.15) implies

Z(m) = Z(M)−
∫ M

m
(κD̄ + rDt)S

′′(Dt)dDt

⇒ Z(m) ≥ Z(M)−
∫ M

m
rmS′′(Dt)dDt

⇔ Z(m) > Z(M) + rm[S′(m)− S′(M)]

⇔ m

(
ρ(θ − xη)

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1

)
− ρ sgn(θ − η)xL

1− x
σ
√
mS′(m)

> −ρ sgn(θ − η)xL

1− x
σ
√
MS′(M) + rm[S′(m)− S′(M)], (E.21)

where the last step follows from (E.16) and (E.20). Combining (E.19) and (E.21), we find

− ρ sgn(θ − η)xL

1− x
σ

√
m

2
S′(m) > −ρ sgn(θ − η)xL

1− x
σ
√
MS′(M) + rm[S′(m)− S′(M)]

⇔ ρxL

1− x
σ

√
m

2
S′(m)− rm[S′(m)− S′(M)] >

ρxL

1− x
σ
√
MS′(M). (E.22)

The left-hand side of (E.22) is linear in S′(m). Since S′′(Dt) < 0 for all Dt ∈ (m,M), S′(m) is

bounded below by S′(M). To derive an upper bound for S′(m), we note that since S′(m) > S′(M),

(E.21) implies

ρ(θ − xη)

1− x
σ2S′(m)2 + (r + κ)S′(m)− 1 +

ρxL

1− x
σ

1√
m
S′(m) > 0.

Hence, S′(m) is smaller than the larger positive root of the quadratic equation

ρ(θ − xη)

1− x
σ2S′(m)2 +

(
r + κ+

ρxL

1− x
σ

1√
m

)
S′(m)− 1 = 0,

which is

−

(
r + κ+ ρxL

1−xσ
1√
m

)
+

√(
r + κ+ ρxL

1−xσ
1√
m

)2
+ 4ρ(θ−xη)σ2

1−x

2ρ(θ−xη)σ2

1−x

.

This root is, in turn, smaller than

−

(
r + κ+ ρxL

1−xσ
1√
m

)
+
(
r + κ+ ρxL

1−xσ
1√
m

)√
1 +

4
ρ(θ−xη)σ2

1−x

(r+κ)2

2ρ(θ−xη)σ2

1−x

= S∗ +
B√
m
,
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where S∗ is the larger positive root of (E.4) and

B ≡ −
ρxL
1−xσ + ρxL

1−x

√
1 +

4
ρ(θ−xη)σ2

1−x

(r+κ)2

2ρ(θ−xη)σ2

1−x

> 0.

When S′(m) in (E.22) is set to S′(M), the left-hand side is smaller than the right-hand side. When

S′(m) in (E.22) is set to the upper bound S∗ + B√
m
, the left-hand side is a quadratic function

of
√
m, with the coefficient of (

√
m)2 = m being −r[S∗ − S′(M)] < 0. It is, therefore, bounded

above, and smaller than the right-hand side for sufficiently large M . Hence, (E.22) does not hold,

a contradiction. Since S′′(Dt) < 0 for all Dt < M , S(Dt) is concave.

If the solution explodes at ϵ̂ ≥ ϵ, then concavity implies limDt→ϵ̂ S
′(Dt) = ∞. The right-hand

side of (4.4) and (4.13) is of order S′(Dt)
2 for Dt close to ϵ̂. The left-hand side, however, does not

exceed

Dt + κ(D̄ −Dt)S
′(Dt)− rS(Dt)

≤ Dt + κ(D̄ −Dt)S
′(Dt)− rS(M)− r(Dt −M)S′(Dt),

where both the first and the second steps follow from concavity. Hence, the left-hand side is

bounded by a term of order S′(Dt), a contradiction. Therefore, the solution does not explode and

can be defined in [ϵ,M ]. Equation Z(ϵ) > 0 holds because Z(Dt) is decreasing and Z(M) > 0 from

(E.16).

Lemma E.5 derives properties of the solution for |Φ| large.

Lemma E.5. [Solution for large |Φ|] The solution S(Dt) derived in Lemma E.1 has the following

properties:

� When θ > η and Φ is negative and large, the solution can be defined in [ϵ,M ], and satisfies

Z(ϵ) > 0.

� When θ < η and Φ is positive and large, the solution satisfies Z(ϵ) < 0 if it can be defined in

[ϵ,M ], and satisfies limDt→ϵ̂ S
′(Dt) = −∞ and limDt→ϵ̂ S(Dt) > 0 if it explodes at ϵ̂ ≥ ϵ.

Proof of Lemma E.5. We start with the case θ > η. Suppose that Φ is negative and sufficiently

large so that S(M) defined by (E.2) is negative. We will show that S′(Dt) > 0 and S′′(Dt) < 0

for all Dt. Both inequalities hold by continuity for Dt smaller than and close to M . Suppose, by

contradiction, that there exists Dt < M such that S′(Dt) ≤ 0 or S′′(Dt) ≥ 0, and consider the
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supremum m within that set. The definition of m implies S′(Dt) > 0 and S′′(Dt) < 0 for all Dt in

the non-empty set (m,M), and S′(m) = 0 or S′′(m) = 0.

Since S′(M) > 0 and S′′(Dt) < 0 for all Dt ∈ (m,M), S′(m) > 0. Hence, S′′(m) = 0. Since, in

addition, S(M) < 0 and S′(Dt) > 0 for all Dt ∈ (m,M), S(m) < 0. Setting Dt = m in (E.8) and

(E.11), and using S(m) < 0, S′(m) > 0 and S′′(m) = 0, we find S′′′(m) > 0. Hence, S′′(Dt) > 0 for

Dt close to and larger than m, a contradiction. Therefore, S′(Dt) > 0 and S′′(Dt) < 0 for all Dt.

Since the solution is concave, we can use the same argument as in the proof of Lemma E.4 in

the case θ < 0, to show that the solution does not explode at ϵ̂ ≥ ϵ. Hence, the solution can be

defined in [ϵ,M ]. It satisfies Z(ϵ) > 0 because S(ϵ) < 0 and S′(ϵ) > 0.

We next consider the case θ < η. We will show, by contradiction, that there exists Dt < M

such that S′(Dt) ≤ 0. Existence of such a Dt will imply, from Lemma E.2, existence of a unique

m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m, and S(m) > 0.

Hence, if the solution can be defined in [ϵ,M ], it satisfies

(κD̄ + rϵ)S′(ϵ) ≤ 0 < rS(m) ≤ rS(ϵ),

which implies Z(ϵ) < 0. If instead the solution explodes at ϵ̂ ≥ ϵ, it satisfies limDt→ϵ̂ S
′(Dt) = −∞

and limDt→ϵ̂ S(Dt) > S(m) > 0.

To derive the contradiction, we assume that S′(Dt) > 0 for all Dt ≤ M , and will show that

S′′(Dt) is bounded below by Φ
2 . Continuity yields the bound S′′(Dt) ≥ Φ

2 for Dt smaller than

and close to M because S′(M) = Φ. Suppose, by contradiction, that there exists Dt such that

S′′(Dt) <
Φ
2 , and consider the supremum within that set. The definition of m implies S′′(m) > Φ

2

for all Dt in the non-empty set (m,M), and S′′(m) = Φ
2 .

If m lies in the constrained region, (4.13) implies

1

2
σ2S′′(m) =

ρ(θ − xη)

1− x
σ2S′(m)2 − ρ sgn(θ − η)xL

1− x
σ

1√
m
S′(m)− 1 +

rS(m)− κ(D̄ −m)S′(m)

m

≥ ρ(θ − xη)

1− x
σ2S′(m)2 − 1 +

rS(M) + rS′(M)(m−M)− κ(D̄ −m)S′(m)

m

=
ρ(θ − xη)

1− x
σ2S′(m)2 − 1

+
κD̄(S′(M)− S′(m)) + 1

2σ
2MΦ+

ρ sgn(θ−η)xL
1−x σ

√
MS′(M) + rmS′(M) + κmS′(m)

m

>
ρ(θ − xη)

1− x
σ2S′(M)2 − 1 +

1
2σ

2MΦ− ρxL
1−xσ

√
MS′(M)

m
, (E.23)
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where the second step follows from S′(m) > 0 and because convexity implies

S(m) ≥ S(M) + S′(M)(m−M),

the third step follows by substituting S(M) from (E.2), and the fourth step follows because S′(M) >

S′(m) > 0. Since for sufficiently large Φ,

1

2
σ2MΦ− ρxL

1− x
σ
√
MS′(M) > 0,

the right-hand side of (E.23) is bounded below by

ρ(θ − xη)

1− x
σ2S′(M)2 − 1 +

1

2
σ2Φ− ρxL

1− x
σ

1√
M

S′(M),

which, in turn, is bounded below by 1
4σ

2Φ for sufficiently large Φ. Hence, (E.23) implies that S′′(m)

exceeds Φ
2 , a contradiction. If m lies in the unconstrained region, we can follow the same steps to

derive a counterpart of (E.23) using (4.4), and then derive a contradiction. Hence, S′′(Dt) ≥ Φ
2 for

all Dt ≤ M .

If the solution explodes at ϵ̂ ≥ ϵ, then convexity implies limDt→ϵ̂ S
′(Dt) = −∞. This is ruled

out, however, by S′(Dt) > 0 for all Dt ≤ M . Hence, the solution can be defined in [ϵ,M ].

Since, however, S′′(Dt) is bounded below by Φ
2 , and S′(M) is independent of Φ, S′(ϵ) is negative

for sufficiently large Φ. This contradicts our assumption that S′(Dt) > 0 for all Dt ≤ M , and

establishes that there exists Dt < M such that S′(Dt) ≤ 0.

Taken together, Lemmas E.4 and E.5 show that for two extreme values of Φ (Φ = 0 and |Φ|
large) the solution lies on two different “sides” of the equation Z(ϵ) = 0, which we use as boundary

condition at ϵ. Lemma E.6 uses these results and a continuity argument to show that there exists

Φ such that Z(ϵ) = 0 holds. It also uses the monotonicity property of the solution shown in Lemma

E.3 to establish that this Φ is unique.

Lemma E.6. [Existence in compact interval with conditions at both boundaries] Con-

sider an interval [ϵ,M ], with ϵ sufficiently small and M sufficiently large. A solution S(Dt) to

the system of ODEs (4.4) in the unconstrained region (4.11), and (4.13) in the constrained region

(4.14), with the boundary conditions (E.1) and Z(ϵ) = 0 exists in [ϵ,M ] and is unique. Moreover,

S′′(M) < 0 when θ > η, and S′′(M) > 0 when θ < η.

Proof of Lemma E.6. We denote by ZΦ(ϵ) the value of Z(ϵ) for the solution S(Dt) derived

in Lemma E.1. If limDt→ϵ̂ S
′(Dt) = −∞ for ϵ̂ ≥ ϵ, in which case limDt→ϵ̂ S(Dt) > 0, we set
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ZΦ(ϵ) = −∞. If limDt→ϵ̂ S
′(Dt) = ∞ for ϵ̂ ≥ ϵ, in which case limDt→ϵ̂ S(Dt) is finite or −∞, we

set ZΦ(ϵ) = ∞.

Lemma E.3 implies that for Φ1 < Φ2, ZΦ1(ϵ) > ZΦ2(ϵ) if ZΦ1(ϵ) and ZΦ2 are finite, ZΦ2(ϵ) = −∞
if ZΦ1(ϵ) = −∞, and ZΦ1(ϵ) = ∞ if ZΦ2(ϵ) = ∞. Hence, ZΦ(ϵ) is equal to ∞ in an interval

(−∞,
¯
Φ], is finite and decreasing in an interval (

¯
Φ, Φ̄), and is equal to −∞ in the remaining interval

[Φ̄,∞). Continuity of the solution with respect to the initial conditions implies that ZΦ(ϵ) is

continuous in Φ in (
¯
Φ, Φ̄). Moreover, if

¯
Φ is finite, then limΦ→

¯
Φ

Φ>
¯
Φ

ZΦ(ϵ) = ∞, and if Φ̄ is finite, then

limΦ→Φ̄
Φ<Φ̄

ZΦ(ϵ) = −∞.

When θ > η, Lemma E.4 implies that Z0(ϵ) is negative and possibly equal to −∞, and Lemma

E.5 implies that ZΦ(ϵ) is positive and finite for Φ negative and large. Hence,
¯
Φ = −∞. If Φ̄ > 0,

then continuity and monotonicity of ZΦ(ϵ) in (−∞, 0], limΦ→−∞ ZΦ(ϵ) > 0, and Z0(ϵ) < 0 imply

that there exists a unique Φ ∈ (−∞, 0) such that ZΦ(ϵ) = 0. If Φ̄ ≤ 0, then continuity and

monotonicity of ZΦ(ϵ) in (−∞, Φ̄), limΦ→−∞ ZΦ(ϵ) > 0, and limΦ→Φ̄
Φ<Φ̄

ZΦ(ϵ) = −∞ imply that there

exists a unique Φ ∈ (−∞, Φ̄) such that ZΦ(ϵ) = 0. In both cases, there exists a unique Φ ∈ (−∞, 0)

such that ZΦ(ϵ) = 0. The solution S(Dt) derived in Lemma E.1 for this Φ satisfies Z(ϵ) = 0 and

S′′(M) = Φ < 0.

When θ < η, Lemma E.4 implies that Z0(ϵ) is positive and finite, and Lemma E.5 implies that

ZΦ(ϵ) is negative and possibly equal to −∞ for Φ positive and large. Hence,
¯
Φ < 0 and Φ̄ > 0. If

Φ̄ < ∞, then continuity and monotonicity of ZΦ(ϵ) in [0, Φ̄), Z0(ϵ) > 0 and limΦ→Φ̄
Φ<Φ̄

ZΦ(ϵ) = −∞
imply that there exists a unique Φ ∈ (0, Φ̄) such that ZΦ(ϵ) = 0. If Φ̄ = ∞, then continuity

and monotonicity of ZΦ(ϵ) in [0,∞), Z0(ϵ) > 0 and limΦ→∞ ZΦ(ϵ) < 0 imply that there exists a

unique Φ ∈ (0,∞) such that ZΦ(ϵ) = 0. In both cases, there exists a unique Φ ∈ (0,∞) such

that ZΦ(ϵ) = 0. The solution S(Dt) derived in Lemma E.1 for this Φ satisfies Z(ϵ) = 0 and

S′′(M) = Φ > 0.

Lemmas E.7-E.11 show properties of the solution derived in Lemma E.6. Lemma E.7 shows

that the solution is increasing in Dt.

Lemma E.7. [Monotonicity and Positivity] For the solution derived in Lemma E.6, S(Dt) > 0

and S′(Dt) > 0 for all Dt ∈ [ϵ,M ].

Proof of Lemma E.7. The solution derived in Lemma E.6 coincides with that derived in Lemma

E.1 for a specific value of Φ. Hence, Lemma E.2 implies that either S′(Dt) > 0 for all Dt, or there

exists m < M such that S′(Dt) > 0 for all Dt ∈ (m,M ], S′(Dt) < 0 for all Dt < m, and S(m) > 0.

In the second case, S′(ϵ) ≤ 0 and S(ϵ) > 0, contradicting Z(ϵ) = 0.
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Since S′(ϵ) > 0, Z(ϵ) = 0 implies S(ϵ) > 0. Combining S(ϵ) > 0 with S′(Dt) > 0 for all Dt, we

find S(Dt) > 0 for all Dt.

Lemma E.8 compares the solution derived in Lemma E.6 to the affine solution derived in

Proposition 4.1 for L̂ = ∞. It shows that the former solution lies below the latter when θ > η, and

above it when θ < η.

Lemma E.8. [Comparison with the affine solution for L̂ = ∞] Consider the solution derived

in Lemma E.6, and the affine solution a0+a1Dt derived in Proposition 4.1 for L̂ = ∞. When θ > η,

S(Dt) < a0 + a1Dt for all Dt ∈ [ϵ,M ], and when θ < η, S(Dt) > a0 + a1Dt for all Dt ∈ [ϵ,M ].

Proof of Lemma E.8. We start with the case θ > η, and consider the problem of maximizing

V (Dt) ≡ S(Dt)− (a0 + a1Dt),

over the compact set [ϵ,M ]. The result in the lemma will follow if we show that the maximum

value Vmax of V (Dt) is negative. Using (4.6), we can write V (Dt) as

V (Dt) = S(Dt)−
a1
r
(κD̄ + rDt).

Suppose first that V (Dt) is maximized at Dt = M . Using (E.2), we can write V (M) as

V (M) =
1

r

(
(κD̄ + rM)(S′(M)− a1) +

1

2
σ2MΦ+

ρ sgn(θ − η)xL

1− x
σ
√
MS′(M)

)
. (E.24)

Equations (4.7) and (E.1) imply that a1 and S′(M) are independent of M , and that S′(M) < a1.

Since, in addition Φ < 0, (E.24) implies that Vmax = V (M) < 0 for M sufficiently large.

Suppose next that V (Dt) is maximized at an interior point m ∈ (ϵ,M) that lies in the con-

strained region. The first- and second-order conditions of the maximization problem are S′(m) = a1

and S′′(m) ≤ 0. Setting Dt = m in (4.13) and using S′(m) = a1 and S′′(m) ≤ 0, we find

m+ κ(D̄ −m)a1 − rS(m) ≥ ρ(θ − xη)

1− x
σ2ma21 −

ρ sgn(θ − η)xL

1− x
σ
√
ma1

⇒ m+ κ(D̄ −m)a1 − rS(m) >
ρ(θ − xη)

1− x
σ2ma21 −

ρ(θ − η)x

1− x
σ2ma21

⇔ m+ κ(D̄ −m)a1 − rS(m) > ρθσ2ma21

⇔ (κD̄ + rm)a1 − rS(m) > 0

⇔ Vmax = V (m) < 0, (E.25)
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where the second step follows from (4.14) and the fourth step follows from (B.2).

Suppose next that V (Dt) is maximized at an interior point m ∈ (ϵ,M) that lies in the uncon-

strained region. Setting Dt = m in (4.4) and using S′(m) = a1 and S′′(m) ≤ 0, we find

m+ κ(D̄ −m)a1 − rS(m) ≥ ρθσ2ma21

⇔ (κD̄ + rm)a1 − rS(m) ≥ 0

⇔ Vmax = V (m) ≤ 0, (E.26)

To show that (E.26) holds as a strict inequality, we proceed by contradiction. If (E.26) holds as an

equality, then S(m) and S′(m) are the same as under the affine solution S(Dt) =
a1
r (κD̄ + rDt).

Hence, the solution derived in Lemma E.6 coincides with the affine solution in an interval in the

unconstrained region that includes m and that has a boundary with the constrained region at an

m1 ≥ m. Setting Dt = m1 in (E.8) and using S(m1) =
a1
r (κD̄+rm1), S

′(m1) = a1 and S′′(m1) = 0,

we find that the third derivative of S(Dt) from the right at m1 is

1

2
σ2S′′′(m1) =

ρ sgn(θ − η)xL

1− x
σ

1

2m
3
2
1

a1 > 0. (E.27)

Since S′′′(m1) > 0, S′′(Dt) is positive in a neigborhood to the right of m1, and hence S′(Dt) exceeds

a1. This means that V (Dt), which is equal to zero for all Dt ∈ [m,m1] because S(Dt) coincides

with the affine solution, increases to the right of m1, a contradiction since V (Dt) would then be

maximized in the constrained region.

If V (Dt) is maximized at ϵ, then S′(ϵ) ≤ a1 and hence,

Vmax = V (ϵ) = S(ϵ)− a1
r
(κD̄ + rϵ) =

1

r
(κD̄ + rϵ)(S′(ϵ)− a1) ≤ 0, (E.28)

where the second step follows from Z(ϵ) = 0. To show that (E.28) holds as a strict inequality, we

follow the same argument as in the case where V (Dt) is maximized at an interior point m in the

unconstrained region.

The argument in the case θ < η is symmetric. We consider the problem of minimizing V (Dt)

over [ϵ,M ], and show that the minimum value Vmin of V (Dt) is positive.

Suppose first that V (Dt) is minimized at Dt = M . Equations (4.7) and (E.1) imply that a1

and S′(M) are independent of M , and that S′(M) > a1. Since, in addition, Φ > 0, (E.24) implies

that Vmin = V (M) > 0 for M sufficiently large.

Suppose next that V (Dt) is maximized at an interior point m ∈ (ϵ,M) that lies in the con-

strained region. The first- and second-order conditions of the maximization problem are S′(m) = a1
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and S′′(m) ≥ 0. Setting Dt = m in (4.13), using S′(m) = a1 and S′′(m) ≤ 0, and proceeding as in

the derivation of (E.25), we find Vmax = V (m) > 0.

Suppose next that V (Dt) is maximized at an interior point m ∈ (ϵ,M) that lies in the uncon-

strained region. Setting Dt = m in (4.4), using S′(m) = a1 and S′′(m) ≥ 0, and proceeding as in

the derivation of (E.26), we find Vmax = V (m) ≥ 0. To show that (E.26) holds as a strict inequality,

we follow the same argument as in the case θ > η and find that (E.27) implies S′′′(m1) < 0. This

implies that V (Dt), which is equal to zero for all Dt ∈ [m,m1], decreases to the right of m1, a

contradiction since V (Dt) would then be minimized in the constrained region.

If V (Dt) is maximized at ϵ, then S′(ϵ) ≥ a1, and hence (E.28) implies Vmin = V (ϵ) ≥ 0. To

show that (E.28) holds as a strict inequality, we follow the same argument as in the case where

V (Dt) is maximized at an interior point m in the unconstrained region.

Note that since Z(ϵ) = 0 implies

S(ϵ)− a1
r
(κD̄ + rϵ) =

1

r
(κD̄ + rϵ)(S′(ϵ)− a1),

Lemma E.8 implies that S′(ϵ) < a1 when θ > η, and S′(ϵ) > a1 when θ < η.

Lemma E.9 shows that the constrained and the unconstrained regions have a single boundary

and hence do not alternate. Proving this result requires condition κD̄ > σ2

4 of Theorem 4.1. This

condition is required in all subsequent lemmas as well because they build on Lemma E.9, but is

not used in all previous lemmas.

Lemma E.9. [Single boundary between unconstrained and constrained region] There

exists m ∈ [ϵ,M ] such that the unconstrained region is [ϵ,m] and the constrained region is (m,M ].

Proof of Lemma E.9. The constrained region includes a neighborhood to the left of M , for

sufficiently large M , as shown in Lemma E.1. The unconstrained region includes a neighborhood

to the right of ϵ, for sufficiently small ϵ. This is because S′(ϵ) is bounded above uniformly for all

values of ϵ sufficiently small. When θ > η, the upper bound is a1. When θ < η, Lemma E.5 implies

that Φ is bounded above because otherwise Z(ϵ) < 0. The upper bound on Φ implies one on S(M)

from (E.2), which in turn implies one on S(ϵ) from Lemma E.7, which in turn implies one on S′(ϵ)

from Z(ϵ) = 0.

Consider the non-empty set of m > ϵ such that [ϵ,m] lies in the unconstrained region, and the

supremum m1 of that set. Consider the non-empty set of m > m1 such that (m1,m) lies in the

constrained region, and the supremum m2 of that set. Suppose, by contradiction, that m2 < M ,

in which case the unconstrained region begins again at m2. Consider, in that case, the non-empty
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set of m > ϵ such that [m2,m] lies in the unconstrained region, and the supremum m3 of that set.

Since the constrained region includes a neighborhood to the left of M , m3 < M .

Since (4.11) holds as an equality at mi, i = 1, 2, 3,

√
miS

′(mi) =
L

|θ − η|σ
≡ L̄. (E.29)

Since (4.11) holds to the left of mi, i = 1, 3, and (4.14) holds to the right of mi, the derivative of
√
DtS

′(Dt) is non-negative for Dt = mi, and hence

√
mS′′(mi) +

1

2
√
mi

S′(mi) ≥ 0 ⇔ miS
′′(mi) ≥ −S′(mi)

2
= − L̄

2

1
√
mi

for i = 1, 3, (E.30)

where the last step follows from (E.29). Conversely, since (4.14) holds to the left of m2, and (4.11)

holds to the right of m2, the derivative of
√
DtS

′(Dt) is non-positive for Dt = m2, and hence

m2S
′′(m2) ≤ −S′(m2)

2
= − L̄

2

1
√
m2

. (E.31)

Since (4.14) holds in (m1,m2),

S(m2)− S(m1) =

∫ m2

m1

S′(Dt)dDt >

∫ m2

m1

L

|θ − η|σ
1√
Dt

dDt = 2L̄(
√
m2 −

√
m1). (E.32)

Conversely, since (4.11) holds in (m2,m3),

S(m3)− S(m2) =

∫ m3

m2

S′(Dt)dDt ≤
∫ m3

m2

L

|θ − η|σ
1√
Dt

dDt = 2L̄(
√
m3 −

√
m2). (E.33)

The points mi, i = 1, 2, 3 satisfy (4.13) (as well as (4.4)). Setting Dt = mi in (4.13) and using

(E.29), we find

mi+κ(D̄−mi)L̄
1

√
mi

+
1

2
σ2miS

′′(mi)− rS(mi) =
ρ(θ − xη)

1− x
σ2L̄2− ρ sgn(θ − η)xL

1− x
σL̄. (E.34)
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Subtracting (E.34) for m2 from the same equation for m1, we find

m1 −m2 + L̄

[
κD̄

(
1

√
m1

− 1
√
m2

)
− κ(

√
m1 −

√
m2)

]
+

1

2
σ2
[
m1S

′′(m1)−m2S
′′(m2)

]
− r[S(m1)− S(m2)] = 0,

⇒ m1 −m2 + L̄
m2 −m1√
m1 +

√
m2

(
κD̄

1
√
m1m2

+ κ

)
+ L̄

σ2

4

(
1

√
m2

− 1
√
m1

)
+ 2L̄r(

√
m2 −

√
m1) < 0

⇒ L̄
√
m1 +

√
m2

(
κD̄ − σ2

4√
m1m2

+ κ+ 2r

)
− 1 < 0, (E.35)

where the second step follows from (E.30), (E.31) and (E.32), and the third step follows by dividing

throughout by m2 −m1 > 0. Subtracting (E.34) for m3 from the same equation for m2, and using

(E.30), (E.31) and (E.32), we similarly find

L̄
√
m2 +

√
m3

(
κD̄ − σ2

4√
m2m3

+ κ+ 2r

)
− 1 ≥ 0. (E.36)

Condition κD̄ − σ2

4 > 0 of Theorem 4.1 ensures that because m3 > m1, the left-hand side of

(E.35) is larger than the left-hand side of (E.36). This is a contradiction because the former should

be negative and the latter non-negative. Therefore, m2 = M , and the lemma holds by setting

m = m1.

Lemma E.10 shows that the solution is concave when θ > η, and convex when θ < η.

Lemma E.10. [Concavity/convexity] The solution derived in Lemma E.6 satisfies S′′(Dt) < 0

for all Dt ∈ [ϵ,M ] when θ > η, and S′′(Dt) > 0 for all Dt ∈ [ϵ,M ] when θ < η.

Proof of Lemma E.10. We start with the case θ > η. Lemma E.6 shows that S′′(M) < 0.

Moreover, setting Dt = ϵ in (4.4) and solving for S′′(ϵ), we find

1

2
σ2ϵS′′(ϵ) = ρθσ2ϵS′(ϵ)2 − κ(D̄ − ϵ)S′(ϵ) + rS(ϵ)− ϵ

= ρθσ2ϵS′(ϵ)2 + (r + κ)ϵS′(ϵ)− ϵ

= ϵ
(
ρθσ2S′(ϵ)2 + (r + κ)S′(ϵ)− 1

)
< 0, (E.37)

where the second step follows from Z(ϵ) = 0, and the last step because S′(ϵ) < a1.

Suppose, by contradiction, that there exists Dt ∈ (ϵ,M) such that S′′(Dt) ≥ 0, and consider
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the infimum m1 within that set. Since S′′(ϵ) < 0, m1 > ϵ. The definition of m1 implies S′′(Dt) < 0

for all Dt ∈ (ϵ,m1), S
′′(m1) = 0 and S′′′(m1) ≥ 0.

Suppose that m1 lies in the unconstrained region. Setting Dt = m1 in (E.11), and using

S′′(m1) = 0, S′′′(m1) ≥ 0 and (4.4), we find (E.12), written for m1 instead of m. The contradiction

follows because (i) S′′(Dt) < 0 for all Dt ∈ (ϵ,m1) implies S′(m1) < S′(ϵ) < a1, (ii) the latter

inequality together with S′(m1) > 0 imply that the left-hand side of (B.2) becomes negative when

a1 is replaced by S′(m1).

Suppose next that m1 lies in the constrained region and that S′′′(m1) > 0. Since S′′(m1) = 0,

S′′′(m1) > 0 implies that S′′(Dt) > 0 for Dt close to and larger than m1. We denote by m2 the

supremum of the set of m such that S′′(Dt) > 0 for all Dt ∈ (m1,m). Since S′′(M) < 0, m2 < M .

The definition of m2 implies S′′(Dt) > 0 for all Dt ∈ (m1,m2), S
′′(m2) = 0 and S′′′(m2) ≤ 0.

Setting Dt = m1 in (E.8), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and (4.13), we find (E.10), written

for m1 instead of m. Multiplying both sides by m1
S′(m1)

> 0, we rewrite that equation as

−ρ sgn(θ − η)xL

1− x
σ

1

2
√
m1

+
ρ(θ − xη)

1− x
σ2S′(m1) + r + κ− 1

S′(m1)
≥ 0. (E.38)

Since m2 exceeds m1, Lemma E.9 implies that it lies in the constrained region. Setting Dt = m2

in (E.8), and using S′′(m1) = 0, S′′′(m1) ≤ 0 and (4.13), we find (E.19), written for m2 instead of

m. Multiplying both sides by m2
S′(m2)

> 0, we rewrite that equation as

−ρ sgn(θ − η)xL

1− x
σ

1

2
√
m2

+
ρ(θ − xη)

1− x
σ2S′(m2) + r + κ− 1

S′(m2)
≤ 0. (E.39)

Since m2 > m1 and S′(m2) > S′(m1), the left-hand side of (E.39) is larger than the left-hand

side of (E.38). This is a contradiction because the former should be non-positive and the latter

non-negative.

Suppose finally that m1 lies in the constrained region and that S′′′(m1) = 0. If there exists

Dt > m1 such that S′′(Dt) > 0, then the same argument as in the case where S′′′(m1) > 0 yields

a contradiction. If S′′(Dt) ≤ 0 for all Dt > m1, then S′′(m1) = S′′′(m1) = 0 implies S′′′′(m1) ≤ 0.

To derive a contradiction, we differentiate twice (4.13) at Dt = m1. Using S′′(m1) = S′′′(m1) = 0,

we find

1

2
σ2m1S

′′′′(m1) =
ρ sgn(θ − η)xL

1− x
σ

1

4m
3
2
1

S′(m1) > 0. (E.40)

Hence, S′′(Dt) < 0 for all Dt ∈ [ϵ,M ].

We next consider the case θ < η. Lemma E.6 shows that S′′(M) > 0. Moreover, setting Dt = ϵ
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in (4.4), solving for S′′(ϵ), and using Z(ϵ) = 0, we find the following counterpart of (E.37)

1

2
σ2ϵS′′(ϵ) = ϵ

(
ρθσ2S′(ϵ)2 + (r + κ)S′(ϵ)− 1

)
. (E.41)

When θ > 0, (E.41) and S′(ϵ) > a1 imply S′′(ϵ) > 0. We next show the same result when θ < 0.

We rule out the cases S′(ϵ) < 0 and S′(ϵ) = 0 by contradiction arguments.

Suppose that S′′(ϵ) < 0. We denote by m1 the supremum of the set of m such that S′′(Dt) < 0

for all Dt ∈ [ϵ,m). Since S′′(M) > 0, m1 < M . The definition of m1 implies S′′(Dt) < 0 for all

Dt ∈ [ϵ,m1), S
′′(m1) = 0 and S′′′(m1) ≥ 0. Equations Z(ϵ) = 0, (E.15) and S′′(Dt) < 0 for all

Dt ∈ [ϵ,m1) imply Z(m1) < 0.

If m1 lies in the unconstrained region, (4.4) and S′′(m1) = 0 imply (E.17), written for m1

instead of m. Moreover, setting Dt = m1 in (E.11), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and

(4.4), we find (E.12), written for m1 instead of m. The two equations yield a contradiction when

combined with Z(m1) < 0.

If m1 lies in the constrained region, (4.13) and S′′(m1) = 0 imply (E.20), written for m1 instead

of m. Moreover, setting Dt = m1 in (E.8), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and (4.13), we find

(E.10), written for m1 instead of m. The two equations yield a contradiction when combined with

Z(m1) < 0, as can be seen by multiplying the latter equation by −m2
1 and adding it to the former

equation.

Suppose next that S′′(ϵ) = 0. Since S′(ϵ) > a1, (E.41) implies that θ < 0 and S′(ϵ) is equal to

the larger positive root of (B.2), which we denote by a∗1. Hence, S
′(ϵ) is the same as under the affine

solution S(Dt) =
a∗1
r (κD̄+rDt). The same is true for S(ϵ) because of Z(ϵ) = 0. Hence, the solution

derived in Lemma E.6 coincides with the affine solution in an interval in the unconstrained region

that includes ϵ and that has a boundary with the constrained region at an m1 ≥ m. Proceeding

as in the proof of Lemma E.8, we find that the third derivative of S(Dt) from the right at m1 is

negative, and hence S′′(Dt) is negative in a neigborhood to the right of m1. Since Z(m1) = 0, we

can then use the previous argument to derive a contradiction. This establishes that S′′(ϵ) > 0.

Suppose, by contradiction, that there exists Dt ∈ (ϵ,M) such that S′′(Dt) ≤ 0, and consider

the infimum m1 within that set. Since S′′(ϵ) > 0, m1 > ϵ. The definition of m1 implies S′′(Dt) > 0

for all Dt ∈ (ϵ,m1), S
′′(m1) = 0 and S′′′(m1) ≤ 0. Equations Z(ϵ) = 0, (E.15) and S′′(Dt) > 0 for

all Dt ∈ [ϵ,m1) imply Z(m1) > 0.

Suppose that m1 lies in the unconstrained region. Equations (4.4) and S′′(m1) = 0 imply

(E.17), written for m1 instead of m. Moreover, setting Dt = m1 in (E.11), and using S′′(m1) = 0,

S′′′(m1) ≤ 0 and (4.4), we find (E.14), written for m1 instead of m. The two equations yield a

contradiction when combined with Z(m1) > 0.
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Suppose next that m1 lies in the constrained region and that S′′′(m1) < 0. Since S′′(m1) = 0,

S′′′(m1) < 0 implies that S′′(Dt) < 0 for Dt close to and larger than m1. We denote by m2 the

supremum of the set of m such that S′′(Dt) < 0 for all Dt ∈ (m1,m). Since S′′(M) > 0, m2 < M .

The definition of m2 implies S′′(Dt) < 0 for all Dt ∈ (m1,m2), S
′′(m2) = 0 and S′′′(m2) ≥ 0.

Setting Dt = m1 in (E.8), and using S′′(m1) = 0, S′′′(m1) ≤ 0 and (4.13), we find (E.19), written

for m1 instead of m. Multiplying both sides by m2
1, we rewrite that equation as

−ρ sgn(θ − η)xL

1− x
σ

√
m1

2
S′(m1) +m1

(
ρ(θ − xη)

1− x
σ2S′(m1)

2 + (r + κ)S′(m1)− 1

)
≤ 0. (E.42)

Since m2 exceeds m1, Lemma E.9 implies that it lies in the constrained region. Setting Dt = m2

in (E.8), and using S′′(m1) = 0, S′′′(m1) ≥ 0 and (4.13), we find (E.10), written for m2 instead of

m. Multiplying both sides by m2
2, we rewrite that equation as

−ρ sgn(θ − η)xL

1− x
σ

√
m2

2
S′(m2)+m2

(
ρ(θ − xη)

1− x
σ2S′(m2)

2 + (r + κ)2S′(m2)− 1

)
≥ 0. (E.43)

Since S′′(Dt) < 0 for all Dt ∈ (m1,m2), Z(m2) < Z(m1) Using (E.20) to compute Z(m1) and

Z(m2), we find

m1

(
ρ(θ − xη)

1− x
σ2S′(m1)

2 + (r + κ)S′(m1)− 1

)
− ρ sgn(θ − η)xL

1− x
σ
√
m1S

′(m1)

> m2

(
ρ(θ − xη)

1− x
σ2S′(m2)

2 + (r + κ)S′(m2)− 1

)
− ρ sgn(θ − η)xL

1− x
σ
√
m2S

′(m2). (E.44)

Multiplying (E.42) by −1 and adding to the sum of (E.43) and (E.44), we find

−ρ sgn(θ − η)xL

1− x
σ

√
m1

2
S′(m1) > −ρ sgn(θ − η)xL

1− x
σ

√
m2

2
S′(m2),

and hence
√
m1S

′(m1) >
√
m2S

′(m2). Consider the value m̂ that minimizes the function
√
DtS

′(Dt)

over the compact set [m1,M ]. Since
√
m1S

′(m1) >
√
m2S

′(m2), m̂ > m1. Since S′′(M) > 0, the

function
√
DtS

′(Dt) is increasing for Dt close to and smaller than M , and hence m̂ < M . Since

m̂ is an interior minimum and not all n-order derivatives of
√
DtS

′(Dt) are zero at m̂ (proof of

Lemma E.1), the smallest n for which the n-order derivative is non-zero is even. Since m̂ is in the

constrained region,
√
m̂S′(m̂) ≥ L

|θ−η|σ . We can hence choose m̂1 < m̂2 < m̂3 in the constrained

region such that (i) m̂2 < m̂ < m̂3, (ii)
√
m̂1S

′(m̂1) =
√
m̂2S

′(m̂2) =
√
m̂3S

′(m̂3) ≡ L̄ > L
|θ−η|σ ,

(iii)
√
DtS

′(Dt) > L̄ for all Dt ∈ (m̂1, m̂2), and (iv)
√
DtS

′(Dt) < L̄ for all Dt ∈ (m̂2, m̂3). We can

then proceed as in the proof of Lemma E.9 to derive a contradiction. (In the proof of Lemma E.9,

L̄ = L
|θ−η|σ , but the proof works for any value of L̄.)

Suppose finally that m1 lies in the constrained region and that S′′′(m1) = 0. If there exists
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Dt > m1 such that S′′(Dt) < 0, then the same argument as in the case where S′′′(m1) < 0 yields

a contradiction. If S′′(Dt) ≥ 0 for all Dt > m1, then S′′(m1) = S′′′(m1) = 0 implies S′′′′(m1) ≥ 0.

To derive a contradiction, we differentiate twice (4.13) at Dt = m1. Using S′′(m1) = S′′′(m1) = 0,

we find

1

2
σ2m1S

′′′′(m1) =
ρ sgn(θ − η)xL

1− x
σ

1

4m
3
2
1

S′(m1) < 0. (E.45)

Hence, S′′(Dt) > 0 for all Dt ∈ [ϵ,M ].

Lemma E.11 completes the comparison of the solution derived in Lemma E.6 to the affine

solution derived in Proposition 4.1 for L̂ = ∞. It shows that the derivative of the former solution

lies below the derivative of the latter when θ > η, and above it when θ < η.

Lemma E.11. [Comparison with the derivative of the affine solution] Consider the solution

derived in Lemma E.6, and the affine solution a0 + a1Dt derived in Proposition 4.1 for L̂ = ∞.

When θ > η, S′(Dt) < a1 for all Dt ∈ [ϵ,M ], and when θ < η, S′(Dt) > a1 for all Dt ∈ [ϵ,M ].

Proof of Lemma E.11. When θ > η, the result follows because the solution is concave and

S′(ϵ) < a1. When θ < η, the result follows because the solution is convex and S′(ϵ) > a1.

Lemma E.12 shows that the comparisons in Lemmas E.8 and E.11 are reversed when they

concern the affine solution derived in Proposition 4.2 for L̂ = 0.

Lemma E.12. [Comparison with the affine solution for L = 0] Consider the solution derived

in Lemma E.6, and the affine solution a0+a1Dt derived in Proposition 4.2 for L̂ = 0. When θ > η,

S(Dt) > a0 + a1Dt and S′(Dt) > a1 for all Dt ∈ [ϵ,M). When θ < η, S(Dt) < a0 + a1Dt and

S′(Dt) < a1 for all Dt ∈ [ϵ,M).

Proof of Lemma E.12. When θ > η, S′(M) = a1 and concavity of S(Dt) imply S′(Dt) > a1 for

all Dt ∈ [ϵ,M). Hence, the function

V (Dt) ≡ S(Dt)− (a0 + a1Dt)

is increasing. That function is also positive because

V (ϵ) = S(ϵ)− (a0 + a1ϵ) =
1

r
(κD̄ + rϵ)(S′(ϵ)− a1) > 0,
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where the second step follows from Z(ϵ) = 0 and (4.6). Therefore, S(Dt) > a0 + a1Dt for all

Dt ∈ [ϵ,M ].

When θ < η, S′(M) = a1 and convexity of S(Dt) imply S′(Dt) < a1 for all Dt ∈ [ϵ,M). Hence,

the function V (Dt) is decreasing. That function is also negative because

V (ϵ) =
1

r
(κD̄ + rϵ)(S′(ϵ)− a1) < 0.

Therefore, S(Dt) < a0 + a1Dt for all Dt ∈ [ϵ,M ].

Lemma E.13 shows that if a solution to the system of ODEs exists in (0,∞) and its derivative

converges to finite limits at zero and infinity, then these limits are (almost) uniquely determined.

Lemma E.13. [Limits at zero and infinity] Consider a solution S(Dt) to the system of ODEs

(4.4) in the unconstrained region (4.11), and (4.13) in the constrained region (4.14), defined in

(0,∞). Suppose that S′(Dt) converges to finite limits at zero and infinity, denoted by S′(0) and

S′(∞), respectively. Then S′(∞) is a root of (E.4), and S′(0) satisfies Z(0) ≡ κD̄S′(0)−rS(0) = 0,

where S(0) denotes the limit of S(Dt) at zero.

Proof of Lemma E.13. We start with the limit at zero. Since limDt→0 S
′(Dt) exists and is finite,

the same is true for limDt→0 S(Dt). (The latter limit is S(Dt)−
∫ Dt

0 S′
(
D̂t

)
dD̂t for any given Dt).

Since limDt→0 S
′(Dt) exists and is finite, values of Dt close to zero lie in the unconstrained

region. Moreover, since limDt→0 S
′(Dt) and limDt→0 S(Dt) exist and are finite, taking the limit

of both sides of the ODE (4.4) when Dt goes to zero implies that limDt→0DtS
′′(Dt) exists and is

finite. If the latter limit differs from zero, then |S′′(Dt)| ≥ ℓ
Dt

for ℓ > 0 and for all Dt smaller than

a sufficiently small η > 0. Since, however, for Dt < η,

S′(Dt) = S′(η) +

∫ Dt

η
S′′(D̂t)dD̂t ⇒ |S′(Dt)− S′(η)| ≥

∫ η

Dt

ℓ

D̂t

dD̂t = ℓ log

(
η

Dt

)
,

limDt→0 S
′(Dt) is plus or minus infinity, a contradiction. Hence, limDt→0DtS

′′(Dt) = 0. Taking

the limit of (4.4) when Dt goes to zero, and using limDt→0 S
′(Dt) = S′(0), limDt→0 S

′(Dt) = S(0),

limDt→0DtS
′′(Dt) = 0, and the finiteness of S′(0) and S(0), we find Z(0) = 0.

We next consider the limit at infinity. Since limDt→∞ S′(Dt) exists and is finite, it is equal to

limDt→∞
S(Dt)
Dt

. This follows by writing S(Dt)
Dt

as

S(Dt)

Dt
=

S(0) +
∫ Dt

0 S′
(
D̂t

)
dD̂t

Dt
,
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and noting that limDt→∞
S(0)
Dt

= 0 and limDt→∞

∫Dt
0 S′(D̂t)dD̂t

Dt
= limDt→∞ S′(Dt).

Since limDt→∞ S′(Dt) exists and is finite, large values of Dt lie in the constrained region.

Dividing both sides of the ODE (4.13) by Dt, taking the limit when Dt goes to infinity, and using

the existence and finiteness of limDt→∞ S′(Dt) and limDt→∞
S(Dt)
Dt

, we find that limDt→∞ S′′(Dt)

exists and is finite. If the latter limit differs from zero, then |S′′(Dt)| ≥ ℓ > 0 for ℓ > 0 and for

all Dt sufficiently large, implying that limDt→0 S
′(Dt) is plus or minus infinity, a contradiction.

Taking the limit of (4.13) divided by Dt when Dt goes to infinity, and using limDt→∞ S′(Dt) =

limDt→0
S(Dt)
Dt

= S′(∞), limDt→0 S
′′(Dt) = 0, and the finiteness of S′(∞), we find that S′(∞) is a

root of (E.4).

Lemma E.14 shows that a solution to the system of ODEs with a derivative that converges

to finite limits at zero and infinity exists in (0,∞), and has the properties in Lemmas E.7-E.11.

Theorem 4.1 follows from Lemma E.14.

Lemma E.14. [Existence in (0,∞)] A solution S(Dt) to the system of ODEs (4.4) in the uncon-

strained region (4.11), and (4.13) in the constrained region (4.14), with a derivative that converges

to finite limits at zero and infinity exists in (0,∞), and has the properties in Lemmas E.7-E.12.

Proof of Lemma E.14. We will construct the solution in (0,∞) as the simple limit of solutions

in compact intervals [ϵ,M ]. We denote by Sϵ,M (Dt) the solution derived in Lemma E.6, and by

Φϵ,M and Zϵ,M (Dt) the corresponding values of Φ and Z(Dt).

We start with the case θ > η, and first derive the limit when ϵ goes to zero, holding M constant.

Consider ϵ1 > ϵ2 > 0, and suppose, by contradiction, that Φϵ2,M ≤ Φϵ1,M . Lemma E.3 then implies

Sϵ2,M (ϵ1) ≤ Sϵ1,M (ϵ1) and S′
ϵ2,M

(ϵ1) ≥ S′
ϵ1,M

(ϵ1), which in turn imply Zϵ2,M (ϵ1) ≥ Zϵ1,M (ϵ1) = 0.

This is a contradiction because S′′
ϵ2,M

(Dt) < 0 and Zϵ2,M (ϵ2) = 0 imply Zϵ2,M (ϵ1) < 0. Hence,

Φϵ2,M > Φϵ1,M , and Lemma E.3 implies Sϵ2,M (Dt) > Sϵ1,M (Dt) and S′
ϵ2,M

(Dt) < S′
ϵ1,M

(Dt) for all

Dt ∈ (ϵ1,M).

Since for given Dt ∈ (0,M), the function ϵ → Sϵ,M (Dt), defined for ϵ < Dt, increases as ϵ

decreases and is bounded above by the affine solution derived for L = ∞ (Lemma E.8), it converges

to a finite limit SM (Dt) when ϵ goes to zero. Likewise, since for givenDt, the function ϵ → S′
ϵ,M (Dt),

defined for ϵ < Dt, decreases as ϵ decreases and is bounded below by zero (Lemma E.7), it converges

to a finite limit ŜM (Dt) when ϵ goes to zero.

The simple limit SM (Dt) of Sϵ,M (Dt) is differentiable, and its derivative is the simple limit

ŜM (Dt) of S′
ϵ,M (Dt). To show this result, we use the intermediate value theorem together with

a uniform bound on S′′
ϵ,M (Dt). The function Sϵ,M (Dt) is bounded above by the affine solution
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a1
r (κD̄ + rDt) and below by zero (Lemma E.7). Likewise, the function S′

ϵ,M (Dt) is bounded above

by a1 (Lemma E.11) and below by zero. Hence, for any given Dt and neighborhood N around Dt,

the ODEs (4.4) and (4.13) imply a bound Q on S′′
ϵ,M (m) that is uniform over m ∈ N , ϵ and M .

The intermediate value theorem implies that for m ∈ N ,∣∣∣∣Sϵ,M (m)− Sϵ,M (Dt)

m−Dt
− S′

ϵ,M (Dt)

∣∣∣∣ = ∣∣S′
ϵ,M (m′)− S′

ϵ,M (Dt)
∣∣ = ∣∣S′′

ϵ,M (m′′)
∣∣ |m′−Dt| < Q|m−Dt|,

where m′ is between m and Dt, and m′′ is between m′ and Dt. Taking the limit when ϵ goes to

zero, we find∣∣∣∣SM (m)− SM (Dt)

m−Dt
− ŜM (Dt)

∣∣∣∣ ≤ Q|m−Dt|,

which establishes that SM (Dt) is differentiable at Dt and its derivative is S′
M (Dt) = ŜM (Dt). Since

S′
ϵ,M (Dt) and S′

ϵ,M (Dt) have simple limits, we can use the ODEs (4.4) and (4.13) to construct

a simple limit for S′′
ϵ,M (Dt), which we denote by

ˆ̂
SM (Dt). The same argument that establishes

S′
M (Dt) = ŜM (Dt) can be used to establish

ˆ̂
SM (Dt) = S′′

M (Dt), and hence that SM (Dt) solves

the system of ODEs in (0,M ]. Since S′
ϵ,M (Dt) is decreasing in Dt and is bounded below by zero,

its limit S′
M (Dt) over ϵ is non-increasing in Dt and has the same lower bound. Hence, S′

M (Dt)

converges to a finite limit S′
M (0) when Dt goes to zero. Using the same argument as in Lemma

E.13, we can show that ZM (0) ≡ κD̄S′
M (0)−rSM (0) = 0, where SM (0) denotes the limit of SM (Dt)

when Dt goes to zero.

Since SM (Dt), S
′
M (Dt) and S′′

M (Dt) are the simple limits of Sϵ,M (Dt), S
′
ϵ,M (Dt) and S′′

ϵ,M (Dt),

respectively, the properties in Lemmas E.7, E.8, E.10, E.11 and E.12 hold as weak inequalities for

all Dt ∈ (0,M ]. Following similar arguments as in these Lemmas and using ZM (0) = 0, we can

show that the inequalities are strict.

We next derive the limit when M goes to infinity. Consider M2 > M1. Since S′′
M2

(Dt) < 0

and S′
M2

(M1) = S′
M1

(M1), S
′
M2

(M1) > S′
M1

(M1). Suppose, by contradiction, that SM2(M1) ≤
SM1(M1). Equations SM2(M1) ≤ SM1(M1) and S′

M2
(M1) > S′

M1
(M1) imply SM2(Dt) < SM1(Dt)

for Dt smaller than and close to M1. The same argument as in Lemma E.3 then implies SM2(Dt) <

SM1(Dt) and S′
M2

(Dt) > S′
M1

(Dt) for all Dt ∈ (0,M1). Since SM2(M1) ≤ SM1(M1) and S′
M2

(Dt) >

S′
M1

(Dt) for all Dt ∈ (0,M1), SM2(0) < SM1(0). Combining the latter equation with S′
M2

(0) ≥
S′
M1

(0), which follows by taking the limit of S′
M2

(Dt) > S′
M1

(Dt) when Dt goes to zero, we find

ZM2(0) > ZM1(0), a contradiction since ZM2(0) = ZM1(0) = 0. Hence, SM2(M1) > SM1(M1).

The inequalities SM2(Dt) > SM1(Dt) and S′
M2

(Dt) > S′
M1

(Dt) hold by continuity for Dt

smaller than and close to M1. Suppose, by contradiction, that there exists Dt ∈ (0,M1) such
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that SM2(Dt) ≤ SM1(Dt) or S′
M2

(Dt) ≤ S′
M1

(Dt), and consider the supremum m within that set.

The definition of m implies SM2(Dt) > SM1(Dt) and S′
M2

(Dt) > S′
M1

(Dt) for all Dt ∈ (m,M1), and

SM2(m) = SM1(m) or S′
M2

(m) = S′
M1

(m). Only one of the latter two equations holds since otherwise

the solutions SM1(Dt) and SM2(Dt) would coincide. If SM2(m) = SM1(m) and S′
M2

(m) > S′
M1

(m),

then SM2(Dt) < SM1(Dt) and S′
M2

(Dt) > S′
M1

(Dt) for Dt smaller than and close to M1. The

same argument as in Lemma E.3 then implies SM2(Dt) < SM1(Dt) and S′
M2

(Dt) > S′
M1

(Dt) for all

Dt ∈ (0,m). This, in turn, implies ZM2(0) > ZM1(0), a contradiction. If instead SM2(m) > SM1(m)

and S′
M2

(m) = S′
M1

(m), then the same argument as in Lemma E.3 implies SM2(Dt) > SM1(Dt) and

S′
M2

(Dt) < S′
M1

(Dt) for all Dt ∈ (0,m). This, in turn, implies ZM2(0) < ZM1(0), a contradiction.

Hence, SM2(Dt) > SM1(Dt) and S′
M2

(Dt) > S′
M1

(Dt) for all Dt ∈ (0,M1).

Since for given Dt ∈ (0,∞), the function M → SM (Dt), defined for Dt < M , is increasing in

M and is bounded above by the affine solution derived for L = ∞, it converges to a finite limit

S(Dt) when M goes to infinity. Likewise, since for given Dt ∈ (0,∞), the function M → S′
M (Dt),

defined for Dt < M , is increasing in M and is bounded above by a1, it converges to a finite limit

Ŝ(Dt) when M goes to infinity. The same argument as when taking the limit over ϵ establishes that

Ŝ(Dt) = S′(Dt) and that S(Dt) solves the system of ODEs in (0,∞). Since S′
M (Dt) is decreasing

in Dt and is bounded below by zero and above by a1, its limit S′(Dt) over M is non-increasing in

Dt and has the same bounds. Hence, S′(Dt) converges to finite limits S′(0) when Dt goes to zero

and S′(∞) when Dt goes to infinity. Lemma E.13 implies that Z(0) ≡ κD̄S′(0)− rS(0) = 0, where

S(0) denotes the limit of S(Dt) when Dt goes to zero. Lemma E.13 also implies that S′(∞) is a

root of (E.4). Since S′(Dt) is the simple limit of S′
M (Dt), which is positive and increasing in M , it

is positive. Hence, S′(∞) is non-negative and equal to the unique positive root of (E.4). The same

arguments as when taking the limit over ϵ establish that the properties in Lemmas E.7, E.8, E.10,

E.11 and E.12 hold for all Dt ∈ (0,∞).

The argument in the case θ < η is symmetric. The monotonicity of Sϵ,M (Dt) and S′
ϵ,M (Dt)

as functions of ϵ, and of SM (Dt) and S′
M (Dt) as functions of M , is the opposite relative to the

case θ > η. When θ < xη, the limit S′(∞) is equal to the smaller of the two positive roots of

(E.4) because S′(Dt) is bounded above by that root. The upper bound on S′(Dt) follows from the

same upper bound on S′
M (Dt): convexity implies that S′

M (Dt) < S′
M (M) for all Dt ∈ (0,M), and

S′
M (M) is equal to the smaller positive root of (E.4).
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